1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 6 <http://rt2x00.serialmonkey.com> 7 8 */ 9 10 /* 11 Module: rt2x00 12 Abstract: rt2x00 global information. 13 */ 14 15 #ifndef RT2X00_H 16 #define RT2X00_H 17 18 #include <linux/bitops.h> 19 #include <linux/interrupt.h> 20 #include <linux/skbuff.h> 21 #include <linux/workqueue.h> 22 #include <linux/firmware.h> 23 #include <linux/leds.h> 24 #include <linux/mutex.h> 25 #include <linux/etherdevice.h> 26 #include <linux/input-polldev.h> 27 #include <linux/kfifo.h> 28 #include <linux/hrtimer.h> 29 #include <linux/average.h> 30 #include <linux/usb.h> 31 #include <linux/clk.h> 32 33 #include <net/mac80211.h> 34 35 #include "rt2x00debug.h" 36 #include "rt2x00dump.h" 37 #include "rt2x00leds.h" 38 #include "rt2x00reg.h" 39 #include "rt2x00queue.h" 40 41 /* 42 * Module information. 43 */ 44 #define DRV_VERSION "2.3.0" 45 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 46 47 /* Debug definitions. 48 * Debug output has to be enabled during compile time. 49 */ 50 #ifdef CONFIG_RT2X00_DEBUG 51 #define DEBUG 52 #endif /* CONFIG_RT2X00_DEBUG */ 53 54 /* Utility printing macros 55 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 56 */ 57 #define rt2x00_probe_err(fmt, ...) \ 58 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 59 __func__, ##__VA_ARGS__) 60 #define rt2x00_err(dev, fmt, ...) \ 61 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \ 62 __func__, ##__VA_ARGS__) 63 #define rt2x00_warn(dev, fmt, ...) \ 64 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \ 65 __func__, ##__VA_ARGS__) 66 #define rt2x00_info(dev, fmt, ...) \ 67 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 68 __func__, ##__VA_ARGS__) 69 70 /* Various debug levels */ 71 #define rt2x00_dbg(dev, fmt, ...) \ 72 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 73 __func__, ##__VA_ARGS__) 74 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 75 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 76 __func__, ##__VA_ARGS__) 77 78 /* 79 * Duration calculations 80 * The rate variable passed is: 100kbs. 81 * To convert from bytes to bits we multiply size with 8, 82 * then the size is multiplied with 10 to make the 83 * real rate -> rate argument correction. 84 */ 85 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 86 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 87 88 /* 89 * Determine the number of L2 padding bytes required between the header and 90 * the payload. 91 */ 92 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 93 94 /* 95 * Determine the alignment requirement, 96 * to make sure the 802.11 payload is padded to a 4-byte boundrary 97 * we must determine the address of the payload and calculate the 98 * amount of bytes needed to move the data. 99 */ 100 #define ALIGN_SIZE(__skb, __header) \ 101 (((unsigned long)((__skb)->data + (__header))) & 3) 102 103 /* 104 * Constants for extra TX headroom for alignment purposes. 105 */ 106 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 107 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 108 109 /* 110 * Standard timing and size defines. 111 * These values should follow the ieee80211 specifications. 112 */ 113 #define ACK_SIZE 14 114 #define IEEE80211_HEADER 24 115 #define PLCP 48 116 #define BEACON 100 117 #define PREAMBLE 144 118 #define SHORT_PREAMBLE 72 119 #define SLOT_TIME 20 120 #define SHORT_SLOT_TIME 9 121 #define SIFS 10 122 #define PIFS (SIFS + SLOT_TIME) 123 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 124 #define DIFS (PIFS + SLOT_TIME) 125 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 126 #define EIFS (SIFS + DIFS + \ 127 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 128 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 129 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 130 131 enum rt2x00_chip_intf { 132 RT2X00_CHIP_INTF_PCI, 133 RT2X00_CHIP_INTF_PCIE, 134 RT2X00_CHIP_INTF_USB, 135 RT2X00_CHIP_INTF_SOC, 136 }; 137 138 /* 139 * Chipset identification 140 * The chipset on the device is composed of a RT and RF chip. 141 * The chipset combination is important for determining device capabilities. 142 */ 143 struct rt2x00_chip { 144 u16 rt; 145 #define RT2460 0x2460 146 #define RT2560 0x2560 147 #define RT2570 0x2570 148 #define RT2661 0x2661 149 #define RT2573 0x2573 150 #define RT2860 0x2860 /* 2.4GHz */ 151 #define RT2872 0x2872 /* WSOC */ 152 #define RT2883 0x2883 /* WSOC */ 153 #define RT3070 0x3070 154 #define RT3071 0x3071 155 #define RT3090 0x3090 /* 2.4GHz PCIe */ 156 #define RT3290 0x3290 157 #define RT3352 0x3352 /* WSOC */ 158 #define RT3390 0x3390 159 #define RT3572 0x3572 160 #define RT3593 0x3593 161 #define RT3883 0x3883 /* WSOC */ 162 #define RT5350 0x5350 /* WSOC 2.4GHz */ 163 #define RT5390 0x5390 /* 2.4GHz */ 164 #define RT5392 0x5392 /* 2.4GHz */ 165 #define RT5592 0x5592 166 #define RT6352 0x6352 /* WSOC 2.4GHz */ 167 168 u16 rf; 169 u16 rev; 170 171 enum rt2x00_chip_intf intf; 172 }; 173 174 /* 175 * RF register values that belong to a particular channel. 176 */ 177 struct rf_channel { 178 int channel; 179 u32 rf1; 180 u32 rf2; 181 u32 rf3; 182 u32 rf4; 183 }; 184 185 /* 186 * Channel information structure 187 */ 188 struct channel_info { 189 unsigned int flags; 190 #define GEOGRAPHY_ALLOWED 0x00000001 191 192 short max_power; 193 short default_power1; 194 short default_power2; 195 short default_power3; 196 }; 197 198 /* 199 * Antenna setup values. 200 */ 201 struct antenna_setup { 202 enum antenna rx; 203 enum antenna tx; 204 u8 rx_chain_num; 205 u8 tx_chain_num; 206 }; 207 208 /* 209 * Quality statistics about the currently active link. 210 */ 211 struct link_qual { 212 /* 213 * Statistics required for Link tuning by driver 214 * The rssi value is provided by rt2x00lib during the 215 * link_tuner() callback function. 216 * The false_cca field is filled during the link_stats() 217 * callback function and could be used during the 218 * link_tuner() callback function. 219 */ 220 int rssi; 221 int false_cca; 222 223 /* 224 * VGC levels 225 * Hardware driver will tune the VGC level during each call 226 * to the link_tuner() callback function. This vgc_level is 227 * is determined based on the link quality statistics like 228 * average RSSI and the false CCA count. 229 * 230 * In some cases the drivers need to differentiate between 231 * the currently "desired" VGC level and the level configured 232 * in the hardware. The latter is important to reduce the 233 * number of BBP register reads to reduce register access 234 * overhead. For this reason we store both values here. 235 */ 236 u8 vgc_level; 237 u8 vgc_level_reg; 238 239 /* 240 * Statistics required for Signal quality calculation. 241 * These fields might be changed during the link_stats() 242 * callback function. 243 */ 244 int rx_success; 245 int rx_failed; 246 int tx_success; 247 int tx_failed; 248 }; 249 250 DECLARE_EWMA(rssi, 10, 8) 251 252 /* 253 * Antenna settings about the currently active link. 254 */ 255 struct link_ant { 256 /* 257 * Antenna flags 258 */ 259 unsigned int flags; 260 #define ANTENNA_RX_DIVERSITY 0x00000001 261 #define ANTENNA_TX_DIVERSITY 0x00000002 262 #define ANTENNA_MODE_SAMPLE 0x00000004 263 264 /* 265 * Currently active TX/RX antenna setup. 266 * When software diversity is used, this will indicate 267 * which antenna is actually used at this time. 268 */ 269 struct antenna_setup active; 270 271 /* 272 * RSSI history information for the antenna. 273 * Used to determine when to switch antenna 274 * when using software diversity. 275 */ 276 int rssi_history; 277 278 /* 279 * Current RSSI average of the currently active antenna. 280 * Similar to the avg_rssi in the link_qual structure 281 * this value is updated by using the walking average. 282 */ 283 struct ewma_rssi rssi_ant; 284 }; 285 286 /* 287 * To optimize the quality of the link we need to store 288 * the quality of received frames and periodically 289 * optimize the link. 290 */ 291 struct link { 292 /* 293 * Link tuner counter 294 * The number of times the link has been tuned 295 * since the radio has been switched on. 296 */ 297 u32 count; 298 299 /* 300 * Quality measurement values. 301 */ 302 struct link_qual qual; 303 304 /* 305 * TX/RX antenna setup. 306 */ 307 struct link_ant ant; 308 309 /* 310 * Currently active average RSSI value 311 */ 312 struct ewma_rssi avg_rssi; 313 314 /* 315 * Work structure for scheduling periodic link tuning. 316 */ 317 struct delayed_work work; 318 319 /* 320 * Work structure for scheduling periodic watchdog monitoring. 321 * This work must be scheduled on the kernel workqueue, while 322 * all other work structures must be queued on the mac80211 323 * workqueue. This guarantees that the watchdog can schedule 324 * other work structures and wait for their completion in order 325 * to bring the device/driver back into the desired state. 326 */ 327 struct delayed_work watchdog_work; 328 unsigned int watchdog_interval; 329 bool watchdog_disabled; 330 331 /* 332 * Work structure for scheduling periodic AGC adjustments. 333 */ 334 struct delayed_work agc_work; 335 336 /* 337 * Work structure for scheduling periodic VCO calibration. 338 */ 339 struct delayed_work vco_work; 340 }; 341 342 enum rt2x00_delayed_flags { 343 DELAYED_UPDATE_BEACON, 344 }; 345 346 /* 347 * Interface structure 348 * Per interface configuration details, this structure 349 * is allocated as the private data for ieee80211_vif. 350 */ 351 struct rt2x00_intf { 352 /* 353 * beacon->skb must be protected with the mutex. 354 */ 355 struct mutex beacon_skb_mutex; 356 357 /* 358 * Entry in the beacon queue which belongs to 359 * this interface. Each interface has its own 360 * dedicated beacon entry. 361 */ 362 struct queue_entry *beacon; 363 bool enable_beacon; 364 365 /* 366 * Actions that needed rescheduling. 367 */ 368 unsigned long delayed_flags; 369 370 /* 371 * Software sequence counter, this is only required 372 * for hardware which doesn't support hardware 373 * sequence counting. 374 */ 375 atomic_t seqno; 376 }; 377 378 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 379 { 380 return (struct rt2x00_intf *)vif->drv_priv; 381 } 382 383 /** 384 * struct hw_mode_spec: Hardware specifications structure 385 * 386 * Details about the supported modes, rates and channels 387 * of a particular chipset. This is used by rt2x00lib 388 * to build the ieee80211_hw_mode array for mac80211. 389 * 390 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 391 * @supported_rates: Rate types which are supported (CCK, OFDM). 392 * @num_channels: Number of supported channels. This is used as array size 393 * for @tx_power_a, @tx_power_bg and @channels. 394 * @channels: Device/chipset specific channel values (See &struct rf_channel). 395 * @channels_info: Additional information for channels (See &struct channel_info). 396 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 397 */ 398 struct hw_mode_spec { 399 unsigned int supported_bands; 400 #define SUPPORT_BAND_2GHZ 0x00000001 401 #define SUPPORT_BAND_5GHZ 0x00000002 402 403 unsigned int supported_rates; 404 #define SUPPORT_RATE_CCK 0x00000001 405 #define SUPPORT_RATE_OFDM 0x00000002 406 407 unsigned int num_channels; 408 const struct rf_channel *channels; 409 const struct channel_info *channels_info; 410 411 struct ieee80211_sta_ht_cap ht; 412 }; 413 414 /* 415 * Configuration structure wrapper around the 416 * mac80211 configuration structure. 417 * When mac80211 configures the driver, rt2x00lib 418 * can precalculate values which are equal for all 419 * rt2x00 drivers. Those values can be stored in here. 420 */ 421 struct rt2x00lib_conf { 422 struct ieee80211_conf *conf; 423 424 struct rf_channel rf; 425 struct channel_info channel; 426 }; 427 428 /* 429 * Configuration structure for erp settings. 430 */ 431 struct rt2x00lib_erp { 432 int short_preamble; 433 int cts_protection; 434 435 u32 basic_rates; 436 437 int slot_time; 438 439 short sifs; 440 short pifs; 441 short difs; 442 short eifs; 443 444 u16 beacon_int; 445 u16 ht_opmode; 446 }; 447 448 /* 449 * Configuration structure for hardware encryption. 450 */ 451 struct rt2x00lib_crypto { 452 enum cipher cipher; 453 454 enum set_key_cmd cmd; 455 const u8 *address; 456 457 u32 bssidx; 458 459 u8 key[16]; 460 u8 tx_mic[8]; 461 u8 rx_mic[8]; 462 463 int wcid; 464 }; 465 466 /* 467 * Configuration structure wrapper around the 468 * rt2x00 interface configuration handler. 469 */ 470 struct rt2x00intf_conf { 471 /* 472 * Interface type 473 */ 474 enum nl80211_iftype type; 475 476 /* 477 * TSF sync value, this is dependent on the operation type. 478 */ 479 enum tsf_sync sync; 480 481 /* 482 * The MAC and BSSID addresses are simple array of bytes, 483 * these arrays are little endian, so when sending the addresses 484 * to the drivers, copy the it into a endian-signed variable. 485 * 486 * Note that all devices (except rt2500usb) have 32 bits 487 * register word sizes. This means that whatever variable we 488 * pass _must_ be a multiple of 32 bits. Otherwise the device 489 * might not accept what we are sending to it. 490 * This will also make it easier for the driver to write 491 * the data to the device. 492 */ 493 __le32 mac[2]; 494 __le32 bssid[2]; 495 }; 496 497 /* 498 * Private structure for storing STA details 499 * wcid: Wireless Client ID 500 */ 501 struct rt2x00_sta { 502 int wcid; 503 }; 504 505 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 506 { 507 return (struct rt2x00_sta *)sta->drv_priv; 508 } 509 510 /* 511 * rt2x00lib callback functions. 512 */ 513 struct rt2x00lib_ops { 514 /* 515 * Interrupt handlers. 516 */ 517 irq_handler_t irq_handler; 518 519 /* 520 * TX status tasklet handler. 521 */ 522 void (*txstatus_tasklet) (unsigned long data); 523 void (*pretbtt_tasklet) (unsigned long data); 524 void (*tbtt_tasklet) (unsigned long data); 525 void (*rxdone_tasklet) (unsigned long data); 526 void (*autowake_tasklet) (unsigned long data); 527 528 /* 529 * Device init handlers. 530 */ 531 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 532 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 533 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 534 const u8 *data, const size_t len); 535 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 536 const u8 *data, const size_t len); 537 538 /* 539 * Device initialization/deinitialization handlers. 540 */ 541 int (*initialize) (struct rt2x00_dev *rt2x00dev); 542 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 543 544 /* 545 * queue initialization handlers 546 */ 547 bool (*get_entry_state) (struct queue_entry *entry); 548 void (*clear_entry) (struct queue_entry *entry); 549 550 /* 551 * Radio control handlers. 552 */ 553 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 554 enum dev_state state); 555 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 556 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 557 struct link_qual *qual); 558 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 559 struct link_qual *qual); 560 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 561 struct link_qual *qual, const u32 count); 562 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 563 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 564 565 /* 566 * Data queue handlers. 567 */ 568 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 569 void (*start_queue) (struct data_queue *queue); 570 void (*kick_queue) (struct data_queue *queue); 571 void (*stop_queue) (struct data_queue *queue); 572 void (*flush_queue) (struct data_queue *queue, bool drop); 573 void (*tx_dma_done) (struct queue_entry *entry); 574 575 /* 576 * TX control handlers 577 */ 578 void (*write_tx_desc) (struct queue_entry *entry, 579 struct txentry_desc *txdesc); 580 void (*write_tx_data) (struct queue_entry *entry, 581 struct txentry_desc *txdesc); 582 void (*write_beacon) (struct queue_entry *entry, 583 struct txentry_desc *txdesc); 584 void (*clear_beacon) (struct queue_entry *entry); 585 int (*get_tx_data_len) (struct queue_entry *entry); 586 587 /* 588 * RX control handlers 589 */ 590 void (*fill_rxdone) (struct queue_entry *entry, 591 struct rxdone_entry_desc *rxdesc); 592 593 /* 594 * Configuration handlers. 595 */ 596 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 597 struct rt2x00lib_crypto *crypto, 598 struct ieee80211_key_conf *key); 599 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 600 struct rt2x00lib_crypto *crypto, 601 struct ieee80211_key_conf *key); 602 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 603 const unsigned int filter_flags); 604 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 605 struct rt2x00_intf *intf, 606 struct rt2x00intf_conf *conf, 607 const unsigned int flags); 608 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 609 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 610 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 611 612 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 613 struct rt2x00lib_erp *erp, 614 u32 changed); 615 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 616 struct antenna_setup *ant); 617 void (*config) (struct rt2x00_dev *rt2x00dev, 618 struct rt2x00lib_conf *libconf, 619 const unsigned int changed_flags); 620 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev); 621 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 622 struct ieee80211_vif *vif, 623 struct ieee80211_sta *sta); 624 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 625 struct ieee80211_sta *sta); 626 }; 627 628 /* 629 * rt2x00 driver callback operation structure. 630 */ 631 struct rt2x00_ops { 632 const char *name; 633 const unsigned int drv_data_size; 634 const unsigned int max_ap_intf; 635 const unsigned int eeprom_size; 636 const unsigned int rf_size; 637 const unsigned int tx_queues; 638 void (*queue_init)(struct data_queue *queue); 639 const struct rt2x00lib_ops *lib; 640 const void *drv; 641 const struct ieee80211_ops *hw; 642 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 643 const struct rt2x00debug *debugfs; 644 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 645 }; 646 647 /* 648 * rt2x00 state flags 649 */ 650 enum rt2x00_state_flags { 651 /* 652 * Device flags 653 */ 654 DEVICE_STATE_PRESENT, 655 DEVICE_STATE_REGISTERED_HW, 656 DEVICE_STATE_INITIALIZED, 657 DEVICE_STATE_STARTED, 658 DEVICE_STATE_ENABLED_RADIO, 659 DEVICE_STATE_SCANNING, 660 DEVICE_STATE_FLUSHING, 661 662 /* 663 * Driver configuration 664 */ 665 CONFIG_CHANNEL_HT40, 666 CONFIG_POWERSAVING, 667 CONFIG_HT_DISABLED, 668 CONFIG_MONITORING, 669 670 /* 671 * Mark we currently are sequentially reading TX_STA_FIFO register 672 * FIXME: this is for only rt2800usb, should go to private data 673 */ 674 TX_STATUS_READING, 675 }; 676 677 /* 678 * rt2x00 capability flags 679 */ 680 enum rt2x00_capability_flags { 681 /* 682 * Requirements 683 */ 684 REQUIRE_FIRMWARE, 685 REQUIRE_BEACON_GUARD, 686 REQUIRE_ATIM_QUEUE, 687 REQUIRE_DMA, 688 REQUIRE_COPY_IV, 689 REQUIRE_L2PAD, 690 REQUIRE_TXSTATUS_FIFO, 691 REQUIRE_TASKLET_CONTEXT, 692 REQUIRE_SW_SEQNO, 693 REQUIRE_HT_TX_DESC, 694 REQUIRE_PS_AUTOWAKE, 695 REQUIRE_DELAYED_RFKILL, 696 697 /* 698 * Capabilities 699 */ 700 CAPABILITY_HW_BUTTON, 701 CAPABILITY_HW_CRYPTO, 702 CAPABILITY_POWER_LIMIT, 703 CAPABILITY_CONTROL_FILTERS, 704 CAPABILITY_CONTROL_FILTER_PSPOLL, 705 CAPABILITY_PRE_TBTT_INTERRUPT, 706 CAPABILITY_LINK_TUNING, 707 CAPABILITY_FRAME_TYPE, 708 CAPABILITY_RF_SEQUENCE, 709 CAPABILITY_EXTERNAL_LNA_A, 710 CAPABILITY_EXTERNAL_LNA_BG, 711 CAPABILITY_DOUBLE_ANTENNA, 712 CAPABILITY_BT_COEXIST, 713 CAPABILITY_VCO_RECALIBRATION, 714 CAPABILITY_EXTERNAL_PA_TX0, 715 CAPABILITY_EXTERNAL_PA_TX1, 716 CAPABILITY_RESTART_HW, 717 }; 718 719 /* 720 * Interface combinations 721 */ 722 enum { 723 IF_COMB_AP = 0, 724 NUM_IF_COMB, 725 }; 726 727 /* 728 * rt2x00 device structure. 729 */ 730 struct rt2x00_dev { 731 /* 732 * Device structure. 733 * The structure stored in here depends on the 734 * system bus (PCI or USB). 735 * When accessing this variable, the rt2x00dev_{pci,usb} 736 * macros should be used for correct typecasting. 737 */ 738 struct device *dev; 739 740 /* 741 * Callback functions. 742 */ 743 const struct rt2x00_ops *ops; 744 745 /* 746 * Driver data. 747 */ 748 void *drv_data; 749 750 /* 751 * IEEE80211 control structure. 752 */ 753 struct ieee80211_hw *hw; 754 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 755 enum nl80211_band curr_band; 756 int curr_freq; 757 758 /* 759 * If enabled, the debugfs interface structures 760 * required for deregistration of debugfs. 761 */ 762 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 763 struct rt2x00debug_intf *debugfs_intf; 764 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 765 766 /* 767 * LED structure for changing the LED status 768 * by mac8011 or the kernel. 769 */ 770 #ifdef CONFIG_RT2X00_LIB_LEDS 771 struct rt2x00_led led_radio; 772 struct rt2x00_led led_assoc; 773 struct rt2x00_led led_qual; 774 u16 led_mcu_reg; 775 #endif /* CONFIG_RT2X00_LIB_LEDS */ 776 777 /* 778 * Device state flags. 779 * In these flags the current status is stored. 780 * Access to these flags should occur atomically. 781 */ 782 unsigned long flags; 783 784 /* 785 * Device capabiltiy flags. 786 * In these flags the device/driver capabilities are stored. 787 * Access to these flags should occur non-atomically. 788 */ 789 unsigned long cap_flags; 790 791 /* 792 * Device information, Bus IRQ and name (PCI, SoC) 793 */ 794 int irq; 795 const char *name; 796 797 /* 798 * Chipset identification. 799 */ 800 struct rt2x00_chip chip; 801 802 /* 803 * hw capability specifications. 804 */ 805 struct hw_mode_spec spec; 806 807 /* 808 * This is the default TX/RX antenna setup as indicated 809 * by the device's EEPROM. 810 */ 811 struct antenna_setup default_ant; 812 813 /* 814 * Register pointers 815 * csr.base: CSR base register address. (PCI) 816 * csr.cache: CSR cache for usb_control_msg. (USB) 817 */ 818 union csr { 819 void __iomem *base; 820 void *cache; 821 } csr; 822 823 /* 824 * Mutex to protect register accesses. 825 * For PCI and USB devices it protects against concurrent indirect 826 * register access (BBP, RF, MCU) since accessing those 827 * registers require multiple calls to the CSR registers. 828 * For USB devices it also protects the csr_cache since that 829 * field is used for normal CSR access and it cannot support 830 * multiple callers simultaneously. 831 */ 832 struct mutex csr_mutex; 833 834 /* 835 * Mutex to synchronize config and link tuner. 836 */ 837 struct mutex conf_mutex; 838 /* 839 * Current packet filter configuration for the device. 840 * This contains all currently active FIF_* flags send 841 * to us by mac80211 during configure_filter(). 842 */ 843 unsigned int packet_filter; 844 845 /* 846 * Interface details: 847 * - Open ap interface count. 848 * - Open sta interface count. 849 * - Association count. 850 * - Beaconing enabled count. 851 */ 852 unsigned int intf_ap_count; 853 unsigned int intf_sta_count; 854 unsigned int intf_associated; 855 unsigned int intf_beaconing; 856 857 /* 858 * Interface combinations 859 */ 860 struct ieee80211_iface_limit if_limits_ap; 861 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 862 863 /* 864 * Link quality 865 */ 866 struct link link; 867 868 /* 869 * EEPROM data. 870 */ 871 __le16 *eeprom; 872 873 /* 874 * Active RF register values. 875 * These are stored here so we don't need 876 * to read the rf registers and can directly 877 * use this value instead. 878 * This field should be accessed by using 879 * rt2x00_rf_read() and rt2x00_rf_write(). 880 */ 881 u32 *rf; 882 883 /* 884 * LNA gain 885 */ 886 short lna_gain; 887 888 /* 889 * Current TX power value. 890 */ 891 u16 tx_power; 892 893 /* 894 * Current retry values. 895 */ 896 u8 short_retry; 897 u8 long_retry; 898 899 /* 900 * Rssi <-> Dbm offset 901 */ 902 u8 rssi_offset; 903 904 /* 905 * Frequency offset. 906 */ 907 u8 freq_offset; 908 909 /* 910 * Association id. 911 */ 912 u16 aid; 913 914 /* 915 * Beacon interval. 916 */ 917 u16 beacon_int; 918 919 /** 920 * Timestamp of last received beacon 921 */ 922 unsigned long last_beacon; 923 924 /* 925 * Low level statistics which will have 926 * to be kept up to date while device is running. 927 */ 928 struct ieee80211_low_level_stats low_level_stats; 929 930 /** 931 * Work queue for all work which should not be placed 932 * on the mac80211 workqueue (because of dependencies 933 * between various work structures). 934 */ 935 struct workqueue_struct *workqueue; 936 937 /* 938 * Scheduled work. 939 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 940 * which means it cannot be placed on the hw->workqueue 941 * due to RTNL locking requirements. 942 */ 943 struct work_struct intf_work; 944 945 /** 946 * Scheduled work for TX/RX done handling (USB devices) 947 */ 948 struct work_struct rxdone_work; 949 struct work_struct txdone_work; 950 951 /* 952 * Powersaving work 953 */ 954 struct delayed_work autowakeup_work; 955 struct work_struct sleep_work; 956 957 /* 958 * Data queue arrays for RX, TX, Beacon and ATIM. 959 */ 960 unsigned int data_queues; 961 struct data_queue *rx; 962 struct data_queue *tx; 963 struct data_queue *bcn; 964 struct data_queue *atim; 965 966 /* 967 * Firmware image. 968 */ 969 const struct firmware *fw; 970 971 /* 972 * FIFO for storing tx status reports between isr and tasklet. 973 */ 974 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 975 976 /* 977 * Timer to ensure tx status reports are read (rt2800usb). 978 */ 979 struct hrtimer txstatus_timer; 980 981 /* 982 * Tasklet for processing tx status reports (rt2800pci). 983 */ 984 struct tasklet_struct txstatus_tasklet; 985 struct tasklet_struct pretbtt_tasklet; 986 struct tasklet_struct tbtt_tasklet; 987 struct tasklet_struct rxdone_tasklet; 988 struct tasklet_struct autowake_tasklet; 989 990 /* 991 * Used for VCO periodic calibration. 992 */ 993 int rf_channel; 994 995 /* 996 * Protect the interrupt mask register. 997 */ 998 spinlock_t irqmask_lock; 999 1000 /* 1001 * List of BlockAckReq TX entries that need driver BlockAck processing. 1002 */ 1003 struct list_head bar_list; 1004 spinlock_t bar_list_lock; 1005 1006 /* Extra TX headroom required for alignment purposes. */ 1007 unsigned int extra_tx_headroom; 1008 1009 struct usb_anchor *anchor; 1010 unsigned int num_proto_errs; 1011 1012 /* Clock for System On Chip devices. */ 1013 struct clk *clk; 1014 }; 1015 1016 struct rt2x00_bar_list_entry { 1017 struct list_head list; 1018 struct rcu_head head; 1019 1020 struct queue_entry *entry; 1021 int block_acked; 1022 1023 /* Relevant parts of the IEEE80211 BAR header */ 1024 __u8 ra[6]; 1025 __u8 ta[6]; 1026 __le16 control; 1027 __le16 start_seq_num; 1028 }; 1029 1030 /* 1031 * Register defines. 1032 * Some registers require multiple attempts before success, 1033 * in those cases REGISTER_BUSY_COUNT attempts should be 1034 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1035 * bus delays, we do not have to loop so many times to wait 1036 * for valid register value on that bus. 1037 */ 1038 #define REGISTER_BUSY_COUNT 100 1039 #define REGISTER_USB_BUSY_COUNT 20 1040 #define REGISTER_BUSY_DELAY 100 1041 1042 /* 1043 * Generic RF access. 1044 * The RF is being accessed by word index. 1045 */ 1046 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1047 const unsigned int word) 1048 { 1049 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1050 return rt2x00dev->rf[word - 1]; 1051 } 1052 1053 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1054 const unsigned int word, u32 data) 1055 { 1056 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1057 rt2x00dev->rf[word - 1] = data; 1058 } 1059 1060 /* 1061 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1062 */ 1063 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1064 const unsigned int word) 1065 { 1066 return (void *)&rt2x00dev->eeprom[word]; 1067 } 1068 1069 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1070 const unsigned int word) 1071 { 1072 return le16_to_cpu(rt2x00dev->eeprom[word]); 1073 } 1074 1075 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1076 const unsigned int word, u16 data) 1077 { 1078 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1079 } 1080 1081 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1082 const unsigned int byte) 1083 { 1084 return *(((u8 *)rt2x00dev->eeprom) + byte); 1085 } 1086 1087 /* 1088 * Chipset handlers 1089 */ 1090 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1091 const u16 rt, const u16 rf, const u16 rev) 1092 { 1093 rt2x00dev->chip.rt = rt; 1094 rt2x00dev->chip.rf = rf; 1095 rt2x00dev->chip.rev = rev; 1096 1097 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1098 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1099 rt2x00dev->chip.rev); 1100 } 1101 1102 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1103 const u16 rt, const u16 rev) 1104 { 1105 rt2x00dev->chip.rt = rt; 1106 rt2x00dev->chip.rev = rev; 1107 1108 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1109 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1110 } 1111 1112 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1113 { 1114 rt2x00dev->chip.rf = rf; 1115 1116 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1117 rt2x00dev->chip.rf); 1118 } 1119 1120 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1121 { 1122 return (rt2x00dev->chip.rt == rt); 1123 } 1124 1125 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1126 { 1127 return (rt2x00dev->chip.rf == rf); 1128 } 1129 1130 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1131 { 1132 return rt2x00dev->chip.rev; 1133 } 1134 1135 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1136 const u16 rt, const u16 rev) 1137 { 1138 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1139 } 1140 1141 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1142 const u16 rt, const u16 rev) 1143 { 1144 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1145 } 1146 1147 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1148 const u16 rt, const u16 rev) 1149 { 1150 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1151 } 1152 1153 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1154 enum rt2x00_chip_intf intf) 1155 { 1156 rt2x00dev->chip.intf = intf; 1157 } 1158 1159 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1160 enum rt2x00_chip_intf intf) 1161 { 1162 return (rt2x00dev->chip.intf == intf); 1163 } 1164 1165 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1166 { 1167 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1168 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1169 } 1170 1171 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1172 { 1173 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1174 } 1175 1176 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1177 { 1178 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1179 } 1180 1181 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1182 { 1183 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1184 } 1185 1186 /* Helpers for capability flags */ 1187 1188 static inline bool 1189 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1190 enum rt2x00_capability_flags cap_flag) 1191 { 1192 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1193 } 1194 1195 static inline bool 1196 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1197 { 1198 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1199 } 1200 1201 static inline bool 1202 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1203 { 1204 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1205 } 1206 1207 static inline bool 1208 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1209 { 1210 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1211 } 1212 1213 static inline bool 1214 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1215 { 1216 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1217 } 1218 1219 static inline bool 1220 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1221 { 1222 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1223 } 1224 1225 static inline bool 1226 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1227 { 1228 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1229 } 1230 1231 static inline bool 1232 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1233 { 1234 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1235 } 1236 1237 static inline bool 1238 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1239 { 1240 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1241 } 1242 1243 static inline bool 1244 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1245 { 1246 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1247 } 1248 1249 static inline bool 1250 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1251 { 1252 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1253 } 1254 1255 static inline bool 1256 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1257 { 1258 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1259 } 1260 1261 static inline bool 1262 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1263 { 1264 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1265 } 1266 1267 static inline bool 1268 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1269 { 1270 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1271 } 1272 1273 static inline bool 1274 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev) 1275 { 1276 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW); 1277 } 1278 1279 /** 1280 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1281 * @entry: Pointer to &struct queue_entry 1282 * 1283 * Returns -ENOMEM if mapping fail, 0 otherwise. 1284 */ 1285 int rt2x00queue_map_txskb(struct queue_entry *entry); 1286 1287 /** 1288 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1289 * @entry: Pointer to &struct queue_entry 1290 */ 1291 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1292 1293 /** 1294 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1295 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1296 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1297 * 1298 * Returns NULL for non tx queues. 1299 */ 1300 static inline struct data_queue * 1301 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1302 const enum data_queue_qid queue) 1303 { 1304 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1305 return &rt2x00dev->tx[queue]; 1306 1307 if (queue == QID_ATIM) 1308 return rt2x00dev->atim; 1309 1310 return NULL; 1311 } 1312 1313 /** 1314 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1315 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1316 * @index: Index identifier for obtaining the correct index. 1317 */ 1318 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1319 enum queue_index index); 1320 1321 /** 1322 * rt2x00queue_pause_queue - Pause a data queue 1323 * @queue: Pointer to &struct data_queue. 1324 * 1325 * This function will pause the data queue locally, preventing 1326 * new frames to be added to the queue (while the hardware is 1327 * still allowed to run). 1328 */ 1329 void rt2x00queue_pause_queue(struct data_queue *queue); 1330 1331 /** 1332 * rt2x00queue_unpause_queue - unpause a data queue 1333 * @queue: Pointer to &struct data_queue. 1334 * 1335 * This function will unpause the data queue locally, allowing 1336 * new frames to be added to the queue again. 1337 */ 1338 void rt2x00queue_unpause_queue(struct data_queue *queue); 1339 1340 /** 1341 * rt2x00queue_start_queue - Start a data queue 1342 * @queue: Pointer to &struct data_queue. 1343 * 1344 * This function will start handling all pending frames in the queue. 1345 */ 1346 void rt2x00queue_start_queue(struct data_queue *queue); 1347 1348 /** 1349 * rt2x00queue_stop_queue - Halt a data queue 1350 * @queue: Pointer to &struct data_queue. 1351 * 1352 * This function will stop all pending frames in the queue. 1353 */ 1354 void rt2x00queue_stop_queue(struct data_queue *queue); 1355 1356 /** 1357 * rt2x00queue_flush_queue - Flush a data queue 1358 * @queue: Pointer to &struct data_queue. 1359 * @drop: True to drop all pending frames. 1360 * 1361 * This function will flush the queue. After this call 1362 * the queue is guaranteed to be empty. 1363 */ 1364 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1365 1366 /** 1367 * rt2x00queue_start_queues - Start all data queues 1368 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1369 * 1370 * This function will loop through all available queues to start them 1371 */ 1372 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1373 1374 /** 1375 * rt2x00queue_stop_queues - Halt all data queues 1376 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1377 * 1378 * This function will loop through all available queues to stop 1379 * any pending frames. 1380 */ 1381 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1382 1383 /** 1384 * rt2x00queue_flush_queues - Flush all data queues 1385 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1386 * @drop: True to drop all pending frames. 1387 * 1388 * This function will loop through all available queues to flush 1389 * any pending frames. 1390 */ 1391 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1392 1393 /* 1394 * Debugfs handlers. 1395 */ 1396 /** 1397 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1398 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1399 * @type: The type of frame that is being dumped. 1400 * @entry: The queue entry containing the frame to be dumped. 1401 */ 1402 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1403 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1404 enum rt2x00_dump_type type, struct queue_entry *entry); 1405 #else 1406 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1407 enum rt2x00_dump_type type, 1408 struct queue_entry *entry) 1409 { 1410 } 1411 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1412 1413 /* 1414 * Utility functions. 1415 */ 1416 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1417 struct ieee80211_vif *vif); 1418 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr); 1419 1420 /* 1421 * Interrupt context handlers. 1422 */ 1423 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1424 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1425 void rt2x00lib_dmastart(struct queue_entry *entry); 1426 void rt2x00lib_dmadone(struct queue_entry *entry); 1427 void rt2x00lib_txdone(struct queue_entry *entry, 1428 struct txdone_entry_desc *txdesc); 1429 void rt2x00lib_txdone_nomatch(struct queue_entry *entry, 1430 struct txdone_entry_desc *txdesc); 1431 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1432 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1433 1434 /* 1435 * mac80211 handlers. 1436 */ 1437 void rt2x00mac_tx(struct ieee80211_hw *hw, 1438 struct ieee80211_tx_control *control, 1439 struct sk_buff *skb); 1440 int rt2x00mac_start(struct ieee80211_hw *hw); 1441 void rt2x00mac_stop(struct ieee80211_hw *hw); 1442 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1443 struct ieee80211_vif *vif); 1444 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1445 struct ieee80211_vif *vif); 1446 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1447 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1448 unsigned int changed_flags, 1449 unsigned int *total_flags, 1450 u64 multicast); 1451 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1452 bool set); 1453 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1454 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1455 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1456 struct ieee80211_key_conf *key); 1457 #else 1458 #define rt2x00mac_set_key NULL 1459 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1460 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1461 struct ieee80211_vif *vif, 1462 const u8 *mac_addr); 1463 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1464 struct ieee80211_vif *vif); 1465 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1466 struct ieee80211_low_level_stats *stats); 1467 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1468 struct ieee80211_vif *vif, 1469 struct ieee80211_bss_conf *bss_conf, 1470 u32 changes); 1471 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1472 struct ieee80211_vif *vif, u16 queue, 1473 const struct ieee80211_tx_queue_params *params); 1474 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1475 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1476 u32 queues, bool drop); 1477 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1478 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1479 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1480 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1481 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1482 1483 /* 1484 * Driver allocation handlers. 1485 */ 1486 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1487 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1488 #ifdef CONFIG_PM 1489 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1490 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1491 #endif /* CONFIG_PM */ 1492 1493 #endif /* RT2X00_H */ 1494