1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00lib 12 Abstract: rt2x00 queue specific routines. 13 */ 14 15 #include <linux/slab.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/dma-mapping.h> 19 20 #include "rt2x00.h" 21 #include "rt2x00lib.h" 22 23 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp) 24 { 25 struct data_queue *queue = entry->queue; 26 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 27 struct sk_buff *skb; 28 struct skb_frame_desc *skbdesc; 29 unsigned int frame_size; 30 unsigned int head_size = 0; 31 unsigned int tail_size = 0; 32 33 /* 34 * The frame size includes descriptor size, because the 35 * hardware directly receive the frame into the skbuffer. 36 */ 37 frame_size = queue->data_size + queue->desc_size + queue->winfo_size; 38 39 /* 40 * The payload should be aligned to a 4-byte boundary, 41 * this means we need at least 3 bytes for moving the frame 42 * into the correct offset. 43 */ 44 head_size = 4; 45 46 /* 47 * For IV/EIV/ICV assembly we must make sure there is 48 * at least 8 bytes bytes available in headroom for IV/EIV 49 * and 8 bytes for ICV data as tailroon. 50 */ 51 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) { 52 head_size += 8; 53 tail_size += 8; 54 } 55 56 /* 57 * Allocate skbuffer. 58 */ 59 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp); 60 if (!skb) 61 return NULL; 62 63 /* 64 * Make sure we not have a frame with the requested bytes 65 * available in the head and tail. 66 */ 67 skb_reserve(skb, head_size); 68 skb_put(skb, frame_size); 69 70 /* 71 * Populate skbdesc. 72 */ 73 skbdesc = get_skb_frame_desc(skb); 74 memset(skbdesc, 0, sizeof(*skbdesc)); 75 76 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) { 77 dma_addr_t skb_dma; 78 79 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, 80 DMA_FROM_DEVICE); 81 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) { 82 dev_kfree_skb_any(skb); 83 return NULL; 84 } 85 86 skbdesc->skb_dma = skb_dma; 87 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; 88 } 89 90 return skb; 91 } 92 93 int rt2x00queue_map_txskb(struct queue_entry *entry) 94 { 95 struct device *dev = entry->queue->rt2x00dev->dev; 96 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 97 98 skbdesc->skb_dma = 99 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); 100 101 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma))) 102 return -ENOMEM; 103 104 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; 105 rt2x00lib_dmadone(entry); 106 return 0; 107 } 108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); 109 110 void rt2x00queue_unmap_skb(struct queue_entry *entry) 111 { 112 struct device *dev = entry->queue->rt2x00dev->dev; 113 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 114 115 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { 116 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 117 DMA_FROM_DEVICE); 118 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; 119 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { 120 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, 121 DMA_TO_DEVICE); 122 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; 123 } 124 } 125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); 126 127 void rt2x00queue_free_skb(struct queue_entry *entry) 128 { 129 if (!entry->skb) 130 return; 131 132 rt2x00queue_unmap_skb(entry); 133 dev_kfree_skb_any(entry->skb); 134 entry->skb = NULL; 135 } 136 137 void rt2x00queue_align_frame(struct sk_buff *skb) 138 { 139 unsigned int frame_length = skb->len; 140 unsigned int align = ALIGN_SIZE(skb, 0); 141 142 if (!align) 143 return; 144 145 skb_push(skb, align); 146 memmove(skb->data, skb->data + align, frame_length); 147 skb_trim(skb, frame_length); 148 } 149 150 /* 151 * H/W needs L2 padding between the header and the paylod if header size 152 * is not 4 bytes aligned. 153 */ 154 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len) 155 { 156 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0; 157 158 if (!l2pad) 159 return; 160 161 skb_push(skb, l2pad); 162 memmove(skb->data, skb->data + l2pad, hdr_len); 163 } 164 165 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len) 166 { 167 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0; 168 169 if (!l2pad) 170 return; 171 172 memmove(skb->data + l2pad, skb->data, hdr_len); 173 skb_pull(skb, l2pad); 174 } 175 176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev, 177 struct sk_buff *skb, 178 struct txentry_desc *txdesc) 179 { 180 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 181 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 182 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); 183 u16 seqno; 184 185 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 186 return; 187 188 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 189 190 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) { 191 /* 192 * rt2800 has a H/W (or F/W) bug, device incorrectly increase 193 * seqno on retransmitted data (non-QOS) and management frames. 194 * To workaround the problem let's generate seqno in software. 195 * Except for beacons which are transmitted periodically by H/W 196 * hence hardware has to assign seqno for them. 197 */ 198 if (ieee80211_is_beacon(hdr->frame_control)) { 199 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 200 /* H/W will generate sequence number */ 201 return; 202 } 203 204 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); 205 } 206 207 /* 208 * The hardware is not able to insert a sequence number. Assign a 209 * software generated one here. 210 * 211 * This is wrong because beacons are not getting sequence 212 * numbers assigned properly. 213 * 214 * A secondary problem exists for drivers that cannot toggle 215 * sequence counting per-frame, since those will override the 216 * sequence counter given by mac80211. 217 */ 218 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 219 seqno = atomic_add_return(0x10, &intf->seqno); 220 else 221 seqno = atomic_read(&intf->seqno); 222 223 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 224 hdr->seq_ctrl |= cpu_to_le16(seqno); 225 } 226 227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev, 228 struct sk_buff *skb, 229 struct txentry_desc *txdesc, 230 const struct rt2x00_rate *hwrate) 231 { 232 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 233 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 234 unsigned int data_length; 235 unsigned int duration; 236 unsigned int residual; 237 238 /* 239 * Determine with what IFS priority this frame should be send. 240 * Set ifs to IFS_SIFS when the this is not the first fragment, 241 * or this fragment came after RTS/CTS. 242 */ 243 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) 244 txdesc->u.plcp.ifs = IFS_BACKOFF; 245 else 246 txdesc->u.plcp.ifs = IFS_SIFS; 247 248 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ 249 data_length = skb->len + 4; 250 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb); 251 252 /* 253 * PLCP setup 254 * Length calculation depends on OFDM/CCK rate. 255 */ 256 txdesc->u.plcp.signal = hwrate->plcp; 257 txdesc->u.plcp.service = 0x04; 258 259 if (hwrate->flags & DEV_RATE_OFDM) { 260 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f; 261 txdesc->u.plcp.length_low = data_length & 0x3f; 262 } else { 263 /* 264 * Convert length to microseconds. 265 */ 266 residual = GET_DURATION_RES(data_length, hwrate->bitrate); 267 duration = GET_DURATION(data_length, hwrate->bitrate); 268 269 if (residual != 0) { 270 duration++; 271 272 /* 273 * Check if we need to set the Length Extension 274 */ 275 if (hwrate->bitrate == 110 && residual <= 30) 276 txdesc->u.plcp.service |= 0x80; 277 } 278 279 txdesc->u.plcp.length_high = (duration >> 8) & 0xff; 280 txdesc->u.plcp.length_low = duration & 0xff; 281 282 /* 283 * When preamble is enabled we should set the 284 * preamble bit for the signal. 285 */ 286 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 287 txdesc->u.plcp.signal |= 0x08; 288 } 289 } 290 291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev, 292 struct sk_buff *skb, 293 struct txentry_desc *txdesc, 294 struct ieee80211_sta *sta, 295 const struct rt2x00_rate *hwrate) 296 { 297 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 298 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 299 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 300 struct rt2x00_sta *sta_priv = NULL; 301 u8 density = 0; 302 303 if (sta) { 304 sta_priv = sta_to_rt2x00_sta(sta); 305 txdesc->u.ht.wcid = sta_priv->wcid; 306 density = sta->deflink.ht_cap.ampdu_density; 307 } 308 309 /* 310 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the 311 * mcs rate to be used 312 */ 313 if (txrate->flags & IEEE80211_TX_RC_MCS) { 314 txdesc->u.ht.mcs = txrate->idx; 315 316 /* 317 * MIMO PS should be set to 1 for STA's using dynamic SM PS 318 * when using more then one tx stream (>MCS7). 319 */ 320 if (sta && txdesc->u.ht.mcs > 7 && 321 sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC) 322 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags); 323 } else { 324 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs); 325 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 326 txdesc->u.ht.mcs |= 0x08; 327 } 328 329 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) { 330 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 331 txdesc->u.ht.txop = TXOP_SIFS; 332 else 333 txdesc->u.ht.txop = TXOP_BACKOFF; 334 335 /* Left zero on all other settings. */ 336 return; 337 } 338 339 /* 340 * Only one STBC stream is supported for now. 341 */ 342 if (tx_info->flags & IEEE80211_TX_CTL_STBC) 343 txdesc->u.ht.stbc = 1; 344 345 /* 346 * This frame is eligible for an AMPDU, however, don't aggregate 347 * frames that are intended to probe a specific tx rate. 348 */ 349 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU && 350 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) { 351 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags); 352 txdesc->u.ht.mpdu_density = density; 353 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */ 354 } 355 356 /* 357 * Set 40Mhz mode if necessary (for legacy rates this will 358 * duplicate the frame to both channels). 359 */ 360 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH || 361 txrate->flags & IEEE80211_TX_RC_DUP_DATA) 362 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags); 363 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) 364 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags); 365 366 /* 367 * Determine IFS values 368 * - Use TXOP_BACKOFF for management frames except beacons 369 * - Use TXOP_SIFS for fragment bursts 370 * - Use TXOP_HTTXOP for everything else 371 * 372 * Note: rt2800 devices won't use CTS protection (if used) 373 * for frames not transmitted with TXOP_HTTXOP 374 */ 375 if (ieee80211_is_mgmt(hdr->frame_control) && 376 !ieee80211_is_beacon(hdr->frame_control)) 377 txdesc->u.ht.txop = TXOP_BACKOFF; 378 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) 379 txdesc->u.ht.txop = TXOP_SIFS; 380 else 381 txdesc->u.ht.txop = TXOP_HTTXOP; 382 } 383 384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev, 385 struct sk_buff *skb, 386 struct txentry_desc *txdesc, 387 struct ieee80211_sta *sta) 388 { 389 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 390 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 391 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; 392 struct ieee80211_rate *rate; 393 const struct rt2x00_rate *hwrate = NULL; 394 395 memset(txdesc, 0, sizeof(*txdesc)); 396 397 /* 398 * Header and frame information. 399 */ 400 txdesc->length = skb->len; 401 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb); 402 403 /* 404 * Check whether this frame is to be acked. 405 */ 406 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) 407 __set_bit(ENTRY_TXD_ACK, &txdesc->flags); 408 409 /* 410 * Check if this is a RTS/CTS frame 411 */ 412 if (ieee80211_is_rts(hdr->frame_control) || 413 ieee80211_is_cts(hdr->frame_control)) { 414 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 415 if (ieee80211_is_rts(hdr->frame_control)) 416 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); 417 else 418 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); 419 } 420 421 /* 422 * Determine retry information. 423 */ 424 txdesc->retry_limit = tx_info->control.rates[0].count - 1; 425 if (txdesc->retry_limit >= rt2x00dev->long_retry) 426 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); 427 428 /* 429 * Check if more fragments are pending 430 */ 431 if (ieee80211_has_morefrags(hdr->frame_control)) { 432 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 433 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); 434 } 435 436 /* 437 * Check if more frames (!= fragments) are pending 438 */ 439 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) 440 __set_bit(ENTRY_TXD_BURST, &txdesc->flags); 441 442 /* 443 * Beacons and probe responses require the tsf timestamp 444 * to be inserted into the frame. 445 */ 446 if ((ieee80211_is_beacon(hdr->frame_control) || 447 ieee80211_is_probe_resp(hdr->frame_control)) && 448 !(tx_info->flags & IEEE80211_TX_CTL_INJECTED)) 449 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); 450 451 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && 452 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) 453 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); 454 455 /* 456 * Determine rate modulation. 457 */ 458 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) 459 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD; 460 else if (txrate->flags & IEEE80211_TX_RC_MCS) 461 txdesc->rate_mode = RATE_MODE_HT_MIX; 462 else { 463 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); 464 hwrate = rt2x00_get_rate(rate->hw_value); 465 if (hwrate->flags & DEV_RATE_OFDM) 466 txdesc->rate_mode = RATE_MODE_OFDM; 467 else 468 txdesc->rate_mode = RATE_MODE_CCK; 469 } 470 471 /* 472 * Apply TX descriptor handling by components 473 */ 474 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc); 475 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc); 476 477 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC)) 478 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc, 479 sta, hwrate); 480 else 481 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc, 482 hwrate); 483 } 484 485 static int rt2x00queue_write_tx_data(struct queue_entry *entry, 486 struct txentry_desc *txdesc) 487 { 488 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 489 490 /* 491 * This should not happen, we already checked the entry 492 * was ours. When the hardware disagrees there has been 493 * a queue corruption! 494 */ 495 if (unlikely(rt2x00dev->ops->lib->get_entry_state && 496 rt2x00dev->ops->lib->get_entry_state(entry))) { 497 rt2x00_err(rt2x00dev, 498 "Corrupt queue %d, accessing entry which is not ours\n" 499 "Please file bug report to %s\n", 500 entry->queue->qid, DRV_PROJECT); 501 return -EINVAL; 502 } 503 504 /* 505 * Add the requested extra tx headroom in front of the skb. 506 */ 507 skb_push(entry->skb, rt2x00dev->extra_tx_headroom); 508 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom); 509 510 /* 511 * Call the driver's write_tx_data function, if it exists. 512 */ 513 if (rt2x00dev->ops->lib->write_tx_data) 514 rt2x00dev->ops->lib->write_tx_data(entry, txdesc); 515 516 /* 517 * Map the skb to DMA. 518 */ 519 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) && 520 rt2x00queue_map_txskb(entry)) 521 return -ENOMEM; 522 523 return 0; 524 } 525 526 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, 527 struct txentry_desc *txdesc) 528 { 529 struct data_queue *queue = entry->queue; 530 531 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); 532 533 /* 534 * All processing on the frame has been completed, this means 535 * it is now ready to be dumped to userspace through debugfs. 536 */ 537 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry); 538 } 539 540 static void rt2x00queue_kick_tx_queue(struct data_queue *queue, 541 struct txentry_desc *txdesc) 542 { 543 /* 544 * Check if we need to kick the queue, there are however a few rules 545 * 1) Don't kick unless this is the last in frame in a burst. 546 * When the burst flag is set, this frame is always followed 547 * by another frame which in some way are related to eachother. 548 * This is true for fragments, RTS or CTS-to-self frames. 549 * 2) Rule 1 can be broken when the available entries 550 * in the queue are less then a certain threshold. 551 */ 552 if (rt2x00queue_threshold(queue) || 553 !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) 554 queue->rt2x00dev->ops->lib->kick_queue(queue); 555 } 556 557 static void rt2x00queue_bar_check(struct queue_entry *entry) 558 { 559 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 560 struct ieee80211_bar *bar = (void *) (entry->skb->data + 561 rt2x00dev->extra_tx_headroom); 562 struct rt2x00_bar_list_entry *bar_entry; 563 564 if (likely(!ieee80211_is_back_req(bar->frame_control))) 565 return; 566 567 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC); 568 569 /* 570 * If the alloc fails we still send the BAR out but just don't track 571 * it in our bar list. And as a result we will report it to mac80211 572 * back as failed. 573 */ 574 if (!bar_entry) 575 return; 576 577 bar_entry->entry = entry; 578 bar_entry->block_acked = 0; 579 580 /* 581 * Copy the relevant parts of the 802.11 BAR into out check list 582 * such that we can use RCU for less-overhead in the RX path since 583 * sending BARs and processing the according BlockAck should be 584 * the exception. 585 */ 586 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra)); 587 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta)); 588 bar_entry->control = bar->control; 589 bar_entry->start_seq_num = bar->start_seq_num; 590 591 /* 592 * Insert BAR into our BAR check list. 593 */ 594 spin_lock_bh(&rt2x00dev->bar_list_lock); 595 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list); 596 spin_unlock_bh(&rt2x00dev->bar_list_lock); 597 } 598 599 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, 600 struct ieee80211_sta *sta, bool local) 601 { 602 struct ieee80211_tx_info *tx_info; 603 struct queue_entry *entry; 604 struct txentry_desc txdesc; 605 struct skb_frame_desc *skbdesc; 606 u8 rate_idx, rate_flags; 607 int ret = 0; 608 609 /* 610 * Copy all TX descriptor information into txdesc, 611 * after that we are free to use the skb->cb array 612 * for our information. 613 */ 614 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta); 615 616 /* 617 * All information is retrieved from the skb->cb array, 618 * now we should claim ownership of the driver part of that 619 * array, preserving the bitrate index and flags. 620 */ 621 tx_info = IEEE80211_SKB_CB(skb); 622 rate_idx = tx_info->control.rates[0].idx; 623 rate_flags = tx_info->control.rates[0].flags; 624 skbdesc = get_skb_frame_desc(skb); 625 memset(skbdesc, 0, sizeof(*skbdesc)); 626 skbdesc->tx_rate_idx = rate_idx; 627 skbdesc->tx_rate_flags = rate_flags; 628 629 if (local) 630 skbdesc->flags |= SKBDESC_NOT_MAC80211; 631 632 /* 633 * When hardware encryption is supported, and this frame 634 * is to be encrypted, we should strip the IV/EIV data from 635 * the frame so we can provide it to the driver separately. 636 */ 637 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && 638 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { 639 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV)) 640 rt2x00crypto_tx_copy_iv(skb, &txdesc); 641 else 642 rt2x00crypto_tx_remove_iv(skb, &txdesc); 643 } 644 645 /* 646 * When DMA allocation is required we should guarantee to the 647 * driver that the DMA is aligned to a 4-byte boundary. 648 * However some drivers require L2 padding to pad the payload 649 * rather then the header. This could be a requirement for 650 * PCI and USB devices, while header alignment only is valid 651 * for PCI devices. 652 */ 653 if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD)) 654 rt2x00queue_insert_l2pad(skb, txdesc.header_length); 655 else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA)) 656 rt2x00queue_align_frame(skb); 657 658 /* 659 * That function must be called with bh disabled. 660 */ 661 spin_lock(&queue->tx_lock); 662 663 if (unlikely(rt2x00queue_full(queue))) { 664 rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n", 665 queue->qid); 666 ret = -ENOBUFS; 667 goto out; 668 } 669 670 entry = rt2x00queue_get_entry(queue, Q_INDEX); 671 672 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, 673 &entry->flags))) { 674 rt2x00_err(queue->rt2x00dev, 675 "Arrived at non-free entry in the non-full queue %d\n" 676 "Please file bug report to %s\n", 677 queue->qid, DRV_PROJECT); 678 ret = -EINVAL; 679 goto out; 680 } 681 682 entry->skb = skb; 683 684 /* 685 * It could be possible that the queue was corrupted and this 686 * call failed. Since we always return NETDEV_TX_OK to mac80211, 687 * this frame will simply be dropped. 688 */ 689 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { 690 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 691 entry->skb = NULL; 692 ret = -EIO; 693 goto out; 694 } 695 696 /* 697 * Put BlockAckReqs into our check list for driver BA processing. 698 */ 699 rt2x00queue_bar_check(entry); 700 701 set_bit(ENTRY_DATA_PENDING, &entry->flags); 702 703 rt2x00queue_index_inc(entry, Q_INDEX); 704 rt2x00queue_write_tx_descriptor(entry, &txdesc); 705 rt2x00queue_kick_tx_queue(queue, &txdesc); 706 707 out: 708 /* 709 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we 710 * do this under queue->tx_lock. Bottom halve was already disabled 711 * before ieee80211_xmit() call. 712 */ 713 if (rt2x00queue_threshold(queue)) 714 rt2x00queue_pause_queue(queue); 715 716 spin_unlock(&queue->tx_lock); 717 return ret; 718 } 719 720 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev, 721 struct ieee80211_vif *vif) 722 { 723 struct rt2x00_intf *intf = vif_to_intf(vif); 724 725 if (unlikely(!intf->beacon)) 726 return -ENOBUFS; 727 728 /* 729 * Clean up the beacon skb. 730 */ 731 rt2x00queue_free_skb(intf->beacon); 732 733 /* 734 * Clear beacon (single bssid devices don't need to clear the beacon 735 * since the beacon queue will get stopped anyway). 736 */ 737 if (rt2x00dev->ops->lib->clear_beacon) 738 rt2x00dev->ops->lib->clear_beacon(intf->beacon); 739 740 return 0; 741 } 742 743 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, 744 struct ieee80211_vif *vif) 745 { 746 struct rt2x00_intf *intf = vif_to_intf(vif); 747 struct skb_frame_desc *skbdesc; 748 struct txentry_desc txdesc; 749 750 if (unlikely(!intf->beacon)) 751 return -ENOBUFS; 752 753 /* 754 * Clean up the beacon skb. 755 */ 756 rt2x00queue_free_skb(intf->beacon); 757 758 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0); 759 if (!intf->beacon->skb) 760 return -ENOMEM; 761 762 /* 763 * Copy all TX descriptor information into txdesc, 764 * after that we are free to use the skb->cb array 765 * for our information. 766 */ 767 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL); 768 769 /* 770 * Fill in skb descriptor 771 */ 772 skbdesc = get_skb_frame_desc(intf->beacon->skb); 773 memset(skbdesc, 0, sizeof(*skbdesc)); 774 775 /* 776 * Send beacon to hardware. 777 */ 778 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); 779 780 return 0; 781 782 } 783 784 bool rt2x00queue_for_each_entry(struct data_queue *queue, 785 enum queue_index start, 786 enum queue_index end, 787 void *data, 788 bool (*fn)(struct queue_entry *entry, 789 void *data)) 790 { 791 unsigned long irqflags; 792 unsigned int index_start; 793 unsigned int index_end; 794 unsigned int i; 795 796 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { 797 rt2x00_err(queue->rt2x00dev, 798 "Entry requested from invalid index range (%d - %d)\n", 799 start, end); 800 return true; 801 } 802 803 /* 804 * Only protect the range we are going to loop over, 805 * if during our loop a extra entry is set to pending 806 * it should not be kicked during this run, since it 807 * is part of another TX operation. 808 */ 809 spin_lock_irqsave(&queue->index_lock, irqflags); 810 index_start = queue->index[start]; 811 index_end = queue->index[end]; 812 spin_unlock_irqrestore(&queue->index_lock, irqflags); 813 814 /* 815 * Start from the TX done pointer, this guarantees that we will 816 * send out all frames in the correct order. 817 */ 818 if (index_start < index_end) { 819 for (i = index_start; i < index_end; i++) { 820 if (fn(&queue->entries[i], data)) 821 return true; 822 } 823 } else { 824 for (i = index_start; i < queue->limit; i++) { 825 if (fn(&queue->entries[i], data)) 826 return true; 827 } 828 829 for (i = 0; i < index_end; i++) { 830 if (fn(&queue->entries[i], data)) 831 return true; 832 } 833 } 834 835 return false; 836 } 837 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); 838 839 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 840 enum queue_index index) 841 { 842 struct queue_entry *entry; 843 unsigned long irqflags; 844 845 if (unlikely(index >= Q_INDEX_MAX)) { 846 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n", 847 index); 848 return NULL; 849 } 850 851 spin_lock_irqsave(&queue->index_lock, irqflags); 852 853 entry = &queue->entries[queue->index[index]]; 854 855 spin_unlock_irqrestore(&queue->index_lock, irqflags); 856 857 return entry; 858 } 859 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); 860 861 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index) 862 { 863 struct data_queue *queue = entry->queue; 864 unsigned long irqflags; 865 866 if (unlikely(index >= Q_INDEX_MAX)) { 867 rt2x00_err(queue->rt2x00dev, 868 "Index change on invalid index type (%d)\n", index); 869 return; 870 } 871 872 spin_lock_irqsave(&queue->index_lock, irqflags); 873 874 queue->index[index]++; 875 if (queue->index[index] >= queue->limit) 876 queue->index[index] = 0; 877 878 entry->last_action = jiffies; 879 880 if (index == Q_INDEX) { 881 queue->length++; 882 } else if (index == Q_INDEX_DONE) { 883 queue->length--; 884 queue->count++; 885 } 886 887 spin_unlock_irqrestore(&queue->index_lock, irqflags); 888 } 889 890 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue) 891 { 892 switch (queue->qid) { 893 case QID_AC_VO: 894 case QID_AC_VI: 895 case QID_AC_BE: 896 case QID_AC_BK: 897 /* 898 * For TX queues, we have to disable the queue 899 * inside mac80211. 900 */ 901 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid); 902 break; 903 default: 904 break; 905 } 906 } 907 void rt2x00queue_pause_queue(struct data_queue *queue) 908 { 909 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 910 !test_bit(QUEUE_STARTED, &queue->flags) || 911 test_and_set_bit(QUEUE_PAUSED, &queue->flags)) 912 return; 913 914 rt2x00queue_pause_queue_nocheck(queue); 915 } 916 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue); 917 918 void rt2x00queue_unpause_queue(struct data_queue *queue) 919 { 920 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 921 !test_bit(QUEUE_STARTED, &queue->flags) || 922 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags)) 923 return; 924 925 switch (queue->qid) { 926 case QID_AC_VO: 927 case QID_AC_VI: 928 case QID_AC_BE: 929 case QID_AC_BK: 930 /* 931 * For TX queues, we have to enable the queue 932 * inside mac80211. 933 */ 934 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid); 935 break; 936 case QID_RX: 937 /* 938 * For RX we need to kick the queue now in order to 939 * receive frames. 940 */ 941 queue->rt2x00dev->ops->lib->kick_queue(queue); 942 break; 943 default: 944 break; 945 } 946 } 947 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue); 948 949 void rt2x00queue_start_queue(struct data_queue *queue) 950 { 951 mutex_lock(&queue->status_lock); 952 953 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || 954 test_and_set_bit(QUEUE_STARTED, &queue->flags)) { 955 mutex_unlock(&queue->status_lock); 956 return; 957 } 958 959 set_bit(QUEUE_PAUSED, &queue->flags); 960 961 queue->rt2x00dev->ops->lib->start_queue(queue); 962 963 rt2x00queue_unpause_queue(queue); 964 965 mutex_unlock(&queue->status_lock); 966 } 967 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue); 968 969 void rt2x00queue_stop_queue(struct data_queue *queue) 970 { 971 mutex_lock(&queue->status_lock); 972 973 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) { 974 mutex_unlock(&queue->status_lock); 975 return; 976 } 977 978 rt2x00queue_pause_queue_nocheck(queue); 979 980 queue->rt2x00dev->ops->lib->stop_queue(queue); 981 982 mutex_unlock(&queue->status_lock); 983 } 984 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue); 985 986 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop) 987 { 988 bool tx_queue = 989 (queue->qid == QID_AC_VO) || 990 (queue->qid == QID_AC_VI) || 991 (queue->qid == QID_AC_BE) || 992 (queue->qid == QID_AC_BK); 993 994 if (rt2x00queue_empty(queue)) 995 return; 996 997 /* 998 * If we are not supposed to drop any pending 999 * frames, this means we must force a start (=kick) 1000 * to the queue to make sure the hardware will 1001 * start transmitting. 1002 */ 1003 if (!drop && tx_queue) 1004 queue->rt2x00dev->ops->lib->kick_queue(queue); 1005 1006 /* 1007 * Check if driver supports flushing, if that is the case we can 1008 * defer the flushing to the driver. Otherwise we must use the 1009 * alternative which just waits for the queue to become empty. 1010 */ 1011 if (likely(queue->rt2x00dev->ops->lib->flush_queue)) 1012 queue->rt2x00dev->ops->lib->flush_queue(queue, drop); 1013 1014 /* 1015 * The queue flush has failed... 1016 */ 1017 if (unlikely(!rt2x00queue_empty(queue))) 1018 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n", 1019 queue->qid); 1020 } 1021 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue); 1022 1023 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev) 1024 { 1025 struct data_queue *queue; 1026 1027 /* 1028 * rt2x00queue_start_queue will call ieee80211_wake_queue 1029 * for each queue after is has been properly initialized. 1030 */ 1031 tx_queue_for_each(rt2x00dev, queue) 1032 rt2x00queue_start_queue(queue); 1033 1034 rt2x00queue_start_queue(rt2x00dev->rx); 1035 } 1036 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues); 1037 1038 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) 1039 { 1040 struct data_queue *queue; 1041 1042 /* 1043 * rt2x00queue_stop_queue will call ieee80211_stop_queue 1044 * as well, but we are completely shutting doing everything 1045 * now, so it is much safer to stop all TX queues at once, 1046 * and use rt2x00queue_stop_queue for cleaning up. 1047 */ 1048 ieee80211_stop_queues(rt2x00dev->hw); 1049 1050 tx_queue_for_each(rt2x00dev, queue) 1051 rt2x00queue_stop_queue(queue); 1052 1053 rt2x00queue_stop_queue(rt2x00dev->rx); 1054 } 1055 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues); 1056 1057 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop) 1058 { 1059 struct data_queue *queue; 1060 1061 tx_queue_for_each(rt2x00dev, queue) 1062 rt2x00queue_flush_queue(queue, drop); 1063 1064 rt2x00queue_flush_queue(rt2x00dev->rx, drop); 1065 } 1066 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues); 1067 1068 static void rt2x00queue_reset(struct data_queue *queue) 1069 { 1070 unsigned long irqflags; 1071 unsigned int i; 1072 1073 spin_lock_irqsave(&queue->index_lock, irqflags); 1074 1075 queue->count = 0; 1076 queue->length = 0; 1077 1078 for (i = 0; i < Q_INDEX_MAX; i++) 1079 queue->index[i] = 0; 1080 1081 spin_unlock_irqrestore(&queue->index_lock, irqflags); 1082 } 1083 1084 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) 1085 { 1086 struct data_queue *queue; 1087 unsigned int i; 1088 1089 queue_for_each(rt2x00dev, queue) { 1090 rt2x00queue_reset(queue); 1091 1092 for (i = 0; i < queue->limit; i++) 1093 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); 1094 } 1095 } 1096 1097 static int rt2x00queue_alloc_entries(struct data_queue *queue) 1098 { 1099 struct queue_entry *entries; 1100 unsigned int entry_size; 1101 unsigned int i; 1102 1103 rt2x00queue_reset(queue); 1104 1105 /* 1106 * Allocate all queue entries. 1107 */ 1108 entry_size = sizeof(*entries) + queue->priv_size; 1109 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); 1110 if (!entries) 1111 return -ENOMEM; 1112 1113 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ 1114 (((char *)(__base)) + ((__limit) * (__esize)) + \ 1115 ((__index) * (__psize))) 1116 1117 for (i = 0; i < queue->limit; i++) { 1118 entries[i].flags = 0; 1119 entries[i].queue = queue; 1120 entries[i].skb = NULL; 1121 entries[i].entry_idx = i; 1122 entries[i].priv_data = 1123 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, 1124 sizeof(*entries), queue->priv_size); 1125 } 1126 1127 #undef QUEUE_ENTRY_PRIV_OFFSET 1128 1129 queue->entries = entries; 1130 1131 return 0; 1132 } 1133 1134 static void rt2x00queue_free_skbs(struct data_queue *queue) 1135 { 1136 unsigned int i; 1137 1138 if (!queue->entries) 1139 return; 1140 1141 for (i = 0; i < queue->limit; i++) { 1142 rt2x00queue_free_skb(&queue->entries[i]); 1143 } 1144 } 1145 1146 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) 1147 { 1148 unsigned int i; 1149 struct sk_buff *skb; 1150 1151 for (i = 0; i < queue->limit; i++) { 1152 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL); 1153 if (!skb) 1154 return -ENOMEM; 1155 queue->entries[i].skb = skb; 1156 } 1157 1158 return 0; 1159 } 1160 1161 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) 1162 { 1163 struct data_queue *queue; 1164 int status; 1165 1166 status = rt2x00queue_alloc_entries(rt2x00dev->rx); 1167 if (status) 1168 goto exit; 1169 1170 tx_queue_for_each(rt2x00dev, queue) { 1171 status = rt2x00queue_alloc_entries(queue); 1172 if (status) 1173 goto exit; 1174 } 1175 1176 status = rt2x00queue_alloc_entries(rt2x00dev->bcn); 1177 if (status) 1178 goto exit; 1179 1180 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) { 1181 status = rt2x00queue_alloc_entries(rt2x00dev->atim); 1182 if (status) 1183 goto exit; 1184 } 1185 1186 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); 1187 if (status) 1188 goto exit; 1189 1190 return 0; 1191 1192 exit: 1193 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n"); 1194 1195 rt2x00queue_uninitialize(rt2x00dev); 1196 1197 return status; 1198 } 1199 1200 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) 1201 { 1202 struct data_queue *queue; 1203 1204 rt2x00queue_free_skbs(rt2x00dev->rx); 1205 1206 queue_for_each(rt2x00dev, queue) { 1207 kfree(queue->entries); 1208 queue->entries = NULL; 1209 } 1210 } 1211 1212 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, 1213 struct data_queue *queue, enum data_queue_qid qid) 1214 { 1215 mutex_init(&queue->status_lock); 1216 spin_lock_init(&queue->tx_lock); 1217 spin_lock_init(&queue->index_lock); 1218 1219 queue->rt2x00dev = rt2x00dev; 1220 queue->qid = qid; 1221 queue->txop = 0; 1222 queue->aifs = 2; 1223 queue->cw_min = 5; 1224 queue->cw_max = 10; 1225 1226 rt2x00dev->ops->queue_init(queue); 1227 1228 queue->threshold = DIV_ROUND_UP(queue->limit, 10); 1229 } 1230 1231 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) 1232 { 1233 struct data_queue *queue; 1234 enum data_queue_qid qid; 1235 unsigned int req_atim = 1236 rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE); 1237 1238 /* 1239 * We need the following queues: 1240 * RX: 1 1241 * TX: ops->tx_queues 1242 * Beacon: 1 1243 * Atim: 1 (if required) 1244 */ 1245 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; 1246 1247 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); 1248 if (!queue) 1249 return -ENOMEM; 1250 1251 /* 1252 * Initialize pointers 1253 */ 1254 rt2x00dev->rx = queue; 1255 rt2x00dev->tx = &queue[1]; 1256 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; 1257 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL; 1258 1259 /* 1260 * Initialize queue parameters. 1261 * RX: qid = QID_RX 1262 * TX: qid = QID_AC_VO + index 1263 * TX: cw_min: 2^5 = 32. 1264 * TX: cw_max: 2^10 = 1024. 1265 * BCN: qid = QID_BEACON 1266 * ATIM: qid = QID_ATIM 1267 */ 1268 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); 1269 1270 qid = QID_AC_VO; 1271 tx_queue_for_each(rt2x00dev, queue) 1272 rt2x00queue_init(rt2x00dev, queue, qid++); 1273 1274 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON); 1275 if (req_atim) 1276 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM); 1277 1278 return 0; 1279 } 1280 1281 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) 1282 { 1283 kfree(rt2x00dev->rx); 1284 rt2x00dev->rx = NULL; 1285 rt2x00dev->tx = NULL; 1286 rt2x00dev->bcn = NULL; 1287 } 1288