xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2  *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3  *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4  *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5  *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6  *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7  *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8  *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9  *	<http://rt2x00.serialmonkey.com>
10  *
11  *	This program is free software; you can redistribute it and/or modify
12  *	it under the terms of the GNU General Public License as published by
13  *	the Free Software Foundation; either version 2 of the License, or
14  *	(at your option) any later version.
15  *
16  *	This program is distributed in the hope that it will be useful,
17  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  *	GNU General Public License for more details.
20  *
21  *	You should have received a copy of the GNU General Public License
22  *	along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 /*	Module: rt2800mmio
26  *	Abstract: rt2800 MMIO device routines.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
38 
39 /*
40  * TX descriptor initialization
41  */
42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
43 {
44 	return (__le32 *) entry->skb->data;
45 }
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
47 
48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49 			      struct txentry_desc *txdesc)
50 {
51 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53 	__le32 *txd = entry_priv->desc;
54 	u32 word;
55 	const unsigned int txwi_size = entry->queue->winfo_size;
56 
57 	/*
58 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 	 * data. It means that LAST_SEC0 is always 0.
63 	 */
64 
65 	/*
66 	 * Initialize TX descriptor
67 	 */
68 	word = 0;
69 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70 	rt2x00_desc_write(txd, 0, word);
71 
72 	word = 0;
73 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76 	rt2x00_set_field32(&word, TXD_W1_BURST,
77 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81 	rt2x00_desc_write(txd, 1, word);
82 
83 	word = 0;
84 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85 			   skbdesc->skb_dma + txwi_size);
86 	rt2x00_desc_write(txd, 2, word);
87 
88 	word = 0;
89 	rt2x00_set_field32(&word, TXD_W3_WIV,
90 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92 	rt2x00_desc_write(txd, 3, word);
93 
94 	/*
95 	 * Register descriptor details in skb frame descriptor.
96 	 */
97 	skbdesc->desc = txd;
98 	skbdesc->desc_len = TXD_DESC_SIZE;
99 }
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
101 
102 /*
103  * RX control handlers
104  */
105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106 			    struct rxdone_entry_desc *rxdesc)
107 {
108 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109 	__le32 *rxd = entry_priv->desc;
110 	u32 word;
111 
112 	word = rt2x00_desc_read(rxd, 3);
113 
114 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
116 
117 	/*
118 	 * Unfortunately we don't know the cipher type used during
119 	 * decryption. This prevents us from correct providing
120 	 * correct statistics through debugfs.
121 	 */
122 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
123 
124 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
125 		/*
126 		 * Hardware has stripped IV/EIV data from 802.11 frame during
127 		 * decryption. Unfortunately the descriptor doesn't contain
128 		 * any fields with the EIV/IV data either, so they can't
129 		 * be restored by rt2x00lib.
130 		 */
131 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
132 
133 		/*
134 		 * The hardware has already checked the Michael Mic and has
135 		 * stripped it from the frame. Signal this to mac80211.
136 		 */
137 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
138 
139 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140 			rxdesc->flags |= RX_FLAG_DECRYPTED;
141 		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
142 			/*
143 			 * In order to check the Michael Mic, the packet must have
144 			 * been decrypted.  Mac80211 doesnt check the MMIC failure
145 			 * flag to initiate MMIC countermeasures if the decoded flag
146 			 * has not been set.
147 			 */
148 			rxdesc->flags |= RX_FLAG_DECRYPTED;
149 
150 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
151 		}
152 	}
153 
154 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155 		rxdesc->dev_flags |= RXDONE_MY_BSS;
156 
157 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158 		rxdesc->dev_flags |= RXDONE_L2PAD;
159 
160 	/*
161 	 * Process the RXWI structure that is at the start of the buffer.
162 	 */
163 	rt2800_process_rxwi(entry, rxdesc);
164 }
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
166 
167 /*
168  * Interrupt functions.
169  */
170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
171 {
172 	struct ieee80211_conf conf = { .flags = 0 };
173 	struct rt2x00lib_conf libconf = { .conf = &conf };
174 
175 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
176 }
177 
178 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
179 					       struct rt2x00_field32 irq_field)
180 {
181 	u32 reg;
182 
183 	/*
184 	 * Enable a single interrupt. The interrupt mask register
185 	 * access needs locking.
186 	 */
187 	spin_lock_irq(&rt2x00dev->irqmask_lock);
188 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
189 	rt2x00_set_field32(&reg, irq_field, 1);
190 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
191 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
192 }
193 
194 void rt2800mmio_pretbtt_tasklet(unsigned long data)
195 {
196 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
197 	rt2x00lib_pretbtt(rt2x00dev);
198 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
199 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
200 }
201 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
202 
203 void rt2800mmio_tbtt_tasklet(unsigned long data)
204 {
205 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
206 	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
207 	u32 reg;
208 
209 	rt2x00lib_beacondone(rt2x00dev);
210 
211 	if (rt2x00dev->intf_ap_count) {
212 		/*
213 		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
214 		 * causing beacon skew and as a result causing problems with
215 		 * some powersaving clients over time. Shorten the beacon
216 		 * interval every 64 beacons by 64us to mitigate this effect.
217 		 */
218 		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
219 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
220 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
221 					   (rt2x00dev->beacon_int * 16) - 1);
222 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223 		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
224 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
225 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
226 					   (rt2x00dev->beacon_int * 16));
227 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
228 		}
229 		drv_data->tbtt_tick++;
230 		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
231 	}
232 
233 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
234 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
235 }
236 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
237 
238 void rt2800mmio_rxdone_tasklet(unsigned long data)
239 {
240 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
241 	if (rt2x00mmio_rxdone(rt2x00dev))
242 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
243 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
244 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
245 }
246 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
247 
248 void rt2800mmio_autowake_tasklet(unsigned long data)
249 {
250 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
251 	rt2800mmio_wakeup(rt2x00dev);
252 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
253 		rt2800mmio_enable_interrupt(rt2x00dev,
254 					    INT_MASK_CSR_AUTO_WAKEUP);
255 }
256 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
257 
258 static void rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
259 {
260 	bool timeout = false;
261 
262 	while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo) ||
263 	       (timeout = rt2800_txstatus_timeout(rt2x00dev))) {
264 
265 		rt2800_txdone(rt2x00dev);
266 
267 		if (timeout)
268 			rt2800_txdone_nostatus(rt2x00dev);
269 	}
270 }
271 
272 static bool rt2800mmio_fetch_txstatus(struct rt2x00_dev *rt2x00dev)
273 {
274 	u32 status;
275 	bool more = false;
276 
277 	/* FIXEME: rewrite this comment
278 	 * The TX_FIFO_STATUS interrupt needs special care. We should
279 	 * read TX_STA_FIFO but we should do it immediately as otherwise
280 	 * the register can overflow and we would lose status reports.
281 	 *
282 	 * Hence, read the TX_STA_FIFO register and copy all tx status
283 	 * reports into a kernel FIFO which is handled in the txstatus
284 	 * tasklet. We use a tasklet to process the tx status reports
285 	 * because we can schedule the tasklet multiple times (when the
286 	 * interrupt fires again during tx status processing).
287 	 *
288 	 * txstatus tasklet is called with INT_SOURCE_CSR_TX_FIFO_STATUS
289 	 * disabled so have only one producer and one consumer - we don't
290 	 * need to lock the kfifo.
291 	 */
292 	while (!kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
293 		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
294 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
295 			break;
296 
297 		kfifo_put(&rt2x00dev->txstatus_fifo, status);
298 		more = true;
299 	}
300 
301 	return more;
302 }
303 
304 void rt2800mmio_txstatus_tasklet(unsigned long data)
305 {
306 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
307 
308 	do {
309 		rt2800mmio_txdone(rt2x00dev);
310 
311 	} while (rt2800mmio_fetch_txstatus(rt2x00dev));
312 
313 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
314 		rt2800mmio_enable_interrupt(rt2x00dev,
315 					    INT_SOURCE_CSR_TX_FIFO_STATUS);
316 }
317 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
318 
319 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
320 {
321 	struct rt2x00_dev *rt2x00dev = dev_instance;
322 	u32 reg, mask;
323 
324 	/* Read status and ACK all interrupts */
325 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
326 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
327 
328 	if (!reg)
329 		return IRQ_NONE;
330 
331 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
332 		return IRQ_HANDLED;
333 
334 	/*
335 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
336 	 * for interrupts and interrupt masks we can just use the value of
337 	 * INT_SOURCE_CSR to create the interrupt mask.
338 	 */
339 	mask = ~reg;
340 
341 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
342 		rt2800mmio_fetch_txstatus(rt2x00dev);
343 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
344 	}
345 
346 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
347 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
348 
349 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
350 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
351 
352 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
353 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
354 
355 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
356 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
357 
358 	/*
359 	 * Disable all interrupts for which a tasklet was scheduled right now,
360 	 * the tasklet will reenable the appropriate interrupts.
361 	 */
362 	spin_lock(&rt2x00dev->irqmask_lock);
363 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
364 	reg &= mask;
365 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
366 	spin_unlock(&rt2x00dev->irqmask_lock);
367 
368 	return IRQ_HANDLED;
369 }
370 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
371 
372 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
373 			   enum dev_state state)
374 {
375 	u32 reg;
376 	unsigned long flags;
377 
378 	/*
379 	 * When interrupts are being enabled, the interrupt registers
380 	 * should clear the register to assure a clean state.
381 	 */
382 	if (state == STATE_RADIO_IRQ_ON) {
383 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
384 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
385 	}
386 
387 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
388 	reg = 0;
389 	if (state == STATE_RADIO_IRQ_ON) {
390 		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
391 		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
392 		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
393 		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
394 		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
395 	}
396 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
397 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
398 
399 	if (state == STATE_RADIO_IRQ_OFF) {
400 		/*
401 		 * Wait for possibly running tasklets to finish.
402 		 */
403 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
404 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
405 		tasklet_kill(&rt2x00dev->autowake_tasklet);
406 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
407 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
408 	}
409 }
410 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
411 
412 /*
413  * Queue handlers.
414  */
415 void rt2800mmio_start_queue(struct data_queue *queue)
416 {
417 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
418 	u32 reg;
419 
420 	switch (queue->qid) {
421 	case QID_RX:
422 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
423 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
424 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
425 		break;
426 	case QID_BEACON:
427 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
428 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
429 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
430 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
431 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
432 
433 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
434 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
435 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
436 		break;
437 	default:
438 		break;
439 	}
440 }
441 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
442 
443 void rt2800mmio_kick_queue(struct data_queue *queue)
444 {
445 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
446 	struct queue_entry *entry;
447 
448 	switch (queue->qid) {
449 	case QID_AC_VO:
450 	case QID_AC_VI:
451 	case QID_AC_BE:
452 	case QID_AC_BK:
453 		WARN_ON_ONCE(rt2x00queue_empty(queue));
454 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
455 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
456 					  entry->entry_idx);
457 		break;
458 	case QID_MGMT:
459 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
460 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
461 					  entry->entry_idx);
462 		break;
463 	default:
464 		break;
465 	}
466 }
467 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
468 
469 void rt2800mmio_flush_queue(struct data_queue *queue, bool drop)
470 {
471 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
472 	bool tx_queue = false;
473 	unsigned int i;
474 
475 	switch (queue->qid) {
476 	case QID_AC_VO:
477 	case QID_AC_VI:
478 	case QID_AC_BE:
479 	case QID_AC_BK:
480 		tx_queue = true;
481 		break;
482 	case QID_RX:
483 		break;
484 	default:
485 		return;
486 	}
487 
488 	for (i = 0; i < 5; i++) {
489 		/*
490 		 * Check if the driver is already done, otherwise we
491 		 * have to sleep a little while to give the driver/hw
492 		 * the oppurtunity to complete interrupt process itself.
493 		 */
494 		if (rt2x00queue_empty(queue))
495 			break;
496 
497 		/*
498 		 * For TX queues schedule completion tasklet to catch
499 		 * tx status timeouts, othewise just wait.
500 		 */
501 		if (tx_queue) {
502 			tasklet_disable(&rt2x00dev->txstatus_tasklet);
503 			rt2800mmio_txdone(rt2x00dev);
504 			tasklet_enable(&rt2x00dev->txstatus_tasklet);
505 		}
506 
507 		/*
508 		 * Wait for a little while to give the driver
509 		 * the oppurtunity to recover itself.
510 		 */
511 		msleep(50);
512 	}
513 }
514 EXPORT_SYMBOL_GPL(rt2800mmio_flush_queue);
515 
516 void rt2800mmio_stop_queue(struct data_queue *queue)
517 {
518 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
519 	u32 reg;
520 
521 	switch (queue->qid) {
522 	case QID_RX:
523 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
524 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
525 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
526 		break;
527 	case QID_BEACON:
528 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
529 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
530 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
531 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
532 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
533 
534 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
535 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
536 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
537 
538 		/*
539 		 * Wait for current invocation to finish. The tasklet
540 		 * won't be scheduled anymore afterwards since we disabled
541 		 * the TBTT and PRE TBTT timer.
542 		 */
543 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
544 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
545 
546 		break;
547 	default:
548 		break;
549 	}
550 }
551 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
552 
553 void rt2800mmio_queue_init(struct data_queue *queue)
554 {
555 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
556 	unsigned short txwi_size, rxwi_size;
557 
558 	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
559 
560 	switch (queue->qid) {
561 	case QID_RX:
562 		queue->limit = 128;
563 		queue->data_size = AGGREGATION_SIZE;
564 		queue->desc_size = RXD_DESC_SIZE;
565 		queue->winfo_size = rxwi_size;
566 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
567 		break;
568 
569 	case QID_AC_VO:
570 	case QID_AC_VI:
571 	case QID_AC_BE:
572 	case QID_AC_BK:
573 		queue->limit = 64;
574 		queue->data_size = AGGREGATION_SIZE;
575 		queue->desc_size = TXD_DESC_SIZE;
576 		queue->winfo_size = txwi_size;
577 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
578 		break;
579 
580 	case QID_BEACON:
581 		queue->limit = 8;
582 		queue->data_size = 0; /* No DMA required for beacons */
583 		queue->desc_size = TXD_DESC_SIZE;
584 		queue->winfo_size = txwi_size;
585 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
586 		break;
587 
588 	case QID_ATIM:
589 		/* fallthrough */
590 	default:
591 		BUG();
592 		break;
593 	}
594 }
595 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
596 
597 /*
598  * Initialization functions.
599  */
600 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
601 {
602 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
603 	u32 word;
604 
605 	if (entry->queue->qid == QID_RX) {
606 		word = rt2x00_desc_read(entry_priv->desc, 1);
607 
608 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
609 	} else {
610 		word = rt2x00_desc_read(entry_priv->desc, 1);
611 
612 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
613 	}
614 }
615 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
616 
617 void rt2800mmio_clear_entry(struct queue_entry *entry)
618 {
619 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
620 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
621 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
622 	u32 word;
623 
624 	if (entry->queue->qid == QID_RX) {
625 		word = rt2x00_desc_read(entry_priv->desc, 0);
626 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
627 		rt2x00_desc_write(entry_priv->desc, 0, word);
628 
629 		word = rt2x00_desc_read(entry_priv->desc, 1);
630 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
631 		rt2x00_desc_write(entry_priv->desc, 1, word);
632 
633 		/*
634 		 * Set RX IDX in register to inform hardware that we have
635 		 * handled this entry and it is available for reuse again.
636 		 */
637 		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
638 					  entry->entry_idx);
639 	} else {
640 		word = rt2x00_desc_read(entry_priv->desc, 1);
641 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
642 		rt2x00_desc_write(entry_priv->desc, 1, word);
643 	}
644 }
645 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
646 
647 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
648 {
649 	struct queue_entry_priv_mmio *entry_priv;
650 
651 	/*
652 	 * Initialize registers.
653 	 */
654 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
655 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
656 				  entry_priv->desc_dma);
657 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
658 				  rt2x00dev->tx[0].limit);
659 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
660 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
661 
662 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
663 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
664 				  entry_priv->desc_dma);
665 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
666 				  rt2x00dev->tx[1].limit);
667 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
668 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
669 
670 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
671 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
672 				  entry_priv->desc_dma);
673 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
674 				  rt2x00dev->tx[2].limit);
675 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
676 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
677 
678 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
679 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
680 				  entry_priv->desc_dma);
681 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
682 				  rt2x00dev->tx[3].limit);
683 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
684 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
685 
686 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
687 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
688 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
689 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
690 
691 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
692 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
693 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
694 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
695 
696 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
697 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
698 				  entry_priv->desc_dma);
699 	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
700 				  rt2x00dev->rx[0].limit);
701 	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
702 				  rt2x00dev->rx[0].limit - 1);
703 	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
704 
705 	rt2800_disable_wpdma(rt2x00dev);
706 
707 	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
708 
709 	return 0;
710 }
711 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
712 
713 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
714 {
715 	u32 reg;
716 
717 	/*
718 	 * Reset DMA indexes
719 	 */
720 	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
721 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
722 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
723 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
724 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
725 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
726 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
727 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
728 	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
729 
730 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
731 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
732 
733 	if (rt2x00_is_pcie(rt2x00dev) &&
734 	    (rt2x00_rt(rt2x00dev, RT3090) ||
735 	     rt2x00_rt(rt2x00dev, RT3390) ||
736 	     rt2x00_rt(rt2x00dev, RT3572) ||
737 	     rt2x00_rt(rt2x00dev, RT3593) ||
738 	     rt2x00_rt(rt2x00dev, RT5390) ||
739 	     rt2x00_rt(rt2x00dev, RT5392) ||
740 	     rt2x00_rt(rt2x00dev, RT5592))) {
741 		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
742 		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
743 		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
744 		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
745 	}
746 
747 	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
748 
749 	reg = 0;
750 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
751 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
752 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
753 
754 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
755 
756 	return 0;
757 }
758 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
759 
760 /*
761  * Device state switch handlers.
762  */
763 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
764 {
765 	/* Wait for DMA, ignore error until we initialize queues. */
766 	rt2800_wait_wpdma_ready(rt2x00dev);
767 
768 	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
769 		return -EIO;
770 
771 	return rt2800_enable_radio(rt2x00dev);
772 }
773 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
774 
775 MODULE_AUTHOR(DRV_PROJECT);
776 MODULE_VERSION(DRV_VERSION);
777 MODULE_DESCRIPTION("rt2800 MMIO library");
778 MODULE_LICENSE("GPL");
779