1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00 12 Abstract: rt2x00 global information. 13 */ 14 15 #ifndef RT2X00_H 16 #define RT2X00_H 17 18 #include <linux/bitops.h> 19 #include <linux/interrupt.h> 20 #include <linux/skbuff.h> 21 #include <linux/workqueue.h> 22 #include <linux/firmware.h> 23 #include <linux/leds.h> 24 #include <linux/mutex.h> 25 #include <linux/etherdevice.h> 26 #include <linux/kfifo.h> 27 #include <linux/hrtimer.h> 28 #include <linux/average.h> 29 #include <linux/usb.h> 30 #include <linux/clk.h> 31 32 #include <net/mac80211.h> 33 34 #include "rt2x00debug.h" 35 #include "rt2x00dump.h" 36 #include "rt2x00leds.h" 37 #include "rt2x00reg.h" 38 #include "rt2x00queue.h" 39 40 /* 41 * Module information. 42 */ 43 #define DRV_VERSION "2.3.0" 44 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 45 46 /* Debug definitions. 47 * Debug output has to be enabled during compile time. 48 */ 49 #ifdef CONFIG_RT2X00_DEBUG 50 #define DEBUG 51 #endif /* CONFIG_RT2X00_DEBUG */ 52 53 /* Utility printing macros 54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 55 */ 56 #define rt2x00_probe_err(fmt, ...) \ 57 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 58 __func__, ##__VA_ARGS__) 59 #define rt2x00_err(dev, fmt, ...) \ 60 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \ 61 __func__, ##__VA_ARGS__) 62 #define rt2x00_warn(dev, fmt, ...) \ 63 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \ 64 __func__, ##__VA_ARGS__) 65 #define rt2x00_info(dev, fmt, ...) \ 66 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 67 __func__, ##__VA_ARGS__) 68 69 /* Various debug levels */ 70 #define rt2x00_dbg(dev, fmt, ...) \ 71 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 72 __func__, ##__VA_ARGS__) 73 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 74 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 75 __func__, ##__VA_ARGS__) 76 77 /* 78 * Duration calculations 79 * The rate variable passed is: 100kbs. 80 * To convert from bytes to bits we multiply size with 8, 81 * then the size is multiplied with 10 to make the 82 * real rate -> rate argument correction. 83 */ 84 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 86 87 /* 88 * Determine the number of L2 padding bytes required between the header and 89 * the payload. 90 */ 91 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 92 93 /* 94 * Determine the alignment requirement, 95 * to make sure the 802.11 payload is padded to a 4-byte boundrary 96 * we must determine the address of the payload and calculate the 97 * amount of bytes needed to move the data. 98 */ 99 #define ALIGN_SIZE(__skb, __header) \ 100 (((unsigned long)((__skb)->data + (__header))) & 3) 101 102 /* 103 * Constants for extra TX headroom for alignment purposes. 104 */ 105 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 106 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 107 108 /* 109 * Standard timing and size defines. 110 * These values should follow the ieee80211 specifications. 111 */ 112 #define ACK_SIZE 14 113 #define IEEE80211_HEADER 24 114 #define PLCP 48 115 #define BEACON 100 116 #define PREAMBLE 144 117 #define SHORT_PREAMBLE 72 118 #define SLOT_TIME 20 119 #define SHORT_SLOT_TIME 9 120 #define SIFS 10 121 #define PIFS (SIFS + SLOT_TIME) 122 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 123 #define DIFS (PIFS + SLOT_TIME) 124 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 125 #define EIFS (SIFS + DIFS + \ 126 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 127 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 128 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 129 130 enum rt2x00_chip_intf { 131 RT2X00_CHIP_INTF_PCI, 132 RT2X00_CHIP_INTF_PCIE, 133 RT2X00_CHIP_INTF_USB, 134 RT2X00_CHIP_INTF_SOC, 135 }; 136 137 /* 138 * Chipset identification 139 * The chipset on the device is composed of a RT and RF chip. 140 * The chipset combination is important for determining device capabilities. 141 */ 142 struct rt2x00_chip { 143 u16 rt; 144 #define RT2460 0x2460 145 #define RT2560 0x2560 146 #define RT2570 0x2570 147 #define RT2661 0x2661 148 #define RT2573 0x2573 149 #define RT2860 0x2860 /* 2.4GHz */ 150 #define RT2872 0x2872 /* WSOC */ 151 #define RT2883 0x2883 /* WSOC */ 152 #define RT3070 0x3070 153 #define RT3071 0x3071 154 #define RT3090 0x3090 /* 2.4GHz PCIe */ 155 #define RT3290 0x3290 156 #define RT3352 0x3352 /* WSOC */ 157 #define RT3390 0x3390 158 #define RT3572 0x3572 159 #define RT3593 0x3593 160 #define RT3883 0x3883 /* WSOC */ 161 #define RT5350 0x5350 /* WSOC 2.4GHz */ 162 #define RT5390 0x5390 /* 2.4GHz */ 163 #define RT5392 0x5392 /* 2.4GHz */ 164 #define RT5592 0x5592 165 #define RT6352 0x6352 /* WSOC 2.4GHz */ 166 167 u16 rf; 168 u16 rev; 169 170 enum rt2x00_chip_intf intf; 171 }; 172 173 /* 174 * RF register values that belong to a particular channel. 175 */ 176 struct rf_channel { 177 int channel; 178 u32 rf1; 179 u32 rf2; 180 u32 rf3; 181 u32 rf4; 182 }; 183 184 /* 185 * Information structure for channel survey. 186 */ 187 struct rt2x00_chan_survey { 188 u64 time_idle; 189 u64 time_busy; 190 u64 time_ext_busy; 191 }; 192 193 /* 194 * Channel information structure 195 */ 196 struct channel_info { 197 unsigned int flags; 198 #define GEOGRAPHY_ALLOWED 0x00000001 199 200 short max_power; 201 short default_power1; 202 short default_power2; 203 short default_power3; 204 }; 205 206 /* 207 * Antenna setup values. 208 */ 209 struct antenna_setup { 210 enum antenna rx; 211 enum antenna tx; 212 u8 rx_chain_num; 213 u8 tx_chain_num; 214 }; 215 216 /* 217 * Quality statistics about the currently active link. 218 */ 219 struct link_qual { 220 /* 221 * Statistics required for Link tuning by driver 222 * The rssi value is provided by rt2x00lib during the 223 * link_tuner() callback function. 224 * The false_cca field is filled during the link_stats() 225 * callback function and could be used during the 226 * link_tuner() callback function. 227 */ 228 int rssi; 229 int false_cca; 230 231 /* 232 * VGC levels 233 * Hardware driver will tune the VGC level during each call 234 * to the link_tuner() callback function. This vgc_level is 235 * determined based on the link quality statistics like 236 * average RSSI and the false CCA count. 237 * 238 * In some cases the drivers need to differentiate between 239 * the currently "desired" VGC level and the level configured 240 * in the hardware. The latter is important to reduce the 241 * number of BBP register reads to reduce register access 242 * overhead. For this reason we store both values here. 243 */ 244 u8 vgc_level; 245 u8 vgc_level_reg; 246 247 /* 248 * Statistics required for Signal quality calculation. 249 * These fields might be changed during the link_stats() 250 * callback function. 251 */ 252 int rx_success; 253 int rx_failed; 254 int tx_success; 255 int tx_failed; 256 }; 257 258 DECLARE_EWMA(rssi, 10, 8) 259 260 /* 261 * Antenna settings about the currently active link. 262 */ 263 struct link_ant { 264 /* 265 * Antenna flags 266 */ 267 unsigned int flags; 268 #define ANTENNA_RX_DIVERSITY 0x00000001 269 #define ANTENNA_TX_DIVERSITY 0x00000002 270 #define ANTENNA_MODE_SAMPLE 0x00000004 271 272 /* 273 * Currently active TX/RX antenna setup. 274 * When software diversity is used, this will indicate 275 * which antenna is actually used at this time. 276 */ 277 struct antenna_setup active; 278 279 /* 280 * RSSI history information for the antenna. 281 * Used to determine when to switch antenna 282 * when using software diversity. 283 */ 284 int rssi_history; 285 286 /* 287 * Current RSSI average of the currently active antenna. 288 * Similar to the avg_rssi in the link_qual structure 289 * this value is updated by using the walking average. 290 */ 291 struct ewma_rssi rssi_ant; 292 }; 293 294 /* 295 * To optimize the quality of the link we need to store 296 * the quality of received frames and periodically 297 * optimize the link. 298 */ 299 struct link { 300 /* 301 * Link tuner counter 302 * The number of times the link has been tuned 303 * since the radio has been switched on. 304 */ 305 u32 count; 306 307 /* 308 * Quality measurement values. 309 */ 310 struct link_qual qual; 311 312 /* 313 * TX/RX antenna setup. 314 */ 315 struct link_ant ant; 316 317 /* 318 * Currently active average RSSI value 319 */ 320 struct ewma_rssi avg_rssi; 321 322 /* 323 * Work structure for scheduling periodic link tuning. 324 */ 325 struct delayed_work work; 326 327 /* 328 * Work structure for scheduling periodic watchdog monitoring. 329 * This work must be scheduled on the kernel workqueue, while 330 * all other work structures must be queued on the mac80211 331 * workqueue. This guarantees that the watchdog can schedule 332 * other work structures and wait for their completion in order 333 * to bring the device/driver back into the desired state. 334 */ 335 struct delayed_work watchdog_work; 336 unsigned int watchdog_interval; 337 unsigned int watchdog; 338 }; 339 340 enum rt2x00_delayed_flags { 341 DELAYED_UPDATE_BEACON, 342 }; 343 344 /* 345 * Interface structure 346 * Per interface configuration details, this structure 347 * is allocated as the private data for ieee80211_vif. 348 */ 349 struct rt2x00_intf { 350 /* 351 * beacon->skb must be protected with the mutex. 352 */ 353 struct mutex beacon_skb_mutex; 354 355 /* 356 * Entry in the beacon queue which belongs to 357 * this interface. Each interface has its own 358 * dedicated beacon entry. 359 */ 360 struct queue_entry *beacon; 361 bool enable_beacon; 362 363 /* 364 * Actions that needed rescheduling. 365 */ 366 unsigned long delayed_flags; 367 368 /* 369 * Software sequence counter, this is only required 370 * for hardware which doesn't support hardware 371 * sequence counting. 372 */ 373 atomic_t seqno; 374 }; 375 376 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 377 { 378 return (struct rt2x00_intf *)vif->drv_priv; 379 } 380 381 /** 382 * struct hw_mode_spec: Hardware specifications structure 383 * 384 * Details about the supported modes, rates and channels 385 * of a particular chipset. This is used by rt2x00lib 386 * to build the ieee80211_hw_mode array for mac80211. 387 * 388 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 389 * @supported_rates: Rate types which are supported (CCK, OFDM). 390 * @num_channels: Number of supported channels. This is used as array size 391 * for @tx_power_a, @tx_power_bg and @channels. 392 * @channels: Device/chipset specific channel values (See &struct rf_channel). 393 * @channels_info: Additional information for channels (See &struct channel_info). 394 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 395 */ 396 struct hw_mode_spec { 397 unsigned int supported_bands; 398 #define SUPPORT_BAND_2GHZ 0x00000001 399 #define SUPPORT_BAND_5GHZ 0x00000002 400 401 unsigned int supported_rates; 402 #define SUPPORT_RATE_CCK 0x00000001 403 #define SUPPORT_RATE_OFDM 0x00000002 404 405 unsigned int num_channels; 406 const struct rf_channel *channels; 407 const struct channel_info *channels_info; 408 409 struct ieee80211_sta_ht_cap ht; 410 }; 411 412 /* 413 * Configuration structure wrapper around the 414 * mac80211 configuration structure. 415 * When mac80211 configures the driver, rt2x00lib 416 * can precalculate values which are equal for all 417 * rt2x00 drivers. Those values can be stored in here. 418 */ 419 struct rt2x00lib_conf { 420 struct ieee80211_conf *conf; 421 422 struct rf_channel rf; 423 struct channel_info channel; 424 }; 425 426 /* 427 * Configuration structure for erp settings. 428 */ 429 struct rt2x00lib_erp { 430 int short_preamble; 431 int cts_protection; 432 433 u32 basic_rates; 434 435 int slot_time; 436 437 short sifs; 438 short pifs; 439 short difs; 440 short eifs; 441 442 u16 beacon_int; 443 u16 ht_opmode; 444 }; 445 446 /* 447 * Configuration structure for hardware encryption. 448 */ 449 struct rt2x00lib_crypto { 450 enum cipher cipher; 451 452 enum set_key_cmd cmd; 453 const u8 *address; 454 455 u32 bssidx; 456 457 u8 key[16]; 458 u8 tx_mic[8]; 459 u8 rx_mic[8]; 460 461 int wcid; 462 }; 463 464 /* 465 * Configuration structure wrapper around the 466 * rt2x00 interface configuration handler. 467 */ 468 struct rt2x00intf_conf { 469 /* 470 * Interface type 471 */ 472 enum nl80211_iftype type; 473 474 /* 475 * TSF sync value, this is dependent on the operation type. 476 */ 477 enum tsf_sync sync; 478 479 /* 480 * The MAC and BSSID addresses are simple array of bytes, 481 * these arrays are little endian, so when sending the addresses 482 * to the drivers, copy the it into a endian-signed variable. 483 * 484 * Note that all devices (except rt2500usb) have 32 bits 485 * register word sizes. This means that whatever variable we 486 * pass _must_ be a multiple of 32 bits. Otherwise the device 487 * might not accept what we are sending to it. 488 * This will also make it easier for the driver to write 489 * the data to the device. 490 */ 491 __le32 mac[2]; 492 __le32 bssid[2]; 493 }; 494 495 /* 496 * Private structure for storing STA details 497 * wcid: Wireless Client ID 498 */ 499 struct rt2x00_sta { 500 int wcid; 501 }; 502 503 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 504 { 505 return (struct rt2x00_sta *)sta->drv_priv; 506 } 507 508 /* 509 * rt2x00lib callback functions. 510 */ 511 struct rt2x00lib_ops { 512 /* 513 * Interrupt handlers. 514 */ 515 irq_handler_t irq_handler; 516 517 /* 518 * TX status tasklet handler. 519 */ 520 void (*txstatus_tasklet) (struct tasklet_struct *t); 521 void (*pretbtt_tasklet) (struct tasklet_struct *t); 522 void (*tbtt_tasklet) (struct tasklet_struct *t); 523 void (*rxdone_tasklet) (struct tasklet_struct *t); 524 void (*autowake_tasklet) (struct tasklet_struct *t); 525 526 /* 527 * Device init handlers. 528 */ 529 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 530 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 531 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 532 const u8 *data, const size_t len); 533 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 534 const u8 *data, const size_t len); 535 536 /* 537 * Device initialization/deinitialization handlers. 538 */ 539 int (*initialize) (struct rt2x00_dev *rt2x00dev); 540 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 541 542 /* 543 * queue initialization handlers 544 */ 545 bool (*get_entry_state) (struct queue_entry *entry); 546 void (*clear_entry) (struct queue_entry *entry); 547 548 /* 549 * Radio control handlers. 550 */ 551 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 552 enum dev_state state); 553 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 554 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 555 struct link_qual *qual); 556 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 557 struct link_qual *qual); 558 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 559 struct link_qual *qual, const u32 count); 560 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 561 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 562 563 /* 564 * Data queue handlers. 565 */ 566 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 567 void (*start_queue) (struct data_queue *queue); 568 void (*kick_queue) (struct data_queue *queue); 569 void (*stop_queue) (struct data_queue *queue); 570 void (*flush_queue) (struct data_queue *queue, bool drop); 571 void (*tx_dma_done) (struct queue_entry *entry); 572 573 /* 574 * TX control handlers 575 */ 576 void (*write_tx_desc) (struct queue_entry *entry, 577 struct txentry_desc *txdesc); 578 void (*write_tx_data) (struct queue_entry *entry, 579 struct txentry_desc *txdesc); 580 void (*write_beacon) (struct queue_entry *entry, 581 struct txentry_desc *txdesc); 582 void (*clear_beacon) (struct queue_entry *entry); 583 int (*get_tx_data_len) (struct queue_entry *entry); 584 585 /* 586 * RX control handlers 587 */ 588 void (*fill_rxdone) (struct queue_entry *entry, 589 struct rxdone_entry_desc *rxdesc); 590 591 /* 592 * Configuration handlers. 593 */ 594 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 595 struct rt2x00lib_crypto *crypto, 596 struct ieee80211_key_conf *key); 597 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 598 struct rt2x00lib_crypto *crypto, 599 struct ieee80211_key_conf *key); 600 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 601 const unsigned int filter_flags); 602 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 603 struct rt2x00_intf *intf, 604 struct rt2x00intf_conf *conf, 605 const unsigned int flags); 606 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 607 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 608 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 609 610 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 611 struct rt2x00lib_erp *erp, 612 u32 changed); 613 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 614 struct antenna_setup *ant); 615 void (*config) (struct rt2x00_dev *rt2x00dev, 616 struct rt2x00lib_conf *libconf, 617 const unsigned int changed_flags); 618 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev); 619 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 620 struct ieee80211_vif *vif, 621 struct ieee80211_sta *sta); 622 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 623 struct ieee80211_sta *sta); 624 }; 625 626 /* 627 * rt2x00 driver callback operation structure. 628 */ 629 struct rt2x00_ops { 630 const char *name; 631 const unsigned int drv_data_size; 632 const unsigned int max_ap_intf; 633 const unsigned int eeprom_size; 634 const unsigned int rf_size; 635 const unsigned int tx_queues; 636 void (*queue_init)(struct data_queue *queue); 637 const struct rt2x00lib_ops *lib; 638 const void *drv; 639 const struct ieee80211_ops *hw; 640 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 641 const struct rt2x00debug *debugfs; 642 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 643 }; 644 645 /* 646 * rt2x00 state flags 647 */ 648 enum rt2x00_state_flags { 649 /* 650 * Device flags 651 */ 652 DEVICE_STATE_PRESENT, 653 DEVICE_STATE_REGISTERED_HW, 654 DEVICE_STATE_INITIALIZED, 655 DEVICE_STATE_STARTED, 656 DEVICE_STATE_ENABLED_RADIO, 657 DEVICE_STATE_SCANNING, 658 DEVICE_STATE_FLUSHING, 659 DEVICE_STATE_RESET, 660 661 /* 662 * Driver configuration 663 */ 664 CONFIG_CHANNEL_HT40, 665 CONFIG_POWERSAVING, 666 CONFIG_HT_DISABLED, 667 CONFIG_MONITORING, 668 669 /* 670 * Mark we currently are sequentially reading TX_STA_FIFO register 671 * FIXME: this is for only rt2800usb, should go to private data 672 */ 673 TX_STATUS_READING, 674 }; 675 676 /* 677 * rt2x00 capability flags 678 */ 679 enum rt2x00_capability_flags { 680 /* 681 * Requirements 682 */ 683 REQUIRE_FIRMWARE, 684 REQUIRE_BEACON_GUARD, 685 REQUIRE_ATIM_QUEUE, 686 REQUIRE_DMA, 687 REQUIRE_COPY_IV, 688 REQUIRE_L2PAD, 689 REQUIRE_TXSTATUS_FIFO, 690 REQUIRE_TASKLET_CONTEXT, 691 REQUIRE_SW_SEQNO, 692 REQUIRE_HT_TX_DESC, 693 REQUIRE_PS_AUTOWAKE, 694 REQUIRE_DELAYED_RFKILL, 695 696 /* 697 * Capabilities 698 */ 699 CAPABILITY_HW_BUTTON, 700 CAPABILITY_HW_CRYPTO, 701 CAPABILITY_POWER_LIMIT, 702 CAPABILITY_CONTROL_FILTERS, 703 CAPABILITY_CONTROL_FILTER_PSPOLL, 704 CAPABILITY_PRE_TBTT_INTERRUPT, 705 CAPABILITY_LINK_TUNING, 706 CAPABILITY_FRAME_TYPE, 707 CAPABILITY_RF_SEQUENCE, 708 CAPABILITY_EXTERNAL_LNA_A, 709 CAPABILITY_EXTERNAL_LNA_BG, 710 CAPABILITY_DOUBLE_ANTENNA, 711 CAPABILITY_BT_COEXIST, 712 CAPABILITY_VCO_RECALIBRATION, 713 CAPABILITY_EXTERNAL_PA_TX0, 714 CAPABILITY_EXTERNAL_PA_TX1, 715 CAPABILITY_RESTART_HW, 716 }; 717 718 /* 719 * Interface combinations 720 */ 721 enum { 722 IF_COMB_AP = 0, 723 NUM_IF_COMB, 724 }; 725 726 /* 727 * rt2x00 device structure. 728 */ 729 struct rt2x00_dev { 730 /* 731 * Device structure. 732 * The structure stored in here depends on the 733 * system bus (PCI or USB). 734 * When accessing this variable, the rt2x00dev_{pci,usb} 735 * macros should be used for correct typecasting. 736 */ 737 struct device *dev; 738 739 /* 740 * Callback functions. 741 */ 742 const struct rt2x00_ops *ops; 743 744 /* 745 * Driver data. 746 */ 747 void *drv_data; 748 749 /* 750 * IEEE80211 control structure. 751 */ 752 struct ieee80211_hw *hw; 753 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 754 struct rt2x00_chan_survey *chan_survey; 755 enum nl80211_band curr_band; 756 int curr_freq; 757 758 /* 759 * If enabled, the debugfs interface structures 760 * required for deregistration of debugfs. 761 */ 762 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 763 struct rt2x00debug_intf *debugfs_intf; 764 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 765 766 /* 767 * LED structure for changing the LED status 768 * by mac8011 or the kernel. 769 */ 770 #ifdef CONFIG_RT2X00_LIB_LEDS 771 struct rt2x00_led led_radio; 772 struct rt2x00_led led_assoc; 773 struct rt2x00_led led_qual; 774 u16 led_mcu_reg; 775 #endif /* CONFIG_RT2X00_LIB_LEDS */ 776 777 /* 778 * Device state flags. 779 * In these flags the current status is stored. 780 * Access to these flags should occur atomically. 781 */ 782 unsigned long flags; 783 784 /* 785 * Device capabiltiy flags. 786 * In these flags the device/driver capabilities are stored. 787 * Access to these flags should occur non-atomically. 788 */ 789 unsigned long cap_flags; 790 791 /* 792 * Device information, Bus IRQ and name (PCI, SoC) 793 */ 794 int irq; 795 const char *name; 796 797 /* 798 * Chipset identification. 799 */ 800 struct rt2x00_chip chip; 801 802 /* 803 * hw capability specifications. 804 */ 805 struct hw_mode_spec spec; 806 807 /* 808 * This is the default TX/RX antenna setup as indicated 809 * by the device's EEPROM. 810 */ 811 struct antenna_setup default_ant; 812 813 /* 814 * Register pointers 815 * csr.base: CSR base register address. (PCI) 816 * csr.cache: CSR cache for usb_control_msg. (USB) 817 */ 818 union csr { 819 void __iomem *base; 820 void *cache; 821 } csr; 822 823 /* 824 * Mutex to protect register accesses. 825 * For PCI and USB devices it protects against concurrent indirect 826 * register access (BBP, RF, MCU) since accessing those 827 * registers require multiple calls to the CSR registers. 828 * For USB devices it also protects the csr_cache since that 829 * field is used for normal CSR access and it cannot support 830 * multiple callers simultaneously. 831 */ 832 struct mutex csr_mutex; 833 834 /* 835 * Mutex to synchronize config and link tuner. 836 */ 837 struct mutex conf_mutex; 838 /* 839 * Current packet filter configuration for the device. 840 * This contains all currently active FIF_* flags send 841 * to us by mac80211 during configure_filter(). 842 */ 843 unsigned int packet_filter; 844 845 /* 846 * Interface details: 847 * - Open ap interface count. 848 * - Open sta interface count. 849 * - Association count. 850 * - Beaconing enabled count. 851 */ 852 unsigned int intf_ap_count; 853 unsigned int intf_sta_count; 854 unsigned int intf_associated; 855 unsigned int intf_beaconing; 856 857 /* 858 * Interface combinations 859 */ 860 struct ieee80211_iface_limit if_limits_ap; 861 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 862 863 /* 864 * Link quality 865 */ 866 struct link link; 867 868 /* 869 * EEPROM data. 870 */ 871 __le16 *eeprom; 872 873 /* 874 * Active RF register values. 875 * These are stored here so we don't need 876 * to read the rf registers and can directly 877 * use this value instead. 878 * This field should be accessed by using 879 * rt2x00_rf_read() and rt2x00_rf_write(). 880 */ 881 u32 *rf; 882 883 /* 884 * LNA gain 885 */ 886 short lna_gain; 887 888 /* 889 * Current TX power value. 890 */ 891 u16 tx_power; 892 893 /* 894 * Current retry values. 895 */ 896 u8 short_retry; 897 u8 long_retry; 898 899 /* 900 * Rssi <-> Dbm offset 901 */ 902 u8 rssi_offset; 903 904 /* 905 * Frequency offset. 906 */ 907 u8 freq_offset; 908 909 /* 910 * Association id. 911 */ 912 u16 aid; 913 914 /* 915 * Beacon interval. 916 */ 917 u16 beacon_int; 918 919 /* Rx/Tx DMA busy watchdog counter */ 920 u16 rxdma_busy, txdma_busy; 921 922 /** 923 * Timestamp of last received beacon 924 */ 925 unsigned long last_beacon; 926 927 /* 928 * Low level statistics which will have 929 * to be kept up to date while device is running. 930 */ 931 struct ieee80211_low_level_stats low_level_stats; 932 933 /** 934 * Work queue for all work which should not be placed 935 * on the mac80211 workqueue (because of dependencies 936 * between various work structures). 937 */ 938 struct workqueue_struct *workqueue; 939 940 /* 941 * Scheduled work. 942 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 943 * which means it cannot be placed on the hw->workqueue 944 * due to RTNL locking requirements. 945 */ 946 struct work_struct intf_work; 947 948 /** 949 * Scheduled work for TX/RX done handling (USB devices) 950 */ 951 struct work_struct rxdone_work; 952 struct work_struct txdone_work; 953 954 /* 955 * Powersaving work 956 */ 957 struct delayed_work autowakeup_work; 958 struct work_struct sleep_work; 959 960 /* 961 * Data queue arrays for RX, TX, Beacon and ATIM. 962 */ 963 unsigned int data_queues; 964 struct data_queue *rx; 965 struct data_queue *tx; 966 struct data_queue *bcn; 967 struct data_queue *atim; 968 969 /* 970 * Firmware image. 971 */ 972 const struct firmware *fw; 973 974 /* 975 * FIFO for storing tx status reports between isr and tasklet. 976 */ 977 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 978 979 /* 980 * Timer to ensure tx status reports are read (rt2800usb). 981 */ 982 struct hrtimer txstatus_timer; 983 984 /* 985 * Tasklet for processing tx status reports (rt2800pci). 986 */ 987 struct tasklet_struct txstatus_tasklet; 988 struct tasklet_struct pretbtt_tasklet; 989 struct tasklet_struct tbtt_tasklet; 990 struct tasklet_struct rxdone_tasklet; 991 struct tasklet_struct autowake_tasklet; 992 993 /* 994 * Used for VCO periodic calibration. 995 */ 996 int rf_channel; 997 998 /* 999 * Protect the interrupt mask register. 1000 */ 1001 spinlock_t irqmask_lock; 1002 1003 /* 1004 * List of BlockAckReq TX entries that need driver BlockAck processing. 1005 */ 1006 struct list_head bar_list; 1007 spinlock_t bar_list_lock; 1008 1009 /* Extra TX headroom required for alignment purposes. */ 1010 unsigned int extra_tx_headroom; 1011 1012 struct usb_anchor *anchor; 1013 unsigned int num_proto_errs; 1014 1015 /* Clock for System On Chip devices. */ 1016 struct clk *clk; 1017 }; 1018 1019 struct rt2x00_bar_list_entry { 1020 struct list_head list; 1021 struct rcu_head head; 1022 1023 struct queue_entry *entry; 1024 int block_acked; 1025 1026 /* Relevant parts of the IEEE80211 BAR header */ 1027 __u8 ra[6]; 1028 __u8 ta[6]; 1029 __le16 control; 1030 __le16 start_seq_num; 1031 }; 1032 1033 /* 1034 * Register defines. 1035 * Some registers require multiple attempts before success, 1036 * in those cases REGISTER_BUSY_COUNT attempts should be 1037 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1038 * bus delays, we do not have to loop so many times to wait 1039 * for valid register value on that bus. 1040 */ 1041 #define REGISTER_BUSY_COUNT 100 1042 #define REGISTER_USB_BUSY_COUNT 20 1043 #define REGISTER_BUSY_DELAY 100 1044 1045 /* 1046 * Generic RF access. 1047 * The RF is being accessed by word index. 1048 */ 1049 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1050 const unsigned int word) 1051 { 1052 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1053 return rt2x00dev->rf[word - 1]; 1054 } 1055 1056 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1057 const unsigned int word, u32 data) 1058 { 1059 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1060 rt2x00dev->rf[word - 1] = data; 1061 } 1062 1063 /* 1064 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1065 */ 1066 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1067 const unsigned int word) 1068 { 1069 return (void *)&rt2x00dev->eeprom[word]; 1070 } 1071 1072 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1073 const unsigned int word) 1074 { 1075 return le16_to_cpu(rt2x00dev->eeprom[word]); 1076 } 1077 1078 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1079 const unsigned int word, u16 data) 1080 { 1081 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1082 } 1083 1084 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1085 const unsigned int byte) 1086 { 1087 return *(((u8 *)rt2x00dev->eeprom) + byte); 1088 } 1089 1090 /* 1091 * Chipset handlers 1092 */ 1093 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1094 const u16 rt, const u16 rf, const u16 rev) 1095 { 1096 rt2x00dev->chip.rt = rt; 1097 rt2x00dev->chip.rf = rf; 1098 rt2x00dev->chip.rev = rev; 1099 1100 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1101 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1102 rt2x00dev->chip.rev); 1103 } 1104 1105 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1106 const u16 rt, const u16 rev) 1107 { 1108 rt2x00dev->chip.rt = rt; 1109 rt2x00dev->chip.rev = rev; 1110 1111 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1112 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1113 } 1114 1115 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1116 { 1117 rt2x00dev->chip.rf = rf; 1118 1119 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1120 rt2x00dev->chip.rf); 1121 } 1122 1123 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1124 { 1125 return (rt2x00dev->chip.rt == rt); 1126 } 1127 1128 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1129 { 1130 return (rt2x00dev->chip.rf == rf); 1131 } 1132 1133 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1134 { 1135 return rt2x00dev->chip.rev; 1136 } 1137 1138 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1139 const u16 rt, const u16 rev) 1140 { 1141 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1142 } 1143 1144 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1145 const u16 rt, const u16 rev) 1146 { 1147 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1148 } 1149 1150 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1151 const u16 rt, const u16 rev) 1152 { 1153 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1154 } 1155 1156 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1157 enum rt2x00_chip_intf intf) 1158 { 1159 rt2x00dev->chip.intf = intf; 1160 } 1161 1162 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1163 enum rt2x00_chip_intf intf) 1164 { 1165 return (rt2x00dev->chip.intf == intf); 1166 } 1167 1168 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1169 { 1170 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1171 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1172 } 1173 1174 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1175 { 1176 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1177 } 1178 1179 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1180 { 1181 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1182 } 1183 1184 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1185 { 1186 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1187 } 1188 1189 /* Helpers for capability flags */ 1190 1191 static inline bool 1192 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1193 enum rt2x00_capability_flags cap_flag) 1194 { 1195 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1196 } 1197 1198 static inline bool 1199 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1200 { 1201 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1202 } 1203 1204 static inline bool 1205 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1206 { 1207 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1208 } 1209 1210 static inline bool 1211 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1212 { 1213 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1214 } 1215 1216 static inline bool 1217 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1218 { 1219 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1220 } 1221 1222 static inline bool 1223 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1224 { 1225 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1226 } 1227 1228 static inline bool 1229 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1230 { 1231 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1232 } 1233 1234 static inline bool 1235 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1236 { 1237 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1238 } 1239 1240 static inline bool 1241 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1242 { 1243 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1244 } 1245 1246 static inline bool 1247 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1248 { 1249 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1250 } 1251 1252 static inline bool 1253 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1254 { 1255 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1256 } 1257 1258 static inline bool 1259 rt2x00_has_cap_external_pa(struct rt2x00_dev *rt2x00dev) 1260 { 1261 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_PA_TX0); 1262 } 1263 1264 static inline bool 1265 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1266 { 1267 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1268 } 1269 1270 static inline bool 1271 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1272 { 1273 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1274 } 1275 1276 static inline bool 1277 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1278 { 1279 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1280 } 1281 1282 static inline bool 1283 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev) 1284 { 1285 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW); 1286 } 1287 1288 /** 1289 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1290 * @entry: Pointer to &struct queue_entry 1291 * 1292 * Returns -ENOMEM if mapping fail, 0 otherwise. 1293 */ 1294 int rt2x00queue_map_txskb(struct queue_entry *entry); 1295 1296 /** 1297 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1298 * @entry: Pointer to &struct queue_entry 1299 */ 1300 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1301 1302 /** 1303 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1304 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1305 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1306 * 1307 * Returns NULL for non tx queues. 1308 */ 1309 static inline struct data_queue * 1310 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1311 enum data_queue_qid queue) 1312 { 1313 if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS) 1314 queue = rt2x00dev->ops->tx_queues - 1; 1315 1316 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1317 return &rt2x00dev->tx[queue]; 1318 1319 if (queue == QID_ATIM) 1320 return rt2x00dev->atim; 1321 1322 return NULL; 1323 } 1324 1325 /** 1326 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1327 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1328 * @index: Index identifier for obtaining the correct index. 1329 */ 1330 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1331 enum queue_index index); 1332 1333 /** 1334 * rt2x00queue_pause_queue - Pause a data queue 1335 * @queue: Pointer to &struct data_queue. 1336 * 1337 * This function will pause the data queue locally, preventing 1338 * new frames to be added to the queue (while the hardware is 1339 * still allowed to run). 1340 */ 1341 void rt2x00queue_pause_queue(struct data_queue *queue); 1342 1343 /** 1344 * rt2x00queue_unpause_queue - unpause a data queue 1345 * @queue: Pointer to &struct data_queue. 1346 * 1347 * This function will unpause the data queue locally, allowing 1348 * new frames to be added to the queue again. 1349 */ 1350 void rt2x00queue_unpause_queue(struct data_queue *queue); 1351 1352 /** 1353 * rt2x00queue_start_queue - Start a data queue 1354 * @queue: Pointer to &struct data_queue. 1355 * 1356 * This function will start handling all pending frames in the queue. 1357 */ 1358 void rt2x00queue_start_queue(struct data_queue *queue); 1359 1360 /** 1361 * rt2x00queue_stop_queue - Halt a data queue 1362 * @queue: Pointer to &struct data_queue. 1363 * 1364 * This function will stop all pending frames in the queue. 1365 */ 1366 void rt2x00queue_stop_queue(struct data_queue *queue); 1367 1368 /** 1369 * rt2x00queue_flush_queue - Flush a data queue 1370 * @queue: Pointer to &struct data_queue. 1371 * @drop: True to drop all pending frames. 1372 * 1373 * This function will flush the queue. After this call 1374 * the queue is guaranteed to be empty. 1375 */ 1376 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1377 1378 /** 1379 * rt2x00queue_start_queues - Start all data queues 1380 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1381 * 1382 * This function will loop through all available queues to start them 1383 */ 1384 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1385 1386 /** 1387 * rt2x00queue_stop_queues - Halt all data queues 1388 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1389 * 1390 * This function will loop through all available queues to stop 1391 * any pending frames. 1392 */ 1393 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1394 1395 /** 1396 * rt2x00queue_flush_queues - Flush all data queues 1397 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1398 * @drop: True to drop all pending frames. 1399 * 1400 * This function will loop through all available queues to flush 1401 * any pending frames. 1402 */ 1403 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1404 1405 /* 1406 * Debugfs handlers. 1407 */ 1408 /** 1409 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1410 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1411 * @type: The type of frame that is being dumped. 1412 * @entry: The queue entry containing the frame to be dumped. 1413 */ 1414 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1415 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1416 enum rt2x00_dump_type type, struct queue_entry *entry); 1417 #else 1418 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1419 enum rt2x00_dump_type type, 1420 struct queue_entry *entry) 1421 { 1422 } 1423 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1424 1425 /* 1426 * Utility functions. 1427 */ 1428 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1429 struct ieee80211_vif *vif); 1430 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1431 1432 /* 1433 * Interrupt context handlers. 1434 */ 1435 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1436 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1437 void rt2x00lib_dmastart(struct queue_entry *entry); 1438 void rt2x00lib_dmadone(struct queue_entry *entry); 1439 void rt2x00lib_txdone(struct queue_entry *entry, 1440 struct txdone_entry_desc *txdesc); 1441 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 1442 struct txdone_entry_desc *txdesc); 1443 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1444 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1445 1446 /* 1447 * mac80211 handlers. 1448 */ 1449 void rt2x00mac_tx(struct ieee80211_hw *hw, 1450 struct ieee80211_tx_control *control, 1451 struct sk_buff *skb); 1452 int rt2x00mac_start(struct ieee80211_hw *hw); 1453 void rt2x00mac_stop(struct ieee80211_hw *hw, bool suspend); 1454 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw, 1455 enum ieee80211_reconfig_type reconfig_type); 1456 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1457 struct ieee80211_vif *vif); 1458 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1459 struct ieee80211_vif *vif); 1460 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1461 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1462 unsigned int changed_flags, 1463 unsigned int *total_flags, 1464 u64 multicast); 1465 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1466 bool set); 1467 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1468 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1469 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1470 struct ieee80211_key_conf *key); 1471 #else 1472 #define rt2x00mac_set_key NULL 1473 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1474 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1475 struct ieee80211_vif *vif, 1476 const u8 *mac_addr); 1477 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1478 struct ieee80211_vif *vif); 1479 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1480 struct ieee80211_low_level_stats *stats); 1481 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1482 struct ieee80211_vif *vif, 1483 struct ieee80211_bss_conf *bss_conf, 1484 u64 changes); 1485 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1486 struct ieee80211_vif *vif, 1487 unsigned int link_id, u16 queue, 1488 const struct ieee80211_tx_queue_params *params); 1489 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1490 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1491 u32 queues, bool drop); 1492 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1493 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1494 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1495 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1496 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1497 1498 /* 1499 * Driver allocation handlers. 1500 */ 1501 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1502 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1503 1504 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev); 1505 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1506 1507 #endif /* RT2X00_H */ 1508