1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 */ 8 9 /* 10 Module: rt2x00lib 11 Abstract: rt2x00 generic device routines. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/log2.h> 18 #include <linux/of.h> 19 #include <linux/of_net.h> 20 21 #include "rt2x00.h" 22 #include "rt2x00lib.h" 23 24 /* 25 * Utility functions. 26 */ 27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 28 struct ieee80211_vif *vif) 29 { 30 /* 31 * When in STA mode, bssidx is always 0 otherwise local_address[5] 32 * contains the bss number, see BSS_ID_MASK comments for details. 33 */ 34 if (rt2x00dev->intf_sta_count) 35 return 0; 36 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 37 } 38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 39 40 /* 41 * Radio control handlers. 42 */ 43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 44 { 45 int status; 46 47 /* 48 * Don't enable the radio twice. 49 * And check if the hardware button has been disabled. 50 */ 51 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 52 return 0; 53 54 /* 55 * Initialize all data queues. 56 */ 57 rt2x00queue_init_queues(rt2x00dev); 58 59 /* 60 * Enable radio. 61 */ 62 status = 63 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 64 if (status) 65 return status; 66 67 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 68 69 rt2x00leds_led_radio(rt2x00dev, true); 70 rt2x00led_led_activity(rt2x00dev, true); 71 72 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 73 74 /* 75 * Enable queues. 76 */ 77 rt2x00queue_start_queues(rt2x00dev); 78 rt2x00link_start_tuner(rt2x00dev); 79 80 /* 81 * Start watchdog monitoring. 82 */ 83 rt2x00link_start_watchdog(rt2x00dev); 84 85 return 0; 86 } 87 88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 89 { 90 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 91 return; 92 93 /* 94 * Stop watchdog monitoring. 95 */ 96 rt2x00link_stop_watchdog(rt2x00dev); 97 98 /* 99 * Stop all queues 100 */ 101 rt2x00link_stop_tuner(rt2x00dev); 102 rt2x00queue_stop_queues(rt2x00dev); 103 rt2x00queue_flush_queues(rt2x00dev, true); 104 rt2x00queue_stop_queue(rt2x00dev->bcn); 105 106 /* 107 * Disable radio. 108 */ 109 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 110 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 111 rt2x00led_led_activity(rt2x00dev, false); 112 rt2x00leds_led_radio(rt2x00dev, false); 113 } 114 115 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 116 struct ieee80211_vif *vif) 117 { 118 struct rt2x00_dev *rt2x00dev = data; 119 struct rt2x00_intf *intf = vif_to_intf(vif); 120 121 /* 122 * It is possible the radio was disabled while the work had been 123 * scheduled. If that happens we should return here immediately, 124 * note that in the spinlock protected area above the delayed_flags 125 * have been cleared correctly. 126 */ 127 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 128 return; 129 130 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 131 mutex_lock(&intf->beacon_skb_mutex); 132 rt2x00queue_update_beacon(rt2x00dev, vif); 133 mutex_unlock(&intf->beacon_skb_mutex); 134 } 135 } 136 137 static void rt2x00lib_intf_scheduled(struct work_struct *work) 138 { 139 struct rt2x00_dev *rt2x00dev = 140 container_of(work, struct rt2x00_dev, intf_work); 141 142 /* 143 * Iterate over each interface and perform the 144 * requested configurations. 145 */ 146 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 147 IEEE80211_IFACE_ITER_RESUME_ALL, 148 rt2x00lib_intf_scheduled_iter, 149 rt2x00dev); 150 } 151 152 static void rt2x00lib_autowakeup(struct work_struct *work) 153 { 154 struct rt2x00_dev *rt2x00dev = 155 container_of(work, struct rt2x00_dev, autowakeup_work.work); 156 157 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 158 return; 159 160 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 161 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 162 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 163 } 164 165 /* 166 * Interrupt context handlers. 167 */ 168 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 169 struct ieee80211_vif *vif) 170 { 171 struct ieee80211_tx_control control = {}; 172 struct rt2x00_dev *rt2x00dev = data; 173 struct sk_buff *skb; 174 175 /* 176 * Only AP mode interfaces do broad- and multicast buffering 177 */ 178 if (vif->type != NL80211_IFTYPE_AP) 179 return; 180 181 /* 182 * Send out buffered broad- and multicast frames 183 */ 184 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 185 while (skb) { 186 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 187 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 188 } 189 } 190 191 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 192 struct ieee80211_vif *vif) 193 { 194 struct rt2x00_dev *rt2x00dev = data; 195 196 if (vif->type != NL80211_IFTYPE_AP && 197 vif->type != NL80211_IFTYPE_ADHOC && 198 vif->type != NL80211_IFTYPE_MESH_POINT) 199 return; 200 201 /* 202 * Update the beacon without locking. This is safe on PCI devices 203 * as they only update the beacon periodically here. This should 204 * never be called for USB devices. 205 */ 206 WARN_ON(rt2x00_is_usb(rt2x00dev)); 207 rt2x00queue_update_beacon(rt2x00dev, vif); 208 } 209 210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 211 { 212 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 213 return; 214 215 /* send buffered bc/mc frames out for every bssid */ 216 ieee80211_iterate_active_interfaces_atomic( 217 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 218 rt2x00lib_bc_buffer_iter, rt2x00dev); 219 /* 220 * Devices with pre tbtt interrupt don't need to update the beacon 221 * here as they will fetch the next beacon directly prior to 222 * transmission. 223 */ 224 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 225 return; 226 227 /* fetch next beacon */ 228 ieee80211_iterate_active_interfaces_atomic( 229 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 230 rt2x00lib_beaconupdate_iter, rt2x00dev); 231 } 232 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 233 234 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 235 { 236 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 237 return; 238 239 /* fetch next beacon */ 240 ieee80211_iterate_active_interfaces_atomic( 241 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 242 rt2x00lib_beaconupdate_iter, rt2x00dev); 243 } 244 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 245 246 void rt2x00lib_dmastart(struct queue_entry *entry) 247 { 248 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 249 rt2x00queue_index_inc(entry, Q_INDEX); 250 } 251 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 252 253 void rt2x00lib_dmadone(struct queue_entry *entry) 254 { 255 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 256 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 257 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 258 } 259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 260 261 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 262 { 263 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 264 struct ieee80211_bar *bar = (void *) entry->skb->data; 265 struct rt2x00_bar_list_entry *bar_entry; 266 int ret; 267 268 if (likely(!ieee80211_is_back_req(bar->frame_control))) 269 return 0; 270 271 /* 272 * Unlike all other frames, the status report for BARs does 273 * not directly come from the hardware as it is incapable of 274 * matching a BA to a previously send BAR. The hardware will 275 * report all BARs as if they weren't acked at all. 276 * 277 * Instead the RX-path will scan for incoming BAs and set the 278 * block_acked flag if it sees one that was likely caused by 279 * a BAR from us. 280 * 281 * Remove remaining BARs here and return their status for 282 * TX done processing. 283 */ 284 ret = 0; 285 rcu_read_lock(); 286 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 287 if (bar_entry->entry != entry) 288 continue; 289 290 spin_lock_bh(&rt2x00dev->bar_list_lock); 291 /* Return whether this BAR was blockacked or not */ 292 ret = bar_entry->block_acked; 293 /* Remove the BAR from our checklist */ 294 list_del_rcu(&bar_entry->list); 295 spin_unlock_bh(&rt2x00dev->bar_list_lock); 296 kfree_rcu(bar_entry, head); 297 298 break; 299 } 300 rcu_read_unlock(); 301 302 return ret; 303 } 304 305 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev, 306 struct ieee80211_tx_info *tx_info, 307 struct skb_frame_desc *skbdesc, 308 struct txdone_entry_desc *txdesc, 309 bool success) 310 { 311 u8 rate_idx, rate_flags, retry_rates; 312 int i; 313 314 rate_idx = skbdesc->tx_rate_idx; 315 rate_flags = skbdesc->tx_rate_flags; 316 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 317 (txdesc->retry + 1) : 1; 318 319 /* 320 * Initialize TX status 321 */ 322 memset(&tx_info->status, 0, sizeof(tx_info->status)); 323 tx_info->status.ack_signal = 0; 324 325 /* 326 * Frame was send with retries, hardware tried 327 * different rates to send out the frame, at each 328 * retry it lowered the rate 1 step except when the 329 * lowest rate was used. 330 */ 331 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 332 tx_info->status.rates[i].idx = rate_idx - i; 333 tx_info->status.rates[i].flags = rate_flags; 334 335 if (rate_idx - i == 0) { 336 /* 337 * The lowest rate (index 0) was used until the 338 * number of max retries was reached. 339 */ 340 tx_info->status.rates[i].count = retry_rates - i; 341 i++; 342 break; 343 } 344 tx_info->status.rates[i].count = 1; 345 } 346 if (i < (IEEE80211_TX_MAX_RATES - 1)) 347 tx_info->status.rates[i].idx = -1; /* terminate */ 348 349 if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags)) 350 tx_info->flags |= IEEE80211_TX_CTL_NO_ACK; 351 352 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 353 if (success) 354 tx_info->flags |= IEEE80211_TX_STAT_ACK; 355 else 356 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 357 } 358 359 /* 360 * Every single frame has it's own tx status, hence report 361 * every frame as ampdu of size 1. 362 * 363 * TODO: if we can find out how many frames were aggregated 364 * by the hw we could provide the real ampdu_len to mac80211 365 * which would allow the rc algorithm to better decide on 366 * which rates are suitable. 367 */ 368 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 369 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 370 tx_info->flags |= IEEE80211_TX_STAT_AMPDU | 371 IEEE80211_TX_CTL_AMPDU; 372 tx_info->status.ampdu_len = 1; 373 tx_info->status.ampdu_ack_len = success ? 1 : 0; 374 } 375 376 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 377 if (success) 378 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 379 else 380 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 381 } 382 } 383 384 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev, 385 struct queue_entry *entry) 386 { 387 /* 388 * Make this entry available for reuse. 389 */ 390 entry->skb = NULL; 391 entry->flags = 0; 392 393 rt2x00dev->ops->lib->clear_entry(entry); 394 395 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 396 397 /* 398 * If the data queue was below the threshold before the txdone 399 * handler we must make sure the packet queue in the mac80211 stack 400 * is reenabled when the txdone handler has finished. This has to be 401 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 402 * before it was stopped. 403 */ 404 spin_lock_bh(&entry->queue->tx_lock); 405 if (!rt2x00queue_threshold(entry->queue)) 406 rt2x00queue_unpause_queue(entry->queue); 407 spin_unlock_bh(&entry->queue->tx_lock); 408 } 409 410 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 411 struct txdone_entry_desc *txdesc) 412 { 413 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 414 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 415 struct ieee80211_tx_info txinfo = {}; 416 bool success; 417 418 /* 419 * Unmap the skb. 420 */ 421 rt2x00queue_unmap_skb(entry); 422 423 /* 424 * Signal that the TX descriptor is no longer in the skb. 425 */ 426 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 427 428 /* 429 * Send frame to debugfs immediately, after this call is completed 430 * we are going to overwrite the skb->cb array. 431 */ 432 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 433 434 /* 435 * Determine if the frame has been successfully transmitted and 436 * remove BARs from our check list while checking for their 437 * TX status. 438 */ 439 success = 440 rt2x00lib_txdone_bar_status(entry) || 441 test_bit(TXDONE_SUCCESS, &txdesc->flags); 442 443 if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) { 444 /* 445 * Update TX statistics. 446 */ 447 rt2x00dev->link.qual.tx_success += success; 448 rt2x00dev->link.qual.tx_failed += !success; 449 450 rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc, 451 success); 452 ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo); 453 } 454 455 dev_kfree_skb_any(entry->skb); 456 rt2x00lib_clear_entry(rt2x00dev, entry); 457 } 458 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch); 459 460 void rt2x00lib_txdone(struct queue_entry *entry, 461 struct txdone_entry_desc *txdesc) 462 { 463 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 464 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 465 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 466 u8 skbdesc_flags = skbdesc->flags; 467 unsigned int header_length; 468 bool success; 469 470 /* 471 * Unmap the skb. 472 */ 473 rt2x00queue_unmap_skb(entry); 474 475 /* 476 * Remove the extra tx headroom from the skb. 477 */ 478 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 479 480 /* 481 * Signal that the TX descriptor is no longer in the skb. 482 */ 483 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 484 485 /* 486 * Determine the length of 802.11 header. 487 */ 488 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 489 490 /* 491 * Remove L2 padding which was added during 492 */ 493 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 494 rt2x00queue_remove_l2pad(entry->skb, header_length); 495 496 /* 497 * If the IV/EIV data was stripped from the frame before it was 498 * passed to the hardware, we should now reinsert it again because 499 * mac80211 will expect the same data to be present it the 500 * frame as it was passed to us. 501 */ 502 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 503 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 504 505 /* 506 * Send frame to debugfs immediately, after this call is completed 507 * we are going to overwrite the skb->cb array. 508 */ 509 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry); 510 511 /* 512 * Determine if the frame has been successfully transmitted and 513 * remove BARs from our check list while checking for their 514 * TX status. 515 */ 516 success = 517 rt2x00lib_txdone_bar_status(entry) || 518 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 519 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 520 521 /* 522 * Update TX statistics. 523 */ 524 rt2x00dev->link.qual.tx_success += success; 525 rt2x00dev->link.qual.tx_failed += !success; 526 527 rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success); 528 529 /* 530 * Only send the status report to mac80211 when it's a frame 531 * that originated in mac80211. If this was a extra frame coming 532 * through a mac80211 library call (RTS/CTS) then we should not 533 * send the status report back. 534 */ 535 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 536 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 537 ieee80211_tx_status_skb(rt2x00dev->hw, entry->skb); 538 else 539 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 540 } else { 541 dev_kfree_skb_any(entry->skb); 542 } 543 544 rt2x00lib_clear_entry(rt2x00dev, entry); 545 } 546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 547 548 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 549 { 550 struct txdone_entry_desc txdesc; 551 552 txdesc.flags = 0; 553 __set_bit(status, &txdesc.flags); 554 txdesc.retry = 0; 555 556 rt2x00lib_txdone(entry, &txdesc); 557 } 558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 559 560 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 561 { 562 struct ieee80211_mgmt *mgmt = (void *)data; 563 u8 *pos, *end; 564 565 pos = (u8 *)mgmt->u.beacon.variable; 566 end = data + len; 567 while (pos < end) { 568 if (pos + 2 + pos[1] > end) 569 return NULL; 570 571 if (pos[0] == ie) 572 return pos; 573 574 pos += 2 + pos[1]; 575 } 576 577 return NULL; 578 } 579 580 static void rt2x00lib_sleep(struct work_struct *work) 581 { 582 struct rt2x00_dev *rt2x00dev = 583 container_of(work, struct rt2x00_dev, sleep_work); 584 585 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 586 return; 587 588 /* 589 * Check again is powersaving is enabled, to prevent races from delayed 590 * work execution. 591 */ 592 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 593 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 594 IEEE80211_CONF_CHANGE_PS); 595 } 596 597 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 598 struct sk_buff *skb, 599 struct rxdone_entry_desc *rxdesc) 600 { 601 struct rt2x00_bar_list_entry *entry; 602 struct ieee80211_bar *ba = (void *)skb->data; 603 604 if (likely(!ieee80211_is_back(ba->frame_control))) 605 return; 606 607 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 608 return; 609 610 rcu_read_lock(); 611 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 612 613 if (ba->start_seq_num != entry->start_seq_num) 614 continue; 615 616 #define TID_CHECK(a, b) ( \ 617 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 618 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 619 620 if (!TID_CHECK(ba->control, entry->control)) 621 continue; 622 623 #undef TID_CHECK 624 625 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 626 continue; 627 628 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 629 continue; 630 631 /* Mark BAR since we received the according BA */ 632 spin_lock_bh(&rt2x00dev->bar_list_lock); 633 entry->block_acked = 1; 634 spin_unlock_bh(&rt2x00dev->bar_list_lock); 635 break; 636 } 637 rcu_read_unlock(); 638 639 } 640 641 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 642 struct sk_buff *skb, 643 struct rxdone_entry_desc *rxdesc) 644 { 645 struct ieee80211_hdr *hdr = (void *) skb->data; 646 struct ieee80211_tim_ie *tim_ie; 647 u8 *tim; 648 u8 tim_len; 649 bool cam; 650 651 /* If this is not a beacon, or if mac80211 has no powersaving 652 * configured, or if the device is already in powersaving mode 653 * we can exit now. */ 654 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 655 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 656 return; 657 658 /* min. beacon length + FCS_LEN */ 659 if (skb->len <= 40 + FCS_LEN) 660 return; 661 662 /* and only beacons from the associated BSSID, please */ 663 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 664 !rt2x00dev->aid) 665 return; 666 667 rt2x00dev->last_beacon = jiffies; 668 669 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 670 if (!tim) 671 return; 672 673 if (tim[1] < sizeof(*tim_ie)) 674 return; 675 676 tim_len = tim[1]; 677 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 678 679 /* Check whenever the PHY can be turned off again. */ 680 681 /* 1. What about buffered unicast traffic for our AID? */ 682 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 683 684 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 685 cam |= (tim_ie->bitmap_ctrl & 0x01); 686 687 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 688 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 689 } 690 691 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 692 struct rxdone_entry_desc *rxdesc) 693 { 694 struct ieee80211_supported_band *sband; 695 const struct rt2x00_rate *rate; 696 unsigned int i; 697 int signal = rxdesc->signal; 698 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 699 700 switch (rxdesc->rate_mode) { 701 case RATE_MODE_CCK: 702 case RATE_MODE_OFDM: 703 /* 704 * For non-HT rates the MCS value needs to contain the 705 * actually used rate modulation (CCK or OFDM). 706 */ 707 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 708 signal = RATE_MCS(rxdesc->rate_mode, signal); 709 710 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 711 for (i = 0; i < sband->n_bitrates; i++) { 712 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 713 if (((type == RXDONE_SIGNAL_PLCP) && 714 (rate->plcp == signal)) || 715 ((type == RXDONE_SIGNAL_BITRATE) && 716 (rate->bitrate == signal)) || 717 ((type == RXDONE_SIGNAL_MCS) && 718 (rate->mcs == signal))) { 719 return i; 720 } 721 } 722 break; 723 case RATE_MODE_HT_MIX: 724 case RATE_MODE_HT_GREENFIELD: 725 if (signal >= 0 && signal <= 76) 726 return signal; 727 break; 728 default: 729 break; 730 } 731 732 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 733 rxdesc->rate_mode, signal, type); 734 return 0; 735 } 736 737 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 738 { 739 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 740 struct rxdone_entry_desc rxdesc; 741 struct sk_buff *skb; 742 struct ieee80211_rx_status *rx_status; 743 unsigned int header_length; 744 int rate_idx; 745 746 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 747 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 748 goto submit_entry; 749 750 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 751 goto submit_entry; 752 753 /* 754 * Allocate a new sk_buffer. If no new buffer available, drop the 755 * received frame and reuse the existing buffer. 756 */ 757 skb = rt2x00queue_alloc_rxskb(entry, gfp); 758 if (!skb) 759 goto submit_entry; 760 761 /* 762 * Unmap the skb. 763 */ 764 rt2x00queue_unmap_skb(entry); 765 766 /* 767 * Extract the RXD details. 768 */ 769 memset(&rxdesc, 0, sizeof(rxdesc)); 770 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 771 772 /* 773 * Check for valid size in case we get corrupted descriptor from 774 * hardware. 775 */ 776 if (unlikely(rxdesc.size == 0 || 777 rxdesc.size > entry->queue->data_size)) { 778 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 779 rxdesc.size, entry->queue->data_size); 780 dev_kfree_skb(entry->skb); 781 goto renew_skb; 782 } 783 784 /* 785 * The data behind the ieee80211 header must be 786 * aligned on a 4 byte boundary. 787 */ 788 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 789 790 /* 791 * Hardware might have stripped the IV/EIV/ICV data, 792 * in that case it is possible that the data was 793 * provided separately (through hardware descriptor) 794 * in which case we should reinsert the data into the frame. 795 */ 796 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 797 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 798 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 799 &rxdesc); 800 else if (header_length && 801 (rxdesc.size > header_length) && 802 (rxdesc.dev_flags & RXDONE_L2PAD)) 803 rt2x00queue_remove_l2pad(entry->skb, header_length); 804 805 /* Trim buffer to correct size */ 806 skb_trim(entry->skb, rxdesc.size); 807 808 /* 809 * Translate the signal to the correct bitrate index. 810 */ 811 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 812 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 813 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 814 rxdesc.encoding = RX_ENC_HT; 815 816 /* 817 * Check if this is a beacon, and more frames have been 818 * buffered while we were in powersaving mode. 819 */ 820 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 821 822 /* 823 * Check for incoming BlockAcks to match to the BlockAckReqs 824 * we've send out. 825 */ 826 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 827 828 /* 829 * Update extra components 830 */ 831 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 832 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 833 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry); 834 835 /* 836 * Initialize RX status information, and send frame 837 * to mac80211. 838 */ 839 rx_status = IEEE80211_SKB_RXCB(entry->skb); 840 841 /* Ensure that all fields of rx_status are initialized 842 * properly. The skb->cb array was used for driver 843 * specific informations, so rx_status might contain 844 * garbage. 845 */ 846 memset(rx_status, 0, sizeof(*rx_status)); 847 848 rx_status->mactime = rxdesc.timestamp; 849 rx_status->band = rt2x00dev->curr_band; 850 rx_status->freq = rt2x00dev->curr_freq; 851 rx_status->rate_idx = rate_idx; 852 rx_status->signal = rxdesc.rssi; 853 rx_status->flag = rxdesc.flags; 854 rx_status->enc_flags = rxdesc.enc_flags; 855 rx_status->encoding = rxdesc.encoding; 856 rx_status->bw = rxdesc.bw; 857 rx_status->antenna = rt2x00dev->link.ant.active.rx; 858 859 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 860 861 renew_skb: 862 /* 863 * Replace the skb with the freshly allocated one. 864 */ 865 entry->skb = skb; 866 867 submit_entry: 868 entry->flags = 0; 869 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 870 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 871 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 872 rt2x00dev->ops->lib->clear_entry(entry); 873 } 874 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 875 876 /* 877 * Driver initialization handlers. 878 */ 879 const struct rt2x00_rate rt2x00_supported_rates[12] = { 880 { 881 .flags = DEV_RATE_CCK, 882 .bitrate = 10, 883 .ratemask = BIT(0), 884 .plcp = 0x00, 885 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 886 }, 887 { 888 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 889 .bitrate = 20, 890 .ratemask = BIT(1), 891 .plcp = 0x01, 892 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 893 }, 894 { 895 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 896 .bitrate = 55, 897 .ratemask = BIT(2), 898 .plcp = 0x02, 899 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 900 }, 901 { 902 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 903 .bitrate = 110, 904 .ratemask = BIT(3), 905 .plcp = 0x03, 906 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 907 }, 908 { 909 .flags = DEV_RATE_OFDM, 910 .bitrate = 60, 911 .ratemask = BIT(4), 912 .plcp = 0x0b, 913 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 914 }, 915 { 916 .flags = DEV_RATE_OFDM, 917 .bitrate = 90, 918 .ratemask = BIT(5), 919 .plcp = 0x0f, 920 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 921 }, 922 { 923 .flags = DEV_RATE_OFDM, 924 .bitrate = 120, 925 .ratemask = BIT(6), 926 .plcp = 0x0a, 927 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 928 }, 929 { 930 .flags = DEV_RATE_OFDM, 931 .bitrate = 180, 932 .ratemask = BIT(7), 933 .plcp = 0x0e, 934 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 935 }, 936 { 937 .flags = DEV_RATE_OFDM, 938 .bitrate = 240, 939 .ratemask = BIT(8), 940 .plcp = 0x09, 941 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 942 }, 943 { 944 .flags = DEV_RATE_OFDM, 945 .bitrate = 360, 946 .ratemask = BIT(9), 947 .plcp = 0x0d, 948 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 949 }, 950 { 951 .flags = DEV_RATE_OFDM, 952 .bitrate = 480, 953 .ratemask = BIT(10), 954 .plcp = 0x08, 955 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 956 }, 957 { 958 .flags = DEV_RATE_OFDM, 959 .bitrate = 540, 960 .ratemask = BIT(11), 961 .plcp = 0x0c, 962 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 963 }, 964 }; 965 966 static void rt2x00lib_channel(struct ieee80211_channel *entry, 967 const int channel, const int tx_power, 968 const int value) 969 { 970 /* XXX: this assumption about the band is wrong for 802.11j */ 971 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 972 entry->center_freq = ieee80211_channel_to_frequency(channel, 973 entry->band); 974 entry->hw_value = value; 975 entry->max_power = tx_power; 976 entry->max_antenna_gain = 0xff; 977 } 978 979 static void rt2x00lib_rate(struct ieee80211_rate *entry, 980 const u16 index, const struct rt2x00_rate *rate) 981 { 982 entry->flags = 0; 983 entry->bitrate = rate->bitrate; 984 entry->hw_value = index; 985 entry->hw_value_short = index; 986 987 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 988 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 989 } 990 991 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr) 992 { 993 of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr); 994 995 if (!is_valid_ether_addr(eeprom_mac_addr)) { 996 eth_random_addr(eeprom_mac_addr); 997 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr); 998 } 999 } 1000 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address); 1001 1002 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 1003 struct hw_mode_spec *spec) 1004 { 1005 struct ieee80211_hw *hw = rt2x00dev->hw; 1006 struct ieee80211_channel *channels; 1007 struct ieee80211_rate *rates; 1008 unsigned int num_rates; 1009 unsigned int i; 1010 1011 num_rates = 0; 1012 if (spec->supported_rates & SUPPORT_RATE_CCK) 1013 num_rates += 4; 1014 if (spec->supported_rates & SUPPORT_RATE_OFDM) 1015 num_rates += 8; 1016 1017 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 1018 if (!channels) 1019 return -ENOMEM; 1020 1021 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 1022 if (!rates) 1023 goto exit_free_channels; 1024 1025 /* 1026 * Initialize Rate list. 1027 */ 1028 for (i = 0; i < num_rates; i++) 1029 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 1030 1031 /* 1032 * Initialize Channel list. 1033 */ 1034 for (i = 0; i < spec->num_channels; i++) { 1035 rt2x00lib_channel(&channels[i], 1036 spec->channels[i].channel, 1037 spec->channels_info[i].max_power, i); 1038 } 1039 1040 /* 1041 * Intitialize 802.11b, 802.11g 1042 * Rates: CCK, OFDM. 1043 * Channels: 2.4 GHz 1044 */ 1045 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 1046 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 1047 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 1048 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 1049 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 1050 hw->wiphy->bands[NL80211_BAND_2GHZ] = 1051 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 1052 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 1053 &spec->ht, sizeof(spec->ht)); 1054 } 1055 1056 /* 1057 * Intitialize 802.11a 1058 * Rates: OFDM. 1059 * Channels: OFDM, UNII, HiperLAN2. 1060 */ 1061 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 1062 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 1063 spec->num_channels - 14; 1064 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 1065 num_rates - 4; 1066 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 1067 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1068 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1069 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1070 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1071 &spec->ht, sizeof(spec->ht)); 1072 } 1073 1074 return 0; 1075 1076 exit_free_channels: 1077 kfree(channels); 1078 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1079 return -ENOMEM; 1080 } 1081 1082 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1083 { 1084 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1085 ieee80211_unregister_hw(rt2x00dev->hw); 1086 1087 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1088 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1089 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1090 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1091 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1092 } 1093 1094 kfree(rt2x00dev->spec.channels_info); 1095 kfree(rt2x00dev->chan_survey); 1096 } 1097 1098 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = { 1099 { .throughput = 0 * 1024, .blink_time = 334 }, 1100 { .throughput = 1 * 1024, .blink_time = 260 }, 1101 { .throughput = 2 * 1024, .blink_time = 220 }, 1102 { .throughput = 5 * 1024, .blink_time = 190 }, 1103 { .throughput = 10 * 1024, .blink_time = 170 }, 1104 { .throughput = 25 * 1024, .blink_time = 150 }, 1105 { .throughput = 54 * 1024, .blink_time = 130 }, 1106 { .throughput = 120 * 1024, .blink_time = 110 }, 1107 { .throughput = 265 * 1024, .blink_time = 80 }, 1108 { .throughput = 586 * 1024, .blink_time = 50 }, 1109 }; 1110 1111 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1112 { 1113 struct hw_mode_spec *spec = &rt2x00dev->spec; 1114 int status; 1115 1116 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1117 return 0; 1118 1119 /* 1120 * Initialize HW modes. 1121 */ 1122 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1123 if (status) 1124 return status; 1125 1126 /* 1127 * Initialize HW fields. 1128 */ 1129 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1130 1131 /* 1132 * Initialize extra TX headroom required. 1133 */ 1134 rt2x00dev->hw->extra_tx_headroom = 1135 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1136 rt2x00dev->extra_tx_headroom); 1137 1138 /* 1139 * Take TX headroom required for alignment into account. 1140 */ 1141 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1142 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1143 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1144 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1145 1146 /* 1147 * Tell mac80211 about the size of our private STA structure. 1148 */ 1149 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1150 1151 /* 1152 * Allocate tx status FIFO for driver use. 1153 */ 1154 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1155 /* 1156 * Allocate the txstatus fifo. In the worst case the tx 1157 * status fifo has to hold the tx status of all entries 1158 * in all tx queues. Hence, calculate the kfifo size as 1159 * tx_queues * entry_num and round up to the nearest 1160 * power of 2. 1161 */ 1162 int kfifo_size = 1163 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1164 rt2x00dev->tx->limit * 1165 sizeof(u32)); 1166 1167 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1168 GFP_KERNEL); 1169 if (status) 1170 return status; 1171 } 1172 1173 /* 1174 * Initialize tasklets if used by the driver. Tasklets are 1175 * disabled until the interrupts are turned on. The driver 1176 * has to handle that. 1177 */ 1178 #define RT2X00_TASKLET_INIT(taskletname) \ 1179 if (rt2x00dev->ops->lib->taskletname) { \ 1180 tasklet_setup(&rt2x00dev->taskletname, \ 1181 rt2x00dev->ops->lib->taskletname); \ 1182 } 1183 1184 RT2X00_TASKLET_INIT(txstatus_tasklet); 1185 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1186 RT2X00_TASKLET_INIT(tbtt_tasklet); 1187 RT2X00_TASKLET_INIT(rxdone_tasklet); 1188 RT2X00_TASKLET_INIT(autowake_tasklet); 1189 1190 #undef RT2X00_TASKLET_INIT 1191 1192 ieee80211_create_tpt_led_trigger(rt2x00dev->hw, 1193 IEEE80211_TPT_LEDTRIG_FL_RADIO, 1194 rt2x00_tpt_blink, 1195 ARRAY_SIZE(rt2x00_tpt_blink)); 1196 1197 /* 1198 * Register HW. 1199 */ 1200 status = ieee80211_register_hw(rt2x00dev->hw); 1201 if (status) 1202 return status; 1203 1204 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * Initialization/uninitialization handlers. 1211 */ 1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1213 { 1214 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1215 return; 1216 1217 /* 1218 * Stop rfkill polling. 1219 */ 1220 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1221 rt2x00rfkill_unregister(rt2x00dev); 1222 1223 /* 1224 * Allow the HW to uninitialize. 1225 */ 1226 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1227 1228 /* 1229 * Free allocated queue entries. 1230 */ 1231 rt2x00queue_uninitialize(rt2x00dev); 1232 } 1233 1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1235 { 1236 int status; 1237 1238 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1239 return 0; 1240 1241 /* 1242 * Allocate all queue entries. 1243 */ 1244 status = rt2x00queue_initialize(rt2x00dev); 1245 if (status) 1246 return status; 1247 1248 /* 1249 * Initialize the device. 1250 */ 1251 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1252 if (status) { 1253 rt2x00queue_uninitialize(rt2x00dev); 1254 return status; 1255 } 1256 1257 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1258 1259 /* 1260 * Start rfkill polling. 1261 */ 1262 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1263 rt2x00rfkill_register(rt2x00dev); 1264 1265 return 0; 1266 } 1267 1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1269 { 1270 int retval = 0; 1271 1272 /* 1273 * If this is the first interface which is added, 1274 * we should load the firmware now. 1275 */ 1276 retval = rt2x00lib_load_firmware(rt2x00dev); 1277 if (retval) 1278 goto out; 1279 1280 /* 1281 * Initialize the device. 1282 */ 1283 retval = rt2x00lib_initialize(rt2x00dev); 1284 if (retval) 1285 goto out; 1286 1287 rt2x00dev->intf_ap_count = 0; 1288 rt2x00dev->intf_sta_count = 0; 1289 rt2x00dev->intf_associated = 0; 1290 rt2x00dev->intf_beaconing = 0; 1291 1292 /* Enable the radio */ 1293 retval = rt2x00lib_enable_radio(rt2x00dev); 1294 if (retval) 1295 goto out; 1296 1297 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1298 1299 out: 1300 return retval; 1301 } 1302 1303 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1304 { 1305 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1306 return; 1307 1308 /* 1309 * Perhaps we can add something smarter here, 1310 * but for now just disabling the radio should do. 1311 */ 1312 rt2x00lib_disable_radio(rt2x00dev); 1313 1314 rt2x00dev->intf_ap_count = 0; 1315 rt2x00dev->intf_sta_count = 0; 1316 rt2x00dev->intf_associated = 0; 1317 rt2x00dev->intf_beaconing = 0; 1318 } 1319 1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1321 { 1322 struct ieee80211_iface_limit *if_limit; 1323 struct ieee80211_iface_combination *if_combination; 1324 1325 if (rt2x00dev->ops->max_ap_intf < 2) 1326 return; 1327 1328 /* 1329 * Build up AP interface limits structure. 1330 */ 1331 if_limit = &rt2x00dev->if_limits_ap; 1332 if_limit->max = rt2x00dev->ops->max_ap_intf; 1333 if_limit->types = BIT(NL80211_IFTYPE_AP); 1334 #ifdef CONFIG_MAC80211_MESH 1335 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1336 #endif 1337 1338 /* 1339 * Build up AP interface combinations structure. 1340 */ 1341 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1342 if_combination->limits = if_limit; 1343 if_combination->n_limits = 1; 1344 if_combination->max_interfaces = if_limit->max; 1345 if_combination->num_different_channels = 1; 1346 1347 /* 1348 * Finally, specify the possible combinations to mac80211. 1349 */ 1350 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1351 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1352 } 1353 1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1355 { 1356 if (WARN_ON(!rt2x00dev->tx)) 1357 return 0; 1358 1359 if (rt2x00_is_usb(rt2x00dev)) 1360 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1361 1362 return rt2x00dev->tx[0].winfo_size; 1363 } 1364 1365 /* 1366 * driver allocation handlers. 1367 */ 1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1369 { 1370 int retval = -ENOMEM; 1371 1372 /* 1373 * Set possible interface combinations. 1374 */ 1375 rt2x00lib_set_if_combinations(rt2x00dev); 1376 1377 /* 1378 * Allocate the driver data memory, if necessary. 1379 */ 1380 if (rt2x00dev->ops->drv_data_size > 0) { 1381 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1382 GFP_KERNEL); 1383 if (!rt2x00dev->drv_data) { 1384 retval = -ENOMEM; 1385 goto exit; 1386 } 1387 } 1388 1389 spin_lock_init(&rt2x00dev->irqmask_lock); 1390 mutex_init(&rt2x00dev->csr_mutex); 1391 mutex_init(&rt2x00dev->conf_mutex); 1392 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1393 spin_lock_init(&rt2x00dev->bar_list_lock); 1394 hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC, 1395 HRTIMER_MODE_REL); 1396 1397 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1398 1399 /* 1400 * Make room for rt2x00_intf inside the per-interface 1401 * structure ieee80211_vif. 1402 */ 1403 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1404 1405 /* 1406 * rt2x00 devices can only use the last n bits of the MAC address 1407 * for virtual interfaces. 1408 */ 1409 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1410 (rt2x00dev->ops->max_ap_intf - 1); 1411 1412 /* 1413 * Initialize work. 1414 */ 1415 rt2x00dev->workqueue = 1416 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1417 if (!rt2x00dev->workqueue) { 1418 retval = -ENOMEM; 1419 goto exit; 1420 } 1421 1422 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1423 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1424 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1425 1426 /* 1427 * Let the driver probe the device to detect the capabilities. 1428 */ 1429 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1430 if (retval) { 1431 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1432 goto exit; 1433 } 1434 1435 /* 1436 * Allocate queue array. 1437 */ 1438 retval = rt2x00queue_allocate(rt2x00dev); 1439 if (retval) 1440 goto exit; 1441 1442 /* Cache TX headroom value */ 1443 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1444 1445 /* 1446 * Determine which operating modes are supported, all modes 1447 * which require beaconing, depend on the availability of 1448 * beacon entries. 1449 */ 1450 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1451 if (rt2x00dev->bcn->limit > 0) 1452 rt2x00dev->hw->wiphy->interface_modes |= 1453 BIT(NL80211_IFTYPE_ADHOC) | 1454 #ifdef CONFIG_MAC80211_MESH 1455 BIT(NL80211_IFTYPE_MESH_POINT) | 1456 #endif 1457 BIT(NL80211_IFTYPE_AP); 1458 1459 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1460 1461 wiphy_ext_feature_set(rt2x00dev->hw->wiphy, 1462 NL80211_EXT_FEATURE_CQM_RSSI_LIST); 1463 1464 /* 1465 * Initialize ieee80211 structure. 1466 */ 1467 retval = rt2x00lib_probe_hw(rt2x00dev); 1468 if (retval) { 1469 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1470 goto exit; 1471 } 1472 1473 /* 1474 * Register extra components. 1475 */ 1476 rt2x00link_register(rt2x00dev); 1477 rt2x00leds_register(rt2x00dev); 1478 rt2x00debug_register(rt2x00dev); 1479 1480 /* 1481 * Start rfkill polling. 1482 */ 1483 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1484 rt2x00rfkill_register(rt2x00dev); 1485 1486 return 0; 1487 1488 exit: 1489 rt2x00lib_remove_dev(rt2x00dev); 1490 1491 return retval; 1492 } 1493 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1494 1495 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1496 { 1497 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1498 1499 /* 1500 * Stop rfkill polling. 1501 */ 1502 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1503 rt2x00rfkill_unregister(rt2x00dev); 1504 1505 /* 1506 * Disable radio. 1507 */ 1508 rt2x00lib_disable_radio(rt2x00dev); 1509 1510 /* 1511 * Stop all work. 1512 */ 1513 cancel_work_sync(&rt2x00dev->intf_work); 1514 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1515 cancel_work_sync(&rt2x00dev->sleep_work); 1516 1517 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1518 1519 /* 1520 * Kill the tx status tasklet. 1521 */ 1522 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1523 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1524 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1525 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1526 tasklet_kill(&rt2x00dev->autowake_tasklet); 1527 1528 /* 1529 * Uninitialize device. 1530 */ 1531 rt2x00lib_uninitialize(rt2x00dev); 1532 1533 if (rt2x00dev->workqueue) 1534 destroy_workqueue(rt2x00dev->workqueue); 1535 1536 /* 1537 * Free the tx status fifo. 1538 */ 1539 kfifo_free(&rt2x00dev->txstatus_fifo); 1540 1541 /* 1542 * Free extra components 1543 */ 1544 rt2x00debug_deregister(rt2x00dev); 1545 rt2x00leds_unregister(rt2x00dev); 1546 1547 /* 1548 * Free ieee80211_hw memory. 1549 */ 1550 rt2x00lib_remove_hw(rt2x00dev); 1551 1552 /* 1553 * Free firmware image. 1554 */ 1555 rt2x00lib_free_firmware(rt2x00dev); 1556 1557 /* 1558 * Free queue structures. 1559 */ 1560 rt2x00queue_free(rt2x00dev); 1561 1562 /* 1563 * Free the driver data. 1564 */ 1565 kfree(rt2x00dev->drv_data); 1566 } 1567 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1568 1569 /* 1570 * Device state handlers 1571 */ 1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev) 1573 { 1574 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1575 1576 /* 1577 * Prevent mac80211 from accessing driver while suspended. 1578 */ 1579 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1580 return 0; 1581 1582 /* 1583 * Cleanup as much as possible. 1584 */ 1585 rt2x00lib_uninitialize(rt2x00dev); 1586 1587 /* 1588 * Suspend/disable extra components. 1589 */ 1590 rt2x00leds_suspend(rt2x00dev); 1591 rt2x00debug_deregister(rt2x00dev); 1592 1593 /* 1594 * Set device mode to sleep for power management, 1595 * on some hardware this call seems to consistently fail. 1596 * From the specifications it is hard to tell why it fails, 1597 * and if this is a "bad thing". 1598 * Overall it is safe to just ignore the failure and 1599 * continue suspending. The only downside is that the 1600 * device will not be in optimal power save mode, but with 1601 * the radio and the other components already disabled the 1602 * device is as good as disabled. 1603 */ 1604 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1605 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1606 1607 return 0; 1608 } 1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1610 1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1612 { 1613 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1614 1615 /* 1616 * Restore/enable extra components. 1617 */ 1618 rt2x00debug_register(rt2x00dev); 1619 rt2x00leds_resume(rt2x00dev); 1620 1621 /* 1622 * We are ready again to receive requests from mac80211. 1623 */ 1624 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1625 1626 return 0; 1627 } 1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1629 1630 /* 1631 * rt2x00lib module information. 1632 */ 1633 MODULE_AUTHOR(DRV_PROJECT); 1634 MODULE_VERSION(DRV_VERSION); 1635 MODULE_DESCRIPTION("rt2x00 library"); 1636 MODULE_LICENSE("GPL"); 1637