1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00 12 Abstract: rt2x00 global information. 13 */ 14 15 #ifndef RT2X00_H 16 #define RT2X00_H 17 18 #include <linux/bitops.h> 19 #include <linux/interrupt.h> 20 #include <linux/skbuff.h> 21 #include <linux/workqueue.h> 22 #include <linux/firmware.h> 23 #include <linux/leds.h> 24 #include <linux/mutex.h> 25 #include <linux/etherdevice.h> 26 #include <linux/kfifo.h> 27 #include <linux/hrtimer.h> 28 #include <linux/average.h> 29 #include <linux/usb.h> 30 #include <linux/clk.h> 31 32 #include <net/mac80211.h> 33 34 #include "rt2x00debug.h" 35 #include "rt2x00dump.h" 36 #include "rt2x00leds.h" 37 #include "rt2x00reg.h" 38 #include "rt2x00queue.h" 39 40 /* 41 * Module information. 42 */ 43 #define DRV_VERSION "2.3.0" 44 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 45 46 /* Debug definitions. 47 * Debug output has to be enabled during compile time. 48 */ 49 #ifdef CONFIG_RT2X00_DEBUG 50 #define DEBUG 51 #endif /* CONFIG_RT2X00_DEBUG */ 52 53 /* Utility printing macros 54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 55 */ 56 #define rt2x00_probe_err(fmt, ...) \ 57 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 58 __func__, ##__VA_ARGS__) 59 #define rt2x00_err(dev, fmt, ...) \ 60 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \ 61 __func__, ##__VA_ARGS__) 62 #define rt2x00_warn(dev, fmt, ...) \ 63 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \ 64 __func__, ##__VA_ARGS__) 65 #define rt2x00_info(dev, fmt, ...) \ 66 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 67 __func__, ##__VA_ARGS__) 68 69 /* Various debug levels */ 70 #define rt2x00_dbg(dev, fmt, ...) \ 71 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 72 __func__, ##__VA_ARGS__) 73 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 74 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 75 __func__, ##__VA_ARGS__) 76 77 /* 78 * Duration calculations 79 * The rate variable passed is: 100kbs. 80 * To convert from bytes to bits we multiply size with 8, 81 * then the size is multiplied with 10 to make the 82 * real rate -> rate argument correction. 83 */ 84 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 86 87 /* 88 * Determine the number of L2 padding bytes required between the header and 89 * the payload. 90 */ 91 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 92 93 /* 94 * Determine the alignment requirement, 95 * to make sure the 802.11 payload is padded to a 4-byte boundrary 96 * we must determine the address of the payload and calculate the 97 * amount of bytes needed to move the data. 98 */ 99 #define ALIGN_SIZE(__skb, __header) \ 100 (((unsigned long)((__skb)->data + (__header))) & 3) 101 102 /* 103 * Constants for extra TX headroom for alignment purposes. 104 */ 105 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 106 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 107 108 /* 109 * Standard timing and size defines. 110 * These values should follow the ieee80211 specifications. 111 */ 112 #define ACK_SIZE 14 113 #define IEEE80211_HEADER 24 114 #define PLCP 48 115 #define BEACON 100 116 #define PREAMBLE 144 117 #define SHORT_PREAMBLE 72 118 #define SLOT_TIME 20 119 #define SHORT_SLOT_TIME 9 120 #define SIFS 10 121 #define PIFS (SIFS + SLOT_TIME) 122 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 123 #define DIFS (PIFS + SLOT_TIME) 124 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 125 #define EIFS (SIFS + DIFS + \ 126 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 127 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 128 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 129 130 enum rt2x00_chip_intf { 131 RT2X00_CHIP_INTF_PCI, 132 RT2X00_CHIP_INTF_PCIE, 133 RT2X00_CHIP_INTF_USB, 134 RT2X00_CHIP_INTF_SOC, 135 }; 136 137 /* 138 * Chipset identification 139 * The chipset on the device is composed of a RT and RF chip. 140 * The chipset combination is important for determining device capabilities. 141 */ 142 struct rt2x00_chip { 143 u16 rt; 144 #define RT2460 0x2460 145 #define RT2560 0x2560 146 #define RT2570 0x2570 147 #define RT2661 0x2661 148 #define RT2573 0x2573 149 #define RT2860 0x2860 /* 2.4GHz */ 150 #define RT2872 0x2872 /* WSOC */ 151 #define RT2883 0x2883 /* WSOC */ 152 #define RT3070 0x3070 153 #define RT3071 0x3071 154 #define RT3090 0x3090 /* 2.4GHz PCIe */ 155 #define RT3290 0x3290 156 #define RT3352 0x3352 /* WSOC */ 157 #define RT3390 0x3390 158 #define RT3572 0x3572 159 #define RT3593 0x3593 160 #define RT3883 0x3883 /* WSOC */ 161 #define RT5350 0x5350 /* WSOC 2.4GHz */ 162 #define RT5390 0x5390 /* 2.4GHz */ 163 #define RT5392 0x5392 /* 2.4GHz */ 164 #define RT5592 0x5592 165 #define RT6352 0x6352 /* WSOC 2.4GHz */ 166 167 u16 rf; 168 u16 rev; 169 170 enum rt2x00_chip_intf intf; 171 }; 172 173 /* 174 * RF register values that belong to a particular channel. 175 */ 176 struct rf_channel { 177 int channel; 178 u32 rf1; 179 u32 rf2; 180 u32 rf3; 181 u32 rf4; 182 }; 183 184 /* 185 * Information structure for channel survey. 186 */ 187 struct rt2x00_chan_survey { 188 u64 time_idle; 189 u64 time_busy; 190 u64 time_ext_busy; 191 }; 192 193 /* 194 * Channel information structure 195 */ 196 struct channel_info { 197 unsigned int flags; 198 #define GEOGRAPHY_ALLOWED 0x00000001 199 200 short max_power; 201 short default_power1; 202 short default_power2; 203 short default_power3; 204 }; 205 206 /* 207 * Antenna setup values. 208 */ 209 struct antenna_setup { 210 enum antenna rx; 211 enum antenna tx; 212 u8 rx_chain_num; 213 u8 tx_chain_num; 214 }; 215 216 /* 217 * Quality statistics about the currently active link. 218 */ 219 struct link_qual { 220 /* 221 * Statistics required for Link tuning by driver 222 * The rssi value is provided by rt2x00lib during the 223 * link_tuner() callback function. 224 * The false_cca field is filled during the link_stats() 225 * callback function and could be used during the 226 * link_tuner() callback function. 227 */ 228 int rssi; 229 int false_cca; 230 231 /* 232 * VGC levels 233 * Hardware driver will tune the VGC level during each call 234 * to the link_tuner() callback function. This vgc_level is 235 * determined based on the link quality statistics like 236 * average RSSI and the false CCA count. 237 * 238 * In some cases the drivers need to differentiate between 239 * the currently "desired" VGC level and the level configured 240 * in the hardware. The latter is important to reduce the 241 * number of BBP register reads to reduce register access 242 * overhead. For this reason we store both values here. 243 */ 244 u8 vgc_level; 245 u8 vgc_level_reg; 246 247 /* 248 * Statistics required for Signal quality calculation. 249 * These fields might be changed during the link_stats() 250 * callback function. 251 */ 252 int rx_success; 253 int rx_failed; 254 int tx_success; 255 int tx_failed; 256 }; 257 258 DECLARE_EWMA(rssi, 10, 8) 259 260 /* 261 * Antenna settings about the currently active link. 262 */ 263 struct link_ant { 264 /* 265 * Antenna flags 266 */ 267 unsigned int flags; 268 #define ANTENNA_RX_DIVERSITY 0x00000001 269 #define ANTENNA_TX_DIVERSITY 0x00000002 270 #define ANTENNA_MODE_SAMPLE 0x00000004 271 272 /* 273 * Currently active TX/RX antenna setup. 274 * When software diversity is used, this will indicate 275 * which antenna is actually used at this time. 276 */ 277 struct antenna_setup active; 278 279 /* 280 * RSSI history information for the antenna. 281 * Used to determine when to switch antenna 282 * when using software diversity. 283 */ 284 int rssi_history; 285 286 /* 287 * Current RSSI average of the currently active antenna. 288 * Similar to the avg_rssi in the link_qual structure 289 * this value is updated by using the walking average. 290 */ 291 struct ewma_rssi rssi_ant; 292 }; 293 294 /* 295 * To optimize the quality of the link we need to store 296 * the quality of received frames and periodically 297 * optimize the link. 298 */ 299 struct link { 300 /* 301 * Link tuner counter 302 * The number of times the link has been tuned 303 * since the radio has been switched on. 304 */ 305 u32 count; 306 307 /* 308 * Quality measurement values. 309 */ 310 struct link_qual qual; 311 312 /* 313 * TX/RX antenna setup. 314 */ 315 struct link_ant ant; 316 317 /* 318 * Currently active average RSSI value 319 */ 320 struct ewma_rssi avg_rssi; 321 322 /* 323 * Work structure for scheduling periodic link tuning. 324 */ 325 struct delayed_work work; 326 327 /* 328 * Work structure for scheduling periodic watchdog monitoring. 329 * This work must be scheduled on the kernel workqueue, while 330 * all other work structures must be queued on the mac80211 331 * workqueue. This guarantees that the watchdog can schedule 332 * other work structures and wait for their completion in order 333 * to bring the device/driver back into the desired state. 334 */ 335 struct delayed_work watchdog_work; 336 unsigned int watchdog_interval; 337 bool watchdog_disabled; 338 339 /* 340 * Work structure for scheduling periodic AGC adjustments. 341 */ 342 struct delayed_work agc_work; 343 344 /* 345 * Work structure for scheduling periodic VCO calibration. 346 */ 347 struct delayed_work vco_work; 348 }; 349 350 enum rt2x00_delayed_flags { 351 DELAYED_UPDATE_BEACON, 352 }; 353 354 /* 355 * Interface structure 356 * Per interface configuration details, this structure 357 * is allocated as the private data for ieee80211_vif. 358 */ 359 struct rt2x00_intf { 360 /* 361 * beacon->skb must be protected with the mutex. 362 */ 363 struct mutex beacon_skb_mutex; 364 365 /* 366 * Entry in the beacon queue which belongs to 367 * this interface. Each interface has its own 368 * dedicated beacon entry. 369 */ 370 struct queue_entry *beacon; 371 bool enable_beacon; 372 373 /* 374 * Actions that needed rescheduling. 375 */ 376 unsigned long delayed_flags; 377 378 /* 379 * Software sequence counter, this is only required 380 * for hardware which doesn't support hardware 381 * sequence counting. 382 */ 383 atomic_t seqno; 384 }; 385 386 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 387 { 388 return (struct rt2x00_intf *)vif->drv_priv; 389 } 390 391 /** 392 * struct hw_mode_spec: Hardware specifications structure 393 * 394 * Details about the supported modes, rates and channels 395 * of a particular chipset. This is used by rt2x00lib 396 * to build the ieee80211_hw_mode array for mac80211. 397 * 398 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 399 * @supported_rates: Rate types which are supported (CCK, OFDM). 400 * @num_channels: Number of supported channels. This is used as array size 401 * for @tx_power_a, @tx_power_bg and @channels. 402 * @channels: Device/chipset specific channel values (See &struct rf_channel). 403 * @channels_info: Additional information for channels (See &struct channel_info). 404 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 405 */ 406 struct hw_mode_spec { 407 unsigned int supported_bands; 408 #define SUPPORT_BAND_2GHZ 0x00000001 409 #define SUPPORT_BAND_5GHZ 0x00000002 410 411 unsigned int supported_rates; 412 #define SUPPORT_RATE_CCK 0x00000001 413 #define SUPPORT_RATE_OFDM 0x00000002 414 415 unsigned int num_channels; 416 const struct rf_channel *channels; 417 const struct channel_info *channels_info; 418 419 struct ieee80211_sta_ht_cap ht; 420 }; 421 422 /* 423 * Configuration structure wrapper around the 424 * mac80211 configuration structure. 425 * When mac80211 configures the driver, rt2x00lib 426 * can precalculate values which are equal for all 427 * rt2x00 drivers. Those values can be stored in here. 428 */ 429 struct rt2x00lib_conf { 430 struct ieee80211_conf *conf; 431 432 struct rf_channel rf; 433 struct channel_info channel; 434 }; 435 436 /* 437 * Configuration structure for erp settings. 438 */ 439 struct rt2x00lib_erp { 440 int short_preamble; 441 int cts_protection; 442 443 u32 basic_rates; 444 445 int slot_time; 446 447 short sifs; 448 short pifs; 449 short difs; 450 short eifs; 451 452 u16 beacon_int; 453 u16 ht_opmode; 454 }; 455 456 /* 457 * Configuration structure for hardware encryption. 458 */ 459 struct rt2x00lib_crypto { 460 enum cipher cipher; 461 462 enum set_key_cmd cmd; 463 const u8 *address; 464 465 u32 bssidx; 466 467 u8 key[16]; 468 u8 tx_mic[8]; 469 u8 rx_mic[8]; 470 471 int wcid; 472 }; 473 474 /* 475 * Configuration structure wrapper around the 476 * rt2x00 interface configuration handler. 477 */ 478 struct rt2x00intf_conf { 479 /* 480 * Interface type 481 */ 482 enum nl80211_iftype type; 483 484 /* 485 * TSF sync value, this is dependent on the operation type. 486 */ 487 enum tsf_sync sync; 488 489 /* 490 * The MAC and BSSID addresses are simple array of bytes, 491 * these arrays are little endian, so when sending the addresses 492 * to the drivers, copy the it into a endian-signed variable. 493 * 494 * Note that all devices (except rt2500usb) have 32 bits 495 * register word sizes. This means that whatever variable we 496 * pass _must_ be a multiple of 32 bits. Otherwise the device 497 * might not accept what we are sending to it. 498 * This will also make it easier for the driver to write 499 * the data to the device. 500 */ 501 __le32 mac[2]; 502 __le32 bssid[2]; 503 }; 504 505 /* 506 * Private structure for storing STA details 507 * wcid: Wireless Client ID 508 */ 509 struct rt2x00_sta { 510 int wcid; 511 }; 512 513 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 514 { 515 return (struct rt2x00_sta *)sta->drv_priv; 516 } 517 518 /* 519 * rt2x00lib callback functions. 520 */ 521 struct rt2x00lib_ops { 522 /* 523 * Interrupt handlers. 524 */ 525 irq_handler_t irq_handler; 526 527 /* 528 * TX status tasklet handler. 529 */ 530 void (*txstatus_tasklet) (struct tasklet_struct *t); 531 void (*pretbtt_tasklet) (struct tasklet_struct *t); 532 void (*tbtt_tasklet) (struct tasklet_struct *t); 533 void (*rxdone_tasklet) (struct tasklet_struct *t); 534 void (*autowake_tasklet) (struct tasklet_struct *t); 535 536 /* 537 * Device init handlers. 538 */ 539 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 540 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 541 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 542 const u8 *data, const size_t len); 543 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 544 const u8 *data, const size_t len); 545 546 /* 547 * Device initialization/deinitialization handlers. 548 */ 549 int (*initialize) (struct rt2x00_dev *rt2x00dev); 550 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 551 552 /* 553 * queue initialization handlers 554 */ 555 bool (*get_entry_state) (struct queue_entry *entry); 556 void (*clear_entry) (struct queue_entry *entry); 557 558 /* 559 * Radio control handlers. 560 */ 561 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 562 enum dev_state state); 563 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 564 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 565 struct link_qual *qual); 566 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 567 struct link_qual *qual); 568 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 569 struct link_qual *qual, const u32 count); 570 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 571 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 572 573 /* 574 * Data queue handlers. 575 */ 576 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 577 void (*start_queue) (struct data_queue *queue); 578 void (*kick_queue) (struct data_queue *queue); 579 void (*stop_queue) (struct data_queue *queue); 580 void (*flush_queue) (struct data_queue *queue, bool drop); 581 void (*tx_dma_done) (struct queue_entry *entry); 582 583 /* 584 * TX control handlers 585 */ 586 void (*write_tx_desc) (struct queue_entry *entry, 587 struct txentry_desc *txdesc); 588 void (*write_tx_data) (struct queue_entry *entry, 589 struct txentry_desc *txdesc); 590 void (*write_beacon) (struct queue_entry *entry, 591 struct txentry_desc *txdesc); 592 void (*clear_beacon) (struct queue_entry *entry); 593 int (*get_tx_data_len) (struct queue_entry *entry); 594 595 /* 596 * RX control handlers 597 */ 598 void (*fill_rxdone) (struct queue_entry *entry, 599 struct rxdone_entry_desc *rxdesc); 600 601 /* 602 * Configuration handlers. 603 */ 604 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 605 struct rt2x00lib_crypto *crypto, 606 struct ieee80211_key_conf *key); 607 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 608 struct rt2x00lib_crypto *crypto, 609 struct ieee80211_key_conf *key); 610 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 611 const unsigned int filter_flags); 612 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 613 struct rt2x00_intf *intf, 614 struct rt2x00intf_conf *conf, 615 const unsigned int flags); 616 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 617 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 618 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 619 620 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 621 struct rt2x00lib_erp *erp, 622 u32 changed); 623 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 624 struct antenna_setup *ant); 625 void (*config) (struct rt2x00_dev *rt2x00dev, 626 struct rt2x00lib_conf *libconf, 627 const unsigned int changed_flags); 628 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev); 629 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 630 struct ieee80211_vif *vif, 631 struct ieee80211_sta *sta); 632 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 633 struct ieee80211_sta *sta); 634 }; 635 636 /* 637 * rt2x00 driver callback operation structure. 638 */ 639 struct rt2x00_ops { 640 const char *name; 641 const unsigned int drv_data_size; 642 const unsigned int max_ap_intf; 643 const unsigned int eeprom_size; 644 const unsigned int rf_size; 645 const unsigned int tx_queues; 646 void (*queue_init)(struct data_queue *queue); 647 const struct rt2x00lib_ops *lib; 648 const void *drv; 649 const struct ieee80211_ops *hw; 650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 651 const struct rt2x00debug *debugfs; 652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 653 }; 654 655 /* 656 * rt2x00 state flags 657 */ 658 enum rt2x00_state_flags { 659 /* 660 * Device flags 661 */ 662 DEVICE_STATE_PRESENT, 663 DEVICE_STATE_REGISTERED_HW, 664 DEVICE_STATE_INITIALIZED, 665 DEVICE_STATE_STARTED, 666 DEVICE_STATE_ENABLED_RADIO, 667 DEVICE_STATE_SCANNING, 668 DEVICE_STATE_FLUSHING, 669 DEVICE_STATE_RESET, 670 671 /* 672 * Driver configuration 673 */ 674 CONFIG_CHANNEL_HT40, 675 CONFIG_POWERSAVING, 676 CONFIG_HT_DISABLED, 677 CONFIG_MONITORING, 678 679 /* 680 * Mark we currently are sequentially reading TX_STA_FIFO register 681 * FIXME: this is for only rt2800usb, should go to private data 682 */ 683 TX_STATUS_READING, 684 }; 685 686 /* 687 * rt2x00 capability flags 688 */ 689 enum rt2x00_capability_flags { 690 /* 691 * Requirements 692 */ 693 REQUIRE_FIRMWARE, 694 REQUIRE_BEACON_GUARD, 695 REQUIRE_ATIM_QUEUE, 696 REQUIRE_DMA, 697 REQUIRE_COPY_IV, 698 REQUIRE_L2PAD, 699 REQUIRE_TXSTATUS_FIFO, 700 REQUIRE_TASKLET_CONTEXT, 701 REQUIRE_SW_SEQNO, 702 REQUIRE_HT_TX_DESC, 703 REQUIRE_PS_AUTOWAKE, 704 REQUIRE_DELAYED_RFKILL, 705 706 /* 707 * Capabilities 708 */ 709 CAPABILITY_HW_BUTTON, 710 CAPABILITY_HW_CRYPTO, 711 CAPABILITY_POWER_LIMIT, 712 CAPABILITY_CONTROL_FILTERS, 713 CAPABILITY_CONTROL_FILTER_PSPOLL, 714 CAPABILITY_PRE_TBTT_INTERRUPT, 715 CAPABILITY_LINK_TUNING, 716 CAPABILITY_FRAME_TYPE, 717 CAPABILITY_RF_SEQUENCE, 718 CAPABILITY_EXTERNAL_LNA_A, 719 CAPABILITY_EXTERNAL_LNA_BG, 720 CAPABILITY_DOUBLE_ANTENNA, 721 CAPABILITY_BT_COEXIST, 722 CAPABILITY_VCO_RECALIBRATION, 723 CAPABILITY_EXTERNAL_PA_TX0, 724 CAPABILITY_EXTERNAL_PA_TX1, 725 CAPABILITY_RESTART_HW, 726 }; 727 728 /* 729 * Interface combinations 730 */ 731 enum { 732 IF_COMB_AP = 0, 733 NUM_IF_COMB, 734 }; 735 736 /* 737 * rt2x00 device structure. 738 */ 739 struct rt2x00_dev { 740 /* 741 * Device structure. 742 * The structure stored in here depends on the 743 * system bus (PCI or USB). 744 * When accessing this variable, the rt2x00dev_{pci,usb} 745 * macros should be used for correct typecasting. 746 */ 747 struct device *dev; 748 749 /* 750 * Callback functions. 751 */ 752 const struct rt2x00_ops *ops; 753 754 /* 755 * Driver data. 756 */ 757 void *drv_data; 758 759 /* 760 * IEEE80211 control structure. 761 */ 762 struct ieee80211_hw *hw; 763 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 764 struct rt2x00_chan_survey *chan_survey; 765 enum nl80211_band curr_band; 766 int curr_freq; 767 768 /* 769 * If enabled, the debugfs interface structures 770 * required for deregistration of debugfs. 771 */ 772 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 773 struct rt2x00debug_intf *debugfs_intf; 774 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 775 776 /* 777 * LED structure for changing the LED status 778 * by mac8011 or the kernel. 779 */ 780 #ifdef CONFIG_RT2X00_LIB_LEDS 781 struct rt2x00_led led_radio; 782 struct rt2x00_led led_assoc; 783 struct rt2x00_led led_qual; 784 u16 led_mcu_reg; 785 #endif /* CONFIG_RT2X00_LIB_LEDS */ 786 787 /* 788 * Device state flags. 789 * In these flags the current status is stored. 790 * Access to these flags should occur atomically. 791 */ 792 unsigned long flags; 793 794 /* 795 * Device capabiltiy flags. 796 * In these flags the device/driver capabilities are stored. 797 * Access to these flags should occur non-atomically. 798 */ 799 unsigned long cap_flags; 800 801 /* 802 * Device information, Bus IRQ and name (PCI, SoC) 803 */ 804 int irq; 805 const char *name; 806 807 /* 808 * Chipset identification. 809 */ 810 struct rt2x00_chip chip; 811 812 /* 813 * hw capability specifications. 814 */ 815 struct hw_mode_spec spec; 816 817 /* 818 * This is the default TX/RX antenna setup as indicated 819 * by the device's EEPROM. 820 */ 821 struct antenna_setup default_ant; 822 823 /* 824 * Register pointers 825 * csr.base: CSR base register address. (PCI) 826 * csr.cache: CSR cache for usb_control_msg. (USB) 827 */ 828 union csr { 829 void __iomem *base; 830 void *cache; 831 } csr; 832 833 /* 834 * Mutex to protect register accesses. 835 * For PCI and USB devices it protects against concurrent indirect 836 * register access (BBP, RF, MCU) since accessing those 837 * registers require multiple calls to the CSR registers. 838 * For USB devices it also protects the csr_cache since that 839 * field is used for normal CSR access and it cannot support 840 * multiple callers simultaneously. 841 */ 842 struct mutex csr_mutex; 843 844 /* 845 * Mutex to synchronize config and link tuner. 846 */ 847 struct mutex conf_mutex; 848 /* 849 * Current packet filter configuration for the device. 850 * This contains all currently active FIF_* flags send 851 * to us by mac80211 during configure_filter(). 852 */ 853 unsigned int packet_filter; 854 855 /* 856 * Interface details: 857 * - Open ap interface count. 858 * - Open sta interface count. 859 * - Association count. 860 * - Beaconing enabled count. 861 */ 862 unsigned int intf_ap_count; 863 unsigned int intf_sta_count; 864 unsigned int intf_associated; 865 unsigned int intf_beaconing; 866 867 /* 868 * Interface combinations 869 */ 870 struct ieee80211_iface_limit if_limits_ap; 871 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 872 873 /* 874 * Link quality 875 */ 876 struct link link; 877 878 /* 879 * EEPROM data. 880 */ 881 __le16 *eeprom; 882 883 /* 884 * Active RF register values. 885 * These are stored here so we don't need 886 * to read the rf registers and can directly 887 * use this value instead. 888 * This field should be accessed by using 889 * rt2x00_rf_read() and rt2x00_rf_write(). 890 */ 891 u32 *rf; 892 893 /* 894 * LNA gain 895 */ 896 short lna_gain; 897 898 /* 899 * Current TX power value. 900 */ 901 u16 tx_power; 902 903 /* 904 * Current retry values. 905 */ 906 u8 short_retry; 907 u8 long_retry; 908 909 /* 910 * Rssi <-> Dbm offset 911 */ 912 u8 rssi_offset; 913 914 /* 915 * Frequency offset. 916 */ 917 u8 freq_offset; 918 919 /* 920 * Association id. 921 */ 922 u16 aid; 923 924 /* 925 * Beacon interval. 926 */ 927 u16 beacon_int; 928 929 /* Rx/Tx DMA busy watchdog counter */ 930 u16 rxdma_busy, txdma_busy; 931 932 /** 933 * Timestamp of last received beacon 934 */ 935 unsigned long last_beacon; 936 937 /* 938 * Low level statistics which will have 939 * to be kept up to date while device is running. 940 */ 941 struct ieee80211_low_level_stats low_level_stats; 942 943 /** 944 * Work queue for all work which should not be placed 945 * on the mac80211 workqueue (because of dependencies 946 * between various work structures). 947 */ 948 struct workqueue_struct *workqueue; 949 950 /* 951 * Scheduled work. 952 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 953 * which means it cannot be placed on the hw->workqueue 954 * due to RTNL locking requirements. 955 */ 956 struct work_struct intf_work; 957 958 /** 959 * Scheduled work for TX/RX done handling (USB devices) 960 */ 961 struct work_struct rxdone_work; 962 struct work_struct txdone_work; 963 964 /* 965 * Powersaving work 966 */ 967 struct delayed_work autowakeup_work; 968 struct work_struct sleep_work; 969 970 /* 971 * Data queue arrays for RX, TX, Beacon and ATIM. 972 */ 973 unsigned int data_queues; 974 struct data_queue *rx; 975 struct data_queue *tx; 976 struct data_queue *bcn; 977 struct data_queue *atim; 978 979 /* 980 * Firmware image. 981 */ 982 const struct firmware *fw; 983 984 /* 985 * FIFO for storing tx status reports between isr and tasklet. 986 */ 987 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 988 989 /* 990 * Timer to ensure tx status reports are read (rt2800usb). 991 */ 992 struct hrtimer txstatus_timer; 993 994 /* 995 * Tasklet for processing tx status reports (rt2800pci). 996 */ 997 struct tasklet_struct txstatus_tasklet; 998 struct tasklet_struct pretbtt_tasklet; 999 struct tasklet_struct tbtt_tasklet; 1000 struct tasklet_struct rxdone_tasklet; 1001 struct tasklet_struct autowake_tasklet; 1002 1003 /* 1004 * Used for VCO periodic calibration. 1005 */ 1006 int rf_channel; 1007 1008 /* 1009 * Protect the interrupt mask register. 1010 */ 1011 spinlock_t irqmask_lock; 1012 1013 /* 1014 * List of BlockAckReq TX entries that need driver BlockAck processing. 1015 */ 1016 struct list_head bar_list; 1017 spinlock_t bar_list_lock; 1018 1019 /* Extra TX headroom required for alignment purposes. */ 1020 unsigned int extra_tx_headroom; 1021 1022 struct usb_anchor *anchor; 1023 unsigned int num_proto_errs; 1024 1025 /* Clock for System On Chip devices. */ 1026 struct clk *clk; 1027 }; 1028 1029 struct rt2x00_bar_list_entry { 1030 struct list_head list; 1031 struct rcu_head head; 1032 1033 struct queue_entry *entry; 1034 int block_acked; 1035 1036 /* Relevant parts of the IEEE80211 BAR header */ 1037 __u8 ra[6]; 1038 __u8 ta[6]; 1039 __le16 control; 1040 __le16 start_seq_num; 1041 }; 1042 1043 /* 1044 * Register defines. 1045 * Some registers require multiple attempts before success, 1046 * in those cases REGISTER_BUSY_COUNT attempts should be 1047 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1048 * bus delays, we do not have to loop so many times to wait 1049 * for valid register value on that bus. 1050 */ 1051 #define REGISTER_BUSY_COUNT 100 1052 #define REGISTER_USB_BUSY_COUNT 20 1053 #define REGISTER_BUSY_DELAY 100 1054 1055 /* 1056 * Generic RF access. 1057 * The RF is being accessed by word index. 1058 */ 1059 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1060 const unsigned int word) 1061 { 1062 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1063 return rt2x00dev->rf[word - 1]; 1064 } 1065 1066 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1067 const unsigned int word, u32 data) 1068 { 1069 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1070 rt2x00dev->rf[word - 1] = data; 1071 } 1072 1073 /* 1074 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1075 */ 1076 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1077 const unsigned int word) 1078 { 1079 return (void *)&rt2x00dev->eeprom[word]; 1080 } 1081 1082 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1083 const unsigned int word) 1084 { 1085 return le16_to_cpu(rt2x00dev->eeprom[word]); 1086 } 1087 1088 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1089 const unsigned int word, u16 data) 1090 { 1091 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1092 } 1093 1094 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1095 const unsigned int byte) 1096 { 1097 return *(((u8 *)rt2x00dev->eeprom) + byte); 1098 } 1099 1100 /* 1101 * Chipset handlers 1102 */ 1103 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1104 const u16 rt, const u16 rf, const u16 rev) 1105 { 1106 rt2x00dev->chip.rt = rt; 1107 rt2x00dev->chip.rf = rf; 1108 rt2x00dev->chip.rev = rev; 1109 1110 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1111 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1112 rt2x00dev->chip.rev); 1113 } 1114 1115 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1116 const u16 rt, const u16 rev) 1117 { 1118 rt2x00dev->chip.rt = rt; 1119 rt2x00dev->chip.rev = rev; 1120 1121 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1122 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1123 } 1124 1125 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1126 { 1127 rt2x00dev->chip.rf = rf; 1128 1129 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1130 rt2x00dev->chip.rf); 1131 } 1132 1133 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1134 { 1135 return (rt2x00dev->chip.rt == rt); 1136 } 1137 1138 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1139 { 1140 return (rt2x00dev->chip.rf == rf); 1141 } 1142 1143 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1144 { 1145 return rt2x00dev->chip.rev; 1146 } 1147 1148 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1149 const u16 rt, const u16 rev) 1150 { 1151 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1152 } 1153 1154 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1155 const u16 rt, const u16 rev) 1156 { 1157 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1158 } 1159 1160 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1161 const u16 rt, const u16 rev) 1162 { 1163 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1164 } 1165 1166 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1167 enum rt2x00_chip_intf intf) 1168 { 1169 rt2x00dev->chip.intf = intf; 1170 } 1171 1172 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1173 enum rt2x00_chip_intf intf) 1174 { 1175 return (rt2x00dev->chip.intf == intf); 1176 } 1177 1178 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1179 { 1180 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1181 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1182 } 1183 1184 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1185 { 1186 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1187 } 1188 1189 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1190 { 1191 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1192 } 1193 1194 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1195 { 1196 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1197 } 1198 1199 /* Helpers for capability flags */ 1200 1201 static inline bool 1202 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1203 enum rt2x00_capability_flags cap_flag) 1204 { 1205 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1206 } 1207 1208 static inline bool 1209 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1210 { 1211 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1212 } 1213 1214 static inline bool 1215 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1216 { 1217 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1218 } 1219 1220 static inline bool 1221 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1222 { 1223 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1224 } 1225 1226 static inline bool 1227 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1228 { 1229 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1230 } 1231 1232 static inline bool 1233 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1234 { 1235 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1236 } 1237 1238 static inline bool 1239 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1240 { 1241 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1242 } 1243 1244 static inline bool 1245 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1246 { 1247 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1248 } 1249 1250 static inline bool 1251 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1252 { 1253 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1254 } 1255 1256 static inline bool 1257 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1258 { 1259 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1260 } 1261 1262 static inline bool 1263 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1264 { 1265 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1266 } 1267 1268 static inline bool 1269 rt2x00_has_cap_external_pa(struct rt2x00_dev *rt2x00dev) 1270 { 1271 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_PA_TX0); 1272 } 1273 1274 static inline bool 1275 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1276 { 1277 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1278 } 1279 1280 static inline bool 1281 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1282 { 1283 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1284 } 1285 1286 static inline bool 1287 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1288 { 1289 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1290 } 1291 1292 static inline bool 1293 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev) 1294 { 1295 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW); 1296 } 1297 1298 /** 1299 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1300 * @entry: Pointer to &struct queue_entry 1301 * 1302 * Returns -ENOMEM if mapping fail, 0 otherwise. 1303 */ 1304 int rt2x00queue_map_txskb(struct queue_entry *entry); 1305 1306 /** 1307 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1308 * @entry: Pointer to &struct queue_entry 1309 */ 1310 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1311 1312 /** 1313 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1314 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1315 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1316 * 1317 * Returns NULL for non tx queues. 1318 */ 1319 static inline struct data_queue * 1320 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1321 enum data_queue_qid queue) 1322 { 1323 if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS) 1324 queue = rt2x00dev->ops->tx_queues - 1; 1325 1326 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1327 return &rt2x00dev->tx[queue]; 1328 1329 if (queue == QID_ATIM) 1330 return rt2x00dev->atim; 1331 1332 return NULL; 1333 } 1334 1335 /** 1336 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1337 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1338 * @index: Index identifier for obtaining the correct index. 1339 */ 1340 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1341 enum queue_index index); 1342 1343 /** 1344 * rt2x00queue_pause_queue - Pause a data queue 1345 * @queue: Pointer to &struct data_queue. 1346 * 1347 * This function will pause the data queue locally, preventing 1348 * new frames to be added to the queue (while the hardware is 1349 * still allowed to run). 1350 */ 1351 void rt2x00queue_pause_queue(struct data_queue *queue); 1352 1353 /** 1354 * rt2x00queue_unpause_queue - unpause a data queue 1355 * @queue: Pointer to &struct data_queue. 1356 * 1357 * This function will unpause the data queue locally, allowing 1358 * new frames to be added to the queue again. 1359 */ 1360 void rt2x00queue_unpause_queue(struct data_queue *queue); 1361 1362 /** 1363 * rt2x00queue_start_queue - Start a data queue 1364 * @queue: Pointer to &struct data_queue. 1365 * 1366 * This function will start handling all pending frames in the queue. 1367 */ 1368 void rt2x00queue_start_queue(struct data_queue *queue); 1369 1370 /** 1371 * rt2x00queue_stop_queue - Halt a data queue 1372 * @queue: Pointer to &struct data_queue. 1373 * 1374 * This function will stop all pending frames in the queue. 1375 */ 1376 void rt2x00queue_stop_queue(struct data_queue *queue); 1377 1378 /** 1379 * rt2x00queue_flush_queue - Flush a data queue 1380 * @queue: Pointer to &struct data_queue. 1381 * @drop: True to drop all pending frames. 1382 * 1383 * This function will flush the queue. After this call 1384 * the queue is guaranteed to be empty. 1385 */ 1386 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1387 1388 /** 1389 * rt2x00queue_start_queues - Start all data queues 1390 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1391 * 1392 * This function will loop through all available queues to start them 1393 */ 1394 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1395 1396 /** 1397 * rt2x00queue_stop_queues - Halt all data queues 1398 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1399 * 1400 * This function will loop through all available queues to stop 1401 * any pending frames. 1402 */ 1403 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1404 1405 /** 1406 * rt2x00queue_flush_queues - Flush all data queues 1407 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1408 * @drop: True to drop all pending frames. 1409 * 1410 * This function will loop through all available queues to flush 1411 * any pending frames. 1412 */ 1413 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1414 1415 /* 1416 * Debugfs handlers. 1417 */ 1418 /** 1419 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1420 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1421 * @type: The type of frame that is being dumped. 1422 * @entry: The queue entry containing the frame to be dumped. 1423 */ 1424 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1425 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1426 enum rt2x00_dump_type type, struct queue_entry *entry); 1427 #else 1428 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1429 enum rt2x00_dump_type type, 1430 struct queue_entry *entry) 1431 { 1432 } 1433 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1434 1435 /* 1436 * Utility functions. 1437 */ 1438 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1439 struct ieee80211_vif *vif); 1440 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1441 1442 /* 1443 * Interrupt context handlers. 1444 */ 1445 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1446 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1447 void rt2x00lib_dmastart(struct queue_entry *entry); 1448 void rt2x00lib_dmadone(struct queue_entry *entry); 1449 void rt2x00lib_txdone(struct queue_entry *entry, 1450 struct txdone_entry_desc *txdesc); 1451 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 1452 struct txdone_entry_desc *txdesc); 1453 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1454 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1455 1456 /* 1457 * mac80211 handlers. 1458 */ 1459 void rt2x00mac_tx(struct ieee80211_hw *hw, 1460 struct ieee80211_tx_control *control, 1461 struct sk_buff *skb); 1462 int rt2x00mac_start(struct ieee80211_hw *hw); 1463 void rt2x00mac_stop(struct ieee80211_hw *hw); 1464 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw, 1465 enum ieee80211_reconfig_type reconfig_type); 1466 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1467 struct ieee80211_vif *vif); 1468 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1469 struct ieee80211_vif *vif); 1470 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1471 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1472 unsigned int changed_flags, 1473 unsigned int *total_flags, 1474 u64 multicast); 1475 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1476 bool set); 1477 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1478 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1479 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1480 struct ieee80211_key_conf *key); 1481 #else 1482 #define rt2x00mac_set_key NULL 1483 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1484 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1485 struct ieee80211_vif *vif, 1486 const u8 *mac_addr); 1487 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1488 struct ieee80211_vif *vif); 1489 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1490 struct ieee80211_low_level_stats *stats); 1491 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1492 struct ieee80211_vif *vif, 1493 struct ieee80211_bss_conf *bss_conf, 1494 u64 changes); 1495 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1496 struct ieee80211_vif *vif, 1497 unsigned int link_id, u16 queue, 1498 const struct ieee80211_tx_queue_params *params); 1499 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1500 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1501 u32 queues, bool drop); 1502 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1503 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1504 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1505 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1506 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1507 1508 /* 1509 * Driver allocation handlers. 1510 */ 1511 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1512 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1513 1514 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev); 1515 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1516 1517 #endif /* RT2X00_H */ 1518