xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2800mmio.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
2  *	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
3  *	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
4  *	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
5  *	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
6  *	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
7  *	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
8  *	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
9  *	<http://rt2x00.serialmonkey.com>
10  *
11  *	This program is free software; you can redistribute it and/or modify
12  *	it under the terms of the GNU General Public License as published by
13  *	the Free Software Foundation; either version 2 of the License, or
14  *	(at your option) any later version.
15  *
16  *	This program is distributed in the hope that it will be useful,
17  *	but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  *	GNU General Public License for more details.
20  *
21  *	You should have received a copy of the GNU General Public License
22  *	along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 /*	Module: rt2800mmio
26  *	Abstract: rt2800 MMIO device routines.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/export.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2800.h"
36 #include "rt2800lib.h"
37 #include "rt2800mmio.h"
38 
39 /*
40  * TX descriptor initialization
41  */
42 __le32 *rt2800mmio_get_txwi(struct queue_entry *entry)
43 {
44 	return (__le32 *) entry->skb->data;
45 }
46 EXPORT_SYMBOL_GPL(rt2800mmio_get_txwi);
47 
48 void rt2800mmio_write_tx_desc(struct queue_entry *entry,
49 			      struct txentry_desc *txdesc)
50 {
51 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
52 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
53 	__le32 *txd = entry_priv->desc;
54 	u32 word;
55 	const unsigned int txwi_size = entry->queue->winfo_size;
56 
57 	/*
58 	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
59 	 * must contains a TXWI structure + 802.11 header + padding + 802.11
60 	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
61 	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
62 	 * data. It means that LAST_SEC0 is always 0.
63 	 */
64 
65 	/*
66 	 * Initialize TX descriptor
67 	 */
68 	word = 0;
69 	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
70 	rt2x00_desc_write(txd, 0, word);
71 
72 	word = 0;
73 	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
74 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
75 			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
76 	rt2x00_set_field32(&word, TXD_W1_BURST,
77 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
78 	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, txwi_size);
79 	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
80 	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
81 	rt2x00_desc_write(txd, 1, word);
82 
83 	word = 0;
84 	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
85 			   skbdesc->skb_dma + txwi_size);
86 	rt2x00_desc_write(txd, 2, word);
87 
88 	word = 0;
89 	rt2x00_set_field32(&word, TXD_W3_WIV,
90 			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
91 	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
92 	rt2x00_desc_write(txd, 3, word);
93 
94 	/*
95 	 * Register descriptor details in skb frame descriptor.
96 	 */
97 	skbdesc->desc = txd;
98 	skbdesc->desc_len = TXD_DESC_SIZE;
99 }
100 EXPORT_SYMBOL_GPL(rt2800mmio_write_tx_desc);
101 
102 /*
103  * RX control handlers
104  */
105 void rt2800mmio_fill_rxdone(struct queue_entry *entry,
106 			    struct rxdone_entry_desc *rxdesc)
107 {
108 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
109 	__le32 *rxd = entry_priv->desc;
110 	u32 word;
111 
112 	word = rt2x00_desc_read(rxd, 3);
113 
114 	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
115 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
116 
117 	/*
118 	 * Unfortunately we don't know the cipher type used during
119 	 * decryption. This prevents us from correct providing
120 	 * correct statistics through debugfs.
121 	 */
122 	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
123 
124 	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
125 		/*
126 		 * Hardware has stripped IV/EIV data from 802.11 frame during
127 		 * decryption. Unfortunately the descriptor doesn't contain
128 		 * any fields with the EIV/IV data either, so they can't
129 		 * be restored by rt2x00lib.
130 		 */
131 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
132 
133 		/*
134 		 * The hardware has already checked the Michael Mic and has
135 		 * stripped it from the frame. Signal this to mac80211.
136 		 */
137 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
138 
139 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) {
140 			rxdesc->flags |= RX_FLAG_DECRYPTED;
141 		} else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) {
142 			/*
143 			 * In order to check the Michael Mic, the packet must have
144 			 * been decrypted.  Mac80211 doesnt check the MMIC failure
145 			 * flag to initiate MMIC countermeasures if the decoded flag
146 			 * has not been set.
147 			 */
148 			rxdesc->flags |= RX_FLAG_DECRYPTED;
149 
150 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
151 		}
152 	}
153 
154 	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
155 		rxdesc->dev_flags |= RXDONE_MY_BSS;
156 
157 	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
158 		rxdesc->dev_flags |= RXDONE_L2PAD;
159 
160 	/*
161 	 * Process the RXWI structure that is at the start of the buffer.
162 	 */
163 	rt2800_process_rxwi(entry, rxdesc);
164 }
165 EXPORT_SYMBOL_GPL(rt2800mmio_fill_rxdone);
166 
167 /*
168  * Interrupt functions.
169  */
170 static void rt2800mmio_wakeup(struct rt2x00_dev *rt2x00dev)
171 {
172 	struct ieee80211_conf conf = { .flags = 0 };
173 	struct rt2x00lib_conf libconf = { .conf = &conf };
174 
175 	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
176 }
177 
178 static bool rt2800mmio_txdone_entry_check(struct queue_entry *entry, u32 status)
179 {
180 	__le32 *txwi;
181 	u32 word;
182 	int wcid, tx_wcid;
183 
184 	wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);
185 
186 	txwi = rt2800_drv_get_txwi(entry);
187 	word = rt2x00_desc_read(txwi, 1);
188 	tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
189 
190 	return (tx_wcid == wcid);
191 }
192 
193 static bool rt2800mmio_txdone_find_entry(struct queue_entry *entry, void *data)
194 {
195 	u32 status = *(u32 *)data;
196 
197 	/*
198 	 * rt2800pci hardware might reorder frames when exchanging traffic
199 	 * with multiple BA enabled STAs.
200 	 *
201 	 * For example, a tx queue
202 	 *    [ STA1 | STA2 | STA1 | STA2 ]
203 	 * can result in tx status reports
204 	 *    [ STA1 | STA1 | STA2 | STA2 ]
205 	 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
206 	 *
207 	 * To mitigate this effect, associate the tx status to the first frame
208 	 * in the tx queue with a matching wcid.
209 	 */
210 	if (rt2800mmio_txdone_entry_check(entry, status) &&
211 	    !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
212 		/*
213 		 * Got a matching frame, associate the tx status with
214 		 * the frame
215 		 */
216 		entry->status = status;
217 		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
218 		return true;
219 	}
220 
221 	/* Check the next frame */
222 	return false;
223 }
224 
225 static bool rt2800mmio_txdone_match_first(struct queue_entry *entry, void *data)
226 {
227 	u32 status = *(u32 *)data;
228 
229 	/*
230 	 * Find the first frame without tx status and assign this status to it
231 	 * regardless if it matches or not.
232 	 */
233 	if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
234 		/*
235 		 * Got a matching frame, associate the tx status with
236 		 * the frame
237 		 */
238 		entry->status = status;
239 		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
240 		return true;
241 	}
242 
243 	/* Check the next frame */
244 	return false;
245 }
246 static bool rt2800mmio_txdone_release_entries(struct queue_entry *entry,
247 					      void *data)
248 {
249 	if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
250 		rt2800_txdone_entry(entry, entry->status,
251 				    rt2800mmio_get_txwi(entry), true);
252 		return false;
253 	}
254 
255 	/* No more frames to release */
256 	return true;
257 }
258 
259 static bool rt2800mmio_txdone(struct rt2x00_dev *rt2x00dev)
260 {
261 	struct data_queue *queue;
262 	u32 status;
263 	u8 qid;
264 	int max_tx_done = 16;
265 
266 	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
267 		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
268 		if (unlikely(qid >= QID_RX)) {
269 			/*
270 			 * Unknown queue, this shouldn't happen. Just drop
271 			 * this tx status.
272 			 */
273 			rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
274 				    qid);
275 			break;
276 		}
277 
278 		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
279 		if (unlikely(queue == NULL)) {
280 			/*
281 			 * The queue is NULL, this shouldn't happen. Stop
282 			 * processing here and drop the tx status
283 			 */
284 			rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
285 				    qid);
286 			break;
287 		}
288 
289 		if (unlikely(rt2x00queue_empty(queue))) {
290 			/*
291 			 * The queue is empty. Stop processing here
292 			 * and drop the tx status.
293 			 */
294 			rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
295 				    qid);
296 			break;
297 		}
298 
299 		/*
300 		 * Let's associate this tx status with the first
301 		 * matching frame.
302 		 */
303 		if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
304 						Q_INDEX, &status,
305 						rt2800mmio_txdone_find_entry)) {
306 			/*
307 			 * We cannot match the tx status to any frame, so just
308 			 * use the first one.
309 			 */
310 			if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
311 							Q_INDEX, &status,
312 							rt2800mmio_txdone_match_first)) {
313 				rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
314 					    qid);
315 				break;
316 			}
317 		}
318 
319 		/*
320 		 * Release all frames with a valid tx status.
321 		 */
322 		rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
323 					   Q_INDEX, NULL,
324 					   rt2800mmio_txdone_release_entries);
325 
326 		if (--max_tx_done == 0)
327 			break;
328 	}
329 
330 	return !max_tx_done;
331 }
332 
333 static inline void rt2800mmio_enable_interrupt(struct rt2x00_dev *rt2x00dev,
334 					       struct rt2x00_field32 irq_field)
335 {
336 	u32 reg;
337 
338 	/*
339 	 * Enable a single interrupt. The interrupt mask register
340 	 * access needs locking.
341 	 */
342 	spin_lock_irq(&rt2x00dev->irqmask_lock);
343 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
344 	rt2x00_set_field32(&reg, irq_field, 1);
345 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
346 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
347 }
348 
349 void rt2800mmio_txstatus_tasklet(unsigned long data)
350 {
351 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
352 	if (rt2800mmio_txdone(rt2x00dev))
353 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
354 
355 	/*
356 	 * No need to enable the tx status interrupt here as we always
357 	 * leave it enabled to minimize the possibility of a tx status
358 	 * register overflow. See comment in interrupt handler.
359 	 */
360 }
361 EXPORT_SYMBOL_GPL(rt2800mmio_txstatus_tasklet);
362 
363 void rt2800mmio_pretbtt_tasklet(unsigned long data)
364 {
365 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
366 	rt2x00lib_pretbtt(rt2x00dev);
367 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
368 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
369 }
370 EXPORT_SYMBOL_GPL(rt2800mmio_pretbtt_tasklet);
371 
372 void rt2800mmio_tbtt_tasklet(unsigned long data)
373 {
374 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
375 	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
376 	u32 reg;
377 
378 	rt2x00lib_beacondone(rt2x00dev);
379 
380 	if (rt2x00dev->intf_ap_count) {
381 		/*
382 		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
383 		 * causing beacon skew and as a result causing problems with
384 		 * some powersaving clients over time. Shorten the beacon
385 		 * interval every 64 beacons by 64us to mitigate this effect.
386 		 */
387 		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
388 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
389 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
390 					   (rt2x00dev->beacon_int * 16) - 1);
391 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
392 		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
393 			reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
394 			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
395 					   (rt2x00dev->beacon_int * 16));
396 			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
397 		}
398 		drv_data->tbtt_tick++;
399 		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
400 	}
401 
402 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
403 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
404 }
405 EXPORT_SYMBOL_GPL(rt2800mmio_tbtt_tasklet);
406 
407 void rt2800mmio_rxdone_tasklet(unsigned long data)
408 {
409 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
410 	if (rt2x00mmio_rxdone(rt2x00dev))
411 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
412 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
413 		rt2800mmio_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
414 }
415 EXPORT_SYMBOL_GPL(rt2800mmio_rxdone_tasklet);
416 
417 void rt2800mmio_autowake_tasklet(unsigned long data)
418 {
419 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
420 	rt2800mmio_wakeup(rt2x00dev);
421 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
422 		rt2800mmio_enable_interrupt(rt2x00dev,
423 					    INT_MASK_CSR_AUTO_WAKEUP);
424 }
425 EXPORT_SYMBOL_GPL(rt2800mmio_autowake_tasklet);
426 
427 static void rt2800mmio_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
428 {
429 	u32 status;
430 	int i;
431 
432 	/*
433 	 * The TX_FIFO_STATUS interrupt needs special care. We should
434 	 * read TX_STA_FIFO but we should do it immediately as otherwise
435 	 * the register can overflow and we would lose status reports.
436 	 *
437 	 * Hence, read the TX_STA_FIFO register and copy all tx status
438 	 * reports into a kernel FIFO which is handled in the txstatus
439 	 * tasklet. We use a tasklet to process the tx status reports
440 	 * because we can schedule the tasklet multiple times (when the
441 	 * interrupt fires again during tx status processing).
442 	 *
443 	 * Furthermore we don't disable the TX_FIFO_STATUS
444 	 * interrupt here but leave it enabled so that the TX_STA_FIFO
445 	 * can also be read while the tx status tasklet gets executed.
446 	 *
447 	 * Since we have only one producer and one consumer we don't
448 	 * need to lock the kfifo.
449 	 */
450 	for (i = 0; i < rt2x00dev->tx->limit; i++) {
451 		status = rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO);
452 
453 		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
454 			break;
455 
456 		if (!kfifo_put(&rt2x00dev->txstatus_fifo, status)) {
457 			rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
458 			break;
459 		}
460 	}
461 
462 	/* Schedule the tasklet for processing the tx status. */
463 	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
464 }
465 
466 irqreturn_t rt2800mmio_interrupt(int irq, void *dev_instance)
467 {
468 	struct rt2x00_dev *rt2x00dev = dev_instance;
469 	u32 reg, mask;
470 
471 	/* Read status and ACK all interrupts */
472 	reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
473 	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
474 
475 	if (!reg)
476 		return IRQ_NONE;
477 
478 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
479 		return IRQ_HANDLED;
480 
481 	/*
482 	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
483 	 * for interrupts and interrupt masks we can just use the value of
484 	 * INT_SOURCE_CSR to create the interrupt mask.
485 	 */
486 	mask = ~reg;
487 
488 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
489 		rt2800mmio_txstatus_interrupt(rt2x00dev);
490 		/*
491 		 * Never disable the TX_FIFO_STATUS interrupt.
492 		 */
493 		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
494 	}
495 
496 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
497 		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
498 
499 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
500 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
501 
502 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
503 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
504 
505 	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
506 		tasklet_schedule(&rt2x00dev->autowake_tasklet);
507 
508 	/*
509 	 * Disable all interrupts for which a tasklet was scheduled right now,
510 	 * the tasklet will reenable the appropriate interrupts.
511 	 */
512 	spin_lock(&rt2x00dev->irqmask_lock);
513 	reg = rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR);
514 	reg &= mask;
515 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
516 	spin_unlock(&rt2x00dev->irqmask_lock);
517 
518 	return IRQ_HANDLED;
519 }
520 EXPORT_SYMBOL_GPL(rt2800mmio_interrupt);
521 
522 void rt2800mmio_toggle_irq(struct rt2x00_dev *rt2x00dev,
523 			   enum dev_state state)
524 {
525 	u32 reg;
526 	unsigned long flags;
527 
528 	/*
529 	 * When interrupts are being enabled, the interrupt registers
530 	 * should clear the register to assure a clean state.
531 	 */
532 	if (state == STATE_RADIO_IRQ_ON) {
533 		reg = rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR);
534 		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
535 	}
536 
537 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
538 	reg = 0;
539 	if (state == STATE_RADIO_IRQ_ON) {
540 		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
541 		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
542 		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
543 		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
544 		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
545 	}
546 	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
547 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
548 
549 	if (state == STATE_RADIO_IRQ_OFF) {
550 		/*
551 		 * Wait for possibly running tasklets to finish.
552 		 */
553 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
554 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
555 		tasklet_kill(&rt2x00dev->autowake_tasklet);
556 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
557 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
558 	}
559 }
560 EXPORT_SYMBOL_GPL(rt2800mmio_toggle_irq);
561 
562 /*
563  * Queue handlers.
564  */
565 void rt2800mmio_start_queue(struct data_queue *queue)
566 {
567 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
568 	u32 reg;
569 
570 	switch (queue->qid) {
571 	case QID_RX:
572 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
573 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
574 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
575 		break;
576 	case QID_BEACON:
577 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
578 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
579 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
580 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
581 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
582 
583 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
584 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
585 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
586 		break;
587 	default:
588 		break;
589 	}
590 }
591 EXPORT_SYMBOL_GPL(rt2800mmio_start_queue);
592 
593 void rt2800mmio_kick_queue(struct data_queue *queue)
594 {
595 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
596 	struct queue_entry *entry;
597 
598 	switch (queue->qid) {
599 	case QID_AC_VO:
600 	case QID_AC_VI:
601 	case QID_AC_BE:
602 	case QID_AC_BK:
603 		WARN_ON_ONCE(rt2x00queue_empty(queue));
604 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
605 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
606 					  entry->entry_idx);
607 		break;
608 	case QID_MGMT:
609 		entry = rt2x00queue_get_entry(queue, Q_INDEX);
610 		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
611 					  entry->entry_idx);
612 		break;
613 	default:
614 		break;
615 	}
616 }
617 EXPORT_SYMBOL_GPL(rt2800mmio_kick_queue);
618 
619 void rt2800mmio_stop_queue(struct data_queue *queue)
620 {
621 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
622 	u32 reg;
623 
624 	switch (queue->qid) {
625 	case QID_RX:
626 		reg = rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL);
627 		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
628 		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
629 		break;
630 	case QID_BEACON:
631 		reg = rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG);
632 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
633 		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
634 		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
635 		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
636 
637 		reg = rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN);
638 		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
639 		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
640 
641 		/*
642 		 * Wait for current invocation to finish. The tasklet
643 		 * won't be scheduled anymore afterwards since we disabled
644 		 * the TBTT and PRE TBTT timer.
645 		 */
646 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
647 		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
648 
649 		break;
650 	default:
651 		break;
652 	}
653 }
654 EXPORT_SYMBOL_GPL(rt2800mmio_stop_queue);
655 
656 void rt2800mmio_queue_init(struct data_queue *queue)
657 {
658 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
659 	unsigned short txwi_size, rxwi_size;
660 
661 	rt2800_get_txwi_rxwi_size(rt2x00dev, &txwi_size, &rxwi_size);
662 
663 	switch (queue->qid) {
664 	case QID_RX:
665 		queue->limit = 128;
666 		queue->data_size = AGGREGATION_SIZE;
667 		queue->desc_size = RXD_DESC_SIZE;
668 		queue->winfo_size = rxwi_size;
669 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
670 		break;
671 
672 	case QID_AC_VO:
673 	case QID_AC_VI:
674 	case QID_AC_BE:
675 	case QID_AC_BK:
676 		queue->limit = 64;
677 		queue->data_size = AGGREGATION_SIZE;
678 		queue->desc_size = TXD_DESC_SIZE;
679 		queue->winfo_size = txwi_size;
680 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
681 		break;
682 
683 	case QID_BEACON:
684 		queue->limit = 8;
685 		queue->data_size = 0; /* No DMA required for beacons */
686 		queue->desc_size = TXD_DESC_SIZE;
687 		queue->winfo_size = txwi_size;
688 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
689 		break;
690 
691 	case QID_ATIM:
692 		/* fallthrough */
693 	default:
694 		BUG();
695 		break;
696 	}
697 }
698 EXPORT_SYMBOL_GPL(rt2800mmio_queue_init);
699 
700 /*
701  * Initialization functions.
702  */
703 bool rt2800mmio_get_entry_state(struct queue_entry *entry)
704 {
705 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
706 	u32 word;
707 
708 	if (entry->queue->qid == QID_RX) {
709 		word = rt2x00_desc_read(entry_priv->desc, 1);
710 
711 		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
712 	} else {
713 		word = rt2x00_desc_read(entry_priv->desc, 1);
714 
715 		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
716 	}
717 }
718 EXPORT_SYMBOL_GPL(rt2800mmio_get_entry_state);
719 
720 void rt2800mmio_clear_entry(struct queue_entry *entry)
721 {
722 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
723 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
724 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
725 	u32 word;
726 
727 	if (entry->queue->qid == QID_RX) {
728 		word = rt2x00_desc_read(entry_priv->desc, 0);
729 		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
730 		rt2x00_desc_write(entry_priv->desc, 0, word);
731 
732 		word = rt2x00_desc_read(entry_priv->desc, 1);
733 		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
734 		rt2x00_desc_write(entry_priv->desc, 1, word);
735 
736 		/*
737 		 * Set RX IDX in register to inform hardware that we have
738 		 * handled this entry and it is available for reuse again.
739 		 */
740 		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
741 					  entry->entry_idx);
742 	} else {
743 		word = rt2x00_desc_read(entry_priv->desc, 1);
744 		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
745 		rt2x00_desc_write(entry_priv->desc, 1, word);
746 	}
747 }
748 EXPORT_SYMBOL_GPL(rt2800mmio_clear_entry);
749 
750 int rt2800mmio_init_queues(struct rt2x00_dev *rt2x00dev)
751 {
752 	struct queue_entry_priv_mmio *entry_priv;
753 
754 	/*
755 	 * Initialize registers.
756 	 */
757 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
758 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
759 				  entry_priv->desc_dma);
760 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
761 				  rt2x00dev->tx[0].limit);
762 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
763 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
764 
765 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
766 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
767 				  entry_priv->desc_dma);
768 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
769 				  rt2x00dev->tx[1].limit);
770 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
771 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
772 
773 	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
774 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
775 				  entry_priv->desc_dma);
776 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
777 				  rt2x00dev->tx[2].limit);
778 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
779 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
780 
781 	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
782 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
783 				  entry_priv->desc_dma);
784 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
785 				  rt2x00dev->tx[3].limit);
786 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
787 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);
788 
789 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
790 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
791 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
792 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);
793 
794 	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
795 	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
796 	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
797 	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
798 
799 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
800 	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
801 				  entry_priv->desc_dma);
802 	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
803 				  rt2x00dev->rx[0].limit);
804 	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
805 				  rt2x00dev->rx[0].limit - 1);
806 	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
807 
808 	rt2800_disable_wpdma(rt2x00dev);
809 
810 	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
811 
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(rt2800mmio_init_queues);
815 
816 int rt2800mmio_init_registers(struct rt2x00_dev *rt2x00dev)
817 {
818 	u32 reg;
819 
820 	/*
821 	 * Reset DMA indexes
822 	 */
823 	reg = rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX);
824 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
825 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
826 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
827 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
828 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
829 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
830 	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
831 	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
832 
833 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
834 	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
835 
836 	if (rt2x00_is_pcie(rt2x00dev) &&
837 	    (rt2x00_rt(rt2x00dev, RT3090) ||
838 	     rt2x00_rt(rt2x00dev, RT3390) ||
839 	     rt2x00_rt(rt2x00dev, RT3572) ||
840 	     rt2x00_rt(rt2x00dev, RT3593) ||
841 	     rt2x00_rt(rt2x00dev, RT5390) ||
842 	     rt2x00_rt(rt2x00dev, RT5392) ||
843 	     rt2x00_rt(rt2x00dev, RT5592))) {
844 		reg = rt2x00mmio_register_read(rt2x00dev, AUX_CTRL);
845 		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
846 		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
847 		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
848 	}
849 
850 	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
851 
852 	reg = 0;
853 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
854 	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
855 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
856 
857 	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
858 
859 	return 0;
860 }
861 EXPORT_SYMBOL_GPL(rt2800mmio_init_registers);
862 
863 /*
864  * Device state switch handlers.
865  */
866 int rt2800mmio_enable_radio(struct rt2x00_dev *rt2x00dev)
867 {
868 	/* Wait for DMA, ignore error until we initialize queues. */
869 	rt2800_wait_wpdma_ready(rt2x00dev);
870 
871 	if (unlikely(rt2800mmio_init_queues(rt2x00dev)))
872 		return -EIO;
873 
874 	return rt2800_enable_radio(rt2x00dev);
875 }
876 EXPORT_SYMBOL_GPL(rt2800mmio_enable_radio);
877 
878 MODULE_AUTHOR(DRV_PROJECT);
879 MODULE_VERSION(DRV_VERSION);
880 MODULE_DESCRIPTION("rt2800 MMIO library");
881 MODULE_LICENSE("GPL");
882