xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c (revision 1a562c0d44974d3cf89c6cc5c34c708c08af420e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7  */
8 
9 /*
10 	Module: rt2x00lib
11 	Abstract: rt2x00 generic device routines.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/log2.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20 
21 #include "rt2x00.h"
22 #include "rt2x00lib.h"
23 
24 /*
25  * Utility functions.
26  */
27 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
28 			 struct ieee80211_vif *vif)
29 {
30 	/*
31 	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
32 	 * contains the bss number, see BSS_ID_MASK comments for details.
33 	 */
34 	if (rt2x00dev->intf_sta_count)
35 		return 0;
36 	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
37 }
38 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
39 
40 /*
41  * Radio control handlers.
42  */
43 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
44 {
45 	int status;
46 
47 	/*
48 	 * Don't enable the radio twice.
49 	 * And check if the hardware button has been disabled.
50 	 */
51 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
52 		return 0;
53 
54 	/*
55 	 * Initialize all data queues.
56 	 */
57 	rt2x00queue_init_queues(rt2x00dev);
58 
59 	/*
60 	 * Enable radio.
61 	 */
62 	status =
63 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
64 	if (status)
65 		return status;
66 
67 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
68 
69 	rt2x00leds_led_radio(rt2x00dev, true);
70 	rt2x00led_led_activity(rt2x00dev, true);
71 
72 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
73 
74 	/*
75 	 * Enable queues.
76 	 */
77 	rt2x00queue_start_queues(rt2x00dev);
78 	rt2x00link_start_tuner(rt2x00dev);
79 
80 	/*
81 	 * Start watchdog monitoring.
82 	 */
83 	rt2x00link_start_watchdog(rt2x00dev);
84 
85 	return 0;
86 }
87 
88 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
89 {
90 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
91 		return;
92 
93 	/*
94 	 * Stop watchdog monitoring.
95 	 */
96 	rt2x00link_stop_watchdog(rt2x00dev);
97 
98 	/*
99 	 * Stop all queues
100 	 */
101 	rt2x00link_stop_tuner(rt2x00dev);
102 	rt2x00queue_stop_queues(rt2x00dev);
103 	rt2x00queue_flush_queues(rt2x00dev, true);
104 	rt2x00queue_stop_queue(rt2x00dev->bcn);
105 
106 	/*
107 	 * Disable radio.
108 	 */
109 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
110 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
111 	rt2x00led_led_activity(rt2x00dev, false);
112 	rt2x00leds_led_radio(rt2x00dev, false);
113 }
114 
115 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
116 					  struct ieee80211_vif *vif)
117 {
118 	struct rt2x00_dev *rt2x00dev = data;
119 	struct rt2x00_intf *intf = vif_to_intf(vif);
120 
121 	/*
122 	 * It is possible the radio was disabled while the work had been
123 	 * scheduled. If that happens we should return here immediately,
124 	 * note that in the spinlock protected area above the delayed_flags
125 	 * have been cleared correctly.
126 	 */
127 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
128 		return;
129 
130 	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
131 		mutex_lock(&intf->beacon_skb_mutex);
132 		rt2x00queue_update_beacon(rt2x00dev, vif);
133 		mutex_unlock(&intf->beacon_skb_mutex);
134 	}
135 }
136 
137 static void rt2x00lib_intf_scheduled(struct work_struct *work)
138 {
139 	struct rt2x00_dev *rt2x00dev =
140 	    container_of(work, struct rt2x00_dev, intf_work);
141 
142 	/*
143 	 * Iterate over each interface and perform the
144 	 * requested configurations.
145 	 */
146 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
147 					    IEEE80211_IFACE_ITER_RESUME_ALL,
148 					    rt2x00lib_intf_scheduled_iter,
149 					    rt2x00dev);
150 }
151 
152 static void rt2x00lib_autowakeup(struct work_struct *work)
153 {
154 	struct rt2x00_dev *rt2x00dev =
155 	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
156 
157 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
158 		return;
159 
160 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
161 		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
162 	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
163 }
164 
165 /*
166  * Interrupt context handlers.
167  */
168 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
169 				     struct ieee80211_vif *vif)
170 {
171 	struct ieee80211_tx_control control = {};
172 	struct rt2x00_dev *rt2x00dev = data;
173 	struct sk_buff *skb;
174 
175 	/*
176 	 * Only AP mode interfaces do broad- and multicast buffering
177 	 */
178 	if (vif->type != NL80211_IFTYPE_AP)
179 		return;
180 
181 	/*
182 	 * Send out buffered broad- and multicast frames
183 	 */
184 	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
185 	while (skb) {
186 		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
187 		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
188 	}
189 }
190 
191 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
192 					struct ieee80211_vif *vif)
193 {
194 	struct rt2x00_dev *rt2x00dev = data;
195 
196 	if (vif->type != NL80211_IFTYPE_AP &&
197 	    vif->type != NL80211_IFTYPE_ADHOC &&
198 	    vif->type != NL80211_IFTYPE_MESH_POINT)
199 		return;
200 
201 	/*
202 	 * Update the beacon without locking. This is safe on PCI devices
203 	 * as they only update the beacon periodically here. This should
204 	 * never be called for USB devices.
205 	 */
206 	WARN_ON(rt2x00_is_usb(rt2x00dev));
207 	rt2x00queue_update_beacon(rt2x00dev, vif);
208 }
209 
210 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
211 {
212 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
213 		return;
214 
215 	/* send buffered bc/mc frames out for every bssid */
216 	ieee80211_iterate_active_interfaces_atomic(
217 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
218 		rt2x00lib_bc_buffer_iter, rt2x00dev);
219 	/*
220 	 * Devices with pre tbtt interrupt don't need to update the beacon
221 	 * here as they will fetch the next beacon directly prior to
222 	 * transmission.
223 	 */
224 	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
225 		return;
226 
227 	/* fetch next beacon */
228 	ieee80211_iterate_active_interfaces_atomic(
229 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
230 		rt2x00lib_beaconupdate_iter, rt2x00dev);
231 }
232 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
233 
234 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
235 {
236 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
237 		return;
238 
239 	/* fetch next beacon */
240 	ieee80211_iterate_active_interfaces_atomic(
241 		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
242 		rt2x00lib_beaconupdate_iter, rt2x00dev);
243 }
244 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
245 
246 void rt2x00lib_dmastart(struct queue_entry *entry)
247 {
248 	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
249 	rt2x00queue_index_inc(entry, Q_INDEX);
250 }
251 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
252 
253 void rt2x00lib_dmadone(struct queue_entry *entry)
254 {
255 	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
256 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257 	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
260 
261 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
262 {
263 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
264 	struct ieee80211_bar *bar = (void *) entry->skb->data;
265 	struct rt2x00_bar_list_entry *bar_entry;
266 	int ret;
267 
268 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
269 		return 0;
270 
271 	/*
272 	 * Unlike all other frames, the status report for BARs does
273 	 * not directly come from the hardware as it is incapable of
274 	 * matching a BA to a previously send BAR. The hardware will
275 	 * report all BARs as if they weren't acked at all.
276 	 *
277 	 * Instead the RX-path will scan for incoming BAs and set the
278 	 * block_acked flag if it sees one that was likely caused by
279 	 * a BAR from us.
280 	 *
281 	 * Remove remaining BARs here and return their status for
282 	 * TX done processing.
283 	 */
284 	ret = 0;
285 	rcu_read_lock();
286 	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
287 		if (bar_entry->entry != entry)
288 			continue;
289 
290 		spin_lock_bh(&rt2x00dev->bar_list_lock);
291 		/* Return whether this BAR was blockacked or not */
292 		ret = bar_entry->block_acked;
293 		/* Remove the BAR from our checklist */
294 		list_del_rcu(&bar_entry->list);
295 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
296 		kfree_rcu(bar_entry, head);
297 
298 		break;
299 	}
300 	rcu_read_unlock();
301 
302 	return ret;
303 }
304 
305 static void rt2x00lib_fill_tx_status(struct rt2x00_dev *rt2x00dev,
306 				     struct ieee80211_tx_info *tx_info,
307 				     struct skb_frame_desc *skbdesc,
308 				     struct txdone_entry_desc *txdesc,
309 				     bool success)
310 {
311 	u8 rate_idx, rate_flags, retry_rates;
312 	int i;
313 
314 	rate_idx = skbdesc->tx_rate_idx;
315 	rate_flags = skbdesc->tx_rate_flags;
316 	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
317 	    (txdesc->retry + 1) : 1;
318 
319 	/*
320 	 * Initialize TX status
321 	 */
322 	memset(&tx_info->status, 0, sizeof(tx_info->status));
323 	tx_info->status.ack_signal = 0;
324 
325 	/*
326 	 * Frame was send with retries, hardware tried
327 	 * different rates to send out the frame, at each
328 	 * retry it lowered the rate 1 step except when the
329 	 * lowest rate was used.
330 	 */
331 	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
332 		tx_info->status.rates[i].idx = rate_idx - i;
333 		tx_info->status.rates[i].flags = rate_flags;
334 
335 		if (rate_idx - i == 0) {
336 			/*
337 			 * The lowest rate (index 0) was used until the
338 			 * number of max retries was reached.
339 			 */
340 			tx_info->status.rates[i].count = retry_rates - i;
341 			i++;
342 			break;
343 		}
344 		tx_info->status.rates[i].count = 1;
345 	}
346 	if (i < (IEEE80211_TX_MAX_RATES - 1))
347 		tx_info->status.rates[i].idx = -1; /* terminate */
348 
349 	if (test_bit(TXDONE_NO_ACK_REQ, &txdesc->flags))
350 		tx_info->flags |= IEEE80211_TX_CTL_NO_ACK;
351 
352 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
353 		if (success)
354 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
355 		else
356 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
357 	}
358 
359 	/*
360 	 * Every single frame has it's own tx status, hence report
361 	 * every frame as ampdu of size 1.
362 	 *
363 	 * TODO: if we can find out how many frames were aggregated
364 	 * by the hw we could provide the real ampdu_len to mac80211
365 	 * which would allow the rc algorithm to better decide on
366 	 * which rates are suitable.
367 	 */
368 	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
369 	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
370 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU |
371 				  IEEE80211_TX_CTL_AMPDU;
372 		tx_info->status.ampdu_len = 1;
373 		tx_info->status.ampdu_ack_len = success ? 1 : 0;
374 	}
375 
376 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
377 		if (success)
378 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
379 		else
380 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
381 	}
382 }
383 
384 static void rt2x00lib_clear_entry(struct rt2x00_dev *rt2x00dev,
385 				  struct queue_entry *entry)
386 {
387 	/*
388 	 * Make this entry available for reuse.
389 	 */
390 	entry->skb = NULL;
391 	entry->flags = 0;
392 
393 	rt2x00dev->ops->lib->clear_entry(entry);
394 
395 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
396 
397 	/*
398 	 * If the data queue was below the threshold before the txdone
399 	 * handler we must make sure the packet queue in the mac80211 stack
400 	 * is reenabled when the txdone handler has finished. This has to be
401 	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
402 	 * before it was stopped.
403 	 */
404 	spin_lock_bh(&entry->queue->tx_lock);
405 	if (!rt2x00queue_threshold(entry->queue))
406 		rt2x00queue_unpause_queue(entry->queue);
407 	spin_unlock_bh(&entry->queue->tx_lock);
408 }
409 
410 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
411 			      struct txdone_entry_desc *txdesc)
412 {
413 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
414 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
415 	struct ieee80211_tx_info txinfo = {};
416 	bool success;
417 
418 	/*
419 	 * Unmap the skb.
420 	 */
421 	rt2x00queue_unmap_skb(entry);
422 
423 	/*
424 	 * Signal that the TX descriptor is no longer in the skb.
425 	 */
426 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
427 
428 	/*
429 	 * Send frame to debugfs immediately, after this call is completed
430 	 * we are going to overwrite the skb->cb array.
431 	 */
432 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
433 
434 	/*
435 	 * Determine if the frame has been successfully transmitted and
436 	 * remove BARs from our check list while checking for their
437 	 * TX status.
438 	 */
439 	success =
440 	    rt2x00lib_txdone_bar_status(entry) ||
441 	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
442 
443 	if (!test_bit(TXDONE_UNKNOWN, &txdesc->flags)) {
444 		/*
445 		 * Update TX statistics.
446 		 */
447 		rt2x00dev->link.qual.tx_success += success;
448 		rt2x00dev->link.qual.tx_failed += !success;
449 
450 		rt2x00lib_fill_tx_status(rt2x00dev, &txinfo, skbdesc, txdesc,
451 					 success);
452 		ieee80211_tx_status_noskb(rt2x00dev->hw, skbdesc->sta, &txinfo);
453 	}
454 
455 	dev_kfree_skb_any(entry->skb);
456 	rt2x00lib_clear_entry(rt2x00dev, entry);
457 }
458 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_nomatch);
459 
460 void rt2x00lib_txdone(struct queue_entry *entry,
461 		      struct txdone_entry_desc *txdesc)
462 {
463 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
464 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
465 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
466 	u8 skbdesc_flags = skbdesc->flags;
467 	unsigned int header_length;
468 	bool success;
469 
470 	/*
471 	 * Unmap the skb.
472 	 */
473 	rt2x00queue_unmap_skb(entry);
474 
475 	/*
476 	 * Remove the extra tx headroom from the skb.
477 	 */
478 	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
479 
480 	/*
481 	 * Signal that the TX descriptor is no longer in the skb.
482 	 */
483 	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
484 
485 	/*
486 	 * Determine the length of 802.11 header.
487 	 */
488 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
489 
490 	/*
491 	 * Remove L2 padding which was added during
492 	 */
493 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
494 		rt2x00queue_remove_l2pad(entry->skb, header_length);
495 
496 	/*
497 	 * If the IV/EIV data was stripped from the frame before it was
498 	 * passed to the hardware, we should now reinsert it again because
499 	 * mac80211 will expect the same data to be present it the
500 	 * frame as it was passed to us.
501 	 */
502 	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
503 		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
504 
505 	/*
506 	 * Send frame to debugfs immediately, after this call is completed
507 	 * we are going to overwrite the skb->cb array.
508 	 */
509 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry);
510 
511 	/*
512 	 * Determine if the frame has been successfully transmitted and
513 	 * remove BARs from our check list while checking for their
514 	 * TX status.
515 	 */
516 	success =
517 	    rt2x00lib_txdone_bar_status(entry) ||
518 	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
519 	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
520 
521 	/*
522 	 * Update TX statistics.
523 	 */
524 	rt2x00dev->link.qual.tx_success += success;
525 	rt2x00dev->link.qual.tx_failed += !success;
526 
527 	rt2x00lib_fill_tx_status(rt2x00dev, tx_info, skbdesc, txdesc, success);
528 
529 	/*
530 	 * Only send the status report to mac80211 when it's a frame
531 	 * that originated in mac80211. If this was a extra frame coming
532 	 * through a mac80211 library call (RTS/CTS) then we should not
533 	 * send the status report back.
534 	 */
535 	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
536 		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
537 			ieee80211_tx_status_skb(rt2x00dev->hw, entry->skb);
538 		else
539 			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
540 	} else {
541 		dev_kfree_skb_any(entry->skb);
542 	}
543 
544 	rt2x00lib_clear_entry(rt2x00dev, entry);
545 }
546 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
547 
548 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
549 {
550 	struct txdone_entry_desc txdesc;
551 
552 	txdesc.flags = 0;
553 	__set_bit(status, &txdesc.flags);
554 	txdesc.retry = 0;
555 
556 	rt2x00lib_txdone(entry, &txdesc);
557 }
558 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
559 
560 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
561 {
562 	struct ieee80211_mgmt *mgmt = (void *)data;
563 	u8 *pos, *end;
564 
565 	pos = (u8 *)mgmt->u.beacon.variable;
566 	end = data + len;
567 	while (pos < end) {
568 		if (pos + 2 + pos[1] > end)
569 			return NULL;
570 
571 		if (pos[0] == ie)
572 			return pos;
573 
574 		pos += 2 + pos[1];
575 	}
576 
577 	return NULL;
578 }
579 
580 static void rt2x00lib_sleep(struct work_struct *work)
581 {
582 	struct rt2x00_dev *rt2x00dev =
583 	    container_of(work, struct rt2x00_dev, sleep_work);
584 
585 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
586 		return;
587 
588 	/*
589 	 * Check again is powersaving is enabled, to prevent races from delayed
590 	 * work execution.
591 	 */
592 	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
593 		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
594 				 IEEE80211_CONF_CHANGE_PS);
595 }
596 
597 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
598 				      struct sk_buff *skb,
599 				      struct rxdone_entry_desc *rxdesc)
600 {
601 	struct rt2x00_bar_list_entry *entry;
602 	struct ieee80211_bar *ba = (void *)skb->data;
603 
604 	if (likely(!ieee80211_is_back(ba->frame_control)))
605 		return;
606 
607 	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
608 		return;
609 
610 	rcu_read_lock();
611 	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
612 
613 		if (ba->start_seq_num != entry->start_seq_num)
614 			continue;
615 
616 #define TID_CHECK(a, b) (						\
617 	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
618 	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
619 
620 		if (!TID_CHECK(ba->control, entry->control))
621 			continue;
622 
623 #undef TID_CHECK
624 
625 		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
626 			continue;
627 
628 		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
629 			continue;
630 
631 		/* Mark BAR since we received the according BA */
632 		spin_lock_bh(&rt2x00dev->bar_list_lock);
633 		entry->block_acked = 1;
634 		spin_unlock_bh(&rt2x00dev->bar_list_lock);
635 		break;
636 	}
637 	rcu_read_unlock();
638 
639 }
640 
641 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
642 				      struct sk_buff *skb,
643 				      struct rxdone_entry_desc *rxdesc)
644 {
645 	struct ieee80211_hdr *hdr = (void *) skb->data;
646 	struct ieee80211_tim_ie *tim_ie;
647 	u8 *tim;
648 	u8 tim_len;
649 	bool cam;
650 
651 	/* If this is not a beacon, or if mac80211 has no powersaving
652 	 * configured, or if the device is already in powersaving mode
653 	 * we can exit now. */
654 	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
655 		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
656 		return;
657 
658 	/* min. beacon length + FCS_LEN */
659 	if (skb->len <= 40 + FCS_LEN)
660 		return;
661 
662 	/* and only beacons from the associated BSSID, please */
663 	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
664 	    !rt2x00dev->aid)
665 		return;
666 
667 	rt2x00dev->last_beacon = jiffies;
668 
669 	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
670 	if (!tim)
671 		return;
672 
673 	if (tim[1] < sizeof(*tim_ie))
674 		return;
675 
676 	tim_len = tim[1];
677 	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
678 
679 	/* Check whenever the PHY can be turned off again. */
680 
681 	/* 1. What about buffered unicast traffic for our AID? */
682 	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
683 
684 	/* 2. Maybe the AP wants to send multicast/broadcast data? */
685 	cam |= (tim_ie->bitmap_ctrl & 0x01);
686 
687 	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
688 		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
689 }
690 
691 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
692 					struct rxdone_entry_desc *rxdesc)
693 {
694 	struct ieee80211_supported_band *sband;
695 	const struct rt2x00_rate *rate;
696 	unsigned int i;
697 	int signal = rxdesc->signal;
698 	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
699 
700 	switch (rxdesc->rate_mode) {
701 	case RATE_MODE_CCK:
702 	case RATE_MODE_OFDM:
703 		/*
704 		 * For non-HT rates the MCS value needs to contain the
705 		 * actually used rate modulation (CCK or OFDM).
706 		 */
707 		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
708 			signal = RATE_MCS(rxdesc->rate_mode, signal);
709 
710 		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
711 		for (i = 0; i < sband->n_bitrates; i++) {
712 			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
713 			if (((type == RXDONE_SIGNAL_PLCP) &&
714 			     (rate->plcp == signal)) ||
715 			    ((type == RXDONE_SIGNAL_BITRATE) &&
716 			      (rate->bitrate == signal)) ||
717 			    ((type == RXDONE_SIGNAL_MCS) &&
718 			      (rate->mcs == signal))) {
719 				return i;
720 			}
721 		}
722 		break;
723 	case RATE_MODE_HT_MIX:
724 	case RATE_MODE_HT_GREENFIELD:
725 		if (signal >= 0 && signal <= 76)
726 			return signal;
727 		break;
728 	default:
729 		break;
730 	}
731 
732 	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
733 		    rxdesc->rate_mode, signal, type);
734 	return 0;
735 }
736 
737 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
738 {
739 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
740 	struct rxdone_entry_desc rxdesc;
741 	struct sk_buff *skb;
742 	struct ieee80211_rx_status *rx_status;
743 	unsigned int header_length;
744 	int rate_idx;
745 
746 	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
747 	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
748 		goto submit_entry;
749 
750 	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
751 		goto submit_entry;
752 
753 	/*
754 	 * Allocate a new sk_buffer. If no new buffer available, drop the
755 	 * received frame and reuse the existing buffer.
756 	 */
757 	skb = rt2x00queue_alloc_rxskb(entry, gfp);
758 	if (!skb)
759 		goto submit_entry;
760 
761 	/*
762 	 * Unmap the skb.
763 	 */
764 	rt2x00queue_unmap_skb(entry);
765 
766 	/*
767 	 * Extract the RXD details.
768 	 */
769 	memset(&rxdesc, 0, sizeof(rxdesc));
770 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
771 
772 	/*
773 	 * Check for valid size in case we get corrupted descriptor from
774 	 * hardware.
775 	 */
776 	if (unlikely(rxdesc.size == 0 ||
777 		     rxdesc.size > entry->queue->data_size)) {
778 		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
779 			   rxdesc.size, entry->queue->data_size);
780 		dev_kfree_skb(entry->skb);
781 		goto renew_skb;
782 	}
783 
784 	/*
785 	 * The data behind the ieee80211 header must be
786 	 * aligned on a 4 byte boundary.
787 	 */
788 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
789 
790 	/*
791 	 * Hardware might have stripped the IV/EIV/ICV data,
792 	 * in that case it is possible that the data was
793 	 * provided separately (through hardware descriptor)
794 	 * in which case we should reinsert the data into the frame.
795 	 */
796 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
797 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
798 		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
799 					  &rxdesc);
800 	else if (header_length &&
801 		 (rxdesc.size > header_length) &&
802 		 (rxdesc.dev_flags & RXDONE_L2PAD))
803 		rt2x00queue_remove_l2pad(entry->skb, header_length);
804 
805 	/* Trim buffer to correct size */
806 	skb_trim(entry->skb, rxdesc.size);
807 
808 	/*
809 	 * Translate the signal to the correct bitrate index.
810 	 */
811 	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
812 	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
813 	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
814 		rxdesc.encoding = RX_ENC_HT;
815 
816 	/*
817 	 * Check if this is a beacon, and more frames have been
818 	 * buffered while we were in powersaving mode.
819 	 */
820 	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
821 
822 	/*
823 	 * Check for incoming BlockAcks to match to the BlockAckReqs
824 	 * we've send out.
825 	 */
826 	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
827 
828 	/*
829 	 * Update extra components
830 	 */
831 	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
832 	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
833 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry);
834 
835 	/*
836 	 * Initialize RX status information, and send frame
837 	 * to mac80211.
838 	 */
839 	rx_status = IEEE80211_SKB_RXCB(entry->skb);
840 
841 	/* Ensure that all fields of rx_status are initialized
842 	 * properly. The skb->cb array was used for driver
843 	 * specific informations, so rx_status might contain
844 	 * garbage.
845 	 */
846 	memset(rx_status, 0, sizeof(*rx_status));
847 
848 	rx_status->mactime = rxdesc.timestamp;
849 	rx_status->band = rt2x00dev->curr_band;
850 	rx_status->freq = rt2x00dev->curr_freq;
851 	rx_status->rate_idx = rate_idx;
852 	rx_status->signal = rxdesc.rssi;
853 	rx_status->flag = rxdesc.flags;
854 	rx_status->enc_flags = rxdesc.enc_flags;
855 	rx_status->encoding = rxdesc.encoding;
856 	rx_status->bw = rxdesc.bw;
857 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
858 
859 	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
860 
861 renew_skb:
862 	/*
863 	 * Replace the skb with the freshly allocated one.
864 	 */
865 	entry->skb = skb;
866 
867 submit_entry:
868 	entry->flags = 0;
869 	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
870 	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
871 	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
872 		rt2x00dev->ops->lib->clear_entry(entry);
873 }
874 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
875 
876 /*
877  * Driver initialization handlers.
878  */
879 const struct rt2x00_rate rt2x00_supported_rates[12] = {
880 	{
881 		.flags = DEV_RATE_CCK,
882 		.bitrate = 10,
883 		.ratemask = BIT(0),
884 		.plcp = 0x00,
885 		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
886 	},
887 	{
888 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
889 		.bitrate = 20,
890 		.ratemask = BIT(1),
891 		.plcp = 0x01,
892 		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
893 	},
894 	{
895 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
896 		.bitrate = 55,
897 		.ratemask = BIT(2),
898 		.plcp = 0x02,
899 		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
900 	},
901 	{
902 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
903 		.bitrate = 110,
904 		.ratemask = BIT(3),
905 		.plcp = 0x03,
906 		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
907 	},
908 	{
909 		.flags = DEV_RATE_OFDM,
910 		.bitrate = 60,
911 		.ratemask = BIT(4),
912 		.plcp = 0x0b,
913 		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
914 	},
915 	{
916 		.flags = DEV_RATE_OFDM,
917 		.bitrate = 90,
918 		.ratemask = BIT(5),
919 		.plcp = 0x0f,
920 		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
921 	},
922 	{
923 		.flags = DEV_RATE_OFDM,
924 		.bitrate = 120,
925 		.ratemask = BIT(6),
926 		.plcp = 0x0a,
927 		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
928 	},
929 	{
930 		.flags = DEV_RATE_OFDM,
931 		.bitrate = 180,
932 		.ratemask = BIT(7),
933 		.plcp = 0x0e,
934 		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
935 	},
936 	{
937 		.flags = DEV_RATE_OFDM,
938 		.bitrate = 240,
939 		.ratemask = BIT(8),
940 		.plcp = 0x09,
941 		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
942 	},
943 	{
944 		.flags = DEV_RATE_OFDM,
945 		.bitrate = 360,
946 		.ratemask = BIT(9),
947 		.plcp = 0x0d,
948 		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
949 	},
950 	{
951 		.flags = DEV_RATE_OFDM,
952 		.bitrate = 480,
953 		.ratemask = BIT(10),
954 		.plcp = 0x08,
955 		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
956 	},
957 	{
958 		.flags = DEV_RATE_OFDM,
959 		.bitrate = 540,
960 		.ratemask = BIT(11),
961 		.plcp = 0x0c,
962 		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
963 	},
964 };
965 
966 static void rt2x00lib_channel(struct ieee80211_channel *entry,
967 			      const int channel, const int tx_power,
968 			      const int value)
969 {
970 	/* XXX: this assumption about the band is wrong for 802.11j */
971 	entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
972 	entry->center_freq = ieee80211_channel_to_frequency(channel,
973 							    entry->band);
974 	entry->hw_value = value;
975 	entry->max_power = tx_power;
976 	entry->max_antenna_gain = 0xff;
977 }
978 
979 static void rt2x00lib_rate(struct ieee80211_rate *entry,
980 			   const u16 index, const struct rt2x00_rate *rate)
981 {
982 	entry->flags = 0;
983 	entry->bitrate = rate->bitrate;
984 	entry->hw_value = index;
985 	entry->hw_value_short = index;
986 
987 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
988 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
989 }
990 
991 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr)
992 {
993 	of_get_mac_address(rt2x00dev->dev->of_node, eeprom_mac_addr);
994 
995 	if (!is_valid_ether_addr(eeprom_mac_addr)) {
996 		eth_random_addr(eeprom_mac_addr);
997 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", eeprom_mac_addr);
998 	}
999 }
1000 EXPORT_SYMBOL_GPL(rt2x00lib_set_mac_address);
1001 
1002 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
1003 				    struct hw_mode_spec *spec)
1004 {
1005 	struct ieee80211_hw *hw = rt2x00dev->hw;
1006 	struct ieee80211_channel *channels;
1007 	struct ieee80211_rate *rates;
1008 	unsigned int num_rates;
1009 	unsigned int i;
1010 
1011 	num_rates = 0;
1012 	if (spec->supported_rates & SUPPORT_RATE_CCK)
1013 		num_rates += 4;
1014 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
1015 		num_rates += 8;
1016 
1017 	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
1018 	if (!channels)
1019 		return -ENOMEM;
1020 
1021 	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
1022 	if (!rates)
1023 		goto exit_free_channels;
1024 
1025 	/*
1026 	 * Initialize Rate list.
1027 	 */
1028 	for (i = 0; i < num_rates; i++)
1029 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
1030 
1031 	/*
1032 	 * Initialize Channel list.
1033 	 */
1034 	for (i = 0; i < spec->num_channels; i++) {
1035 		rt2x00lib_channel(&channels[i],
1036 				  spec->channels[i].channel,
1037 				  spec->channels_info[i].max_power, i);
1038 	}
1039 
1040 	/*
1041 	 * Intitialize 802.11b, 802.11g
1042 	 * Rates: CCK, OFDM.
1043 	 * Channels: 2.4 GHz
1044 	 */
1045 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
1046 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
1047 		rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
1048 		rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
1049 		rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
1050 		hw->wiphy->bands[NL80211_BAND_2GHZ] =
1051 		    &rt2x00dev->bands[NL80211_BAND_2GHZ];
1052 		memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
1053 		       &spec->ht, sizeof(spec->ht));
1054 	}
1055 
1056 	/*
1057 	 * Intitialize 802.11a
1058 	 * Rates: OFDM.
1059 	 * Channels: OFDM, UNII, HiperLAN2.
1060 	 */
1061 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
1062 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
1063 		    spec->num_channels - 14;
1064 		rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
1065 		    num_rates - 4;
1066 		rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
1067 		rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1068 		hw->wiphy->bands[NL80211_BAND_5GHZ] =
1069 		    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1070 		memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1071 		       &spec->ht, sizeof(spec->ht));
1072 	}
1073 
1074 	return 0;
1075 
1076  exit_free_channels:
1077 	kfree(channels);
1078 	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1079 	return -ENOMEM;
1080 }
1081 
1082 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1083 {
1084 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1085 		ieee80211_unregister_hw(rt2x00dev->hw);
1086 
1087 	if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1088 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1089 		kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1090 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1091 		rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1092 	}
1093 
1094 	kfree(rt2x00dev->spec.channels_info);
1095 	kfree(rt2x00dev->chan_survey);
1096 }
1097 
1098 static const struct ieee80211_tpt_blink rt2x00_tpt_blink[] = {
1099 	{ .throughput = 0 * 1024, .blink_time = 334 },
1100 	{ .throughput = 1 * 1024, .blink_time = 260 },
1101 	{ .throughput = 2 * 1024, .blink_time = 220 },
1102 	{ .throughput = 5 * 1024, .blink_time = 190 },
1103 	{ .throughput = 10 * 1024, .blink_time = 170 },
1104 	{ .throughput = 25 * 1024, .blink_time = 150 },
1105 	{ .throughput = 54 * 1024, .blink_time = 130 },
1106 	{ .throughput = 120 * 1024, .blink_time = 110 },
1107 	{ .throughput = 265 * 1024, .blink_time = 80 },
1108 	{ .throughput = 586 * 1024, .blink_time = 50 },
1109 };
1110 
1111 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1112 {
1113 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1114 	int status;
1115 
1116 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1117 		return 0;
1118 
1119 	/*
1120 	 * Initialize HW modes.
1121 	 */
1122 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1123 	if (status)
1124 		return status;
1125 
1126 	/*
1127 	 * Initialize HW fields.
1128 	 */
1129 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1130 
1131 	/*
1132 	 * Initialize extra TX headroom required.
1133 	 */
1134 	rt2x00dev->hw->extra_tx_headroom =
1135 		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1136 		      rt2x00dev->extra_tx_headroom);
1137 
1138 	/*
1139 	 * Take TX headroom required for alignment into account.
1140 	 */
1141 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1142 		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1143 	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1144 		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1145 
1146 	/*
1147 	 * Tell mac80211 about the size of our private STA structure.
1148 	 */
1149 	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1150 
1151 	/*
1152 	 * Allocate tx status FIFO for driver use.
1153 	 */
1154 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1155 		/*
1156 		 * Allocate the txstatus fifo. In the worst case the tx
1157 		 * status fifo has to hold the tx status of all entries
1158 		 * in all tx queues. Hence, calculate the kfifo size as
1159 		 * tx_queues * entry_num and round up to the nearest
1160 		 * power of 2.
1161 		 */
1162 		int kfifo_size =
1163 			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1164 					   rt2x00dev->tx->limit *
1165 					   sizeof(u32));
1166 
1167 		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1168 				     GFP_KERNEL);
1169 		if (status)
1170 			return status;
1171 	}
1172 
1173 	/*
1174 	 * Initialize tasklets if used by the driver. Tasklets are
1175 	 * disabled until the interrupts are turned on. The driver
1176 	 * has to handle that.
1177 	 */
1178 #define RT2X00_TASKLET_INIT(taskletname) \
1179 	if (rt2x00dev->ops->lib->taskletname) { \
1180 		tasklet_setup(&rt2x00dev->taskletname, \
1181 			     rt2x00dev->ops->lib->taskletname); \
1182 	}
1183 
1184 	RT2X00_TASKLET_INIT(txstatus_tasklet);
1185 	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1186 	RT2X00_TASKLET_INIT(tbtt_tasklet);
1187 	RT2X00_TASKLET_INIT(rxdone_tasklet);
1188 	RT2X00_TASKLET_INIT(autowake_tasklet);
1189 
1190 #undef RT2X00_TASKLET_INIT
1191 
1192 	ieee80211_create_tpt_led_trigger(rt2x00dev->hw,
1193 					 IEEE80211_TPT_LEDTRIG_FL_RADIO,
1194 					 rt2x00_tpt_blink,
1195 					 ARRAY_SIZE(rt2x00_tpt_blink));
1196 
1197 	/*
1198 	 * Register HW.
1199 	 */
1200 	status = ieee80211_register_hw(rt2x00dev->hw);
1201 	if (status)
1202 		return status;
1203 
1204 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1205 
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Initialization/uninitialization handlers.
1211  */
1212 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1213 {
1214 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1215 		return;
1216 
1217 	/*
1218 	 * Stop rfkill polling.
1219 	 */
1220 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1221 		rt2x00rfkill_unregister(rt2x00dev);
1222 
1223 	/*
1224 	 * Allow the HW to uninitialize.
1225 	 */
1226 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1227 
1228 	/*
1229 	 * Free allocated queue entries.
1230 	 */
1231 	rt2x00queue_uninitialize(rt2x00dev);
1232 }
1233 
1234 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1235 {
1236 	int status;
1237 
1238 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1239 		return 0;
1240 
1241 	/*
1242 	 * Allocate all queue entries.
1243 	 */
1244 	status = rt2x00queue_initialize(rt2x00dev);
1245 	if (status)
1246 		return status;
1247 
1248 	/*
1249 	 * Initialize the device.
1250 	 */
1251 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1252 	if (status) {
1253 		rt2x00queue_uninitialize(rt2x00dev);
1254 		return status;
1255 	}
1256 
1257 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1258 
1259 	/*
1260 	 * Start rfkill polling.
1261 	 */
1262 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1263 		rt2x00rfkill_register(rt2x00dev);
1264 
1265 	return 0;
1266 }
1267 
1268 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1269 {
1270 	int retval = 0;
1271 
1272 	/*
1273 	 * If this is the first interface which is added,
1274 	 * we should load the firmware now.
1275 	 */
1276 	retval = rt2x00lib_load_firmware(rt2x00dev);
1277 	if (retval)
1278 		goto out;
1279 
1280 	/*
1281 	 * Initialize the device.
1282 	 */
1283 	retval = rt2x00lib_initialize(rt2x00dev);
1284 	if (retval)
1285 		goto out;
1286 
1287 	rt2x00dev->intf_ap_count = 0;
1288 	rt2x00dev->intf_sta_count = 0;
1289 	rt2x00dev->intf_associated = 0;
1290 	rt2x00dev->intf_beaconing = 0;
1291 
1292 	/* Enable the radio */
1293 	retval = rt2x00lib_enable_radio(rt2x00dev);
1294 	if (retval)
1295 		goto out;
1296 
1297 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1298 
1299 out:
1300 	return retval;
1301 }
1302 
1303 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1304 {
1305 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1306 		return;
1307 
1308 	/*
1309 	 * Perhaps we can add something smarter here,
1310 	 * but for now just disabling the radio should do.
1311 	 */
1312 	rt2x00lib_disable_radio(rt2x00dev);
1313 
1314 	rt2x00dev->intf_ap_count = 0;
1315 	rt2x00dev->intf_sta_count = 0;
1316 	rt2x00dev->intf_associated = 0;
1317 	rt2x00dev->intf_beaconing = 0;
1318 }
1319 
1320 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1321 {
1322 	struct ieee80211_iface_limit *if_limit;
1323 	struct ieee80211_iface_combination *if_combination;
1324 
1325 	if (rt2x00dev->ops->max_ap_intf < 2)
1326 		return;
1327 
1328 	/*
1329 	 * Build up AP interface limits structure.
1330 	 */
1331 	if_limit = &rt2x00dev->if_limits_ap;
1332 	if_limit->max = rt2x00dev->ops->max_ap_intf;
1333 	if_limit->types = BIT(NL80211_IFTYPE_AP);
1334 #ifdef CONFIG_MAC80211_MESH
1335 	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1336 #endif
1337 
1338 	/*
1339 	 * Build up AP interface combinations structure.
1340 	 */
1341 	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1342 	if_combination->limits = if_limit;
1343 	if_combination->n_limits = 1;
1344 	if_combination->max_interfaces = if_limit->max;
1345 	if_combination->num_different_channels = 1;
1346 
1347 	/*
1348 	 * Finally, specify the possible combinations to mac80211.
1349 	 */
1350 	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1351 	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1352 }
1353 
1354 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1355 {
1356 	if (WARN_ON(!rt2x00dev->tx))
1357 		return 0;
1358 
1359 	if (rt2x00_is_usb(rt2x00dev))
1360 		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1361 
1362 	return rt2x00dev->tx[0].winfo_size;
1363 }
1364 
1365 /*
1366  * driver allocation handlers.
1367  */
1368 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1369 {
1370 	int retval = -ENOMEM;
1371 
1372 	/*
1373 	 * Set possible interface combinations.
1374 	 */
1375 	rt2x00lib_set_if_combinations(rt2x00dev);
1376 
1377 	/*
1378 	 * Allocate the driver data memory, if necessary.
1379 	 */
1380 	if (rt2x00dev->ops->drv_data_size > 0) {
1381 		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1382 			                      GFP_KERNEL);
1383 		if (!rt2x00dev->drv_data) {
1384 			retval = -ENOMEM;
1385 			goto exit;
1386 		}
1387 	}
1388 
1389 	spin_lock_init(&rt2x00dev->irqmask_lock);
1390 	mutex_init(&rt2x00dev->csr_mutex);
1391 	mutex_init(&rt2x00dev->conf_mutex);
1392 	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1393 	spin_lock_init(&rt2x00dev->bar_list_lock);
1394 	hrtimer_init(&rt2x00dev->txstatus_timer, CLOCK_MONOTONIC,
1395 		     HRTIMER_MODE_REL);
1396 
1397 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1398 
1399 	/*
1400 	 * Make room for rt2x00_intf inside the per-interface
1401 	 * structure ieee80211_vif.
1402 	 */
1403 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1404 
1405 	/*
1406 	 * rt2x00 devices can only use the last n bits of the MAC address
1407 	 * for virtual interfaces.
1408 	 */
1409 	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1410 		(rt2x00dev->ops->max_ap_intf - 1);
1411 
1412 	/*
1413 	 * Initialize work.
1414 	 */
1415 	rt2x00dev->workqueue =
1416 	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1417 	if (!rt2x00dev->workqueue) {
1418 		retval = -ENOMEM;
1419 		goto exit;
1420 	}
1421 
1422 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1423 	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1424 	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1425 
1426 	/*
1427 	 * Let the driver probe the device to detect the capabilities.
1428 	 */
1429 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1430 	if (retval) {
1431 		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1432 		goto exit;
1433 	}
1434 
1435 	/*
1436 	 * Allocate queue array.
1437 	 */
1438 	retval = rt2x00queue_allocate(rt2x00dev);
1439 	if (retval)
1440 		goto exit;
1441 
1442 	/* Cache TX headroom value */
1443 	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1444 
1445 	/*
1446 	 * Determine which operating modes are supported, all modes
1447 	 * which require beaconing, depend on the availability of
1448 	 * beacon entries.
1449 	 */
1450 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1451 	if (rt2x00dev->bcn->limit > 0)
1452 		rt2x00dev->hw->wiphy->interface_modes |=
1453 		    BIT(NL80211_IFTYPE_ADHOC) |
1454 #ifdef CONFIG_MAC80211_MESH
1455 		    BIT(NL80211_IFTYPE_MESH_POINT) |
1456 #endif
1457 		    BIT(NL80211_IFTYPE_AP);
1458 
1459 	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1460 
1461 	wiphy_ext_feature_set(rt2x00dev->hw->wiphy,
1462 			      NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1463 
1464 	/*
1465 	 * Initialize ieee80211 structure.
1466 	 */
1467 	retval = rt2x00lib_probe_hw(rt2x00dev);
1468 	if (retval) {
1469 		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1470 		goto exit;
1471 	}
1472 
1473 	/*
1474 	 * Register extra components.
1475 	 */
1476 	rt2x00link_register(rt2x00dev);
1477 	rt2x00leds_register(rt2x00dev);
1478 	rt2x00debug_register(rt2x00dev);
1479 
1480 	/*
1481 	 * Start rfkill polling.
1482 	 */
1483 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1484 		rt2x00rfkill_register(rt2x00dev);
1485 
1486 	return 0;
1487 
1488 exit:
1489 	rt2x00lib_remove_dev(rt2x00dev);
1490 
1491 	return retval;
1492 }
1493 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1494 
1495 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1496 {
1497 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1498 
1499 	/*
1500 	 * Stop rfkill polling.
1501 	 */
1502 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1503 		rt2x00rfkill_unregister(rt2x00dev);
1504 
1505 	/*
1506 	 * Disable radio.
1507 	 */
1508 	rt2x00lib_disable_radio(rt2x00dev);
1509 
1510 	/*
1511 	 * Stop all work.
1512 	 */
1513 	cancel_work_sync(&rt2x00dev->intf_work);
1514 	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1515 	cancel_work_sync(&rt2x00dev->sleep_work);
1516 
1517 	hrtimer_cancel(&rt2x00dev->txstatus_timer);
1518 
1519 	/*
1520 	 * Kill the tx status tasklet.
1521 	 */
1522 	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1523 	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1524 	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1525 	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1526 	tasklet_kill(&rt2x00dev->autowake_tasklet);
1527 
1528 	/*
1529 	 * Uninitialize device.
1530 	 */
1531 	rt2x00lib_uninitialize(rt2x00dev);
1532 
1533 	if (rt2x00dev->workqueue)
1534 		destroy_workqueue(rt2x00dev->workqueue);
1535 
1536 	/*
1537 	 * Free the tx status fifo.
1538 	 */
1539 	kfifo_free(&rt2x00dev->txstatus_fifo);
1540 
1541 	/*
1542 	 * Free extra components
1543 	 */
1544 	rt2x00debug_deregister(rt2x00dev);
1545 	rt2x00leds_unregister(rt2x00dev);
1546 
1547 	/*
1548 	 * Free ieee80211_hw memory.
1549 	 */
1550 	rt2x00lib_remove_hw(rt2x00dev);
1551 
1552 	/*
1553 	 * Free firmware image.
1554 	 */
1555 	rt2x00lib_free_firmware(rt2x00dev);
1556 
1557 	/*
1558 	 * Free queue structures.
1559 	 */
1560 	rt2x00queue_free(rt2x00dev);
1561 
1562 	/*
1563 	 * Free the driver data.
1564 	 */
1565 	kfree(rt2x00dev->drv_data);
1566 }
1567 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1568 
1569 /*
1570  * Device state handlers
1571  */
1572 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev)
1573 {
1574 	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1575 
1576 	/*
1577 	 * Prevent mac80211 from accessing driver while suspended.
1578 	 */
1579 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1580 		return 0;
1581 
1582 	/*
1583 	 * Cleanup as much as possible.
1584 	 */
1585 	rt2x00lib_uninitialize(rt2x00dev);
1586 
1587 	/*
1588 	 * Suspend/disable extra components.
1589 	 */
1590 	rt2x00leds_suspend(rt2x00dev);
1591 	rt2x00debug_deregister(rt2x00dev);
1592 
1593 	/*
1594 	 * Set device mode to sleep for power management,
1595 	 * on some hardware this call seems to consistently fail.
1596 	 * From the specifications it is hard to tell why it fails,
1597 	 * and if this is a "bad thing".
1598 	 * Overall it is safe to just ignore the failure and
1599 	 * continue suspending. The only downside is that the
1600 	 * device will not be in optimal power save mode, but with
1601 	 * the radio and the other components already disabled the
1602 	 * device is as good as disabled.
1603 	 */
1604 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1605 		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1606 
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1610 
1611 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1612 {
1613 	rt2x00_dbg(rt2x00dev, "Waking up\n");
1614 
1615 	/*
1616 	 * Restore/enable extra components.
1617 	 */
1618 	rt2x00debug_register(rt2x00dev);
1619 	rt2x00leds_resume(rt2x00dev);
1620 
1621 	/*
1622 	 * We are ready again to receive requests from mac80211.
1623 	 */
1624 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1625 
1626 	return 0;
1627 }
1628 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1629 
1630 /*
1631  * rt2x00lib module information.
1632  */
1633 MODULE_AUTHOR(DRV_PROJECT);
1634 MODULE_VERSION(DRV_VERSION);
1635 MODULE_DESCRIPTION("rt2x00 library");
1636 MODULE_LICENSE("GPL");
1637