xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2x00usb.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2x00usb
21 	Abstract: Data structures for the rt2x00usb module.
22  */
23 
24 #ifndef RT2X00USB_H
25 #define RT2X00USB_H
26 
27 #include <linux/usb.h>
28 
29 #define to_usb_device_intf(d) \
30 ({ \
31 	struct usb_interface *intf = to_usb_interface(d); \
32 	interface_to_usbdev(intf); \
33 })
34 
35 /*
36  * For USB vendor requests we need to pass a timeout time in ms, for this we
37  * use the REGISTER_TIMEOUT, however when loading firmware or read EEPROM
38  * a higher value is required. In that case we use the REGISTER_TIMEOUT_FIRMWARE
39  * and EEPROM_TIMEOUT.
40  */
41 #define REGISTER_TIMEOUT		100
42 #define REGISTER_TIMEOUT_FIRMWARE	1000
43 #define EEPROM_TIMEOUT			2000
44 
45 /*
46  * Cache size
47  */
48 #define CSR_CACHE_SIZE			64
49 
50 /*
51  * USB request types.
52  */
53 #define USB_VENDOR_REQUEST	( USB_TYPE_VENDOR | USB_RECIP_DEVICE )
54 #define USB_VENDOR_REQUEST_IN	( USB_DIR_IN | USB_VENDOR_REQUEST )
55 #define USB_VENDOR_REQUEST_OUT	( USB_DIR_OUT | USB_VENDOR_REQUEST )
56 
57 /**
58  * enum rt2x00usb_vendor_request: USB vendor commands.
59  */
60 enum rt2x00usb_vendor_request {
61 	USB_DEVICE_MODE = 1,
62 	USB_SINGLE_WRITE = 2,
63 	USB_SINGLE_READ = 3,
64 	USB_MULTI_WRITE = 6,
65 	USB_MULTI_READ = 7,
66 	USB_EEPROM_WRITE = 8,
67 	USB_EEPROM_READ = 9,
68 	USB_LED_CONTROL = 10, /* RT73USB */
69 	USB_RX_CONTROL = 12,
70 };
71 
72 /**
73  * enum rt2x00usb_mode_offset: Device modes offset.
74  */
75 enum rt2x00usb_mode_offset {
76 	USB_MODE_RESET = 1,
77 	USB_MODE_UNPLUG = 2,
78 	USB_MODE_FUNCTION = 3,
79 	USB_MODE_TEST = 4,
80 	USB_MODE_SLEEP = 7,	/* RT73USB */
81 	USB_MODE_FIRMWARE = 8,	/* RT73USB */
82 	USB_MODE_WAKEUP = 9,	/* RT73USB */
83 	USB_MODE_AUTORUN = 17, /* RT2800USB */
84 };
85 
86 /**
87  * rt2x00usb_vendor_request - Send register command to device
88  * @rt2x00dev: Pointer to &struct rt2x00_dev
89  * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
90  * @requesttype: Request type &USB_VENDOR_REQUEST_*
91  * @offset: Register offset to perform action on
92  * @value: Value to write to device
93  * @buffer: Buffer where information will be read/written to by device
94  * @buffer_length: Size of &buffer
95  * @timeout: Operation timeout
96  *
97  * This is the main function to communicate with the device,
98  * the &buffer argument _must_ either be NULL or point to
99  * a buffer allocated by kmalloc. Failure to do so can lead
100  * to unexpected behavior depending on the architecture.
101  */
102 int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev,
103 			     const u8 request, const u8 requesttype,
104 			     const u16 offset, const u16 value,
105 			     void *buffer, const u16 buffer_length,
106 			     const int timeout);
107 
108 /**
109  * rt2x00usb_vendor_request_buff - Send register command to device (buffered)
110  * @rt2x00dev: Pointer to &struct rt2x00_dev
111  * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
112  * @requesttype: Request type &USB_VENDOR_REQUEST_*
113  * @offset: Register offset to perform action on
114  * @buffer: Buffer where information will be read/written to by device
115  * @buffer_length: Size of &buffer
116  *
117  * This function will use a previously with kmalloc allocated cache
118  * to communicate with the device. The contents of the buffer pointer
119  * will be copied to this cache when writing, or read from the cache
120  * when reading.
121  * Buffers send to &rt2x00usb_vendor_request _must_ be allocated with
122  * kmalloc. Hence the reason for using a previously allocated cache
123  * which has been allocated properly.
124  */
125 int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev,
126 				  const u8 request, const u8 requesttype,
127 				  const u16 offset, void *buffer,
128 				  const u16 buffer_length);
129 
130 /**
131  * rt2x00usb_vendor_request_buff - Send register command to device (buffered)
132  * @rt2x00dev: Pointer to &struct rt2x00_dev
133  * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
134  * @requesttype: Request type &USB_VENDOR_REQUEST_*
135  * @offset: Register offset to perform action on
136  * @buffer: Buffer where information will be read/written to by device
137  * @buffer_length: Size of &buffer
138  * @timeout: Operation timeout
139  *
140  * A version of &rt2x00usb_vendor_request_buff which must be called
141  * if the usb_cache_mutex is already held.
142  */
143 int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev,
144 				   const u8 request, const u8 requesttype,
145 				   const u16 offset, void *buffer,
146 				   const u16 buffer_length, const int timeout);
147 
148 /**
149  * rt2x00usb_vendor_request_sw - Send single register command to device
150  * @rt2x00dev: Pointer to &struct rt2x00_dev
151  * @request: USB vendor command (See &enum rt2x00usb_vendor_request)
152  * @offset: Register offset to perform action on
153  * @value: Value to write to device
154  * @timeout: Operation timeout
155  *
156  * Simple wrapper around rt2x00usb_vendor_request to write a single
157  * command to the device. Since we don't use the buffer argument we
158  * don't have to worry about kmalloc here.
159  */
160 static inline int rt2x00usb_vendor_request_sw(struct rt2x00_dev *rt2x00dev,
161 					      const u8 request,
162 					      const u16 offset,
163 					      const u16 value,
164 					      const int timeout)
165 {
166 	return rt2x00usb_vendor_request(rt2x00dev, request,
167 					USB_VENDOR_REQUEST_OUT, offset,
168 					value, NULL, 0, timeout);
169 }
170 
171 /**
172  * rt2x00usb_eeprom_read - Read eeprom from device
173  * @rt2x00dev: Pointer to &struct rt2x00_dev
174  * @eeprom: Pointer to eeprom array to store the information in
175  * @length: Number of bytes to read from the eeprom
176  *
177  * Simple wrapper around rt2x00usb_vendor_request to read the eeprom
178  * from the device. Note that the eeprom argument _must_ be allocated using
179  * kmalloc for correct handling inside the kernel USB layer.
180  */
181 static inline int rt2x00usb_eeprom_read(struct rt2x00_dev *rt2x00dev,
182 					__le16 *eeprom, const u16 length)
183 {
184 	return rt2x00usb_vendor_request(rt2x00dev, USB_EEPROM_READ,
185 					USB_VENDOR_REQUEST_IN, 0, 0,
186 					eeprom, length, EEPROM_TIMEOUT);
187 }
188 
189 /**
190  * rt2x00usb_register_read - Read 32bit register word
191  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
192  * @offset: Register offset
193  * @value: Pointer to where register contents should be stored
194  *
195  * This function is a simple wrapper for 32bit register access
196  * through rt2x00usb_vendor_request_buff().
197  */
198 static inline void rt2x00usb_register_read(struct rt2x00_dev *rt2x00dev,
199 					   const unsigned int offset,
200 					   u32 *value)
201 {
202 	__le32 reg = 0;
203 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
204 				      USB_VENDOR_REQUEST_IN, offset,
205 				      &reg, sizeof(reg));
206 	*value = le32_to_cpu(reg);
207 }
208 
209 /**
210  * rt2x00usb_register_read_lock - Read 32bit register word
211  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
212  * @offset: Register offset
213  * @value: Pointer to where register contents should be stored
214  *
215  * This function is a simple wrapper for 32bit register access
216  * through rt2x00usb_vendor_req_buff_lock().
217  */
218 static inline void rt2x00usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
219 						const unsigned int offset,
220 						u32 *value)
221 {
222 	__le32 reg = 0;
223 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
224 				       USB_VENDOR_REQUEST_IN, offset,
225 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
226 	*value = le32_to_cpu(reg);
227 }
228 
229 /**
230  * rt2x00usb_register_multiread - Read 32bit register words
231  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
232  * @offset: Register offset
233  * @value: Pointer to where register contents should be stored
234  * @length: Length of the data
235  *
236  * This function is a simple wrapper for 32bit register access
237  * through rt2x00usb_vendor_request_buff().
238  */
239 static inline void rt2x00usb_register_multiread(struct rt2x00_dev *rt2x00dev,
240 						const unsigned int offset,
241 						void *value, const u32 length)
242 {
243 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
244 				      USB_VENDOR_REQUEST_IN, offset,
245 				      value, length);
246 }
247 
248 /**
249  * rt2x00usb_register_write - Write 32bit register word
250  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
251  * @offset: Register offset
252  * @value: Data which should be written
253  *
254  * This function is a simple wrapper for 32bit register access
255  * through rt2x00usb_vendor_request_buff().
256  */
257 static inline void rt2x00usb_register_write(struct rt2x00_dev *rt2x00dev,
258 					    const unsigned int offset,
259 					    u32 value)
260 {
261 	__le32 reg = cpu_to_le32(value);
262 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
263 				      USB_VENDOR_REQUEST_OUT, offset,
264 				      &reg, sizeof(reg));
265 }
266 
267 /**
268  * rt2x00usb_register_write_lock - Write 32bit register word
269  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
270  * @offset: Register offset
271  * @value: Data which should be written
272  *
273  * This function is a simple wrapper for 32bit register access
274  * through rt2x00usb_vendor_req_buff_lock().
275  */
276 static inline void rt2x00usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
277 						 const unsigned int offset,
278 						 u32 value)
279 {
280 	__le32 reg = cpu_to_le32(value);
281 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
282 				       USB_VENDOR_REQUEST_OUT, offset,
283 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
284 }
285 
286 /**
287  * rt2x00usb_register_multiwrite - Write 32bit register words
288  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
289  * @offset: Register offset
290  * @value: Data which should be written
291  * @length: Length of the data
292  *
293  * This function is a simple wrapper for 32bit register access
294  * through rt2x00usb_vendor_request_buff().
295  */
296 static inline void rt2x00usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
297 						 const unsigned int offset,
298 						 const void *value,
299 						 const u32 length)
300 {
301 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
302 				      USB_VENDOR_REQUEST_OUT, offset,
303 				      (void *)value, length);
304 }
305 
306 /**
307  * rt2x00usb_regbusy_read - Read from register with busy check
308  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
309  * @offset: Register offset
310  * @field: Field to check if register is busy
311  * @reg: Pointer to where register contents should be stored
312  *
313  * This function will read the given register, and checks if the
314  * register is busy. If it is, it will sleep for a couple of
315  * microseconds before reading the register again. If the register
316  * is not read after a certain timeout, this function will return
317  * FALSE.
318  */
319 int rt2x00usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
320 			   const unsigned int offset,
321 			   const struct rt2x00_field32 field,
322 			   u32 *reg);
323 
324 /**
325  * rt2x00usb_register_read_async - Asynchronously read 32bit register word
326  * @rt2x00dev: Device pointer, see &struct rt2x00_dev.
327  * @offset: Register offset
328  * @callback: Functon to call when read completes.
329  *
330  * Submit a control URB to read a 32bit register. This safe to
331  * be called from atomic context.  The callback will be called
332  * when the URB completes. Otherwise the function is similar
333  * to rt2x00usb_register_read().
334  * When the callback function returns false, the memory will be cleaned up,
335  * when it returns true, the urb will be fired again.
336  */
337 void rt2x00usb_register_read_async(struct rt2x00_dev *rt2x00dev,
338 				   const unsigned int offset,
339 				   bool (*callback)(struct rt2x00_dev*, int, u32));
340 
341 /*
342  * Radio handlers
343  */
344 void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev);
345 
346 /**
347  * struct queue_entry_priv_usb: Per entry USB specific information
348  *
349  * @urb: Urb structure used for device communication.
350  */
351 struct queue_entry_priv_usb {
352 	struct urb *urb;
353 };
354 
355 /**
356  * struct queue_entry_priv_usb_bcn: Per TX entry USB specific information
357  *
358  * The first section should match &struct queue_entry_priv_usb exactly.
359  * rt2500usb can use this structure to send a guardian byte when working
360  * with beacons.
361  *
362  * @urb: Urb structure used for device communication.
363  * @guardian_data: Set to 0, used for sending the guardian data.
364  * @guardian_urb: Urb structure used to send the guardian data.
365  */
366 struct queue_entry_priv_usb_bcn {
367 	struct urb *urb;
368 
369 	unsigned int guardian_data;
370 	struct urb *guardian_urb;
371 };
372 
373 /**
374  * rt2x00usb_kick_queue - Kick data queue
375  * @queue: Data queue to kick
376  *
377  * This will walk through all entries of the queue and push all pending
378  * frames to the hardware as a single burst.
379  */
380 void rt2x00usb_kick_queue(struct data_queue *queue);
381 
382 /**
383  * rt2x00usb_flush_queue - Flush data queue
384  * @queue: Data queue to stop
385  * @drop: True to drop all pending frames.
386  *
387  * This will walk through all entries of the queue and will optionally
388  * kill all URB's which were send to the device, or at least wait until
389  * they have been returned from the device..
390  */
391 void rt2x00usb_flush_queue(struct data_queue *queue, bool drop);
392 
393 /**
394  * rt2x00usb_watchdog - Watchdog for USB communication
395  * @rt2x00dev: Pointer to &struct rt2x00_dev
396  *
397  * Check the health of the USB communication and determine
398  * if timeouts have occurred. If this is the case, this function
399  * will reset all communication to restore functionality again.
400  */
401 void rt2x00usb_watchdog(struct rt2x00_dev *rt2x00dev);
402 
403 /*
404  * Device initialization handlers.
405  */
406 void rt2x00usb_clear_entry(struct queue_entry *entry);
407 int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev);
408 void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev);
409 
410 /*
411  * USB driver handlers.
412  */
413 int rt2x00usb_probe(struct usb_interface *usb_intf,
414 		    const struct rt2x00_ops *ops);
415 void rt2x00usb_disconnect(struct usb_interface *usb_intf);
416 #ifdef CONFIG_PM
417 int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state);
418 int rt2x00usb_resume(struct usb_interface *usb_intf);
419 #else
420 #define rt2x00usb_suspend	NULL
421 #define rt2x00usb_resume	NULL
422 #endif /* CONFIG_PM */
423 
424 #endif /* RT2X00USB_H */
425