1 /* 2 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt2x00 21 Abstract: rt2x00 queue datastructures and routines 22 */ 23 24 #ifndef RT2X00QUEUE_H 25 #define RT2X00QUEUE_H 26 27 #include <linux/prefetch.h> 28 29 /** 30 * DOC: Entry frame size 31 * 32 * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes, 33 * for USB devices this restriction does not apply, but the value of 34 * 2432 makes sense since it is big enough to contain the maximum fragment 35 * size according to the ieee802.11 specs. 36 * The aggregation size depends on support from the driver, but should 37 * be something around 3840 bytes. 38 */ 39 #define DATA_FRAME_SIZE 2432 40 #define MGMT_FRAME_SIZE 256 41 #define AGGREGATION_SIZE 3840 42 43 /** 44 * enum data_queue_qid: Queue identification 45 * 46 * @QID_AC_VO: AC VO queue 47 * @QID_AC_VI: AC VI queue 48 * @QID_AC_BE: AC BE queue 49 * @QID_AC_BK: AC BK queue 50 * @QID_HCCA: HCCA queue 51 * @QID_MGMT: MGMT queue (prio queue) 52 * @QID_RX: RX queue 53 * @QID_OTHER: None of the above (don't use, only present for completeness) 54 * @QID_BEACON: Beacon queue (value unspecified, don't send it to device) 55 * @QID_ATIM: Atim queue (value unspecified, don't send it to device) 56 */ 57 enum data_queue_qid { 58 QID_AC_VO = 0, 59 QID_AC_VI = 1, 60 QID_AC_BE = 2, 61 QID_AC_BK = 3, 62 QID_HCCA = 4, 63 QID_MGMT = 13, 64 QID_RX = 14, 65 QID_OTHER = 15, 66 QID_BEACON, 67 QID_ATIM, 68 }; 69 70 /** 71 * enum skb_frame_desc_flags: Flags for &struct skb_frame_desc 72 * 73 * @SKBDESC_DMA_MAPPED_RX: &skb_dma field has been mapped for RX 74 * @SKBDESC_DMA_MAPPED_TX: &skb_dma field has been mapped for TX 75 * @SKBDESC_IV_STRIPPED: Frame contained a IV/EIV provided by 76 * mac80211 but was stripped for processing by the driver. 77 * @SKBDESC_NOT_MAC80211: Frame didn't originate from mac80211, 78 * don't try to pass it back. 79 * @SKBDESC_DESC_IN_SKB: The descriptor is at the start of the 80 * skb, instead of in the desc field. 81 */ 82 enum skb_frame_desc_flags { 83 SKBDESC_DMA_MAPPED_RX = 1 << 0, 84 SKBDESC_DMA_MAPPED_TX = 1 << 1, 85 SKBDESC_IV_STRIPPED = 1 << 2, 86 SKBDESC_NOT_MAC80211 = 1 << 3, 87 SKBDESC_DESC_IN_SKB = 1 << 4, 88 }; 89 90 /** 91 * struct skb_frame_desc: Descriptor information for the skb buffer 92 * 93 * This structure is placed over the driver_data array, this means that 94 * this structure should not exceed the size of that array (40 bytes). 95 * 96 * @flags: Frame flags, see &enum skb_frame_desc_flags. 97 * @desc_len: Length of the frame descriptor. 98 * @tx_rate_idx: the index of the TX rate, used for TX status reporting 99 * @tx_rate_flags: the TX rate flags, used for TX status reporting 100 * @desc: Pointer to descriptor part of the frame. 101 * Note that this pointer could point to something outside 102 * of the scope of the skb->data pointer. 103 * @iv: IV/EIV data used during encryption/decryption. 104 * @skb_dma: (PCI-only) the DMA address associated with the sk buffer. 105 * @entry: The entry to which this sk buffer belongs. 106 */ 107 struct skb_frame_desc { 108 u8 flags; 109 110 u8 desc_len; 111 u8 tx_rate_idx; 112 u8 tx_rate_flags; 113 114 void *desc; 115 116 __le32 iv[2]; 117 118 dma_addr_t skb_dma; 119 120 struct queue_entry *entry; 121 }; 122 123 /** 124 * get_skb_frame_desc - Obtain the rt2x00 frame descriptor from a sk_buff. 125 * @skb: &struct sk_buff from where we obtain the &struct skb_frame_desc 126 */ 127 static inline struct skb_frame_desc* get_skb_frame_desc(struct sk_buff *skb) 128 { 129 BUILD_BUG_ON(sizeof(struct skb_frame_desc) > 130 IEEE80211_TX_INFO_DRIVER_DATA_SIZE); 131 return (struct skb_frame_desc *)&IEEE80211_SKB_CB(skb)->driver_data; 132 } 133 134 /** 135 * enum rxdone_entry_desc_flags: Flags for &struct rxdone_entry_desc 136 * 137 * @RXDONE_SIGNAL_PLCP: Signal field contains the plcp value. 138 * @RXDONE_SIGNAL_BITRATE: Signal field contains the bitrate value. 139 * @RXDONE_SIGNAL_MCS: Signal field contains the mcs value. 140 * @RXDONE_MY_BSS: Does this frame originate from device's BSS. 141 * @RXDONE_CRYPTO_IV: Driver provided IV/EIV data. 142 * @RXDONE_CRYPTO_ICV: Driver provided ICV data. 143 * @RXDONE_L2PAD: 802.11 payload has been padded to 4-byte boundary. 144 */ 145 enum rxdone_entry_desc_flags { 146 RXDONE_SIGNAL_PLCP = BIT(0), 147 RXDONE_SIGNAL_BITRATE = BIT(1), 148 RXDONE_SIGNAL_MCS = BIT(2), 149 RXDONE_MY_BSS = BIT(3), 150 RXDONE_CRYPTO_IV = BIT(4), 151 RXDONE_CRYPTO_ICV = BIT(5), 152 RXDONE_L2PAD = BIT(6), 153 }; 154 155 /** 156 * RXDONE_SIGNAL_MASK - Define to mask off all &rxdone_entry_desc_flags flags 157 * except for the RXDONE_SIGNAL_* flags. This is useful to convert the dev_flags 158 * from &rxdone_entry_desc to a signal value type. 159 */ 160 #define RXDONE_SIGNAL_MASK \ 161 ( RXDONE_SIGNAL_PLCP | RXDONE_SIGNAL_BITRATE | RXDONE_SIGNAL_MCS ) 162 163 /** 164 * struct rxdone_entry_desc: RX Entry descriptor 165 * 166 * Summary of information that has been read from the RX frame descriptor. 167 * 168 * @timestamp: RX Timestamp 169 * @signal: Signal of the received frame. 170 * @rssi: RSSI of the received frame. 171 * @size: Data size of the received frame. 172 * @flags: MAC80211 receive flags (See &enum mac80211_rx_flags). 173 * @dev_flags: Ralink receive flags (See &enum rxdone_entry_desc_flags). 174 * @rate_mode: Rate mode (See @enum rate_modulation). 175 * @cipher: Cipher type used during decryption. 176 * @cipher_status: Decryption status. 177 * @iv: IV/EIV data used during decryption. 178 * @icv: ICV data used during decryption. 179 */ 180 struct rxdone_entry_desc { 181 u64 timestamp; 182 int signal; 183 int rssi; 184 int size; 185 int flags; 186 int dev_flags; 187 u16 rate_mode; 188 u8 cipher; 189 u8 cipher_status; 190 191 __le32 iv[2]; 192 __le32 icv; 193 }; 194 195 /** 196 * enum txdone_entry_desc_flags: Flags for &struct txdone_entry_desc 197 * 198 * Every txdone report has to contain the basic result of the 199 * transmission, either &TXDONE_UNKNOWN, &TXDONE_SUCCESS or 200 * &TXDONE_FAILURE. The flag &TXDONE_FALLBACK can be used in 201 * conjunction with all of these flags but should only be set 202 * if retires > 0. The flag &TXDONE_EXCESSIVE_RETRY can only be used 203 * in conjunction with &TXDONE_FAILURE. 204 * 205 * @TXDONE_UNKNOWN: Hardware could not determine success of transmission. 206 * @TXDONE_SUCCESS: Frame was successfully send 207 * @TXDONE_FALLBACK: Hardware used fallback rates for retries 208 * @TXDONE_FAILURE: Frame was not successfully send 209 * @TXDONE_EXCESSIVE_RETRY: In addition to &TXDONE_FAILURE, the 210 * frame transmission failed due to excessive retries. 211 */ 212 enum txdone_entry_desc_flags { 213 TXDONE_UNKNOWN, 214 TXDONE_SUCCESS, 215 TXDONE_FALLBACK, 216 TXDONE_FAILURE, 217 TXDONE_EXCESSIVE_RETRY, 218 TXDONE_AMPDU, 219 }; 220 221 /** 222 * struct txdone_entry_desc: TX done entry descriptor 223 * 224 * Summary of information that has been read from the TX frame descriptor 225 * after the device is done with transmission. 226 * 227 * @flags: TX done flags (See &enum txdone_entry_desc_flags). 228 * @retry: Retry count. 229 */ 230 struct txdone_entry_desc { 231 unsigned long flags; 232 int retry; 233 }; 234 235 /** 236 * enum txentry_desc_flags: Status flags for TX entry descriptor 237 * 238 * @ENTRY_TXD_RTS_FRAME: This frame is a RTS frame. 239 * @ENTRY_TXD_CTS_FRAME: This frame is a CTS-to-self frame. 240 * @ENTRY_TXD_GENERATE_SEQ: This frame requires sequence counter. 241 * @ENTRY_TXD_FIRST_FRAGMENT: This is the first frame. 242 * @ENTRY_TXD_MORE_FRAG: This frame is followed by another fragment. 243 * @ENTRY_TXD_REQ_TIMESTAMP: Require timestamp to be inserted. 244 * @ENTRY_TXD_BURST: This frame belongs to the same burst event. 245 * @ENTRY_TXD_ACK: An ACK is required for this frame. 246 * @ENTRY_TXD_RETRY_MODE: When set, the long retry count is used. 247 * @ENTRY_TXD_ENCRYPT: This frame should be encrypted. 248 * @ENTRY_TXD_ENCRYPT_PAIRWISE: Use pairwise key table (instead of shared). 249 * @ENTRY_TXD_ENCRYPT_IV: Generate IV/EIV in hardware. 250 * @ENTRY_TXD_ENCRYPT_MMIC: Generate MIC in hardware. 251 * @ENTRY_TXD_HT_AMPDU: This frame is part of an AMPDU. 252 * @ENTRY_TXD_HT_BW_40: Use 40MHz Bandwidth. 253 * @ENTRY_TXD_HT_SHORT_GI: Use short GI. 254 * @ENTRY_TXD_HT_MIMO_PS: The receiving STA is in dynamic SM PS mode. 255 */ 256 enum txentry_desc_flags { 257 ENTRY_TXD_RTS_FRAME, 258 ENTRY_TXD_CTS_FRAME, 259 ENTRY_TXD_GENERATE_SEQ, 260 ENTRY_TXD_FIRST_FRAGMENT, 261 ENTRY_TXD_MORE_FRAG, 262 ENTRY_TXD_REQ_TIMESTAMP, 263 ENTRY_TXD_BURST, 264 ENTRY_TXD_ACK, 265 ENTRY_TXD_RETRY_MODE, 266 ENTRY_TXD_ENCRYPT, 267 ENTRY_TXD_ENCRYPT_PAIRWISE, 268 ENTRY_TXD_ENCRYPT_IV, 269 ENTRY_TXD_ENCRYPT_MMIC, 270 ENTRY_TXD_HT_AMPDU, 271 ENTRY_TXD_HT_BW_40, 272 ENTRY_TXD_HT_SHORT_GI, 273 ENTRY_TXD_HT_MIMO_PS, 274 }; 275 276 /** 277 * struct txentry_desc: TX Entry descriptor 278 * 279 * Summary of information for the frame descriptor before sending a TX frame. 280 * 281 * @flags: Descriptor flags (See &enum queue_entry_flags). 282 * @length: Length of the entire frame. 283 * @header_length: Length of 802.11 header. 284 * @length_high: PLCP length high word. 285 * @length_low: PLCP length low word. 286 * @signal: PLCP signal. 287 * @service: PLCP service. 288 * @msc: MCS. 289 * @stbc: Use Space Time Block Coding (only available for MCS rates < 8). 290 * @ba_size: Size of the recepients RX reorder buffer - 1. 291 * @rate_mode: Rate mode (See @enum rate_modulation). 292 * @mpdu_density: MDPU density. 293 * @retry_limit: Max number of retries. 294 * @ifs: IFS value. 295 * @txop: IFS value for 11n capable chips. 296 * @cipher: Cipher type used for encryption. 297 * @key_idx: Key index used for encryption. 298 * @iv_offset: Position where IV should be inserted by hardware. 299 * @iv_len: Length of IV data. 300 */ 301 struct txentry_desc { 302 unsigned long flags; 303 304 u16 length; 305 u16 header_length; 306 307 union { 308 struct { 309 u16 length_high; 310 u16 length_low; 311 u16 signal; 312 u16 service; 313 enum ifs ifs; 314 } plcp; 315 316 struct { 317 u16 mcs; 318 u8 stbc; 319 u8 ba_size; 320 u8 mpdu_density; 321 enum txop txop; 322 int wcid; 323 } ht; 324 } u; 325 326 enum rate_modulation rate_mode; 327 328 short retry_limit; 329 330 enum cipher cipher; 331 u16 key_idx; 332 u16 iv_offset; 333 u16 iv_len; 334 }; 335 336 /** 337 * enum queue_entry_flags: Status flags for queue entry 338 * 339 * @ENTRY_BCN_ASSIGNED: This entry has been assigned to an interface. 340 * As long as this bit is set, this entry may only be touched 341 * through the interface structure. 342 * @ENTRY_OWNER_DEVICE_DATA: This entry is owned by the device for data 343 * transfer (either TX or RX depending on the queue). The entry should 344 * only be touched after the device has signaled it is done with it. 345 * @ENTRY_DATA_PENDING: This entry contains a valid frame and is waiting 346 * for the signal to start sending. 347 * @ENTRY_DATA_IO_FAILED: Hardware indicated that an IO error occurred 348 * while transferring the data to the hardware. No TX status report will 349 * be expected from the hardware. 350 * @ENTRY_DATA_STATUS_PENDING: The entry has been send to the device and 351 * returned. It is now waiting for the status reporting before the 352 * entry can be reused again. 353 */ 354 enum queue_entry_flags { 355 ENTRY_BCN_ASSIGNED, 356 ENTRY_BCN_ENABLED, 357 ENTRY_OWNER_DEVICE_DATA, 358 ENTRY_DATA_PENDING, 359 ENTRY_DATA_IO_FAILED, 360 ENTRY_DATA_STATUS_PENDING, 361 ENTRY_DATA_STATUS_SET, 362 }; 363 364 /** 365 * struct queue_entry: Entry inside the &struct data_queue 366 * 367 * @flags: Entry flags, see &enum queue_entry_flags. 368 * @last_action: Timestamp of last change. 369 * @queue: The data queue (&struct data_queue) to which this entry belongs. 370 * @skb: The buffer which is currently being transmitted (for TX queue), 371 * or used to directly receive data in (for RX queue). 372 * @entry_idx: The entry index number. 373 * @priv_data: Private data belonging to this queue entry. The pointer 374 * points to data specific to a particular driver and queue type. 375 * @status: Device specific status 376 */ 377 struct queue_entry { 378 unsigned long flags; 379 unsigned long last_action; 380 381 struct data_queue *queue; 382 383 struct sk_buff *skb; 384 385 unsigned int entry_idx; 386 387 u32 status; 388 389 void *priv_data; 390 }; 391 392 /** 393 * enum queue_index: Queue index type 394 * 395 * @Q_INDEX: Index pointer to the current entry in the queue, if this entry is 396 * owned by the hardware then the queue is considered to be full. 397 * @Q_INDEX_DMA_DONE: Index pointer for the next entry which will have been 398 * transferred to the hardware. 399 * @Q_INDEX_DONE: Index pointer to the next entry which will be completed by 400 * the hardware and for which we need to run the txdone handler. If this 401 * entry is not owned by the hardware the queue is considered to be empty. 402 * @Q_INDEX_MAX: Keep last, used in &struct data_queue to determine the size 403 * of the index array. 404 */ 405 enum queue_index { 406 Q_INDEX, 407 Q_INDEX_DMA_DONE, 408 Q_INDEX_DONE, 409 Q_INDEX_MAX, 410 }; 411 412 /** 413 * enum data_queue_flags: Status flags for data queues 414 * 415 * @QUEUE_STARTED: The queue has been started. Fox RX queues this means the 416 * device might be DMA'ing skbuffers. TX queues will accept skbuffers to 417 * be transmitted and beacon queues will start beaconing the configured 418 * beacons. 419 * @QUEUE_PAUSED: The queue has been started but is currently paused. 420 * When this bit is set, the queue has been stopped in mac80211, 421 * preventing new frames to be enqueued. However, a few frames 422 * might still appear shortly after the pausing... 423 */ 424 enum data_queue_flags { 425 QUEUE_STARTED, 426 QUEUE_PAUSED, 427 }; 428 429 /** 430 * struct data_queue: Data queue 431 * 432 * @rt2x00dev: Pointer to main &struct rt2x00dev where this queue belongs to. 433 * @entries: Base address of the &struct queue_entry which are 434 * part of this queue. 435 * @qid: The queue identification, see &enum data_queue_qid. 436 * @flags: Entry flags, see &enum queue_entry_flags. 437 * @status_lock: The mutex for protecting the start/stop/flush 438 * handling on this queue. 439 * @tx_lock: Spinlock to serialize tx operations on this queue. 440 * @index_lock: Spinlock to protect index handling. Whenever @index, @index_done or 441 * @index_crypt needs to be changed this lock should be grabbed to prevent 442 * index corruption due to concurrency. 443 * @count: Number of frames handled in the queue. 444 * @limit: Maximum number of entries in the queue. 445 * @threshold: Minimum number of free entries before queue is kicked by force. 446 * @length: Number of frames in queue. 447 * @index: Index pointers to entry positions in the queue, 448 * use &enum queue_index to get a specific index field. 449 * @txop: maximum burst time. 450 * @aifs: The aifs value for outgoing frames (field ignored in RX queue). 451 * @cw_min: The cw min value for outgoing frames (field ignored in RX queue). 452 * @cw_max: The cw max value for outgoing frames (field ignored in RX queue). 453 * @data_size: Maximum data size for the frames in this queue. 454 * @desc_size: Hardware descriptor size for the data in this queue. 455 * @priv_size: Size of per-queue_entry private data. 456 * @usb_endpoint: Device endpoint used for communication (USB only) 457 * @usb_maxpacket: Max packet size for given endpoint (USB only) 458 */ 459 struct data_queue { 460 struct rt2x00_dev *rt2x00dev; 461 struct queue_entry *entries; 462 463 enum data_queue_qid qid; 464 unsigned long flags; 465 466 struct mutex status_lock; 467 spinlock_t tx_lock; 468 spinlock_t index_lock; 469 470 unsigned int count; 471 unsigned short limit; 472 unsigned short threshold; 473 unsigned short length; 474 unsigned short index[Q_INDEX_MAX]; 475 476 unsigned short txop; 477 unsigned short aifs; 478 unsigned short cw_min; 479 unsigned short cw_max; 480 481 unsigned short data_size; 482 unsigned char desc_size; 483 unsigned char winfo_size; 484 unsigned short priv_size; 485 486 unsigned short usb_endpoint; 487 unsigned short usb_maxpacket; 488 }; 489 490 /** 491 * queue_end - Return pointer to the last queue (HELPER MACRO). 492 * @__dev: Pointer to &struct rt2x00_dev 493 * 494 * Using the base rx pointer and the maximum number of available queues, 495 * this macro will return the address of 1 position beyond the end of the 496 * queues array. 497 */ 498 #define queue_end(__dev) \ 499 &(__dev)->rx[(__dev)->data_queues] 500 501 /** 502 * tx_queue_end - Return pointer to the last TX queue (HELPER MACRO). 503 * @__dev: Pointer to &struct rt2x00_dev 504 * 505 * Using the base tx pointer and the maximum number of available TX 506 * queues, this macro will return the address of 1 position beyond 507 * the end of the TX queue array. 508 */ 509 #define tx_queue_end(__dev) \ 510 &(__dev)->tx[(__dev)->ops->tx_queues] 511 512 /** 513 * queue_next - Return pointer to next queue in list (HELPER MACRO). 514 * @__queue: Current queue for which we need the next queue 515 * 516 * Using the current queue address we take the address directly 517 * after the queue to take the next queue. Note that this macro 518 * should be used carefully since it does not protect against 519 * moving past the end of the list. (See macros &queue_end and 520 * &tx_queue_end for determining the end of the queue). 521 */ 522 #define queue_next(__queue) \ 523 &(__queue)[1] 524 525 /** 526 * queue_loop - Loop through the queues within a specific range (HELPER MACRO). 527 * @__entry: Pointer where the current queue entry will be stored in. 528 * @__start: Start queue pointer. 529 * @__end: End queue pointer. 530 * 531 * This macro will loop through all queues between &__start and &__end. 532 */ 533 #define queue_loop(__entry, __start, __end) \ 534 for ((__entry) = (__start); \ 535 prefetch(queue_next(__entry)), (__entry) != (__end);\ 536 (__entry) = queue_next(__entry)) 537 538 /** 539 * queue_for_each - Loop through all queues 540 * @__dev: Pointer to &struct rt2x00_dev 541 * @__entry: Pointer where the current queue entry will be stored in. 542 * 543 * This macro will loop through all available queues. 544 */ 545 #define queue_for_each(__dev, __entry) \ 546 queue_loop(__entry, (__dev)->rx, queue_end(__dev)) 547 548 /** 549 * tx_queue_for_each - Loop through the TX queues 550 * @__dev: Pointer to &struct rt2x00_dev 551 * @__entry: Pointer where the current queue entry will be stored in. 552 * 553 * This macro will loop through all TX related queues excluding 554 * the Beacon and Atim queues. 555 */ 556 #define tx_queue_for_each(__dev, __entry) \ 557 queue_loop(__entry, (__dev)->tx, tx_queue_end(__dev)) 558 559 /** 560 * txall_queue_for_each - Loop through all TX related queues 561 * @__dev: Pointer to &struct rt2x00_dev 562 * @__entry: Pointer where the current queue entry will be stored in. 563 * 564 * This macro will loop through all TX related queues including 565 * the Beacon and Atim queues. 566 */ 567 #define txall_queue_for_each(__dev, __entry) \ 568 queue_loop(__entry, (__dev)->tx, queue_end(__dev)) 569 570 /** 571 * rt2x00queue_for_each_entry - Loop through all entries in the queue 572 * @queue: Pointer to @data_queue 573 * @start: &enum queue_index Pointer to start index 574 * @end: &enum queue_index Pointer to end index 575 * @data: Data to pass to the callback function 576 * @fn: The function to call for each &struct queue_entry 577 * 578 * This will walk through all entries in the queue, in chronological 579 * order. This means it will start at the current @start pointer 580 * and will walk through the queue until it reaches the @end pointer. 581 * 582 * If fn returns true for an entry rt2x00queue_for_each_entry will stop 583 * processing and return true as well. 584 */ 585 bool rt2x00queue_for_each_entry(struct data_queue *queue, 586 enum queue_index start, 587 enum queue_index end, 588 void *data, 589 bool (*fn)(struct queue_entry *entry, 590 void *data)); 591 592 /** 593 * rt2x00queue_empty - Check if the queue is empty. 594 * @queue: Queue to check if empty. 595 */ 596 static inline int rt2x00queue_empty(struct data_queue *queue) 597 { 598 return queue->length == 0; 599 } 600 601 /** 602 * rt2x00queue_full - Check if the queue is full. 603 * @queue: Queue to check if full. 604 */ 605 static inline int rt2x00queue_full(struct data_queue *queue) 606 { 607 return queue->length == queue->limit; 608 } 609 610 /** 611 * rt2x00queue_free - Check the number of available entries in queue. 612 * @queue: Queue to check. 613 */ 614 static inline int rt2x00queue_available(struct data_queue *queue) 615 { 616 return queue->limit - queue->length; 617 } 618 619 /** 620 * rt2x00queue_threshold - Check if the queue is below threshold 621 * @queue: Queue to check. 622 */ 623 static inline int rt2x00queue_threshold(struct data_queue *queue) 624 { 625 return rt2x00queue_available(queue) < queue->threshold; 626 } 627 /** 628 * rt2x00queue_dma_timeout - Check if a timeout occurred for DMA transfers 629 * @entry: Queue entry to check. 630 */ 631 static inline int rt2x00queue_dma_timeout(struct queue_entry *entry) 632 { 633 if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) 634 return false; 635 return time_after(jiffies, entry->last_action + msecs_to_jiffies(100)); 636 } 637 638 /** 639 * _rt2x00_desc_read - Read a word from the hardware descriptor. 640 * @desc: Base descriptor address 641 * @word: Word index from where the descriptor should be read. 642 * @value: Address where the descriptor value should be written into. 643 */ 644 static inline void _rt2x00_desc_read(__le32 *desc, const u8 word, __le32 *value) 645 { 646 *value = desc[word]; 647 } 648 649 /** 650 * rt2x00_desc_read - Read a word from the hardware descriptor, this 651 * function will take care of the byte ordering. 652 * @desc: Base descriptor address 653 * @word: Word index from where the descriptor should be read. 654 * @value: Address where the descriptor value should be written into. 655 */ 656 static inline void rt2x00_desc_read(__le32 *desc, const u8 word, u32 *value) 657 { 658 __le32 tmp; 659 _rt2x00_desc_read(desc, word, &tmp); 660 *value = le32_to_cpu(tmp); 661 } 662 663 /** 664 * rt2x00_desc_write - write a word to the hardware descriptor, this 665 * function will take care of the byte ordering. 666 * @desc: Base descriptor address 667 * @word: Word index from where the descriptor should be written. 668 * @value: Value that should be written into the descriptor. 669 */ 670 static inline void _rt2x00_desc_write(__le32 *desc, const u8 word, __le32 value) 671 { 672 desc[word] = value; 673 } 674 675 /** 676 * rt2x00_desc_write - write a word to the hardware descriptor. 677 * @desc: Base descriptor address 678 * @word: Word index from where the descriptor should be written. 679 * @value: Value that should be written into the descriptor. 680 */ 681 static inline void rt2x00_desc_write(__le32 *desc, const u8 word, u32 value) 682 { 683 _rt2x00_desc_write(desc, word, cpu_to_le32(value)); 684 } 685 686 #endif /* RT2X00QUEUE_H */ 687