xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c (revision 404bec4c8f6c38ae5fa208344f1086d38026e93d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 	<http://rt2x00.serialmonkey.com>
7 
8  */
9 
10 /*
11 	Module: rt2x00lib
12 	Abstract: rt2x00 queue specific routines.
13  */
14 
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/dma-mapping.h>
19 
20 #include "rt2x00.h"
21 #include "rt2x00lib.h"
22 
23 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
24 {
25 	struct data_queue *queue = entry->queue;
26 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
27 	struct sk_buff *skb;
28 	struct skb_frame_desc *skbdesc;
29 	unsigned int frame_size;
30 	unsigned int head_size = 0;
31 	unsigned int tail_size = 0;
32 
33 	/*
34 	 * The frame size includes descriptor size, because the
35 	 * hardware directly receive the frame into the skbuffer.
36 	 */
37 	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
38 
39 	/*
40 	 * The payload should be aligned to a 4-byte boundary,
41 	 * this means we need at least 3 bytes for moving the frame
42 	 * into the correct offset.
43 	 */
44 	head_size = 4;
45 
46 	/*
47 	 * For IV/EIV/ICV assembly we must make sure there is
48 	 * at least 8 bytes bytes available in headroom for IV/EIV
49 	 * and 8 bytes for ICV data as tailroon.
50 	 */
51 	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
52 		head_size += 8;
53 		tail_size += 8;
54 	}
55 
56 	/*
57 	 * Allocate skbuffer.
58 	 */
59 	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
60 	if (!skb)
61 		return NULL;
62 
63 	/*
64 	 * Make sure we not have a frame with the requested bytes
65 	 * available in the head and tail.
66 	 */
67 	skb_reserve(skb, head_size);
68 	skb_put(skb, frame_size);
69 
70 	/*
71 	 * Populate skbdesc.
72 	 */
73 	skbdesc = get_skb_frame_desc(skb);
74 	memset(skbdesc, 0, sizeof(*skbdesc));
75 
76 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
77 		dma_addr_t skb_dma;
78 
79 		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
80 					 DMA_FROM_DEVICE);
81 		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
82 			dev_kfree_skb_any(skb);
83 			return NULL;
84 		}
85 
86 		skbdesc->skb_dma = skb_dma;
87 		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
88 	}
89 
90 	return skb;
91 }
92 
93 int rt2x00queue_map_txskb(struct queue_entry *entry)
94 {
95 	struct device *dev = entry->queue->rt2x00dev->dev;
96 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
97 
98 	skbdesc->skb_dma =
99 	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
100 
101 	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
102 		return -ENOMEM;
103 
104 	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
105 	rt2x00lib_dmadone(entry);
106 	return 0;
107 }
108 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
109 
110 void rt2x00queue_unmap_skb(struct queue_entry *entry)
111 {
112 	struct device *dev = entry->queue->rt2x00dev->dev;
113 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
114 
115 	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
116 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
117 				 DMA_FROM_DEVICE);
118 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
119 	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
120 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
121 				 DMA_TO_DEVICE);
122 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
123 	}
124 }
125 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
126 
127 void rt2x00queue_free_skb(struct queue_entry *entry)
128 {
129 	if (!entry->skb)
130 		return;
131 
132 	rt2x00queue_unmap_skb(entry);
133 	dev_kfree_skb_any(entry->skb);
134 	entry->skb = NULL;
135 }
136 
137 void rt2x00queue_align_frame(struct sk_buff *skb)
138 {
139 	unsigned int frame_length = skb->len;
140 	unsigned int align = ALIGN_SIZE(skb, 0);
141 
142 	if (!align)
143 		return;
144 
145 	skb_push(skb, align);
146 	memmove(skb->data, skb->data + align, frame_length);
147 	skb_trim(skb, frame_length);
148 }
149 
150 /*
151  * H/W needs L2 padding between the header and the paylod if header size
152  * is not 4 bytes aligned.
153  */
154 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
155 {
156 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
157 
158 	if (!l2pad)
159 		return;
160 
161 	skb_push(skb, l2pad);
162 	memmove(skb->data, skb->data + l2pad, hdr_len);
163 }
164 
165 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166 {
167 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168 
169 	if (!l2pad)
170 		return;
171 
172 	memmove(skb->data + l2pad, skb->data, hdr_len);
173 	skb_pull(skb, l2pad);
174 }
175 
176 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
177 						 struct sk_buff *skb,
178 						 struct txentry_desc *txdesc)
179 {
180 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
181 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
182 	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
183 	u16 seqno;
184 
185 	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
186 		return;
187 
188 	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
189 
190 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
191 		/*
192 		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
193 		 * seqno on retransmitted data (non-QOS) and management frames.
194 		 * To workaround the problem let's generate seqno in software.
195 		 * Except for beacons which are transmitted periodically by H/W
196 		 * hence hardware has to assign seqno for them.
197 		 */
198 	    	if (ieee80211_is_beacon(hdr->frame_control)) {
199 			__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200 			/* H/W will generate sequence number */
201 			return;
202 		}
203 
204 		__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
205 	}
206 
207 	/*
208 	 * The hardware is not able to insert a sequence number. Assign a
209 	 * software generated one here.
210 	 *
211 	 * This is wrong because beacons are not getting sequence
212 	 * numbers assigned properly.
213 	 *
214 	 * A secondary problem exists for drivers that cannot toggle
215 	 * sequence counting per-frame, since those will override the
216 	 * sequence counter given by mac80211.
217 	 */
218 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
219 		seqno = atomic_add_return(0x10, &intf->seqno);
220 	else
221 		seqno = atomic_read(&intf->seqno);
222 
223 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
224 	hdr->seq_ctrl |= cpu_to_le16(seqno);
225 }
226 
227 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
228 						  struct sk_buff *skb,
229 						  struct txentry_desc *txdesc,
230 						  const struct rt2x00_rate *hwrate)
231 {
232 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
233 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
234 	unsigned int data_length;
235 	unsigned int duration;
236 	unsigned int residual;
237 
238 	/*
239 	 * Determine with what IFS priority this frame should be send.
240 	 * Set ifs to IFS_SIFS when the this is not the first fragment,
241 	 * or this fragment came after RTS/CTS.
242 	 */
243 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
244 		txdesc->u.plcp.ifs = IFS_BACKOFF;
245 	else
246 		txdesc->u.plcp.ifs = IFS_SIFS;
247 
248 	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
249 	data_length = skb->len + 4;
250 	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
251 
252 	/*
253 	 * PLCP setup
254 	 * Length calculation depends on OFDM/CCK rate.
255 	 */
256 	txdesc->u.plcp.signal = hwrate->plcp;
257 	txdesc->u.plcp.service = 0x04;
258 
259 	if (hwrate->flags & DEV_RATE_OFDM) {
260 		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
261 		txdesc->u.plcp.length_low = data_length & 0x3f;
262 	} else {
263 		/*
264 		 * Convert length to microseconds.
265 		 */
266 		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
267 		duration = GET_DURATION(data_length, hwrate->bitrate);
268 
269 		if (residual != 0) {
270 			duration++;
271 
272 			/*
273 			 * Check if we need to set the Length Extension
274 			 */
275 			if (hwrate->bitrate == 110 && residual <= 30)
276 				txdesc->u.plcp.service |= 0x80;
277 		}
278 
279 		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
280 		txdesc->u.plcp.length_low = duration & 0xff;
281 
282 		/*
283 		 * When preamble is enabled we should set the
284 		 * preamble bit for the signal.
285 		 */
286 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
287 			txdesc->u.plcp.signal |= 0x08;
288 	}
289 }
290 
291 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
292 						struct sk_buff *skb,
293 						struct txentry_desc *txdesc,
294 						struct ieee80211_sta *sta,
295 						const struct rt2x00_rate *hwrate)
296 {
297 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
298 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
299 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
300 	struct rt2x00_sta *sta_priv = NULL;
301 	u8 density = 0;
302 
303 	if (sta) {
304 		sta_priv = sta_to_rt2x00_sta(sta);
305 		txdesc->u.ht.wcid = sta_priv->wcid;
306 		density = sta->deflink.ht_cap.ampdu_density;
307 	}
308 
309 	/*
310 	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
311 	 * mcs rate to be used
312 	 */
313 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
314 		txdesc->u.ht.mcs = txrate->idx;
315 
316 		/*
317 		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
318 		 * when using more then one tx stream (>MCS7).
319 		 */
320 		if (sta && txdesc->u.ht.mcs > 7 &&
321 		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
322 			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
323 	} else {
324 		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
325 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
326 			txdesc->u.ht.mcs |= 0x08;
327 	}
328 
329 	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
330 		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
331 			txdesc->u.ht.txop = TXOP_SIFS;
332 		else
333 			txdesc->u.ht.txop = TXOP_BACKOFF;
334 
335 		/* Left zero on all other settings. */
336 		return;
337 	}
338 
339 	/*
340 	 * Only one STBC stream is supported for now.
341 	 */
342 	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
343 		txdesc->u.ht.stbc = 1;
344 
345 	/*
346 	 * This frame is eligible for an AMPDU, however, don't aggregate
347 	 * frames that are intended to probe a specific tx rate.
348 	 */
349 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
350 	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
351 		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
352 		txdesc->u.ht.mpdu_density = density;
353 		txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
354 	}
355 
356 	/*
357 	 * Set 40Mhz mode if necessary (for legacy rates this will
358 	 * duplicate the frame to both channels).
359 	 */
360 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
361 	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
362 		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
363 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
364 		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
365 
366 	/*
367 	 * Determine IFS values
368 	 * - Use TXOP_BACKOFF for management frames except beacons
369 	 * - Use TXOP_SIFS for fragment bursts
370 	 * - Use TXOP_HTTXOP for everything else
371 	 *
372 	 * Note: rt2800 devices won't use CTS protection (if used)
373 	 * for frames not transmitted with TXOP_HTTXOP
374 	 */
375 	if (ieee80211_is_mgmt(hdr->frame_control) &&
376 	    !ieee80211_is_beacon(hdr->frame_control))
377 		txdesc->u.ht.txop = TXOP_BACKOFF;
378 	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
379 		txdesc->u.ht.txop = TXOP_SIFS;
380 	else
381 		txdesc->u.ht.txop = TXOP_HTTXOP;
382 }
383 
384 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
385 					     struct sk_buff *skb,
386 					     struct txentry_desc *txdesc,
387 					     struct ieee80211_sta *sta)
388 {
389 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
390 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
391 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
392 	struct ieee80211_rate *rate;
393 	const struct rt2x00_rate *hwrate = NULL;
394 
395 	memset(txdesc, 0, sizeof(*txdesc));
396 
397 	/*
398 	 * Header and frame information.
399 	 */
400 	txdesc->length = skb->len;
401 	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
402 
403 	/*
404 	 * Check whether this frame is to be acked.
405 	 */
406 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
407 		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
408 
409 	/*
410 	 * Check if this is a RTS/CTS frame
411 	 */
412 	if (ieee80211_is_rts(hdr->frame_control) ||
413 	    ieee80211_is_cts(hdr->frame_control)) {
414 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
415 		if (ieee80211_is_rts(hdr->frame_control))
416 			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
417 		else
418 			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
419 		if (tx_info->control.rts_cts_rate_idx >= 0)
420 			rate =
421 			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
422 	}
423 
424 	/*
425 	 * Determine retry information.
426 	 */
427 	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
428 	if (txdesc->retry_limit >= rt2x00dev->long_retry)
429 		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
430 
431 	/*
432 	 * Check if more fragments are pending
433 	 */
434 	if (ieee80211_has_morefrags(hdr->frame_control)) {
435 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
436 		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
437 	}
438 
439 	/*
440 	 * Check if more frames (!= fragments) are pending
441 	 */
442 	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
443 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
444 
445 	/*
446 	 * Beacons and probe responses require the tsf timestamp
447 	 * to be inserted into the frame.
448 	 */
449 	if ((ieee80211_is_beacon(hdr->frame_control) ||
450 	     ieee80211_is_probe_resp(hdr->frame_control)) &&
451 	    !(tx_info->flags & IEEE80211_TX_CTL_INJECTED))
452 		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
453 
454 	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
455 	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
456 		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
457 
458 	/*
459 	 * Determine rate modulation.
460 	 */
461 	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
462 		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
463 	else if (txrate->flags & IEEE80211_TX_RC_MCS)
464 		txdesc->rate_mode = RATE_MODE_HT_MIX;
465 	else {
466 		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
467 		hwrate = rt2x00_get_rate(rate->hw_value);
468 		if (hwrate->flags & DEV_RATE_OFDM)
469 			txdesc->rate_mode = RATE_MODE_OFDM;
470 		else
471 			txdesc->rate_mode = RATE_MODE_CCK;
472 	}
473 
474 	/*
475 	 * Apply TX descriptor handling by components
476 	 */
477 	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
478 	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
479 
480 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
481 		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
482 						   sta, hwrate);
483 	else
484 		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
485 						      hwrate);
486 }
487 
488 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
489 				     struct txentry_desc *txdesc)
490 {
491 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
492 
493 	/*
494 	 * This should not happen, we already checked the entry
495 	 * was ours. When the hardware disagrees there has been
496 	 * a queue corruption!
497 	 */
498 	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
499 		     rt2x00dev->ops->lib->get_entry_state(entry))) {
500 		rt2x00_err(rt2x00dev,
501 			   "Corrupt queue %d, accessing entry which is not ours\n"
502 			   "Please file bug report to %s\n",
503 			   entry->queue->qid, DRV_PROJECT);
504 		return -EINVAL;
505 	}
506 
507 	/*
508 	 * Add the requested extra tx headroom in front of the skb.
509 	 */
510 	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
511 	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
512 
513 	/*
514 	 * Call the driver's write_tx_data function, if it exists.
515 	 */
516 	if (rt2x00dev->ops->lib->write_tx_data)
517 		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
518 
519 	/*
520 	 * Map the skb to DMA.
521 	 */
522 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
523 	    rt2x00queue_map_txskb(entry))
524 		return -ENOMEM;
525 
526 	return 0;
527 }
528 
529 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
530 					    struct txentry_desc *txdesc)
531 {
532 	struct data_queue *queue = entry->queue;
533 
534 	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
535 
536 	/*
537 	 * All processing on the frame has been completed, this means
538 	 * it is now ready to be dumped to userspace through debugfs.
539 	 */
540 	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry);
541 }
542 
543 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
544 				      struct txentry_desc *txdesc)
545 {
546 	/*
547 	 * Check if we need to kick the queue, there are however a few rules
548 	 *	1) Don't kick unless this is the last in frame in a burst.
549 	 *	   When the burst flag is set, this frame is always followed
550 	 *	   by another frame which in some way are related to eachother.
551 	 *	   This is true for fragments, RTS or CTS-to-self frames.
552 	 *	2) Rule 1 can be broken when the available entries
553 	 *	   in the queue are less then a certain threshold.
554 	 */
555 	if (rt2x00queue_threshold(queue) ||
556 	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
557 		queue->rt2x00dev->ops->lib->kick_queue(queue);
558 }
559 
560 static void rt2x00queue_bar_check(struct queue_entry *entry)
561 {
562 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
563 	struct ieee80211_bar *bar = (void *) (entry->skb->data +
564 				    rt2x00dev->extra_tx_headroom);
565 	struct rt2x00_bar_list_entry *bar_entry;
566 
567 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
568 		return;
569 
570 	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
571 
572 	/*
573 	 * If the alloc fails we still send the BAR out but just don't track
574 	 * it in our bar list. And as a result we will report it to mac80211
575 	 * back as failed.
576 	 */
577 	if (!bar_entry)
578 		return;
579 
580 	bar_entry->entry = entry;
581 	bar_entry->block_acked = 0;
582 
583 	/*
584 	 * Copy the relevant parts of the 802.11 BAR into out check list
585 	 * such that we can use RCU for less-overhead in the RX path since
586 	 * sending BARs and processing the according BlockAck should be
587 	 * the exception.
588 	 */
589 	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
590 	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
591 	bar_entry->control = bar->control;
592 	bar_entry->start_seq_num = bar->start_seq_num;
593 
594 	/*
595 	 * Insert BAR into our BAR check list.
596 	 */
597 	spin_lock_bh(&rt2x00dev->bar_list_lock);
598 	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
599 	spin_unlock_bh(&rt2x00dev->bar_list_lock);
600 }
601 
602 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
603 			       struct ieee80211_sta *sta, bool local)
604 {
605 	struct ieee80211_tx_info *tx_info;
606 	struct queue_entry *entry;
607 	struct txentry_desc txdesc;
608 	struct skb_frame_desc *skbdesc;
609 	u8 rate_idx, rate_flags;
610 	int ret = 0;
611 
612 	/*
613 	 * Copy all TX descriptor information into txdesc,
614 	 * after that we are free to use the skb->cb array
615 	 * for our information.
616 	 */
617 	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
618 
619 	/*
620 	 * All information is retrieved from the skb->cb array,
621 	 * now we should claim ownership of the driver part of that
622 	 * array, preserving the bitrate index and flags.
623 	 */
624 	tx_info = IEEE80211_SKB_CB(skb);
625 	rate_idx = tx_info->control.rates[0].idx;
626 	rate_flags = tx_info->control.rates[0].flags;
627 	skbdesc = get_skb_frame_desc(skb);
628 	memset(skbdesc, 0, sizeof(*skbdesc));
629 	skbdesc->tx_rate_idx = rate_idx;
630 	skbdesc->tx_rate_flags = rate_flags;
631 
632 	if (local)
633 		skbdesc->flags |= SKBDESC_NOT_MAC80211;
634 
635 	/*
636 	 * When hardware encryption is supported, and this frame
637 	 * is to be encrypted, we should strip the IV/EIV data from
638 	 * the frame so we can provide it to the driver separately.
639 	 */
640 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
641 	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
642 		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
643 			rt2x00crypto_tx_copy_iv(skb, &txdesc);
644 		else
645 			rt2x00crypto_tx_remove_iv(skb, &txdesc);
646 	}
647 
648 	/*
649 	 * When DMA allocation is required we should guarantee to the
650 	 * driver that the DMA is aligned to a 4-byte boundary.
651 	 * However some drivers require L2 padding to pad the payload
652 	 * rather then the header. This could be a requirement for
653 	 * PCI and USB devices, while header alignment only is valid
654 	 * for PCI devices.
655 	 */
656 	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
657 		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
658 	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
659 		rt2x00queue_align_frame(skb);
660 
661 	/*
662 	 * That function must be called with bh disabled.
663 	 */
664 	spin_lock(&queue->tx_lock);
665 
666 	if (unlikely(rt2x00queue_full(queue))) {
667 		rt2x00_dbg(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
668 			   queue->qid);
669 		ret = -ENOBUFS;
670 		goto out;
671 	}
672 
673 	entry = rt2x00queue_get_entry(queue, Q_INDEX);
674 
675 	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
676 				      &entry->flags))) {
677 		rt2x00_err(queue->rt2x00dev,
678 			   "Arrived at non-free entry in the non-full queue %d\n"
679 			   "Please file bug report to %s\n",
680 			   queue->qid, DRV_PROJECT);
681 		ret = -EINVAL;
682 		goto out;
683 	}
684 
685 	entry->skb = skb;
686 
687 	/*
688 	 * It could be possible that the queue was corrupted and this
689 	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
690 	 * this frame will simply be dropped.
691 	 */
692 	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
693 		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
694 		entry->skb = NULL;
695 		ret = -EIO;
696 		goto out;
697 	}
698 
699 	/*
700 	 * Put BlockAckReqs into our check list for driver BA processing.
701 	 */
702 	rt2x00queue_bar_check(entry);
703 
704 	set_bit(ENTRY_DATA_PENDING, &entry->flags);
705 
706 	rt2x00queue_index_inc(entry, Q_INDEX);
707 	rt2x00queue_write_tx_descriptor(entry, &txdesc);
708 	rt2x00queue_kick_tx_queue(queue, &txdesc);
709 
710 out:
711 	/*
712 	 * Pausing queue has to be serialized with rt2x00lib_txdone(), so we
713 	 * do this under queue->tx_lock. Bottom halve was already disabled
714 	 * before ieee80211_xmit() call.
715 	 */
716 	if (rt2x00queue_threshold(queue))
717 		rt2x00queue_pause_queue(queue);
718 
719 	spin_unlock(&queue->tx_lock);
720 	return ret;
721 }
722 
723 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
724 			     struct ieee80211_vif *vif)
725 {
726 	struct rt2x00_intf *intf = vif_to_intf(vif);
727 
728 	if (unlikely(!intf->beacon))
729 		return -ENOBUFS;
730 
731 	/*
732 	 * Clean up the beacon skb.
733 	 */
734 	rt2x00queue_free_skb(intf->beacon);
735 
736 	/*
737 	 * Clear beacon (single bssid devices don't need to clear the beacon
738 	 * since the beacon queue will get stopped anyway).
739 	 */
740 	if (rt2x00dev->ops->lib->clear_beacon)
741 		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
742 
743 	return 0;
744 }
745 
746 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
747 			      struct ieee80211_vif *vif)
748 {
749 	struct rt2x00_intf *intf = vif_to_intf(vif);
750 	struct skb_frame_desc *skbdesc;
751 	struct txentry_desc txdesc;
752 
753 	if (unlikely(!intf->beacon))
754 		return -ENOBUFS;
755 
756 	/*
757 	 * Clean up the beacon skb.
758 	 */
759 	rt2x00queue_free_skb(intf->beacon);
760 
761 	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif, 0);
762 	if (!intf->beacon->skb)
763 		return -ENOMEM;
764 
765 	/*
766 	 * Copy all TX descriptor information into txdesc,
767 	 * after that we are free to use the skb->cb array
768 	 * for our information.
769 	 */
770 	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
771 
772 	/*
773 	 * Fill in skb descriptor
774 	 */
775 	skbdesc = get_skb_frame_desc(intf->beacon->skb);
776 	memset(skbdesc, 0, sizeof(*skbdesc));
777 
778 	/*
779 	 * Send beacon to hardware.
780 	 */
781 	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
782 
783 	return 0;
784 
785 }
786 
787 bool rt2x00queue_for_each_entry(struct data_queue *queue,
788 				enum queue_index start,
789 				enum queue_index end,
790 				void *data,
791 				bool (*fn)(struct queue_entry *entry,
792 					   void *data))
793 {
794 	unsigned long irqflags;
795 	unsigned int index_start;
796 	unsigned int index_end;
797 	unsigned int i;
798 
799 	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
800 		rt2x00_err(queue->rt2x00dev,
801 			   "Entry requested from invalid index range (%d - %d)\n",
802 			   start, end);
803 		return true;
804 	}
805 
806 	/*
807 	 * Only protect the range we are going to loop over,
808 	 * if during our loop a extra entry is set to pending
809 	 * it should not be kicked during this run, since it
810 	 * is part of another TX operation.
811 	 */
812 	spin_lock_irqsave(&queue->index_lock, irqflags);
813 	index_start = queue->index[start];
814 	index_end = queue->index[end];
815 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
816 
817 	/*
818 	 * Start from the TX done pointer, this guarantees that we will
819 	 * send out all frames in the correct order.
820 	 */
821 	if (index_start < index_end) {
822 		for (i = index_start; i < index_end; i++) {
823 			if (fn(&queue->entries[i], data))
824 				return true;
825 		}
826 	} else {
827 		for (i = index_start; i < queue->limit; i++) {
828 			if (fn(&queue->entries[i], data))
829 				return true;
830 		}
831 
832 		for (i = 0; i < index_end; i++) {
833 			if (fn(&queue->entries[i], data))
834 				return true;
835 		}
836 	}
837 
838 	return false;
839 }
840 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
841 
842 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
843 					  enum queue_index index)
844 {
845 	struct queue_entry *entry;
846 	unsigned long irqflags;
847 
848 	if (unlikely(index >= Q_INDEX_MAX)) {
849 		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
850 			   index);
851 		return NULL;
852 	}
853 
854 	spin_lock_irqsave(&queue->index_lock, irqflags);
855 
856 	entry = &queue->entries[queue->index[index]];
857 
858 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
859 
860 	return entry;
861 }
862 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
863 
864 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
865 {
866 	struct data_queue *queue = entry->queue;
867 	unsigned long irqflags;
868 
869 	if (unlikely(index >= Q_INDEX_MAX)) {
870 		rt2x00_err(queue->rt2x00dev,
871 			   "Index change on invalid index type (%d)\n", index);
872 		return;
873 	}
874 
875 	spin_lock_irqsave(&queue->index_lock, irqflags);
876 
877 	queue->index[index]++;
878 	if (queue->index[index] >= queue->limit)
879 		queue->index[index] = 0;
880 
881 	entry->last_action = jiffies;
882 
883 	if (index == Q_INDEX) {
884 		queue->length++;
885 	} else if (index == Q_INDEX_DONE) {
886 		queue->length--;
887 		queue->count++;
888 	}
889 
890 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
891 }
892 
893 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
894 {
895 	switch (queue->qid) {
896 	case QID_AC_VO:
897 	case QID_AC_VI:
898 	case QID_AC_BE:
899 	case QID_AC_BK:
900 		/*
901 		 * For TX queues, we have to disable the queue
902 		 * inside mac80211.
903 		 */
904 		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
905 		break;
906 	default:
907 		break;
908 	}
909 }
910 void rt2x00queue_pause_queue(struct data_queue *queue)
911 {
912 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
913 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
914 	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
915 		return;
916 
917 	rt2x00queue_pause_queue_nocheck(queue);
918 }
919 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
920 
921 void rt2x00queue_unpause_queue(struct data_queue *queue)
922 {
923 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
924 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
925 	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
926 		return;
927 
928 	switch (queue->qid) {
929 	case QID_AC_VO:
930 	case QID_AC_VI:
931 	case QID_AC_BE:
932 	case QID_AC_BK:
933 		/*
934 		 * For TX queues, we have to enable the queue
935 		 * inside mac80211.
936 		 */
937 		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
938 		break;
939 	case QID_RX:
940 		/*
941 		 * For RX we need to kick the queue now in order to
942 		 * receive frames.
943 		 */
944 		queue->rt2x00dev->ops->lib->kick_queue(queue);
945 		break;
946 	default:
947 		break;
948 	}
949 }
950 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
951 
952 void rt2x00queue_start_queue(struct data_queue *queue)
953 {
954 	mutex_lock(&queue->status_lock);
955 
956 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
957 	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
958 		mutex_unlock(&queue->status_lock);
959 		return;
960 	}
961 
962 	set_bit(QUEUE_PAUSED, &queue->flags);
963 
964 	queue->rt2x00dev->ops->lib->start_queue(queue);
965 
966 	rt2x00queue_unpause_queue(queue);
967 
968 	mutex_unlock(&queue->status_lock);
969 }
970 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
971 
972 void rt2x00queue_stop_queue(struct data_queue *queue)
973 {
974 	mutex_lock(&queue->status_lock);
975 
976 	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
977 		mutex_unlock(&queue->status_lock);
978 		return;
979 	}
980 
981 	rt2x00queue_pause_queue_nocheck(queue);
982 
983 	queue->rt2x00dev->ops->lib->stop_queue(queue);
984 
985 	mutex_unlock(&queue->status_lock);
986 }
987 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
988 
989 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
990 {
991 	bool tx_queue =
992 		(queue->qid == QID_AC_VO) ||
993 		(queue->qid == QID_AC_VI) ||
994 		(queue->qid == QID_AC_BE) ||
995 		(queue->qid == QID_AC_BK);
996 
997 	if (rt2x00queue_empty(queue))
998 		return;
999 
1000 	/*
1001 	 * If we are not supposed to drop any pending
1002 	 * frames, this means we must force a start (=kick)
1003 	 * to the queue to make sure the hardware will
1004 	 * start transmitting.
1005 	 */
1006 	if (!drop && tx_queue)
1007 		queue->rt2x00dev->ops->lib->kick_queue(queue);
1008 
1009 	/*
1010 	 * Check if driver supports flushing, if that is the case we can
1011 	 * defer the flushing to the driver. Otherwise we must use the
1012 	 * alternative which just waits for the queue to become empty.
1013 	 */
1014 	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1015 		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1016 
1017 	/*
1018 	 * The queue flush has failed...
1019 	 */
1020 	if (unlikely(!rt2x00queue_empty(queue)))
1021 		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1022 			    queue->qid);
1023 }
1024 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1025 
1026 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1027 {
1028 	struct data_queue *queue;
1029 
1030 	/*
1031 	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1032 	 * for each queue after is has been properly initialized.
1033 	 */
1034 	tx_queue_for_each(rt2x00dev, queue)
1035 		rt2x00queue_start_queue(queue);
1036 
1037 	rt2x00queue_start_queue(rt2x00dev->rx);
1038 }
1039 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1040 
1041 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1042 {
1043 	struct data_queue *queue;
1044 
1045 	/*
1046 	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1047 	 * as well, but we are completely shutting doing everything
1048 	 * now, so it is much safer to stop all TX queues at once,
1049 	 * and use rt2x00queue_stop_queue for cleaning up.
1050 	 */
1051 	ieee80211_stop_queues(rt2x00dev->hw);
1052 
1053 	tx_queue_for_each(rt2x00dev, queue)
1054 		rt2x00queue_stop_queue(queue);
1055 
1056 	rt2x00queue_stop_queue(rt2x00dev->rx);
1057 }
1058 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1059 
1060 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1061 {
1062 	struct data_queue *queue;
1063 
1064 	tx_queue_for_each(rt2x00dev, queue)
1065 		rt2x00queue_flush_queue(queue, drop);
1066 
1067 	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1068 }
1069 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1070 
1071 static void rt2x00queue_reset(struct data_queue *queue)
1072 {
1073 	unsigned long irqflags;
1074 	unsigned int i;
1075 
1076 	spin_lock_irqsave(&queue->index_lock, irqflags);
1077 
1078 	queue->count = 0;
1079 	queue->length = 0;
1080 
1081 	for (i = 0; i < Q_INDEX_MAX; i++)
1082 		queue->index[i] = 0;
1083 
1084 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1085 }
1086 
1087 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1088 {
1089 	struct data_queue *queue;
1090 	unsigned int i;
1091 
1092 	queue_for_each(rt2x00dev, queue) {
1093 		rt2x00queue_reset(queue);
1094 
1095 		for (i = 0; i < queue->limit; i++)
1096 			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1097 	}
1098 }
1099 
1100 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1101 {
1102 	struct queue_entry *entries;
1103 	unsigned int entry_size;
1104 	unsigned int i;
1105 
1106 	rt2x00queue_reset(queue);
1107 
1108 	/*
1109 	 * Allocate all queue entries.
1110 	 */
1111 	entry_size = sizeof(*entries) + queue->priv_size;
1112 	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1113 	if (!entries)
1114 		return -ENOMEM;
1115 
1116 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1117 	(((char *)(__base)) + ((__limit) * (__esize)) + \
1118 	    ((__index) * (__psize)))
1119 
1120 	for (i = 0; i < queue->limit; i++) {
1121 		entries[i].flags = 0;
1122 		entries[i].queue = queue;
1123 		entries[i].skb = NULL;
1124 		entries[i].entry_idx = i;
1125 		entries[i].priv_data =
1126 		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1127 					    sizeof(*entries), queue->priv_size);
1128 	}
1129 
1130 #undef QUEUE_ENTRY_PRIV_OFFSET
1131 
1132 	queue->entries = entries;
1133 
1134 	return 0;
1135 }
1136 
1137 static void rt2x00queue_free_skbs(struct data_queue *queue)
1138 {
1139 	unsigned int i;
1140 
1141 	if (!queue->entries)
1142 		return;
1143 
1144 	for (i = 0; i < queue->limit; i++) {
1145 		rt2x00queue_free_skb(&queue->entries[i]);
1146 	}
1147 }
1148 
1149 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1150 {
1151 	unsigned int i;
1152 	struct sk_buff *skb;
1153 
1154 	for (i = 0; i < queue->limit; i++) {
1155 		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1156 		if (!skb)
1157 			return -ENOMEM;
1158 		queue->entries[i].skb = skb;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1165 {
1166 	struct data_queue *queue;
1167 	int status;
1168 
1169 	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1170 	if (status)
1171 		goto exit;
1172 
1173 	tx_queue_for_each(rt2x00dev, queue) {
1174 		status = rt2x00queue_alloc_entries(queue);
1175 		if (status)
1176 			goto exit;
1177 	}
1178 
1179 	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1180 	if (status)
1181 		goto exit;
1182 
1183 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1184 		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1185 		if (status)
1186 			goto exit;
1187 	}
1188 
1189 	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1190 	if (status)
1191 		goto exit;
1192 
1193 	return 0;
1194 
1195 exit:
1196 	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1197 
1198 	rt2x00queue_uninitialize(rt2x00dev);
1199 
1200 	return status;
1201 }
1202 
1203 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1204 {
1205 	struct data_queue *queue;
1206 
1207 	rt2x00queue_free_skbs(rt2x00dev->rx);
1208 
1209 	queue_for_each(rt2x00dev, queue) {
1210 		kfree(queue->entries);
1211 		queue->entries = NULL;
1212 	}
1213 }
1214 
1215 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1216 			     struct data_queue *queue, enum data_queue_qid qid)
1217 {
1218 	mutex_init(&queue->status_lock);
1219 	spin_lock_init(&queue->tx_lock);
1220 	spin_lock_init(&queue->index_lock);
1221 
1222 	queue->rt2x00dev = rt2x00dev;
1223 	queue->qid = qid;
1224 	queue->txop = 0;
1225 	queue->aifs = 2;
1226 	queue->cw_min = 5;
1227 	queue->cw_max = 10;
1228 
1229 	rt2x00dev->ops->queue_init(queue);
1230 
1231 	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1232 }
1233 
1234 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1235 {
1236 	struct data_queue *queue;
1237 	enum data_queue_qid qid;
1238 	unsigned int req_atim =
1239 	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1240 
1241 	/*
1242 	 * We need the following queues:
1243 	 * RX: 1
1244 	 * TX: ops->tx_queues
1245 	 * Beacon: 1
1246 	 * Atim: 1 (if required)
1247 	 */
1248 	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1249 
1250 	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1251 	if (!queue)
1252 		return -ENOMEM;
1253 
1254 	/*
1255 	 * Initialize pointers
1256 	 */
1257 	rt2x00dev->rx = queue;
1258 	rt2x00dev->tx = &queue[1];
1259 	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1260 	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1261 
1262 	/*
1263 	 * Initialize queue parameters.
1264 	 * RX: qid = QID_RX
1265 	 * TX: qid = QID_AC_VO + index
1266 	 * TX: cw_min: 2^5 = 32.
1267 	 * TX: cw_max: 2^10 = 1024.
1268 	 * BCN: qid = QID_BEACON
1269 	 * ATIM: qid = QID_ATIM
1270 	 */
1271 	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1272 
1273 	qid = QID_AC_VO;
1274 	tx_queue_for_each(rt2x00dev, queue)
1275 		rt2x00queue_init(rt2x00dev, queue, qid++);
1276 
1277 	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1278 	if (req_atim)
1279 		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1280 
1281 	return 0;
1282 }
1283 
1284 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1285 {
1286 	kfree(rt2x00dev->rx);
1287 	rt2x00dev->rx = NULL;
1288 	rt2x00dev->tx = NULL;
1289 	rt2x00dev->bcn = NULL;
1290 }
1291