1 /* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> 5 <http://rt2x00.serialmonkey.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 /* 22 Module: rt2x00 23 Abstract: rt2x00 global information. 24 */ 25 26 #ifndef RT2X00_H 27 #define RT2X00_H 28 29 #include <linux/bitops.h> 30 #include <linux/interrupt.h> 31 #include <linux/skbuff.h> 32 #include <linux/workqueue.h> 33 #include <linux/firmware.h> 34 #include <linux/leds.h> 35 #include <linux/mutex.h> 36 #include <linux/etherdevice.h> 37 #include <linux/input-polldev.h> 38 #include <linux/kfifo.h> 39 #include <linux/hrtimer.h> 40 #include <linux/average.h> 41 #include <linux/usb.h> 42 43 #include <net/mac80211.h> 44 45 #include "rt2x00debug.h" 46 #include "rt2x00dump.h" 47 #include "rt2x00leds.h" 48 #include "rt2x00reg.h" 49 #include "rt2x00queue.h" 50 51 /* 52 * Module information. 53 */ 54 #define DRV_VERSION "2.3.0" 55 #define DRV_PROJECT "http://rt2x00.serialmonkey.com" 56 57 /* Debug definitions. 58 * Debug output has to be enabled during compile time. 59 */ 60 #ifdef CONFIG_RT2X00_DEBUG 61 #define DEBUG 62 #endif /* CONFIG_RT2X00_DEBUG */ 63 64 /* Utility printing macros 65 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized 66 */ 67 #define rt2x00_probe_err(fmt, ...) \ 68 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \ 69 __func__, ##__VA_ARGS__) 70 #define rt2x00_err(dev, fmt, ...) \ 71 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \ 72 __func__, ##__VA_ARGS__) 73 #define rt2x00_warn(dev, fmt, ...) \ 74 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \ 75 __func__, ##__VA_ARGS__) 76 #define rt2x00_info(dev, fmt, ...) \ 77 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \ 78 __func__, ##__VA_ARGS__) 79 80 /* Various debug levels */ 81 #define rt2x00_dbg(dev, fmt, ...) \ 82 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \ 83 __func__, ##__VA_ARGS__) 84 #define rt2x00_eeprom_dbg(dev, fmt, ...) \ 85 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \ 86 __func__, ##__VA_ARGS__) 87 88 /* 89 * Duration calculations 90 * The rate variable passed is: 100kbs. 91 * To convert from bytes to bits we multiply size with 8, 92 * then the size is multiplied with 10 to make the 93 * real rate -> rate argument correction. 94 */ 95 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate)) 96 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate)) 97 98 /* 99 * Determine the number of L2 padding bytes required between the header and 100 * the payload. 101 */ 102 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3) 103 104 /* 105 * Determine the alignment requirement, 106 * to make sure the 802.11 payload is padded to a 4-byte boundrary 107 * we must determine the address of the payload and calculate the 108 * amount of bytes needed to move the data. 109 */ 110 #define ALIGN_SIZE(__skb, __header) \ 111 (((unsigned long)((__skb)->data + (__header))) & 3) 112 113 /* 114 * Constants for extra TX headroom for alignment purposes. 115 */ 116 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */ 117 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */ 118 119 /* 120 * Standard timing and size defines. 121 * These values should follow the ieee80211 specifications. 122 */ 123 #define ACK_SIZE 14 124 #define IEEE80211_HEADER 24 125 #define PLCP 48 126 #define BEACON 100 127 #define PREAMBLE 144 128 #define SHORT_PREAMBLE 72 129 #define SLOT_TIME 20 130 #define SHORT_SLOT_TIME 9 131 #define SIFS 10 132 #define PIFS (SIFS + SLOT_TIME) 133 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME) 134 #define DIFS (PIFS + SLOT_TIME) 135 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME) 136 #define EIFS (SIFS + DIFS + \ 137 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 138 #define SHORT_EIFS (SIFS + SHORT_DIFS + \ 139 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10)) 140 141 enum rt2x00_chip_intf { 142 RT2X00_CHIP_INTF_PCI, 143 RT2X00_CHIP_INTF_PCIE, 144 RT2X00_CHIP_INTF_USB, 145 RT2X00_CHIP_INTF_SOC, 146 }; 147 148 /* 149 * Chipset identification 150 * The chipset on the device is composed of a RT and RF chip. 151 * The chipset combination is important for determining device capabilities. 152 */ 153 struct rt2x00_chip { 154 u16 rt; 155 #define RT2460 0x2460 156 #define RT2560 0x2560 157 #define RT2570 0x2570 158 #define RT2661 0x2661 159 #define RT2573 0x2573 160 #define RT2860 0x2860 /* 2.4GHz */ 161 #define RT2872 0x2872 /* WSOC */ 162 #define RT2883 0x2883 /* WSOC */ 163 #define RT3070 0x3070 164 #define RT3071 0x3071 165 #define RT3090 0x3090 /* 2.4GHz PCIe */ 166 #define RT3290 0x3290 167 #define RT3352 0x3352 /* WSOC */ 168 #define RT3390 0x3390 169 #define RT3572 0x3572 170 #define RT3593 0x3593 171 #define RT3883 0x3883 /* WSOC */ 172 #define RT5390 0x5390 /* 2.4GHz */ 173 #define RT5392 0x5392 /* 2.4GHz */ 174 #define RT5592 0x5592 175 176 u16 rf; 177 u16 rev; 178 179 enum rt2x00_chip_intf intf; 180 }; 181 182 /* 183 * RF register values that belong to a particular channel. 184 */ 185 struct rf_channel { 186 int channel; 187 u32 rf1; 188 u32 rf2; 189 u32 rf3; 190 u32 rf4; 191 }; 192 193 /* 194 * Channel information structure 195 */ 196 struct channel_info { 197 unsigned int flags; 198 #define GEOGRAPHY_ALLOWED 0x00000001 199 200 short max_power; 201 short default_power1; 202 short default_power2; 203 short default_power3; 204 }; 205 206 /* 207 * Antenna setup values. 208 */ 209 struct antenna_setup { 210 enum antenna rx; 211 enum antenna tx; 212 u8 rx_chain_num; 213 u8 tx_chain_num; 214 }; 215 216 /* 217 * Quality statistics about the currently active link. 218 */ 219 struct link_qual { 220 /* 221 * Statistics required for Link tuning by driver 222 * The rssi value is provided by rt2x00lib during the 223 * link_tuner() callback function. 224 * The false_cca field is filled during the link_stats() 225 * callback function and could be used during the 226 * link_tuner() callback function. 227 */ 228 int rssi; 229 int false_cca; 230 231 /* 232 * VGC levels 233 * Hardware driver will tune the VGC level during each call 234 * to the link_tuner() callback function. This vgc_level is 235 * is determined based on the link quality statistics like 236 * average RSSI and the false CCA count. 237 * 238 * In some cases the drivers need to differentiate between 239 * the currently "desired" VGC level and the level configured 240 * in the hardware. The latter is important to reduce the 241 * number of BBP register reads to reduce register access 242 * overhead. For this reason we store both values here. 243 */ 244 u8 vgc_level; 245 u8 vgc_level_reg; 246 247 /* 248 * Statistics required for Signal quality calculation. 249 * These fields might be changed during the link_stats() 250 * callback function. 251 */ 252 int rx_success; 253 int rx_failed; 254 int tx_success; 255 int tx_failed; 256 }; 257 258 DECLARE_EWMA(rssi, 1024, 8) 259 260 /* 261 * Antenna settings about the currently active link. 262 */ 263 struct link_ant { 264 /* 265 * Antenna flags 266 */ 267 unsigned int flags; 268 #define ANTENNA_RX_DIVERSITY 0x00000001 269 #define ANTENNA_TX_DIVERSITY 0x00000002 270 #define ANTENNA_MODE_SAMPLE 0x00000004 271 272 /* 273 * Currently active TX/RX antenna setup. 274 * When software diversity is used, this will indicate 275 * which antenna is actually used at this time. 276 */ 277 struct antenna_setup active; 278 279 /* 280 * RSSI history information for the antenna. 281 * Used to determine when to switch antenna 282 * when using software diversity. 283 */ 284 int rssi_history; 285 286 /* 287 * Current RSSI average of the currently active antenna. 288 * Similar to the avg_rssi in the link_qual structure 289 * this value is updated by using the walking average. 290 */ 291 struct ewma_rssi rssi_ant; 292 }; 293 294 /* 295 * To optimize the quality of the link we need to store 296 * the quality of received frames and periodically 297 * optimize the link. 298 */ 299 struct link { 300 /* 301 * Link tuner counter 302 * The number of times the link has been tuned 303 * since the radio has been switched on. 304 */ 305 u32 count; 306 307 /* 308 * Quality measurement values. 309 */ 310 struct link_qual qual; 311 312 /* 313 * TX/RX antenna setup. 314 */ 315 struct link_ant ant; 316 317 /* 318 * Currently active average RSSI value 319 */ 320 struct ewma_rssi avg_rssi; 321 322 /* 323 * Work structure for scheduling periodic link tuning. 324 */ 325 struct delayed_work work; 326 327 /* 328 * Work structure for scheduling periodic watchdog monitoring. 329 * This work must be scheduled on the kernel workqueue, while 330 * all other work structures must be queued on the mac80211 331 * workqueue. This guarantees that the watchdog can schedule 332 * other work structures and wait for their completion in order 333 * to bring the device/driver back into the desired state. 334 */ 335 struct delayed_work watchdog_work; 336 337 /* 338 * Work structure for scheduling periodic AGC adjustments. 339 */ 340 struct delayed_work agc_work; 341 342 /* 343 * Work structure for scheduling periodic VCO calibration. 344 */ 345 struct delayed_work vco_work; 346 }; 347 348 enum rt2x00_delayed_flags { 349 DELAYED_UPDATE_BEACON, 350 }; 351 352 /* 353 * Interface structure 354 * Per interface configuration details, this structure 355 * is allocated as the private data for ieee80211_vif. 356 */ 357 struct rt2x00_intf { 358 /* 359 * beacon->skb must be protected with the mutex. 360 */ 361 struct mutex beacon_skb_mutex; 362 363 /* 364 * Entry in the beacon queue which belongs to 365 * this interface. Each interface has its own 366 * dedicated beacon entry. 367 */ 368 struct queue_entry *beacon; 369 bool enable_beacon; 370 371 /* 372 * Actions that needed rescheduling. 373 */ 374 unsigned long delayed_flags; 375 376 /* 377 * Software sequence counter, this is only required 378 * for hardware which doesn't support hardware 379 * sequence counting. 380 */ 381 atomic_t seqno; 382 }; 383 384 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif) 385 { 386 return (struct rt2x00_intf *)vif->drv_priv; 387 } 388 389 /** 390 * struct hw_mode_spec: Hardware specifications structure 391 * 392 * Details about the supported modes, rates and channels 393 * of a particular chipset. This is used by rt2x00lib 394 * to build the ieee80211_hw_mode array for mac80211. 395 * 396 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz). 397 * @supported_rates: Rate types which are supported (CCK, OFDM). 398 * @num_channels: Number of supported channels. This is used as array size 399 * for @tx_power_a, @tx_power_bg and @channels. 400 * @channels: Device/chipset specific channel values (See &struct rf_channel). 401 * @channels_info: Additional information for channels (See &struct channel_info). 402 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap). 403 */ 404 struct hw_mode_spec { 405 unsigned int supported_bands; 406 #define SUPPORT_BAND_2GHZ 0x00000001 407 #define SUPPORT_BAND_5GHZ 0x00000002 408 409 unsigned int supported_rates; 410 #define SUPPORT_RATE_CCK 0x00000001 411 #define SUPPORT_RATE_OFDM 0x00000002 412 413 unsigned int num_channels; 414 const struct rf_channel *channels; 415 const struct channel_info *channels_info; 416 417 struct ieee80211_sta_ht_cap ht; 418 }; 419 420 /* 421 * Configuration structure wrapper around the 422 * mac80211 configuration structure. 423 * When mac80211 configures the driver, rt2x00lib 424 * can precalculate values which are equal for all 425 * rt2x00 drivers. Those values can be stored in here. 426 */ 427 struct rt2x00lib_conf { 428 struct ieee80211_conf *conf; 429 430 struct rf_channel rf; 431 struct channel_info channel; 432 }; 433 434 /* 435 * Configuration structure for erp settings. 436 */ 437 struct rt2x00lib_erp { 438 int short_preamble; 439 int cts_protection; 440 441 u32 basic_rates; 442 443 int slot_time; 444 445 short sifs; 446 short pifs; 447 short difs; 448 short eifs; 449 450 u16 beacon_int; 451 u16 ht_opmode; 452 }; 453 454 /* 455 * Configuration structure for hardware encryption. 456 */ 457 struct rt2x00lib_crypto { 458 enum cipher cipher; 459 460 enum set_key_cmd cmd; 461 const u8 *address; 462 463 u32 bssidx; 464 465 u8 key[16]; 466 u8 tx_mic[8]; 467 u8 rx_mic[8]; 468 469 int wcid; 470 }; 471 472 /* 473 * Configuration structure wrapper around the 474 * rt2x00 interface configuration handler. 475 */ 476 struct rt2x00intf_conf { 477 /* 478 * Interface type 479 */ 480 enum nl80211_iftype type; 481 482 /* 483 * TSF sync value, this is dependent on the operation type. 484 */ 485 enum tsf_sync sync; 486 487 /* 488 * The MAC and BSSID addresses are simple array of bytes, 489 * these arrays are little endian, so when sending the addresses 490 * to the drivers, copy the it into a endian-signed variable. 491 * 492 * Note that all devices (except rt2500usb) have 32 bits 493 * register word sizes. This means that whatever variable we 494 * pass _must_ be a multiple of 32 bits. Otherwise the device 495 * might not accept what we are sending to it. 496 * This will also make it easier for the driver to write 497 * the data to the device. 498 */ 499 __le32 mac[2]; 500 __le32 bssid[2]; 501 }; 502 503 /* 504 * Private structure for storing STA details 505 * wcid: Wireless Client ID 506 */ 507 struct rt2x00_sta { 508 int wcid; 509 }; 510 511 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta) 512 { 513 return (struct rt2x00_sta *)sta->drv_priv; 514 } 515 516 /* 517 * rt2x00lib callback functions. 518 */ 519 struct rt2x00lib_ops { 520 /* 521 * Interrupt handlers. 522 */ 523 irq_handler_t irq_handler; 524 525 /* 526 * TX status tasklet handler. 527 */ 528 void (*txstatus_tasklet) (unsigned long data); 529 void (*pretbtt_tasklet) (unsigned long data); 530 void (*tbtt_tasklet) (unsigned long data); 531 void (*rxdone_tasklet) (unsigned long data); 532 void (*autowake_tasklet) (unsigned long data); 533 534 /* 535 * Device init handlers. 536 */ 537 int (*probe_hw) (struct rt2x00_dev *rt2x00dev); 538 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); 539 int (*check_firmware) (struct rt2x00_dev *rt2x00dev, 540 const u8 *data, const size_t len); 541 int (*load_firmware) (struct rt2x00_dev *rt2x00dev, 542 const u8 *data, const size_t len); 543 544 /* 545 * Device initialization/deinitialization handlers. 546 */ 547 int (*initialize) (struct rt2x00_dev *rt2x00dev); 548 void (*uninitialize) (struct rt2x00_dev *rt2x00dev); 549 550 /* 551 * queue initialization handlers 552 */ 553 bool (*get_entry_state) (struct queue_entry *entry); 554 void (*clear_entry) (struct queue_entry *entry); 555 556 /* 557 * Radio control handlers. 558 */ 559 int (*set_device_state) (struct rt2x00_dev *rt2x00dev, 560 enum dev_state state); 561 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); 562 void (*link_stats) (struct rt2x00_dev *rt2x00dev, 563 struct link_qual *qual); 564 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev, 565 struct link_qual *qual); 566 void (*link_tuner) (struct rt2x00_dev *rt2x00dev, 567 struct link_qual *qual, const u32 count); 568 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev); 569 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev); 570 571 /* 572 * Data queue handlers. 573 */ 574 void (*watchdog) (struct rt2x00_dev *rt2x00dev); 575 void (*start_queue) (struct data_queue *queue); 576 void (*kick_queue) (struct data_queue *queue); 577 void (*stop_queue) (struct data_queue *queue); 578 void (*flush_queue) (struct data_queue *queue, bool drop); 579 void (*tx_dma_done) (struct queue_entry *entry); 580 581 /* 582 * TX control handlers 583 */ 584 void (*write_tx_desc) (struct queue_entry *entry, 585 struct txentry_desc *txdesc); 586 void (*write_tx_data) (struct queue_entry *entry, 587 struct txentry_desc *txdesc); 588 void (*write_beacon) (struct queue_entry *entry, 589 struct txentry_desc *txdesc); 590 void (*clear_beacon) (struct queue_entry *entry); 591 int (*get_tx_data_len) (struct queue_entry *entry); 592 593 /* 594 * RX control handlers 595 */ 596 void (*fill_rxdone) (struct queue_entry *entry, 597 struct rxdone_entry_desc *rxdesc); 598 599 /* 600 * Configuration handlers. 601 */ 602 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev, 603 struct rt2x00lib_crypto *crypto, 604 struct ieee80211_key_conf *key); 605 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev, 606 struct rt2x00lib_crypto *crypto, 607 struct ieee80211_key_conf *key); 608 void (*config_filter) (struct rt2x00_dev *rt2x00dev, 609 const unsigned int filter_flags); 610 void (*config_intf) (struct rt2x00_dev *rt2x00dev, 611 struct rt2x00_intf *intf, 612 struct rt2x00intf_conf *conf, 613 const unsigned int flags); 614 #define CONFIG_UPDATE_TYPE ( 1 << 1 ) 615 #define CONFIG_UPDATE_MAC ( 1 << 2 ) 616 #define CONFIG_UPDATE_BSSID ( 1 << 3 ) 617 618 void (*config_erp) (struct rt2x00_dev *rt2x00dev, 619 struct rt2x00lib_erp *erp, 620 u32 changed); 621 void (*config_ant) (struct rt2x00_dev *rt2x00dev, 622 struct antenna_setup *ant); 623 void (*config) (struct rt2x00_dev *rt2x00dev, 624 struct rt2x00lib_conf *libconf, 625 const unsigned int changed_flags); 626 int (*sta_add) (struct rt2x00_dev *rt2x00dev, 627 struct ieee80211_vif *vif, 628 struct ieee80211_sta *sta); 629 int (*sta_remove) (struct rt2x00_dev *rt2x00dev, 630 int wcid); 631 }; 632 633 /* 634 * rt2x00 driver callback operation structure. 635 */ 636 struct rt2x00_ops { 637 const char *name; 638 const unsigned int drv_data_size; 639 const unsigned int max_ap_intf; 640 const unsigned int eeprom_size; 641 const unsigned int rf_size; 642 const unsigned int tx_queues; 643 void (*queue_init)(struct data_queue *queue); 644 const struct rt2x00lib_ops *lib; 645 const void *drv; 646 const struct ieee80211_ops *hw; 647 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 648 const struct rt2x00debug *debugfs; 649 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 650 }; 651 652 /* 653 * rt2x00 state flags 654 */ 655 enum rt2x00_state_flags { 656 /* 657 * Device flags 658 */ 659 DEVICE_STATE_PRESENT, 660 DEVICE_STATE_REGISTERED_HW, 661 DEVICE_STATE_INITIALIZED, 662 DEVICE_STATE_STARTED, 663 DEVICE_STATE_ENABLED_RADIO, 664 DEVICE_STATE_SCANNING, 665 666 /* 667 * Driver configuration 668 */ 669 CONFIG_CHANNEL_HT40, 670 CONFIG_POWERSAVING, 671 CONFIG_HT_DISABLED, 672 CONFIG_QOS_DISABLED, 673 CONFIG_MONITORING, 674 675 /* 676 * Mark we currently are sequentially reading TX_STA_FIFO register 677 * FIXME: this is for only rt2800usb, should go to private data 678 */ 679 TX_STATUS_READING, 680 }; 681 682 /* 683 * rt2x00 capability flags 684 */ 685 enum rt2x00_capability_flags { 686 /* 687 * Requirements 688 */ 689 REQUIRE_FIRMWARE, 690 REQUIRE_BEACON_GUARD, 691 REQUIRE_ATIM_QUEUE, 692 REQUIRE_DMA, 693 REQUIRE_COPY_IV, 694 REQUIRE_L2PAD, 695 REQUIRE_TXSTATUS_FIFO, 696 REQUIRE_TASKLET_CONTEXT, 697 REQUIRE_SW_SEQNO, 698 REQUIRE_HT_TX_DESC, 699 REQUIRE_PS_AUTOWAKE, 700 REQUIRE_DELAYED_RFKILL, 701 702 /* 703 * Capabilities 704 */ 705 CAPABILITY_HW_BUTTON, 706 CAPABILITY_HW_CRYPTO, 707 CAPABILITY_POWER_LIMIT, 708 CAPABILITY_CONTROL_FILTERS, 709 CAPABILITY_CONTROL_FILTER_PSPOLL, 710 CAPABILITY_PRE_TBTT_INTERRUPT, 711 CAPABILITY_LINK_TUNING, 712 CAPABILITY_FRAME_TYPE, 713 CAPABILITY_RF_SEQUENCE, 714 CAPABILITY_EXTERNAL_LNA_A, 715 CAPABILITY_EXTERNAL_LNA_BG, 716 CAPABILITY_DOUBLE_ANTENNA, 717 CAPABILITY_BT_COEXIST, 718 CAPABILITY_VCO_RECALIBRATION, 719 }; 720 721 /* 722 * Interface combinations 723 */ 724 enum { 725 IF_COMB_AP = 0, 726 NUM_IF_COMB, 727 }; 728 729 /* 730 * rt2x00 device structure. 731 */ 732 struct rt2x00_dev { 733 /* 734 * Device structure. 735 * The structure stored in here depends on the 736 * system bus (PCI or USB). 737 * When accessing this variable, the rt2x00dev_{pci,usb} 738 * macros should be used for correct typecasting. 739 */ 740 struct device *dev; 741 742 /* 743 * Callback functions. 744 */ 745 const struct rt2x00_ops *ops; 746 747 /* 748 * Driver data. 749 */ 750 void *drv_data; 751 752 /* 753 * IEEE80211 control structure. 754 */ 755 struct ieee80211_hw *hw; 756 struct ieee80211_supported_band bands[NUM_NL80211_BANDS]; 757 enum nl80211_band curr_band; 758 int curr_freq; 759 760 /* 761 * If enabled, the debugfs interface structures 762 * required for deregistration of debugfs. 763 */ 764 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 765 struct rt2x00debug_intf *debugfs_intf; 766 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 767 768 /* 769 * LED structure for changing the LED status 770 * by mac8011 or the kernel. 771 */ 772 #ifdef CONFIG_RT2X00_LIB_LEDS 773 struct rt2x00_led led_radio; 774 struct rt2x00_led led_assoc; 775 struct rt2x00_led led_qual; 776 u16 led_mcu_reg; 777 #endif /* CONFIG_RT2X00_LIB_LEDS */ 778 779 /* 780 * Device state flags. 781 * In these flags the current status is stored. 782 * Access to these flags should occur atomically. 783 */ 784 unsigned long flags; 785 786 /* 787 * Device capabiltiy flags. 788 * In these flags the device/driver capabilities are stored. 789 * Access to these flags should occur non-atomically. 790 */ 791 unsigned long cap_flags; 792 793 /* 794 * Device information, Bus IRQ and name (PCI, SoC) 795 */ 796 int irq; 797 const char *name; 798 799 /* 800 * Chipset identification. 801 */ 802 struct rt2x00_chip chip; 803 804 /* 805 * hw capability specifications. 806 */ 807 struct hw_mode_spec spec; 808 809 /* 810 * This is the default TX/RX antenna setup as indicated 811 * by the device's EEPROM. 812 */ 813 struct antenna_setup default_ant; 814 815 /* 816 * Register pointers 817 * csr.base: CSR base register address. (PCI) 818 * csr.cache: CSR cache for usb_control_msg. (USB) 819 */ 820 union csr { 821 void __iomem *base; 822 void *cache; 823 } csr; 824 825 /* 826 * Mutex to protect register accesses. 827 * For PCI and USB devices it protects against concurrent indirect 828 * register access (BBP, RF, MCU) since accessing those 829 * registers require multiple calls to the CSR registers. 830 * For USB devices it also protects the csr_cache since that 831 * field is used for normal CSR access and it cannot support 832 * multiple callers simultaneously. 833 */ 834 struct mutex csr_mutex; 835 836 /* 837 * Current packet filter configuration for the device. 838 * This contains all currently active FIF_* flags send 839 * to us by mac80211 during configure_filter(). 840 */ 841 unsigned int packet_filter; 842 843 /* 844 * Interface details: 845 * - Open ap interface count. 846 * - Open sta interface count. 847 * - Association count. 848 * - Beaconing enabled count. 849 */ 850 unsigned int intf_ap_count; 851 unsigned int intf_sta_count; 852 unsigned int intf_associated; 853 unsigned int intf_beaconing; 854 855 /* 856 * Interface combinations 857 */ 858 struct ieee80211_iface_limit if_limits_ap; 859 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB]; 860 861 /* 862 * Link quality 863 */ 864 struct link link; 865 866 /* 867 * EEPROM data. 868 */ 869 __le16 *eeprom; 870 871 /* 872 * Active RF register values. 873 * These are stored here so we don't need 874 * to read the rf registers and can directly 875 * use this value instead. 876 * This field should be accessed by using 877 * rt2x00_rf_read() and rt2x00_rf_write(). 878 */ 879 u32 *rf; 880 881 /* 882 * LNA gain 883 */ 884 short lna_gain; 885 886 /* 887 * Current TX power value. 888 */ 889 u16 tx_power; 890 891 /* 892 * Current retry values. 893 */ 894 u8 short_retry; 895 u8 long_retry; 896 897 /* 898 * Rssi <-> Dbm offset 899 */ 900 u8 rssi_offset; 901 902 /* 903 * Frequency offset. 904 */ 905 u8 freq_offset; 906 907 /* 908 * Association id. 909 */ 910 u16 aid; 911 912 /* 913 * Beacon interval. 914 */ 915 u16 beacon_int; 916 917 /** 918 * Timestamp of last received beacon 919 */ 920 unsigned long last_beacon; 921 922 /* 923 * Low level statistics which will have 924 * to be kept up to date while device is running. 925 */ 926 struct ieee80211_low_level_stats low_level_stats; 927 928 /** 929 * Work queue for all work which should not be placed 930 * on the mac80211 workqueue (because of dependencies 931 * between various work structures). 932 */ 933 struct workqueue_struct *workqueue; 934 935 /* 936 * Scheduled work. 937 * NOTE: intf_work will use ieee80211_iterate_active_interfaces() 938 * which means it cannot be placed on the hw->workqueue 939 * due to RTNL locking requirements. 940 */ 941 struct work_struct intf_work; 942 943 /** 944 * Scheduled work for TX/RX done handling (USB devices) 945 */ 946 struct work_struct rxdone_work; 947 struct work_struct txdone_work; 948 949 /* 950 * Powersaving work 951 */ 952 struct delayed_work autowakeup_work; 953 struct work_struct sleep_work; 954 955 /* 956 * Data queue arrays for RX, TX, Beacon and ATIM. 957 */ 958 unsigned int data_queues; 959 struct data_queue *rx; 960 struct data_queue *tx; 961 struct data_queue *bcn; 962 struct data_queue *atim; 963 964 /* 965 * Firmware image. 966 */ 967 const struct firmware *fw; 968 969 /* 970 * FIFO for storing tx status reports between isr and tasklet. 971 */ 972 DECLARE_KFIFO_PTR(txstatus_fifo, u32); 973 974 /* 975 * Timer to ensure tx status reports are read (rt2800usb). 976 */ 977 struct hrtimer txstatus_timer; 978 979 /* 980 * Tasklet for processing tx status reports (rt2800pci). 981 */ 982 struct tasklet_struct txstatus_tasklet; 983 struct tasklet_struct pretbtt_tasklet; 984 struct tasklet_struct tbtt_tasklet; 985 struct tasklet_struct rxdone_tasklet; 986 struct tasklet_struct autowake_tasklet; 987 988 /* 989 * Used for VCO periodic calibration. 990 */ 991 int rf_channel; 992 993 /* 994 * Protect the interrupt mask register. 995 */ 996 spinlock_t irqmask_lock; 997 998 /* 999 * List of BlockAckReq TX entries that need driver BlockAck processing. 1000 */ 1001 struct list_head bar_list; 1002 spinlock_t bar_list_lock; 1003 1004 /* Extra TX headroom required for alignment purposes. */ 1005 unsigned int extra_tx_headroom; 1006 1007 struct usb_anchor *anchor; 1008 }; 1009 1010 struct rt2x00_bar_list_entry { 1011 struct list_head list; 1012 struct rcu_head head; 1013 1014 struct queue_entry *entry; 1015 int block_acked; 1016 1017 /* Relevant parts of the IEEE80211 BAR header */ 1018 __u8 ra[6]; 1019 __u8 ta[6]; 1020 __le16 control; 1021 __le16 start_seq_num; 1022 }; 1023 1024 /* 1025 * Register defines. 1026 * Some registers require multiple attempts before success, 1027 * in those cases REGISTER_BUSY_COUNT attempts should be 1028 * taken with a REGISTER_BUSY_DELAY interval. Due to USB 1029 * bus delays, we do not have to loop so many times to wait 1030 * for valid register value on that bus. 1031 */ 1032 #define REGISTER_BUSY_COUNT 100 1033 #define REGISTER_USB_BUSY_COUNT 20 1034 #define REGISTER_BUSY_DELAY 100 1035 1036 /* 1037 * Generic RF access. 1038 * The RF is being accessed by word index. 1039 */ 1040 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev, 1041 const unsigned int word, u32 *data) 1042 { 1043 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1044 *data = rt2x00dev->rf[word - 1]; 1045 } 1046 1047 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev, 1048 const unsigned int word, u32 data) 1049 { 1050 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32)); 1051 rt2x00dev->rf[word - 1] = data; 1052 } 1053 1054 /* 1055 * Generic EEPROM access. The EEPROM is being accessed by word or byte index. 1056 */ 1057 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev, 1058 const unsigned int word) 1059 { 1060 return (void *)&rt2x00dev->eeprom[word]; 1061 } 1062 1063 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev, 1064 const unsigned int word, u16 *data) 1065 { 1066 *data = le16_to_cpu(rt2x00dev->eeprom[word]); 1067 } 1068 1069 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev, 1070 const unsigned int word, u16 data) 1071 { 1072 rt2x00dev->eeprom[word] = cpu_to_le16(data); 1073 } 1074 1075 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev, 1076 const unsigned int byte) 1077 { 1078 return *(((u8 *)rt2x00dev->eeprom) + byte); 1079 } 1080 1081 /* 1082 * Chipset handlers 1083 */ 1084 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, 1085 const u16 rt, const u16 rf, const u16 rev) 1086 { 1087 rt2x00dev->chip.rt = rt; 1088 rt2x00dev->chip.rf = rf; 1089 rt2x00dev->chip.rev = rev; 1090 1091 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n", 1092 rt2x00dev->chip.rt, rt2x00dev->chip.rf, 1093 rt2x00dev->chip.rev); 1094 } 1095 1096 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev, 1097 const u16 rt, const u16 rev) 1098 { 1099 rt2x00dev->chip.rt = rt; 1100 rt2x00dev->chip.rev = rev; 1101 1102 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n", 1103 rt2x00dev->chip.rt, rt2x00dev->chip.rev); 1104 } 1105 1106 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1107 { 1108 rt2x00dev->chip.rf = rf; 1109 1110 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n", 1111 rt2x00dev->chip.rf); 1112 } 1113 1114 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt) 1115 { 1116 return (rt2x00dev->chip.rt == rt); 1117 } 1118 1119 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf) 1120 { 1121 return (rt2x00dev->chip.rf == rf); 1122 } 1123 1124 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev) 1125 { 1126 return rt2x00dev->chip.rev; 1127 } 1128 1129 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev, 1130 const u16 rt, const u16 rev) 1131 { 1132 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev); 1133 } 1134 1135 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev, 1136 const u16 rt, const u16 rev) 1137 { 1138 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev); 1139 } 1140 1141 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev, 1142 const u16 rt, const u16 rev) 1143 { 1144 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev); 1145 } 1146 1147 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev, 1148 enum rt2x00_chip_intf intf) 1149 { 1150 rt2x00dev->chip.intf = intf; 1151 } 1152 1153 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev, 1154 enum rt2x00_chip_intf intf) 1155 { 1156 return (rt2x00dev->chip.intf == intf); 1157 } 1158 1159 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev) 1160 { 1161 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) || 1162 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1163 } 1164 1165 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev) 1166 { 1167 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE); 1168 } 1169 1170 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev) 1171 { 1172 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); 1173 } 1174 1175 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev) 1176 { 1177 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC); 1178 } 1179 1180 /* Helpers for capability flags */ 1181 1182 static inline bool 1183 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev, 1184 enum rt2x00_capability_flags cap_flag) 1185 { 1186 return test_bit(cap_flag, &rt2x00dev->cap_flags); 1187 } 1188 1189 static inline bool 1190 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev) 1191 { 1192 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO); 1193 } 1194 1195 static inline bool 1196 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev) 1197 { 1198 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT); 1199 } 1200 1201 static inline bool 1202 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev) 1203 { 1204 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS); 1205 } 1206 1207 static inline bool 1208 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev) 1209 { 1210 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL); 1211 } 1212 1213 static inline bool 1214 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev) 1215 { 1216 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT); 1217 } 1218 1219 static inline bool 1220 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev) 1221 { 1222 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING); 1223 } 1224 1225 static inline bool 1226 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev) 1227 { 1228 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE); 1229 } 1230 1231 static inline bool 1232 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev) 1233 { 1234 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE); 1235 } 1236 1237 static inline bool 1238 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev) 1239 { 1240 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A); 1241 } 1242 1243 static inline bool 1244 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev) 1245 { 1246 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG); 1247 } 1248 1249 static inline bool 1250 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev) 1251 { 1252 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA); 1253 } 1254 1255 static inline bool 1256 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev) 1257 { 1258 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST); 1259 } 1260 1261 static inline bool 1262 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev) 1263 { 1264 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION); 1265 } 1266 1267 /** 1268 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes. 1269 * @entry: Pointer to &struct queue_entry 1270 * 1271 * Returns -ENOMEM if mapping fail, 0 otherwise. 1272 */ 1273 int rt2x00queue_map_txskb(struct queue_entry *entry); 1274 1275 /** 1276 * rt2x00queue_unmap_skb - Unmap a skb from DMA. 1277 * @entry: Pointer to &struct queue_entry 1278 */ 1279 void rt2x00queue_unmap_skb(struct queue_entry *entry); 1280 1281 /** 1282 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer 1283 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1284 * @queue: rt2x00 queue index (see &enum data_queue_qid). 1285 * 1286 * Returns NULL for non tx queues. 1287 */ 1288 static inline struct data_queue * 1289 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev, 1290 const enum data_queue_qid queue) 1291 { 1292 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) 1293 return &rt2x00dev->tx[queue]; 1294 1295 if (queue == QID_ATIM) 1296 return rt2x00dev->atim; 1297 1298 return NULL; 1299 } 1300 1301 /** 1302 * rt2x00queue_get_entry - Get queue entry where the given index points to. 1303 * @queue: Pointer to &struct data_queue from where we obtain the entry. 1304 * @index: Index identifier for obtaining the correct index. 1305 */ 1306 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, 1307 enum queue_index index); 1308 1309 /** 1310 * rt2x00queue_pause_queue - Pause a data queue 1311 * @queue: Pointer to &struct data_queue. 1312 * 1313 * This function will pause the data queue locally, preventing 1314 * new frames to be added to the queue (while the hardware is 1315 * still allowed to run). 1316 */ 1317 void rt2x00queue_pause_queue(struct data_queue *queue); 1318 1319 /** 1320 * rt2x00queue_unpause_queue - unpause a data queue 1321 * @queue: Pointer to &struct data_queue. 1322 * 1323 * This function will unpause the data queue locally, allowing 1324 * new frames to be added to the queue again. 1325 */ 1326 void rt2x00queue_unpause_queue(struct data_queue *queue); 1327 1328 /** 1329 * rt2x00queue_start_queue - Start a data queue 1330 * @queue: Pointer to &struct data_queue. 1331 * 1332 * This function will start handling all pending frames in the queue. 1333 */ 1334 void rt2x00queue_start_queue(struct data_queue *queue); 1335 1336 /** 1337 * rt2x00queue_stop_queue - Halt a data queue 1338 * @queue: Pointer to &struct data_queue. 1339 * 1340 * This function will stop all pending frames in the queue. 1341 */ 1342 void rt2x00queue_stop_queue(struct data_queue *queue); 1343 1344 /** 1345 * rt2x00queue_flush_queue - Flush a data queue 1346 * @queue: Pointer to &struct data_queue. 1347 * @drop: True to drop all pending frames. 1348 * 1349 * This function will flush the queue. After this call 1350 * the queue is guaranteed to be empty. 1351 */ 1352 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop); 1353 1354 /** 1355 * rt2x00queue_start_queues - Start all data queues 1356 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1357 * 1358 * This function will loop through all available queues to start them 1359 */ 1360 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev); 1361 1362 /** 1363 * rt2x00queue_stop_queues - Halt all data queues 1364 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1365 * 1366 * This function will loop through all available queues to stop 1367 * any pending frames. 1368 */ 1369 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev); 1370 1371 /** 1372 * rt2x00queue_flush_queues - Flush all data queues 1373 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1374 * @drop: True to drop all pending frames. 1375 * 1376 * This function will loop through all available queues to flush 1377 * any pending frames. 1378 */ 1379 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop); 1380 1381 /* 1382 * Debugfs handlers. 1383 */ 1384 /** 1385 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs. 1386 * @rt2x00dev: Pointer to &struct rt2x00_dev. 1387 * @type: The type of frame that is being dumped. 1388 * @skb: The skb containing the frame to be dumped. 1389 */ 1390 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 1391 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1392 enum rt2x00_dump_type type, struct sk_buff *skb); 1393 #else 1394 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev, 1395 enum rt2x00_dump_type type, 1396 struct sk_buff *skb) 1397 { 1398 } 1399 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1400 1401 /* 1402 * Utility functions. 1403 */ 1404 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 1405 struct ieee80211_vif *vif); 1406 1407 /* 1408 * Interrupt context handlers. 1409 */ 1410 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); 1411 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev); 1412 void rt2x00lib_dmastart(struct queue_entry *entry); 1413 void rt2x00lib_dmadone(struct queue_entry *entry); 1414 void rt2x00lib_txdone(struct queue_entry *entry, 1415 struct txdone_entry_desc *txdesc); 1416 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status); 1417 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp); 1418 1419 /* 1420 * mac80211 handlers. 1421 */ 1422 void rt2x00mac_tx(struct ieee80211_hw *hw, 1423 struct ieee80211_tx_control *control, 1424 struct sk_buff *skb); 1425 int rt2x00mac_start(struct ieee80211_hw *hw); 1426 void rt2x00mac_stop(struct ieee80211_hw *hw); 1427 int rt2x00mac_add_interface(struct ieee80211_hw *hw, 1428 struct ieee80211_vif *vif); 1429 void rt2x00mac_remove_interface(struct ieee80211_hw *hw, 1430 struct ieee80211_vif *vif); 1431 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed); 1432 void rt2x00mac_configure_filter(struct ieee80211_hw *hw, 1433 unsigned int changed_flags, 1434 unsigned int *total_flags, 1435 u64 multicast); 1436 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, 1437 bool set); 1438 #ifdef CONFIG_RT2X00_LIB_CRYPTO 1439 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 1440 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 1441 struct ieee80211_key_conf *key); 1442 #else 1443 #define rt2x00mac_set_key NULL 1444 #endif /* CONFIG_RT2X00_LIB_CRYPTO */ 1445 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1446 struct ieee80211_sta *sta); 1447 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1448 struct ieee80211_sta *sta); 1449 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, 1450 struct ieee80211_vif *vif, 1451 const u8 *mac_addr); 1452 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, 1453 struct ieee80211_vif *vif); 1454 int rt2x00mac_get_stats(struct ieee80211_hw *hw, 1455 struct ieee80211_low_level_stats *stats); 1456 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, 1457 struct ieee80211_vif *vif, 1458 struct ieee80211_bss_conf *bss_conf, 1459 u32 changes); 1460 int rt2x00mac_conf_tx(struct ieee80211_hw *hw, 1461 struct ieee80211_vif *vif, u16 queue, 1462 const struct ieee80211_tx_queue_params *params); 1463 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw); 1464 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1465 u32 queues, bool drop); 1466 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant); 1467 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant); 1468 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, 1469 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max); 1470 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw); 1471 1472 /* 1473 * Driver allocation handlers. 1474 */ 1475 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); 1476 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); 1477 #ifdef CONFIG_PM 1478 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); 1479 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); 1480 #endif /* CONFIG_PM */ 1481 1482 #endif /* RT2X00_H */ 1483