1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 /* 21 Module: rt2x00lib 22 Abstract: rt2x00 generic device routines. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/log2.h> 29 30 #include "rt2x00.h" 31 #include "rt2x00lib.h" 32 33 /* 34 * Utility functions. 35 */ 36 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 37 struct ieee80211_vif *vif) 38 { 39 /* 40 * When in STA mode, bssidx is always 0 otherwise local_address[5] 41 * contains the bss number, see BSS_ID_MASK comments for details. 42 */ 43 if (rt2x00dev->intf_sta_count) 44 return 0; 45 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 46 } 47 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 48 49 /* 50 * Radio control handlers. 51 */ 52 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 53 { 54 int status; 55 56 /* 57 * Don't enable the radio twice. 58 * And check if the hardware button has been disabled. 59 */ 60 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 61 return 0; 62 63 /* 64 * Initialize all data queues. 65 */ 66 rt2x00queue_init_queues(rt2x00dev); 67 68 /* 69 * Enable radio. 70 */ 71 status = 72 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 73 if (status) 74 return status; 75 76 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 77 78 rt2x00leds_led_radio(rt2x00dev, true); 79 rt2x00led_led_activity(rt2x00dev, true); 80 81 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 82 83 /* 84 * Enable queues. 85 */ 86 rt2x00queue_start_queues(rt2x00dev); 87 rt2x00link_start_tuner(rt2x00dev); 88 rt2x00link_start_agc(rt2x00dev); 89 if (rt2x00_has_cap_vco_recalibration(rt2x00dev)) 90 rt2x00link_start_vcocal(rt2x00dev); 91 92 /* 93 * Start watchdog monitoring. 94 */ 95 rt2x00link_start_watchdog(rt2x00dev); 96 97 return 0; 98 } 99 100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 101 { 102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 103 return; 104 105 /* 106 * Stop watchdog monitoring. 107 */ 108 rt2x00link_stop_watchdog(rt2x00dev); 109 110 /* 111 * Stop all queues 112 */ 113 rt2x00link_stop_agc(rt2x00dev); 114 if (rt2x00_has_cap_vco_recalibration(rt2x00dev)) 115 rt2x00link_stop_vcocal(rt2x00dev); 116 rt2x00link_stop_tuner(rt2x00dev); 117 rt2x00queue_stop_queues(rt2x00dev); 118 rt2x00queue_flush_queues(rt2x00dev, true); 119 120 /* 121 * Disable radio. 122 */ 123 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 124 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 125 rt2x00led_led_activity(rt2x00dev, false); 126 rt2x00leds_led_radio(rt2x00dev, false); 127 } 128 129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 130 struct ieee80211_vif *vif) 131 { 132 struct rt2x00_dev *rt2x00dev = data; 133 struct rt2x00_intf *intf = vif_to_intf(vif); 134 135 /* 136 * It is possible the radio was disabled while the work had been 137 * scheduled. If that happens we should return here immediately, 138 * note that in the spinlock protected area above the delayed_flags 139 * have been cleared correctly. 140 */ 141 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 142 return; 143 144 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) { 145 mutex_lock(&intf->beacon_skb_mutex); 146 rt2x00queue_update_beacon(rt2x00dev, vif); 147 mutex_unlock(&intf->beacon_skb_mutex); 148 } 149 } 150 151 static void rt2x00lib_intf_scheduled(struct work_struct *work) 152 { 153 struct rt2x00_dev *rt2x00dev = 154 container_of(work, struct rt2x00_dev, intf_work); 155 156 /* 157 * Iterate over each interface and perform the 158 * requested configurations. 159 */ 160 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 161 IEEE80211_IFACE_ITER_RESUME_ALL, 162 rt2x00lib_intf_scheduled_iter, 163 rt2x00dev); 164 } 165 166 static void rt2x00lib_autowakeup(struct work_struct *work) 167 { 168 struct rt2x00_dev *rt2x00dev = 169 container_of(work, struct rt2x00_dev, autowakeup_work.work); 170 171 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 172 return; 173 174 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 175 rt2x00_err(rt2x00dev, "Device failed to wakeup\n"); 176 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 177 } 178 179 /* 180 * Interrupt context handlers. 181 */ 182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 183 struct ieee80211_vif *vif) 184 { 185 struct ieee80211_tx_control control = {}; 186 struct rt2x00_dev *rt2x00dev = data; 187 struct sk_buff *skb; 188 189 /* 190 * Only AP mode interfaces do broad- and multicast buffering 191 */ 192 if (vif->type != NL80211_IFTYPE_AP) 193 return; 194 195 /* 196 * Send out buffered broad- and multicast frames 197 */ 198 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 199 while (skb) { 200 rt2x00mac_tx(rt2x00dev->hw, &control, skb); 201 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 202 } 203 } 204 205 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 206 struct ieee80211_vif *vif) 207 { 208 struct rt2x00_dev *rt2x00dev = data; 209 210 if (vif->type != NL80211_IFTYPE_AP && 211 vif->type != NL80211_IFTYPE_ADHOC && 212 vif->type != NL80211_IFTYPE_MESH_POINT && 213 vif->type != NL80211_IFTYPE_WDS) 214 return; 215 216 /* 217 * Update the beacon without locking. This is safe on PCI devices 218 * as they only update the beacon periodically here. This should 219 * never be called for USB devices. 220 */ 221 WARN_ON(rt2x00_is_usb(rt2x00dev)); 222 rt2x00queue_update_beacon(rt2x00dev, vif); 223 } 224 225 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 226 { 227 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 228 return; 229 230 /* send buffered bc/mc frames out for every bssid */ 231 ieee80211_iterate_active_interfaces_atomic( 232 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 233 rt2x00lib_bc_buffer_iter, rt2x00dev); 234 /* 235 * Devices with pre tbtt interrupt don't need to update the beacon 236 * here as they will fetch the next beacon directly prior to 237 * transmission. 238 */ 239 if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev)) 240 return; 241 242 /* fetch next beacon */ 243 ieee80211_iterate_active_interfaces_atomic( 244 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 245 rt2x00lib_beaconupdate_iter, rt2x00dev); 246 } 247 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 248 249 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 250 { 251 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 252 return; 253 254 /* fetch next beacon */ 255 ieee80211_iterate_active_interfaces_atomic( 256 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 257 rt2x00lib_beaconupdate_iter, rt2x00dev); 258 } 259 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 260 261 void rt2x00lib_dmastart(struct queue_entry *entry) 262 { 263 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 264 rt2x00queue_index_inc(entry, Q_INDEX); 265 } 266 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 267 268 void rt2x00lib_dmadone(struct queue_entry *entry) 269 { 270 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 271 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 272 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 273 } 274 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 275 276 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 277 { 278 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 279 struct ieee80211_bar *bar = (void *) entry->skb->data; 280 struct rt2x00_bar_list_entry *bar_entry; 281 int ret; 282 283 if (likely(!ieee80211_is_back_req(bar->frame_control))) 284 return 0; 285 286 /* 287 * Unlike all other frames, the status report for BARs does 288 * not directly come from the hardware as it is incapable of 289 * matching a BA to a previously send BAR. The hardware will 290 * report all BARs as if they weren't acked at all. 291 * 292 * Instead the RX-path will scan for incoming BAs and set the 293 * block_acked flag if it sees one that was likely caused by 294 * a BAR from us. 295 * 296 * Remove remaining BARs here and return their status for 297 * TX done processing. 298 */ 299 ret = 0; 300 rcu_read_lock(); 301 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 302 if (bar_entry->entry != entry) 303 continue; 304 305 spin_lock_bh(&rt2x00dev->bar_list_lock); 306 /* Return whether this BAR was blockacked or not */ 307 ret = bar_entry->block_acked; 308 /* Remove the BAR from our checklist */ 309 list_del_rcu(&bar_entry->list); 310 spin_unlock_bh(&rt2x00dev->bar_list_lock); 311 kfree_rcu(bar_entry, head); 312 313 break; 314 } 315 rcu_read_unlock(); 316 317 return ret; 318 } 319 320 void rt2x00lib_txdone(struct queue_entry *entry, 321 struct txdone_entry_desc *txdesc) 322 { 323 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 324 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 325 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 326 unsigned int header_length, i; 327 u8 rate_idx, rate_flags, retry_rates; 328 u8 skbdesc_flags = skbdesc->flags; 329 bool success; 330 331 /* 332 * Unmap the skb. 333 */ 334 rt2x00queue_unmap_skb(entry); 335 336 /* 337 * Remove the extra tx headroom from the skb. 338 */ 339 skb_pull(entry->skb, rt2x00dev->extra_tx_headroom); 340 341 /* 342 * Signal that the TX descriptor is no longer in the skb. 343 */ 344 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 345 346 /* 347 * Determine the length of 802.11 header. 348 */ 349 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 350 351 /* 352 * Remove L2 padding which was added during 353 */ 354 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 355 rt2x00queue_remove_l2pad(entry->skb, header_length); 356 357 /* 358 * If the IV/EIV data was stripped from the frame before it was 359 * passed to the hardware, we should now reinsert it again because 360 * mac80211 will expect the same data to be present it the 361 * frame as it was passed to us. 362 */ 363 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) 364 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 365 366 /* 367 * Send frame to debugfs immediately, after this call is completed 368 * we are going to overwrite the skb->cb array. 369 */ 370 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 371 372 /* 373 * Determine if the frame has been successfully transmitted and 374 * remove BARs from our check list while checking for their 375 * TX status. 376 */ 377 success = 378 rt2x00lib_txdone_bar_status(entry) || 379 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 380 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 381 382 /* 383 * Update TX statistics. 384 */ 385 rt2x00dev->link.qual.tx_success += success; 386 rt2x00dev->link.qual.tx_failed += !success; 387 388 rate_idx = skbdesc->tx_rate_idx; 389 rate_flags = skbdesc->tx_rate_flags; 390 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 391 (txdesc->retry + 1) : 1; 392 393 /* 394 * Initialize TX status 395 */ 396 memset(&tx_info->status, 0, sizeof(tx_info->status)); 397 tx_info->status.ack_signal = 0; 398 399 /* 400 * Frame was send with retries, hardware tried 401 * different rates to send out the frame, at each 402 * retry it lowered the rate 1 step except when the 403 * lowest rate was used. 404 */ 405 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 406 tx_info->status.rates[i].idx = rate_idx - i; 407 tx_info->status.rates[i].flags = rate_flags; 408 409 if (rate_idx - i == 0) { 410 /* 411 * The lowest rate (index 0) was used until the 412 * number of max retries was reached. 413 */ 414 tx_info->status.rates[i].count = retry_rates - i; 415 i++; 416 break; 417 } 418 tx_info->status.rates[i].count = 1; 419 } 420 if (i < (IEEE80211_TX_MAX_RATES - 1)) 421 tx_info->status.rates[i].idx = -1; /* terminate */ 422 423 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 424 if (success) 425 tx_info->flags |= IEEE80211_TX_STAT_ACK; 426 else 427 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 428 } 429 430 /* 431 * Every single frame has it's own tx status, hence report 432 * every frame as ampdu of size 1. 433 * 434 * TODO: if we can find out how many frames were aggregated 435 * by the hw we could provide the real ampdu_len to mac80211 436 * which would allow the rc algorithm to better decide on 437 * which rates are suitable. 438 */ 439 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 440 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 441 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 442 tx_info->status.ampdu_len = 1; 443 tx_info->status.ampdu_ack_len = success ? 1 : 0; 444 445 if (!success) 446 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 447 } 448 449 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 450 if (success) 451 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 452 else 453 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 454 } 455 456 /* 457 * Only send the status report to mac80211 when it's a frame 458 * that originated in mac80211. If this was a extra frame coming 459 * through a mac80211 library call (RTS/CTS) then we should not 460 * send the status report back. 461 */ 462 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 463 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT)) 464 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 465 else 466 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 467 } else 468 dev_kfree_skb_any(entry->skb); 469 470 /* 471 * Make this entry available for reuse. 472 */ 473 entry->skb = NULL; 474 entry->flags = 0; 475 476 rt2x00dev->ops->lib->clear_entry(entry); 477 478 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 479 480 /* 481 * If the data queue was below the threshold before the txdone 482 * handler we must make sure the packet queue in the mac80211 stack 483 * is reenabled when the txdone handler has finished. This has to be 484 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 485 * before it was stopped. 486 */ 487 spin_lock_bh(&entry->queue->tx_lock); 488 if (!rt2x00queue_threshold(entry->queue)) 489 rt2x00queue_unpause_queue(entry->queue); 490 spin_unlock_bh(&entry->queue->tx_lock); 491 } 492 EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 493 494 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 495 { 496 struct txdone_entry_desc txdesc; 497 498 txdesc.flags = 0; 499 __set_bit(status, &txdesc.flags); 500 txdesc.retry = 0; 501 502 rt2x00lib_txdone(entry, &txdesc); 503 } 504 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 505 506 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 507 { 508 struct ieee80211_mgmt *mgmt = (void *)data; 509 u8 *pos, *end; 510 511 pos = (u8 *)mgmt->u.beacon.variable; 512 end = data + len; 513 while (pos < end) { 514 if (pos + 2 + pos[1] > end) 515 return NULL; 516 517 if (pos[0] == ie) 518 return pos; 519 520 pos += 2 + pos[1]; 521 } 522 523 return NULL; 524 } 525 526 static void rt2x00lib_sleep(struct work_struct *work) 527 { 528 struct rt2x00_dev *rt2x00dev = 529 container_of(work, struct rt2x00_dev, sleep_work); 530 531 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 532 return; 533 534 /* 535 * Check again is powersaving is enabled, to prevent races from delayed 536 * work execution. 537 */ 538 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 539 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 540 IEEE80211_CONF_CHANGE_PS); 541 } 542 543 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 544 struct sk_buff *skb, 545 struct rxdone_entry_desc *rxdesc) 546 { 547 struct rt2x00_bar_list_entry *entry; 548 struct ieee80211_bar *ba = (void *)skb->data; 549 550 if (likely(!ieee80211_is_back(ba->frame_control))) 551 return; 552 553 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 554 return; 555 556 rcu_read_lock(); 557 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 558 559 if (ba->start_seq_num != entry->start_seq_num) 560 continue; 561 562 #define TID_CHECK(a, b) ( \ 563 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 564 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 565 566 if (!TID_CHECK(ba->control, entry->control)) 567 continue; 568 569 #undef TID_CHECK 570 571 if (!ether_addr_equal_64bits(ba->ra, entry->ta)) 572 continue; 573 574 if (!ether_addr_equal_64bits(ba->ta, entry->ra)) 575 continue; 576 577 /* Mark BAR since we received the according BA */ 578 spin_lock_bh(&rt2x00dev->bar_list_lock); 579 entry->block_acked = 1; 580 spin_unlock_bh(&rt2x00dev->bar_list_lock); 581 break; 582 } 583 rcu_read_unlock(); 584 585 } 586 587 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 588 struct sk_buff *skb, 589 struct rxdone_entry_desc *rxdesc) 590 { 591 struct ieee80211_hdr *hdr = (void *) skb->data; 592 struct ieee80211_tim_ie *tim_ie; 593 u8 *tim; 594 u8 tim_len; 595 bool cam; 596 597 /* If this is not a beacon, or if mac80211 has no powersaving 598 * configured, or if the device is already in powersaving mode 599 * we can exit now. */ 600 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 601 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 602 return; 603 604 /* min. beacon length + FCS_LEN */ 605 if (skb->len <= 40 + FCS_LEN) 606 return; 607 608 /* and only beacons from the associated BSSID, please */ 609 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 610 !rt2x00dev->aid) 611 return; 612 613 rt2x00dev->last_beacon = jiffies; 614 615 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 616 if (!tim) 617 return; 618 619 if (tim[1] < sizeof(*tim_ie)) 620 return; 621 622 tim_len = tim[1]; 623 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 624 625 /* Check whenever the PHY can be turned off again. */ 626 627 /* 1. What about buffered unicast traffic for our AID? */ 628 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 629 630 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 631 cam |= (tim_ie->bitmap_ctrl & 0x01); 632 633 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 634 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 635 } 636 637 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 638 struct rxdone_entry_desc *rxdesc) 639 { 640 struct ieee80211_supported_band *sband; 641 const struct rt2x00_rate *rate; 642 unsigned int i; 643 int signal = rxdesc->signal; 644 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 645 646 switch (rxdesc->rate_mode) { 647 case RATE_MODE_CCK: 648 case RATE_MODE_OFDM: 649 /* 650 * For non-HT rates the MCS value needs to contain the 651 * actually used rate modulation (CCK or OFDM). 652 */ 653 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 654 signal = RATE_MCS(rxdesc->rate_mode, signal); 655 656 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 657 for (i = 0; i < sband->n_bitrates; i++) { 658 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 659 if (((type == RXDONE_SIGNAL_PLCP) && 660 (rate->plcp == signal)) || 661 ((type == RXDONE_SIGNAL_BITRATE) && 662 (rate->bitrate == signal)) || 663 ((type == RXDONE_SIGNAL_MCS) && 664 (rate->mcs == signal))) { 665 return i; 666 } 667 } 668 break; 669 case RATE_MODE_HT_MIX: 670 case RATE_MODE_HT_GREENFIELD: 671 if (signal >= 0 && signal <= 76) 672 return signal; 673 break; 674 default: 675 break; 676 } 677 678 rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n", 679 rxdesc->rate_mode, signal, type); 680 return 0; 681 } 682 683 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 684 { 685 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 686 struct rxdone_entry_desc rxdesc; 687 struct sk_buff *skb; 688 struct ieee80211_rx_status *rx_status; 689 unsigned int header_length; 690 int rate_idx; 691 692 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 693 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 694 goto submit_entry; 695 696 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 697 goto submit_entry; 698 699 /* 700 * Allocate a new sk_buffer. If no new buffer available, drop the 701 * received frame and reuse the existing buffer. 702 */ 703 skb = rt2x00queue_alloc_rxskb(entry, gfp); 704 if (!skb) 705 goto submit_entry; 706 707 /* 708 * Unmap the skb. 709 */ 710 rt2x00queue_unmap_skb(entry); 711 712 /* 713 * Extract the RXD details. 714 */ 715 memset(&rxdesc, 0, sizeof(rxdesc)); 716 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 717 718 /* 719 * Check for valid size in case we get corrupted descriptor from 720 * hardware. 721 */ 722 if (unlikely(rxdesc.size == 0 || 723 rxdesc.size > entry->queue->data_size)) { 724 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n", 725 rxdesc.size, entry->queue->data_size); 726 dev_kfree_skb(entry->skb); 727 goto renew_skb; 728 } 729 730 /* 731 * The data behind the ieee80211 header must be 732 * aligned on a 4 byte boundary. 733 */ 734 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 735 736 /* 737 * Hardware might have stripped the IV/EIV/ICV data, 738 * in that case it is possible that the data was 739 * provided separately (through hardware descriptor) 740 * in which case we should reinsert the data into the frame. 741 */ 742 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 743 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 744 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 745 &rxdesc); 746 else if (header_length && 747 (rxdesc.size > header_length) && 748 (rxdesc.dev_flags & RXDONE_L2PAD)) 749 rt2x00queue_remove_l2pad(entry->skb, header_length); 750 751 /* Trim buffer to correct size */ 752 skb_trim(entry->skb, rxdesc.size); 753 754 /* 755 * Translate the signal to the correct bitrate index. 756 */ 757 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 758 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 759 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 760 rxdesc.flags |= RX_FLAG_HT; 761 762 /* 763 * Check if this is a beacon, and more frames have been 764 * buffered while we were in powersaving mode. 765 */ 766 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 767 768 /* 769 * Check for incoming BlockAcks to match to the BlockAckReqs 770 * we've send out. 771 */ 772 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 773 774 /* 775 * Update extra components 776 */ 777 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 778 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 779 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 780 781 /* 782 * Initialize RX status information, and send frame 783 * to mac80211. 784 */ 785 rx_status = IEEE80211_SKB_RXCB(entry->skb); 786 787 /* Ensure that all fields of rx_status are initialized 788 * properly. The skb->cb array was used for driver 789 * specific informations, so rx_status might contain 790 * garbage. 791 */ 792 memset(rx_status, 0, sizeof(*rx_status)); 793 794 rx_status->mactime = rxdesc.timestamp; 795 rx_status->band = rt2x00dev->curr_band; 796 rx_status->freq = rt2x00dev->curr_freq; 797 rx_status->rate_idx = rate_idx; 798 rx_status->signal = rxdesc.rssi; 799 rx_status->flag = rxdesc.flags; 800 rx_status->antenna = rt2x00dev->link.ant.active.rx; 801 802 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 803 804 renew_skb: 805 /* 806 * Replace the skb with the freshly allocated one. 807 */ 808 entry->skb = skb; 809 810 submit_entry: 811 entry->flags = 0; 812 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 813 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 814 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 815 rt2x00dev->ops->lib->clear_entry(entry); 816 } 817 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 818 819 /* 820 * Driver initialization handlers. 821 */ 822 const struct rt2x00_rate rt2x00_supported_rates[12] = { 823 { 824 .flags = DEV_RATE_CCK, 825 .bitrate = 10, 826 .ratemask = BIT(0), 827 .plcp = 0x00, 828 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 829 }, 830 { 831 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 832 .bitrate = 20, 833 .ratemask = BIT(1), 834 .plcp = 0x01, 835 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 836 }, 837 { 838 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 839 .bitrate = 55, 840 .ratemask = BIT(2), 841 .plcp = 0x02, 842 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 843 }, 844 { 845 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 846 .bitrate = 110, 847 .ratemask = BIT(3), 848 .plcp = 0x03, 849 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 850 }, 851 { 852 .flags = DEV_RATE_OFDM, 853 .bitrate = 60, 854 .ratemask = BIT(4), 855 .plcp = 0x0b, 856 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 857 }, 858 { 859 .flags = DEV_RATE_OFDM, 860 .bitrate = 90, 861 .ratemask = BIT(5), 862 .plcp = 0x0f, 863 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 864 }, 865 { 866 .flags = DEV_RATE_OFDM, 867 .bitrate = 120, 868 .ratemask = BIT(6), 869 .plcp = 0x0a, 870 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 871 }, 872 { 873 .flags = DEV_RATE_OFDM, 874 .bitrate = 180, 875 .ratemask = BIT(7), 876 .plcp = 0x0e, 877 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 878 }, 879 { 880 .flags = DEV_RATE_OFDM, 881 .bitrate = 240, 882 .ratemask = BIT(8), 883 .plcp = 0x09, 884 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 885 }, 886 { 887 .flags = DEV_RATE_OFDM, 888 .bitrate = 360, 889 .ratemask = BIT(9), 890 .plcp = 0x0d, 891 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 892 }, 893 { 894 .flags = DEV_RATE_OFDM, 895 .bitrate = 480, 896 .ratemask = BIT(10), 897 .plcp = 0x08, 898 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 899 }, 900 { 901 .flags = DEV_RATE_OFDM, 902 .bitrate = 540, 903 .ratemask = BIT(11), 904 .plcp = 0x0c, 905 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 906 }, 907 }; 908 909 static void rt2x00lib_channel(struct ieee80211_channel *entry, 910 const int channel, const int tx_power, 911 const int value) 912 { 913 /* XXX: this assumption about the band is wrong for 802.11j */ 914 entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; 915 entry->center_freq = ieee80211_channel_to_frequency(channel, 916 entry->band); 917 entry->hw_value = value; 918 entry->max_power = tx_power; 919 entry->max_antenna_gain = 0xff; 920 } 921 922 static void rt2x00lib_rate(struct ieee80211_rate *entry, 923 const u16 index, const struct rt2x00_rate *rate) 924 { 925 entry->flags = 0; 926 entry->bitrate = rate->bitrate; 927 entry->hw_value = index; 928 entry->hw_value_short = index; 929 930 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 931 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 932 } 933 934 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 935 struct hw_mode_spec *spec) 936 { 937 struct ieee80211_hw *hw = rt2x00dev->hw; 938 struct ieee80211_channel *channels; 939 struct ieee80211_rate *rates; 940 unsigned int num_rates; 941 unsigned int i; 942 943 num_rates = 0; 944 if (spec->supported_rates & SUPPORT_RATE_CCK) 945 num_rates += 4; 946 if (spec->supported_rates & SUPPORT_RATE_OFDM) 947 num_rates += 8; 948 949 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 950 if (!channels) 951 return -ENOMEM; 952 953 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 954 if (!rates) 955 goto exit_free_channels; 956 957 /* 958 * Initialize Rate list. 959 */ 960 for (i = 0; i < num_rates; i++) 961 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 962 963 /* 964 * Initialize Channel list. 965 */ 966 for (i = 0; i < spec->num_channels; i++) { 967 rt2x00lib_channel(&channels[i], 968 spec->channels[i].channel, 969 spec->channels_info[i].max_power, i); 970 } 971 972 /* 973 * Intitialize 802.11b, 802.11g 974 * Rates: CCK, OFDM. 975 * Channels: 2.4 GHz 976 */ 977 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 978 rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14; 979 rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates; 980 rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels; 981 rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates; 982 hw->wiphy->bands[NL80211_BAND_2GHZ] = 983 &rt2x00dev->bands[NL80211_BAND_2GHZ]; 984 memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap, 985 &spec->ht, sizeof(spec->ht)); 986 } 987 988 /* 989 * Intitialize 802.11a 990 * Rates: OFDM. 991 * Channels: OFDM, UNII, HiperLAN2. 992 */ 993 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 994 rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels = 995 spec->num_channels - 14; 996 rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates = 997 num_rates - 4; 998 rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14]; 999 rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4]; 1000 hw->wiphy->bands[NL80211_BAND_5GHZ] = 1001 &rt2x00dev->bands[NL80211_BAND_5GHZ]; 1002 memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap, 1003 &spec->ht, sizeof(spec->ht)); 1004 } 1005 1006 return 0; 1007 1008 exit_free_channels: 1009 kfree(channels); 1010 rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n"); 1011 return -ENOMEM; 1012 } 1013 1014 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1015 { 1016 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1017 ieee80211_unregister_hw(rt2x00dev->hw); 1018 1019 if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) { 1020 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels); 1021 kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates); 1022 rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL; 1023 rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL; 1024 } 1025 1026 kfree(rt2x00dev->spec.channels_info); 1027 } 1028 1029 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1030 { 1031 struct hw_mode_spec *spec = &rt2x00dev->spec; 1032 int status; 1033 1034 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1035 return 0; 1036 1037 /* 1038 * Initialize HW modes. 1039 */ 1040 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1041 if (status) 1042 return status; 1043 1044 /* 1045 * Initialize HW fields. 1046 */ 1047 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1048 1049 /* 1050 * Initialize extra TX headroom required. 1051 */ 1052 rt2x00dev->hw->extra_tx_headroom = 1053 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1054 rt2x00dev->extra_tx_headroom); 1055 1056 /* 1057 * Take TX headroom required for alignment into account. 1058 */ 1059 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD)) 1060 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1061 else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) 1062 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1063 1064 /* 1065 * Tell mac80211 about the size of our private STA structure. 1066 */ 1067 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1068 1069 /* 1070 * Allocate tx status FIFO for driver use. 1071 */ 1072 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) { 1073 /* 1074 * Allocate the txstatus fifo. In the worst case the tx 1075 * status fifo has to hold the tx status of all entries 1076 * in all tx queues. Hence, calculate the kfifo size as 1077 * tx_queues * entry_num and round up to the nearest 1078 * power of 2. 1079 */ 1080 int kfifo_size = 1081 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1082 rt2x00dev->tx->limit * 1083 sizeof(u32)); 1084 1085 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1086 GFP_KERNEL); 1087 if (status) 1088 return status; 1089 } 1090 1091 /* 1092 * Initialize tasklets if used by the driver. Tasklets are 1093 * disabled until the interrupts are turned on. The driver 1094 * has to handle that. 1095 */ 1096 #define RT2X00_TASKLET_INIT(taskletname) \ 1097 if (rt2x00dev->ops->lib->taskletname) { \ 1098 tasklet_init(&rt2x00dev->taskletname, \ 1099 rt2x00dev->ops->lib->taskletname, \ 1100 (unsigned long)rt2x00dev); \ 1101 } 1102 1103 RT2X00_TASKLET_INIT(txstatus_tasklet); 1104 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1105 RT2X00_TASKLET_INIT(tbtt_tasklet); 1106 RT2X00_TASKLET_INIT(rxdone_tasklet); 1107 RT2X00_TASKLET_INIT(autowake_tasklet); 1108 1109 #undef RT2X00_TASKLET_INIT 1110 1111 /* 1112 * Register HW. 1113 */ 1114 status = ieee80211_register_hw(rt2x00dev->hw); 1115 if (status) 1116 return status; 1117 1118 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1119 1120 return 0; 1121 } 1122 1123 /* 1124 * Initialization/uninitialization handlers. 1125 */ 1126 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1127 { 1128 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1129 return; 1130 1131 /* 1132 * Stop rfkill polling. 1133 */ 1134 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1135 rt2x00rfkill_unregister(rt2x00dev); 1136 1137 /* 1138 * Allow the HW to uninitialize. 1139 */ 1140 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1141 1142 /* 1143 * Free allocated queue entries. 1144 */ 1145 rt2x00queue_uninitialize(rt2x00dev); 1146 } 1147 1148 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1149 { 1150 int status; 1151 1152 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1153 return 0; 1154 1155 /* 1156 * Allocate all queue entries. 1157 */ 1158 status = rt2x00queue_initialize(rt2x00dev); 1159 if (status) 1160 return status; 1161 1162 /* 1163 * Initialize the device. 1164 */ 1165 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1166 if (status) { 1167 rt2x00queue_uninitialize(rt2x00dev); 1168 return status; 1169 } 1170 1171 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1172 1173 /* 1174 * Start rfkill polling. 1175 */ 1176 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1177 rt2x00rfkill_register(rt2x00dev); 1178 1179 return 0; 1180 } 1181 1182 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1183 { 1184 int retval; 1185 1186 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1187 return 0; 1188 1189 /* 1190 * If this is the first interface which is added, 1191 * we should load the firmware now. 1192 */ 1193 retval = rt2x00lib_load_firmware(rt2x00dev); 1194 if (retval) 1195 return retval; 1196 1197 /* 1198 * Initialize the device. 1199 */ 1200 retval = rt2x00lib_initialize(rt2x00dev); 1201 if (retval) 1202 return retval; 1203 1204 rt2x00dev->intf_ap_count = 0; 1205 rt2x00dev->intf_sta_count = 0; 1206 rt2x00dev->intf_associated = 0; 1207 1208 /* Enable the radio */ 1209 retval = rt2x00lib_enable_radio(rt2x00dev); 1210 if (retval) 1211 return retval; 1212 1213 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1214 1215 return 0; 1216 } 1217 1218 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1219 { 1220 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1221 return; 1222 1223 /* 1224 * Perhaps we can add something smarter here, 1225 * but for now just disabling the radio should do. 1226 */ 1227 rt2x00lib_disable_radio(rt2x00dev); 1228 1229 rt2x00dev->intf_ap_count = 0; 1230 rt2x00dev->intf_sta_count = 0; 1231 rt2x00dev->intf_associated = 0; 1232 } 1233 1234 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1235 { 1236 struct ieee80211_iface_limit *if_limit; 1237 struct ieee80211_iface_combination *if_combination; 1238 1239 if (rt2x00dev->ops->max_ap_intf < 2) 1240 return; 1241 1242 /* 1243 * Build up AP interface limits structure. 1244 */ 1245 if_limit = &rt2x00dev->if_limits_ap; 1246 if_limit->max = rt2x00dev->ops->max_ap_intf; 1247 if_limit->types = BIT(NL80211_IFTYPE_AP); 1248 #ifdef CONFIG_MAC80211_MESH 1249 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1250 #endif 1251 1252 /* 1253 * Build up AP interface combinations structure. 1254 */ 1255 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1256 if_combination->limits = if_limit; 1257 if_combination->n_limits = 1; 1258 if_combination->max_interfaces = if_limit->max; 1259 if_combination->num_different_channels = 1; 1260 1261 /* 1262 * Finally, specify the possible combinations to mac80211. 1263 */ 1264 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1265 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1266 } 1267 1268 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev) 1269 { 1270 if (WARN_ON(!rt2x00dev->tx)) 1271 return 0; 1272 1273 if (rt2x00_is_usb(rt2x00dev)) 1274 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size; 1275 1276 return rt2x00dev->tx[0].winfo_size; 1277 } 1278 1279 /* 1280 * driver allocation handlers. 1281 */ 1282 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1283 { 1284 int retval = -ENOMEM; 1285 1286 /* 1287 * Set possible interface combinations. 1288 */ 1289 rt2x00lib_set_if_combinations(rt2x00dev); 1290 1291 /* 1292 * Allocate the driver data memory, if necessary. 1293 */ 1294 if (rt2x00dev->ops->drv_data_size > 0) { 1295 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1296 GFP_KERNEL); 1297 if (!rt2x00dev->drv_data) { 1298 retval = -ENOMEM; 1299 goto exit; 1300 } 1301 } 1302 1303 spin_lock_init(&rt2x00dev->irqmask_lock); 1304 mutex_init(&rt2x00dev->csr_mutex); 1305 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1306 spin_lock_init(&rt2x00dev->bar_list_lock); 1307 1308 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1309 1310 /* 1311 * Make room for rt2x00_intf inside the per-interface 1312 * structure ieee80211_vif. 1313 */ 1314 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1315 1316 /* 1317 * rt2x00 devices can only use the last n bits of the MAC address 1318 * for virtual interfaces. 1319 */ 1320 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1321 (rt2x00dev->ops->max_ap_intf - 1); 1322 1323 /* 1324 * Initialize work. 1325 */ 1326 rt2x00dev->workqueue = 1327 alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy)); 1328 if (!rt2x00dev->workqueue) { 1329 retval = -ENOMEM; 1330 goto exit; 1331 } 1332 1333 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1334 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1335 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1336 1337 /* 1338 * Let the driver probe the device to detect the capabilities. 1339 */ 1340 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1341 if (retval) { 1342 rt2x00_err(rt2x00dev, "Failed to allocate device\n"); 1343 goto exit; 1344 } 1345 1346 /* 1347 * Allocate queue array. 1348 */ 1349 retval = rt2x00queue_allocate(rt2x00dev); 1350 if (retval) 1351 goto exit; 1352 1353 /* Cache TX headroom value */ 1354 rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev); 1355 1356 /* 1357 * Determine which operating modes are supported, all modes 1358 * which require beaconing, depend on the availability of 1359 * beacon entries. 1360 */ 1361 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1362 if (rt2x00dev->bcn->limit > 0) 1363 rt2x00dev->hw->wiphy->interface_modes |= 1364 BIT(NL80211_IFTYPE_ADHOC) | 1365 BIT(NL80211_IFTYPE_AP) | 1366 #ifdef CONFIG_MAC80211_MESH 1367 BIT(NL80211_IFTYPE_MESH_POINT) | 1368 #endif 1369 BIT(NL80211_IFTYPE_WDS); 1370 1371 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1372 1373 /* 1374 * Initialize ieee80211 structure. 1375 */ 1376 retval = rt2x00lib_probe_hw(rt2x00dev); 1377 if (retval) { 1378 rt2x00_err(rt2x00dev, "Failed to initialize hw\n"); 1379 goto exit; 1380 } 1381 1382 /* 1383 * Register extra components. 1384 */ 1385 rt2x00link_register(rt2x00dev); 1386 rt2x00leds_register(rt2x00dev); 1387 rt2x00debug_register(rt2x00dev); 1388 1389 /* 1390 * Start rfkill polling. 1391 */ 1392 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1393 rt2x00rfkill_register(rt2x00dev); 1394 1395 return 0; 1396 1397 exit: 1398 rt2x00lib_remove_dev(rt2x00dev); 1399 1400 return retval; 1401 } 1402 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1403 1404 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1405 { 1406 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1407 1408 /* 1409 * Stop rfkill polling. 1410 */ 1411 if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL)) 1412 rt2x00rfkill_unregister(rt2x00dev); 1413 1414 /* 1415 * Disable radio. 1416 */ 1417 rt2x00lib_disable_radio(rt2x00dev); 1418 1419 /* 1420 * Stop all work. 1421 */ 1422 cancel_work_sync(&rt2x00dev->intf_work); 1423 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1424 cancel_work_sync(&rt2x00dev->sleep_work); 1425 #ifdef CONFIG_RT2X00_LIB_USB 1426 if (rt2x00_is_usb(rt2x00dev)) { 1427 usb_kill_anchored_urbs(rt2x00dev->anchor); 1428 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1429 cancel_work_sync(&rt2x00dev->rxdone_work); 1430 cancel_work_sync(&rt2x00dev->txdone_work); 1431 } 1432 #endif 1433 if (rt2x00dev->workqueue) 1434 destroy_workqueue(rt2x00dev->workqueue); 1435 1436 /* 1437 * Free the tx status fifo. 1438 */ 1439 kfifo_free(&rt2x00dev->txstatus_fifo); 1440 1441 /* 1442 * Kill the tx status tasklet. 1443 */ 1444 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1445 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1446 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1447 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1448 tasklet_kill(&rt2x00dev->autowake_tasklet); 1449 1450 /* 1451 * Uninitialize device. 1452 */ 1453 rt2x00lib_uninitialize(rt2x00dev); 1454 1455 /* 1456 * Free extra components 1457 */ 1458 rt2x00debug_deregister(rt2x00dev); 1459 rt2x00leds_unregister(rt2x00dev); 1460 1461 /* 1462 * Free ieee80211_hw memory. 1463 */ 1464 rt2x00lib_remove_hw(rt2x00dev); 1465 1466 /* 1467 * Free firmware image. 1468 */ 1469 rt2x00lib_free_firmware(rt2x00dev); 1470 1471 /* 1472 * Free queue structures. 1473 */ 1474 rt2x00queue_free(rt2x00dev); 1475 1476 /* 1477 * Free the driver data. 1478 */ 1479 kfree(rt2x00dev->drv_data); 1480 } 1481 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1482 1483 /* 1484 * Device state handlers 1485 */ 1486 #ifdef CONFIG_PM 1487 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1488 { 1489 rt2x00_dbg(rt2x00dev, "Going to sleep\n"); 1490 1491 /* 1492 * Prevent mac80211 from accessing driver while suspended. 1493 */ 1494 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1495 return 0; 1496 1497 /* 1498 * Cleanup as much as possible. 1499 */ 1500 rt2x00lib_uninitialize(rt2x00dev); 1501 1502 /* 1503 * Suspend/disable extra components. 1504 */ 1505 rt2x00leds_suspend(rt2x00dev); 1506 rt2x00debug_deregister(rt2x00dev); 1507 1508 /* 1509 * Set device mode to sleep for power management, 1510 * on some hardware this call seems to consistently fail. 1511 * From the specifications it is hard to tell why it fails, 1512 * and if this is a "bad thing". 1513 * Overall it is safe to just ignore the failure and 1514 * continue suspending. The only downside is that the 1515 * device will not be in optimal power save mode, but with 1516 * the radio and the other components already disabled the 1517 * device is as good as disabled. 1518 */ 1519 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1520 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n"); 1521 1522 return 0; 1523 } 1524 EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1525 1526 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1527 { 1528 rt2x00_dbg(rt2x00dev, "Waking up\n"); 1529 1530 /* 1531 * Restore/enable extra components. 1532 */ 1533 rt2x00debug_register(rt2x00dev); 1534 rt2x00leds_resume(rt2x00dev); 1535 1536 /* 1537 * We are ready again to receive requests from mac80211. 1538 */ 1539 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1540 1541 return 0; 1542 } 1543 EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1544 #endif /* CONFIG_PM */ 1545 1546 /* 1547 * rt2x00lib module information. 1548 */ 1549 MODULE_AUTHOR(DRV_PROJECT); 1550 MODULE_VERSION(DRV_VERSION); 1551 MODULE_DESCRIPTION("rt2x00 library"); 1552 MODULE_LICENSE("GPL"); 1553