xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2500usb.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500usb
21 	Abstract: rt2500usb device specific routines.
22 	Supported chipsets: RT2570.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31 
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35 
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42 
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 					   const unsigned int offset,
60 					   u16 *value)
61 {
62 	__le16 reg;
63 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 				      USB_VENDOR_REQUEST_IN, offset,
65 				      &reg, sizeof(reg));
66 	*value = le16_to_cpu(reg);
67 }
68 
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 						const unsigned int offset,
71 						u16 *value)
72 {
73 	__le16 reg;
74 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 				       USB_VENDOR_REQUEST_IN, offset,
76 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
77 	*value = le16_to_cpu(reg);
78 }
79 
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 						const unsigned int offset,
82 						void *value, const u16 length)
83 {
84 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 				      USB_VENDOR_REQUEST_IN, offset,
86 				      value, length);
87 }
88 
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90 					    const unsigned int offset,
91 					    u16 value)
92 {
93 	__le16 reg = cpu_to_le16(value);
94 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 				      USB_VENDOR_REQUEST_OUT, offset,
96 				      &reg, sizeof(reg));
97 }
98 
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 						 const unsigned int offset,
101 						 u16 value)
102 {
103 	__le16 reg = cpu_to_le16(value);
104 	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105 				       USB_VENDOR_REQUEST_OUT, offset,
106 				       &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108 
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110 						 const unsigned int offset,
111 						 void *value, const u16 length)
112 {
113 	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114 				      USB_VENDOR_REQUEST_OUT, offset,
115 				      value, length);
116 }
117 
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119 				  const unsigned int offset,
120 				  struct rt2x00_field16 field,
121 				  u16 *reg)
122 {
123 	unsigned int i;
124 
125 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126 		rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127 		if (!rt2x00_get_field16(*reg, field))
128 			return 1;
129 		udelay(REGISTER_BUSY_DELAY);
130 	}
131 
132 	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133 		   offset, *reg);
134 	*reg = ~0;
135 
136 	return 0;
137 }
138 
139 #define WAIT_FOR_BBP(__dev, __reg) \
140 	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142 	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143 
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145 				const unsigned int word, const u8 value)
146 {
147 	u16 reg;
148 
149 	mutex_lock(&rt2x00dev->csr_mutex);
150 
151 	/*
152 	 * Wait until the BBP becomes available, afterwards we
153 	 * can safely write the new data into the register.
154 	 */
155 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156 		reg = 0;
157 		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160 
161 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162 	}
163 
164 	mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166 
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 			       const unsigned int word, u8 *value)
169 {
170 	u16 reg;
171 
172 	mutex_lock(&rt2x00dev->csr_mutex);
173 
174 	/*
175 	 * Wait until the BBP becomes available, afterwards we
176 	 * can safely write the read request into the register.
177 	 * After the data has been written, we wait until hardware
178 	 * returns the correct value, if at any time the register
179 	 * doesn't become available in time, reg will be 0xffffffff
180 	 * which means we return 0xff to the caller.
181 	 */
182 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183 		reg = 0;
184 		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185 		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186 
187 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188 
189 		if (WAIT_FOR_BBP(rt2x00dev, &reg))
190 			rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191 	}
192 
193 	*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194 
195 	mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197 
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199 			       const unsigned int word, const u32 value)
200 {
201 	u16 reg;
202 
203 	mutex_lock(&rt2x00dev->csr_mutex);
204 
205 	/*
206 	 * Wait until the RF becomes available, afterwards we
207 	 * can safely write the new data into the register.
208 	 */
209 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210 		reg = 0;
211 		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213 
214 		reg = 0;
215 		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216 		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217 		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218 		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219 
220 		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221 		rt2x00_rf_write(rt2x00dev, word, value);
222 	}
223 
224 	mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226 
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229 				     const unsigned int offset,
230 				     u32 *value)
231 {
232 	u16 tmp;
233 
234 	rt2500usb_register_read(rt2x00dev, offset, &tmp);
235 	*value = tmp;
236 }
237 
238 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
239 				      const unsigned int offset,
240 				      u32 value)
241 {
242 	rt2500usb_register_write(rt2x00dev, offset, value);
243 }
244 
245 static const struct rt2x00debug rt2500usb_rt2x00debug = {
246 	.owner	= THIS_MODULE,
247 	.csr	= {
248 		.read		= _rt2500usb_register_read,
249 		.write		= _rt2500usb_register_write,
250 		.flags		= RT2X00DEBUGFS_OFFSET,
251 		.word_base	= CSR_REG_BASE,
252 		.word_size	= sizeof(u16),
253 		.word_count	= CSR_REG_SIZE / sizeof(u16),
254 	},
255 	.eeprom	= {
256 		.read		= rt2x00_eeprom_read,
257 		.write		= rt2x00_eeprom_write,
258 		.word_base	= EEPROM_BASE,
259 		.word_size	= sizeof(u16),
260 		.word_count	= EEPROM_SIZE / sizeof(u16),
261 	},
262 	.bbp	= {
263 		.read		= rt2500usb_bbp_read,
264 		.write		= rt2500usb_bbp_write,
265 		.word_base	= BBP_BASE,
266 		.word_size	= sizeof(u8),
267 		.word_count	= BBP_SIZE / sizeof(u8),
268 	},
269 	.rf	= {
270 		.read		= rt2x00_rf_read,
271 		.write		= rt2500usb_rf_write,
272 		.word_base	= RF_BASE,
273 		.word_size	= sizeof(u32),
274 		.word_count	= RF_SIZE / sizeof(u32),
275 	},
276 };
277 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
278 
279 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
280 {
281 	u16 reg;
282 
283 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
284 	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
285 }
286 
287 #ifdef CONFIG_RT2X00_LIB_LEDS
288 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
289 				     enum led_brightness brightness)
290 {
291 	struct rt2x00_led *led =
292 	    container_of(led_cdev, struct rt2x00_led, led_dev);
293 	unsigned int enabled = brightness != LED_OFF;
294 	u16 reg;
295 
296 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
297 
298 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
299 		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
300 	else if (led->type == LED_TYPE_ACTIVITY)
301 		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
302 
303 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
304 }
305 
306 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
307 			       unsigned long *delay_on,
308 			       unsigned long *delay_off)
309 {
310 	struct rt2x00_led *led =
311 	    container_of(led_cdev, struct rt2x00_led, led_dev);
312 	u16 reg;
313 
314 	rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
315 	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
316 	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
317 	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
318 
319 	return 0;
320 }
321 
322 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
323 			       struct rt2x00_led *led,
324 			       enum led_type type)
325 {
326 	led->rt2x00dev = rt2x00dev;
327 	led->type = type;
328 	led->led_dev.brightness_set = rt2500usb_brightness_set;
329 	led->led_dev.blink_set = rt2500usb_blink_set;
330 	led->flags = LED_INITIALIZED;
331 }
332 #endif /* CONFIG_RT2X00_LIB_LEDS */
333 
334 /*
335  * Configuration handlers.
336  */
337 
338 /*
339  * rt2500usb does not differentiate between shared and pairwise
340  * keys, so we should use the same function for both key types.
341  */
342 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
343 				struct rt2x00lib_crypto *crypto,
344 				struct ieee80211_key_conf *key)
345 {
346 	u32 mask;
347 	u16 reg;
348 	enum cipher curr_cipher;
349 
350 	if (crypto->cmd == SET_KEY) {
351 		/*
352 		 * Disallow to set WEP key other than with index 0,
353 		 * it is known that not work at least on some hardware.
354 		 * SW crypto will be used in that case.
355 		 */
356 		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
357 		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
358 		    key->keyidx != 0)
359 			return -EOPNOTSUPP;
360 
361 		/*
362 		 * Pairwise key will always be entry 0, but this
363 		 * could collide with a shared key on the same
364 		 * position...
365 		 */
366 		mask = TXRX_CSR0_KEY_ID.bit_mask;
367 
368 		rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369 		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370 		reg &= mask;
371 
372 		if (reg && reg == mask)
373 			return -ENOSPC;
374 
375 		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376 
377 		key->hw_key_idx += reg ? ffz(reg) : 0;
378 		/*
379 		 * Hardware requires that all keys use the same cipher
380 		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381 		 * If this is not the first key, compare the cipher with the
382 		 * first one and fall back to SW crypto if not the same.
383 		 */
384 		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385 			return -EOPNOTSUPP;
386 
387 		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388 					      crypto->key, sizeof(crypto->key));
389 
390 		/*
391 		 * The driver does not support the IV/EIV generation
392 		 * in hardware. However it demands the data to be provided
393 		 * both separately as well as inside the frame.
394 		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395 		 * to ensure rt2x00lib will not strip the data from the
396 		 * frame after the copy, now we must tell mac80211
397 		 * to generate the IV/EIV data.
398 		 */
399 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401 	}
402 
403 	/*
404 	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405 	 * a particular key is valid.
406 	 */
407 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410 
411 	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412 	if (crypto->cmd == SET_KEY)
413 		mask |= 1 << key->hw_key_idx;
414 	else if (crypto->cmd == DISABLE_KEY)
415 		mask &= ~(1 << key->hw_key_idx);
416 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418 
419 	return 0;
420 }
421 
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423 				    const unsigned int filter_flags)
424 {
425 	u16 reg;
426 
427 	/*
428 	 * Start configuration steps.
429 	 * Note that the version error will always be dropped
430 	 * and broadcast frames will always be accepted since
431 	 * there is no filter for it at this time.
432 	 */
433 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435 			   !(filter_flags & FIF_FCSFAIL));
436 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437 			   !(filter_flags & FIF_PLCPFAIL));
438 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439 			   !(filter_flags & FIF_CONTROL));
440 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
441 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
442 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
443 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
444 			   !rt2x00dev->intf_ap_count);
445 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
446 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
447 			   !(filter_flags & FIF_ALLMULTI));
448 	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
449 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
450 }
451 
452 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
453 				  struct rt2x00_intf *intf,
454 				  struct rt2x00intf_conf *conf,
455 				  const unsigned int flags)
456 {
457 	unsigned int bcn_preload;
458 	u16 reg;
459 
460 	if (flags & CONFIG_UPDATE_TYPE) {
461 		/*
462 		 * Enable beacon config
463 		 */
464 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
465 		rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
466 		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
467 		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
468 				   2 * (conf->type != NL80211_IFTYPE_STATION));
469 		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
470 
471 		/*
472 		 * Enable synchronisation.
473 		 */
474 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
475 		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
476 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
477 
478 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
479 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
480 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
481 	}
482 
483 	if (flags & CONFIG_UPDATE_MAC)
484 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
485 					      (3 * sizeof(__le16)));
486 
487 	if (flags & CONFIG_UPDATE_BSSID)
488 		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
489 					      (3 * sizeof(__le16)));
490 }
491 
492 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
493 				 struct rt2x00lib_erp *erp,
494 				 u32 changed)
495 {
496 	u16 reg;
497 
498 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
499 		rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
500 		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
501 				   !!erp->short_preamble);
502 		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
503 	}
504 
505 	if (changed & BSS_CHANGED_BASIC_RATES)
506 		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
507 					 erp->basic_rates);
508 
509 	if (changed & BSS_CHANGED_BEACON_INT) {
510 		rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
511 		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
512 				   erp->beacon_int * 4);
513 		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
514 	}
515 
516 	if (changed & BSS_CHANGED_ERP_SLOT) {
517 		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
518 		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
519 		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
520 	}
521 }
522 
523 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
524 				 struct antenna_setup *ant)
525 {
526 	u8 r2;
527 	u8 r14;
528 	u16 csr5;
529 	u16 csr6;
530 
531 	/*
532 	 * We should never come here because rt2x00lib is supposed
533 	 * to catch this and send us the correct antenna explicitely.
534 	 */
535 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
536 	       ant->tx == ANTENNA_SW_DIVERSITY);
537 
538 	rt2500usb_bbp_read(rt2x00dev, 2, &r2);
539 	rt2500usb_bbp_read(rt2x00dev, 14, &r14);
540 	rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
541 	rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
542 
543 	/*
544 	 * Configure the TX antenna.
545 	 */
546 	switch (ant->tx) {
547 	case ANTENNA_HW_DIVERSITY:
548 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
549 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
550 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
551 		break;
552 	case ANTENNA_A:
553 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
554 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
555 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
556 		break;
557 	case ANTENNA_B:
558 	default:
559 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
560 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
561 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
562 		break;
563 	}
564 
565 	/*
566 	 * Configure the RX antenna.
567 	 */
568 	switch (ant->rx) {
569 	case ANTENNA_HW_DIVERSITY:
570 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
571 		break;
572 	case ANTENNA_A:
573 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
574 		break;
575 	case ANTENNA_B:
576 	default:
577 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
578 		break;
579 	}
580 
581 	/*
582 	 * RT2525E and RT5222 need to flip TX I/Q
583 	 */
584 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
585 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
586 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
587 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
588 
589 		/*
590 		 * RT2525E does not need RX I/Q Flip.
591 		 */
592 		if (rt2x00_rf(rt2x00dev, RF2525E))
593 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
594 	} else {
595 		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
596 		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
597 	}
598 
599 	rt2500usb_bbp_write(rt2x00dev, 2, r2);
600 	rt2500usb_bbp_write(rt2x00dev, 14, r14);
601 	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
602 	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
603 }
604 
605 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
606 				     struct rf_channel *rf, const int txpower)
607 {
608 	/*
609 	 * Set TXpower.
610 	 */
611 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
612 
613 	/*
614 	 * For RT2525E we should first set the channel to half band higher.
615 	 */
616 	if (rt2x00_rf(rt2x00dev, RF2525E)) {
617 		static const u32 vals[] = {
618 			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
619 			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
620 			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
621 			0x00000902, 0x00000906
622 		};
623 
624 		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
625 		if (rf->rf4)
626 			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
627 	}
628 
629 	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
630 	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
631 	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
632 	if (rf->rf4)
633 		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
634 }
635 
636 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
637 				     const int txpower)
638 {
639 	u32 rf3;
640 
641 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
642 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
643 	rt2500usb_rf_write(rt2x00dev, 3, rf3);
644 }
645 
646 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
647 				struct rt2x00lib_conf *libconf)
648 {
649 	enum dev_state state =
650 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
651 		STATE_SLEEP : STATE_AWAKE;
652 	u16 reg;
653 
654 	if (state == STATE_SLEEP) {
655 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
656 		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
657 				   rt2x00dev->beacon_int - 20);
658 		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
659 				   libconf->conf->listen_interval - 1);
660 
661 		/* We must first disable autowake before it can be enabled */
662 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
663 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
664 
665 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
666 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
667 	} else {
668 		rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
669 		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
670 		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
671 	}
672 
673 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
674 }
675 
676 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
677 			     struct rt2x00lib_conf *libconf,
678 			     const unsigned int flags)
679 {
680 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
681 		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
682 					 libconf->conf->power_level);
683 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
684 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
685 		rt2500usb_config_txpower(rt2x00dev,
686 					 libconf->conf->power_level);
687 	if (flags & IEEE80211_CONF_CHANGE_PS)
688 		rt2500usb_config_ps(rt2x00dev, libconf);
689 }
690 
691 /*
692  * Link tuning
693  */
694 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
695 				 struct link_qual *qual)
696 {
697 	u16 reg;
698 
699 	/*
700 	 * Update FCS error count from register.
701 	 */
702 	rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
703 	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
704 
705 	/*
706 	 * Update False CCA count from register.
707 	 */
708 	rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
709 	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
710 }
711 
712 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
713 				  struct link_qual *qual)
714 {
715 	u16 eeprom;
716 	u16 value;
717 
718 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
719 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
720 	rt2500usb_bbp_write(rt2x00dev, 24, value);
721 
722 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
723 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
724 	rt2500usb_bbp_write(rt2x00dev, 25, value);
725 
726 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
727 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
728 	rt2500usb_bbp_write(rt2x00dev, 61, value);
729 
730 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
731 	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
732 	rt2500usb_bbp_write(rt2x00dev, 17, value);
733 
734 	qual->vgc_level = value;
735 }
736 
737 /*
738  * Queue handlers.
739  */
740 static void rt2500usb_start_queue(struct data_queue *queue)
741 {
742 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
743 	u16 reg;
744 
745 	switch (queue->qid) {
746 	case QID_RX:
747 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
748 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
749 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
750 		break;
751 	case QID_BEACON:
752 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
753 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
754 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
755 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
756 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
757 		break;
758 	default:
759 		break;
760 	}
761 }
762 
763 static void rt2500usb_stop_queue(struct data_queue *queue)
764 {
765 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
766 	u16 reg;
767 
768 	switch (queue->qid) {
769 	case QID_RX:
770 		rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
771 		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
772 		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
773 		break;
774 	case QID_BEACON:
775 		rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
776 		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
777 		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
778 		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
779 		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
780 		break;
781 	default:
782 		break;
783 	}
784 }
785 
786 /*
787  * Initialization functions.
788  */
789 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
790 {
791 	u16 reg;
792 
793 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
794 				    USB_MODE_TEST, REGISTER_TIMEOUT);
795 	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
796 				    0x00f0, REGISTER_TIMEOUT);
797 
798 	rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
799 	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
800 	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
801 
802 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
803 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
804 
805 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
806 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
807 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
808 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
809 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
810 
811 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
812 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
813 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
814 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
815 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
816 
817 	rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
818 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
819 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
820 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
821 	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
822 	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
823 
824 	rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
825 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
826 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
827 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
828 	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
829 	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
830 
831 	rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
832 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
833 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
834 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
835 	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
836 	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
837 
838 	rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
839 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
840 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
841 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
842 	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
843 	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
844 
845 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
846 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
847 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
848 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
849 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
850 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
851 
852 	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
853 	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
854 
855 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
856 		return -EBUSY;
857 
858 	rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
859 	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
860 	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
861 	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
862 	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
863 
864 	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
865 		rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
866 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
867 	} else {
868 		reg = 0;
869 		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
870 		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
871 	}
872 	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
873 
874 	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
875 	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
876 	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
877 	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
878 
879 	rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
880 	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
881 			   rt2x00dev->rx->data_size);
882 	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
883 
884 	rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
885 	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
886 	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
887 	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
888 	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
889 
890 	rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
891 	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
892 	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
893 
894 	rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
895 	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
896 	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
897 
898 	rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
899 	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
900 	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
901 
902 	return 0;
903 }
904 
905 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
906 {
907 	unsigned int i;
908 	u8 value;
909 
910 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
911 		rt2500usb_bbp_read(rt2x00dev, 0, &value);
912 		if ((value != 0xff) && (value != 0x00))
913 			return 0;
914 		udelay(REGISTER_BUSY_DELAY);
915 	}
916 
917 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
918 	return -EACCES;
919 }
920 
921 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
922 {
923 	unsigned int i;
924 	u16 eeprom;
925 	u8 value;
926 	u8 reg_id;
927 
928 	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
929 		return -EACCES;
930 
931 	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
932 	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
933 	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
934 	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
935 	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
936 	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
937 	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
938 	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
939 	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
940 	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
941 	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
942 	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
943 	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
944 	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
945 	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
946 	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
947 	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
948 	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
949 	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
950 	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
951 	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
952 	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
953 	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
954 	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
955 	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
956 	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
957 	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
958 	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
959 	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
960 	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
961 	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
962 
963 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
964 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
965 
966 		if (eeprom != 0xffff && eeprom != 0x0000) {
967 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
968 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
969 			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
970 		}
971 	}
972 
973 	return 0;
974 }
975 
976 /*
977  * Device state switch handlers.
978  */
979 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
980 {
981 	/*
982 	 * Initialize all registers.
983 	 */
984 	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
985 		     rt2500usb_init_bbp(rt2x00dev)))
986 		return -EIO;
987 
988 	return 0;
989 }
990 
991 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
992 {
993 	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
994 	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
995 
996 	/*
997 	 * Disable synchronisation.
998 	 */
999 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1000 
1001 	rt2x00usb_disable_radio(rt2x00dev);
1002 }
1003 
1004 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1005 			       enum dev_state state)
1006 {
1007 	u16 reg;
1008 	u16 reg2;
1009 	unsigned int i;
1010 	char put_to_sleep;
1011 	char bbp_state;
1012 	char rf_state;
1013 
1014 	put_to_sleep = (state != STATE_AWAKE);
1015 
1016 	reg = 0;
1017 	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1018 	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1019 	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1020 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1021 	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1022 	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023 
1024 	/*
1025 	 * Device is not guaranteed to be in the requested state yet.
1026 	 * We must wait until the register indicates that the
1027 	 * device has entered the correct state.
1028 	 */
1029 	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1030 		rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1031 		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1032 		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1033 		if (bbp_state == state && rf_state == state)
1034 			return 0;
1035 		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1036 		msleep(30);
1037 	}
1038 
1039 	return -EBUSY;
1040 }
1041 
1042 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1043 				      enum dev_state state)
1044 {
1045 	int retval = 0;
1046 
1047 	switch (state) {
1048 	case STATE_RADIO_ON:
1049 		retval = rt2500usb_enable_radio(rt2x00dev);
1050 		break;
1051 	case STATE_RADIO_OFF:
1052 		rt2500usb_disable_radio(rt2x00dev);
1053 		break;
1054 	case STATE_RADIO_IRQ_ON:
1055 	case STATE_RADIO_IRQ_OFF:
1056 		/* No support, but no error either */
1057 		break;
1058 	case STATE_DEEP_SLEEP:
1059 	case STATE_SLEEP:
1060 	case STATE_STANDBY:
1061 	case STATE_AWAKE:
1062 		retval = rt2500usb_set_state(rt2x00dev, state);
1063 		break;
1064 	default:
1065 		retval = -ENOTSUPP;
1066 		break;
1067 	}
1068 
1069 	if (unlikely(retval))
1070 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1071 			   state, retval);
1072 
1073 	return retval;
1074 }
1075 
1076 /*
1077  * TX descriptor initialization
1078  */
1079 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1080 				    struct txentry_desc *txdesc)
1081 {
1082 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1083 	__le32 *txd = (__le32 *) entry->skb->data;
1084 	u32 word;
1085 
1086 	/*
1087 	 * Start writing the descriptor words.
1088 	 */
1089 	rt2x00_desc_read(txd, 0, &word);
1090 	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1091 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1092 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1093 	rt2x00_set_field32(&word, TXD_W0_ACK,
1094 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1095 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1096 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1097 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1098 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1099 	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1100 			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1101 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1102 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1103 	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1104 	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1105 	rt2x00_desc_write(txd, 0, word);
1106 
1107 	rt2x00_desc_read(txd, 1, &word);
1108 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1109 	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1110 	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1111 	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1112 	rt2x00_desc_write(txd, 1, word);
1113 
1114 	rt2x00_desc_read(txd, 2, &word);
1115 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1116 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1117 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1118 			   txdesc->u.plcp.length_low);
1119 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1120 			   txdesc->u.plcp.length_high);
1121 	rt2x00_desc_write(txd, 2, word);
1122 
1123 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1124 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1125 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1126 	}
1127 
1128 	/*
1129 	 * Register descriptor details in skb frame descriptor.
1130 	 */
1131 	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1132 	skbdesc->desc = txd;
1133 	skbdesc->desc_len = TXD_DESC_SIZE;
1134 }
1135 
1136 /*
1137  * TX data initialization
1138  */
1139 static void rt2500usb_beacondone(struct urb *urb);
1140 
1141 static void rt2500usb_write_beacon(struct queue_entry *entry,
1142 				   struct txentry_desc *txdesc)
1143 {
1144 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1145 	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1146 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1147 	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1148 	int length;
1149 	u16 reg, reg0;
1150 
1151 	/*
1152 	 * Disable beaconing while we are reloading the beacon data,
1153 	 * otherwise we might be sending out invalid data.
1154 	 */
1155 	rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1156 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1157 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1158 
1159 	/*
1160 	 * Add space for the descriptor in front of the skb.
1161 	 */
1162 	skb_push(entry->skb, TXD_DESC_SIZE);
1163 	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1164 
1165 	/*
1166 	 * Write the TX descriptor for the beacon.
1167 	 */
1168 	rt2500usb_write_tx_desc(entry, txdesc);
1169 
1170 	/*
1171 	 * Dump beacon to userspace through debugfs.
1172 	 */
1173 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1174 
1175 	/*
1176 	 * USB devices cannot blindly pass the skb->len as the
1177 	 * length of the data to usb_fill_bulk_urb. Pass the skb
1178 	 * to the driver to determine what the length should be.
1179 	 */
1180 	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1181 
1182 	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1183 			  entry->skb->data, length, rt2500usb_beacondone,
1184 			  entry);
1185 
1186 	/*
1187 	 * Second we need to create the guardian byte.
1188 	 * We only need a single byte, so lets recycle
1189 	 * the 'flags' field we are not using for beacons.
1190 	 */
1191 	bcn_priv->guardian_data = 0;
1192 	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1193 			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1194 			  entry);
1195 
1196 	/*
1197 	 * Send out the guardian byte.
1198 	 */
1199 	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1200 
1201 	/*
1202 	 * Enable beaconing again.
1203 	 */
1204 	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1205 	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1206 	reg0 = reg;
1207 	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1208 	/*
1209 	 * Beacon generation will fail initially.
1210 	 * To prevent this we need to change the TXRX_CSR19
1211 	 * register several times (reg0 is the same as reg
1212 	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1213 	 * and 1 in reg).
1214 	 */
1215 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219 	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220 }
1221 
1222 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1223 {
1224 	int length;
1225 
1226 	/*
1227 	 * The length _must_ be a multiple of 2,
1228 	 * but it must _not_ be a multiple of the USB packet size.
1229 	 */
1230 	length = roundup(entry->skb->len, 2);
1231 	length += (2 * !(length % entry->queue->usb_maxpacket));
1232 
1233 	return length;
1234 }
1235 
1236 /*
1237  * RX control handlers
1238  */
1239 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1240 				  struct rxdone_entry_desc *rxdesc)
1241 {
1242 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1243 	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1244 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1245 	__le32 *rxd =
1246 	    (__le32 *)(entry->skb->data +
1247 		       (entry_priv->urb->actual_length -
1248 			entry->queue->desc_size));
1249 	u32 word0;
1250 	u32 word1;
1251 
1252 	/*
1253 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1254 	 * frame data in rt2x00usb.
1255 	 */
1256 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1257 	rxd = (__le32 *)skbdesc->desc;
1258 
1259 	/*
1260 	 * It is now safe to read the descriptor on all architectures.
1261 	 */
1262 	rt2x00_desc_read(rxd, 0, &word0);
1263 	rt2x00_desc_read(rxd, 1, &word1);
1264 
1265 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1266 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1267 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1268 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1269 
1270 	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1271 	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1272 		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1273 
1274 	if (rxdesc->cipher != CIPHER_NONE) {
1275 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1276 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1277 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1278 
1279 		/* ICV is located at the end of frame */
1280 
1281 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1282 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1283 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1284 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1285 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1286 	}
1287 
1288 	/*
1289 	 * Obtain the status about this packet.
1290 	 * When frame was received with an OFDM bitrate,
1291 	 * the signal is the PLCP value. If it was received with
1292 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1293 	 */
1294 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1295 	rxdesc->rssi =
1296 	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1297 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1298 
1299 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1300 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1301 	else
1302 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1303 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1304 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1305 
1306 	/*
1307 	 * Adjust the skb memory window to the frame boundaries.
1308 	 */
1309 	skb_trim(entry->skb, rxdesc->size);
1310 }
1311 
1312 /*
1313  * Interrupt functions.
1314  */
1315 static void rt2500usb_beacondone(struct urb *urb)
1316 {
1317 	struct queue_entry *entry = (struct queue_entry *)urb->context;
1318 	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1319 
1320 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1321 		return;
1322 
1323 	/*
1324 	 * Check if this was the guardian beacon,
1325 	 * if that was the case we need to send the real beacon now.
1326 	 * Otherwise we should free the sk_buffer, the device
1327 	 * should be doing the rest of the work now.
1328 	 */
1329 	if (bcn_priv->guardian_urb == urb) {
1330 		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1331 	} else if (bcn_priv->urb == urb) {
1332 		dev_kfree_skb(entry->skb);
1333 		entry->skb = NULL;
1334 	}
1335 }
1336 
1337 /*
1338  * Device probe functions.
1339  */
1340 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1341 {
1342 	u16 word;
1343 	u8 *mac;
1344 	u8 bbp;
1345 
1346 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1347 
1348 	/*
1349 	 * Start validation of the data that has been read.
1350 	 */
1351 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1352 	if (!is_valid_ether_addr(mac)) {
1353 		eth_random_addr(mac);
1354 		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1355 	}
1356 
1357 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1358 	if (word == 0xffff) {
1359 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1360 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1361 				   ANTENNA_SW_DIVERSITY);
1362 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1363 				   ANTENNA_SW_DIVERSITY);
1364 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1365 				   LED_MODE_DEFAULT);
1366 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1367 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1368 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1369 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1370 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1371 	}
1372 
1373 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1374 	if (word == 0xffff) {
1375 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1376 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1377 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1378 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1379 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1380 	}
1381 
1382 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1383 	if (word == 0xffff) {
1384 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1385 				   DEFAULT_RSSI_OFFSET);
1386 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1387 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1388 				  word);
1389 	}
1390 
1391 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1392 	if (word == 0xffff) {
1393 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1394 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1395 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1396 	}
1397 
1398 	/*
1399 	 * Switch lower vgc bound to current BBP R17 value,
1400 	 * lower the value a bit for better quality.
1401 	 */
1402 	rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1403 	bbp -= 6;
1404 
1405 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1406 	if (word == 0xffff) {
1407 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1408 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1409 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1410 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1411 	} else {
1412 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1413 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1414 	}
1415 
1416 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1417 	if (word == 0xffff) {
1418 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1419 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1420 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1421 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1422 	}
1423 
1424 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1425 	if (word == 0xffff) {
1426 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1427 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1428 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1429 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1430 	}
1431 
1432 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1433 	if (word == 0xffff) {
1434 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1435 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1436 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1437 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1438 	}
1439 
1440 	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1441 	if (word == 0xffff) {
1442 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1443 		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1444 		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1445 		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1452 {
1453 	u16 reg;
1454 	u16 value;
1455 	u16 eeprom;
1456 
1457 	/*
1458 	 * Read EEPROM word for configuration.
1459 	 */
1460 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1461 
1462 	/*
1463 	 * Identify RF chipset.
1464 	 */
1465 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1466 	rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1467 	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1468 
1469 	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1470 		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1471 		return -ENODEV;
1472 	}
1473 
1474 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1475 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1476 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1477 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1478 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1479 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1480 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1481 		return -ENODEV;
1482 	}
1483 
1484 	/*
1485 	 * Identify default antenna configuration.
1486 	 */
1487 	rt2x00dev->default_ant.tx =
1488 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1489 	rt2x00dev->default_ant.rx =
1490 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1491 
1492 	/*
1493 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1494 	 * I am not 100% sure about this, but the legacy drivers do not
1495 	 * indicate antenna swapping in software is required when
1496 	 * diversity is enabled.
1497 	 */
1498 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1499 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1500 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1501 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1502 
1503 	/*
1504 	 * Store led mode, for correct led behaviour.
1505 	 */
1506 #ifdef CONFIG_RT2X00_LIB_LEDS
1507 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1508 
1509 	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1510 	if (value == LED_MODE_TXRX_ACTIVITY ||
1511 	    value == LED_MODE_DEFAULT ||
1512 	    value == LED_MODE_ASUS)
1513 		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1514 				   LED_TYPE_ACTIVITY);
1515 #endif /* CONFIG_RT2X00_LIB_LEDS */
1516 
1517 	/*
1518 	 * Detect if this device has an hardware controlled radio.
1519 	 */
1520 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1521 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1522 
1523 	/*
1524 	 * Read the RSSI <-> dBm offset information.
1525 	 */
1526 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1527 	rt2x00dev->rssi_offset =
1528 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1529 
1530 	return 0;
1531 }
1532 
1533 /*
1534  * RF value list for RF2522
1535  * Supports: 2.4 GHz
1536  */
1537 static const struct rf_channel rf_vals_bg_2522[] = {
1538 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1539 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1540 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1541 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1542 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1543 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1544 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1545 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1546 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1547 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1548 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1549 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1550 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1551 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1552 };
1553 
1554 /*
1555  * RF value list for RF2523
1556  * Supports: 2.4 GHz
1557  */
1558 static const struct rf_channel rf_vals_bg_2523[] = {
1559 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1560 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1561 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1562 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1563 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1564 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1565 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1566 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1567 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1568 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1569 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1570 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1571 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1572 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1573 };
1574 
1575 /*
1576  * RF value list for RF2524
1577  * Supports: 2.4 GHz
1578  */
1579 static const struct rf_channel rf_vals_bg_2524[] = {
1580 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1581 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1582 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1583 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1584 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1585 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1586 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1587 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1588 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1589 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1590 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1591 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1592 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1593 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1594 };
1595 
1596 /*
1597  * RF value list for RF2525
1598  * Supports: 2.4 GHz
1599  */
1600 static const struct rf_channel rf_vals_bg_2525[] = {
1601 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1602 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1603 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1604 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1605 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1606 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1607 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1608 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1609 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1610 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1611 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1612 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1613 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1614 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1615 };
1616 
1617 /*
1618  * RF value list for RF2525e
1619  * Supports: 2.4 GHz
1620  */
1621 static const struct rf_channel rf_vals_bg_2525e[] = {
1622 	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1623 	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1624 	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1625 	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1626 	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1627 	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1628 	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1629 	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1630 	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1631 	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1632 	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1633 	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1634 	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1635 	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1636 };
1637 
1638 /*
1639  * RF value list for RF5222
1640  * Supports: 2.4 GHz & 5.2 GHz
1641  */
1642 static const struct rf_channel rf_vals_5222[] = {
1643 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1644 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1645 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1646 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1647 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1648 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1649 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1650 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1651 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1652 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1653 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1654 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1655 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1656 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1657 
1658 	/* 802.11 UNI / HyperLan 2 */
1659 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1660 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1661 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1662 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1663 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1664 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1665 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1666 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1667 
1668 	/* 802.11 HyperLan 2 */
1669 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1670 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1671 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1672 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1673 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1674 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1675 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1676 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1677 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1678 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1679 
1680 	/* 802.11 UNII */
1681 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1682 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1683 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1684 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1685 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1686 };
1687 
1688 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1689 {
1690 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1691 	struct channel_info *info;
1692 	char *tx_power;
1693 	unsigned int i;
1694 
1695 	/*
1696 	 * Initialize all hw fields.
1697 	 *
1698 	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1699 	 * capable of sending the buffered frames out after the DTIM
1700 	 * transmission using rt2x00lib_beacondone. This will send out
1701 	 * multicast and broadcast traffic immediately instead of buffering it
1702 	 * infinitly and thus dropping it after some time.
1703 	 */
1704 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1705 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1706 	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1707 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1708 
1709 	/*
1710 	 * Disable powersaving as default.
1711 	 */
1712 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1713 
1714 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1715 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1716 				rt2x00_eeprom_addr(rt2x00dev,
1717 						   EEPROM_MAC_ADDR_0));
1718 
1719 	/*
1720 	 * Initialize hw_mode information.
1721 	 */
1722 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1723 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1724 
1725 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1726 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727 		spec->channels = rf_vals_bg_2522;
1728 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1729 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730 		spec->channels = rf_vals_bg_2523;
1731 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1732 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733 		spec->channels = rf_vals_bg_2524;
1734 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1735 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736 		spec->channels = rf_vals_bg_2525;
1737 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1738 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739 		spec->channels = rf_vals_bg_2525e;
1740 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1741 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743 		spec->channels = rf_vals_5222;
1744 	}
1745 
1746 	/*
1747 	 * Create channel information array
1748 	 */
1749 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1750 	if (!info)
1751 		return -ENOMEM;
1752 
1753 	spec->channels_info = info;
1754 
1755 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1756 	for (i = 0; i < 14; i++) {
1757 		info[i].max_power = MAX_TXPOWER;
1758 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1759 	}
1760 
1761 	if (spec->num_channels > 14) {
1762 		for (i = 14; i < spec->num_channels; i++) {
1763 			info[i].max_power = MAX_TXPOWER;
1764 			info[i].default_power1 = DEFAULT_TXPOWER;
1765 		}
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1772 {
1773 	int retval;
1774 	u16 reg;
1775 
1776 	/*
1777 	 * Allocate eeprom data.
1778 	 */
1779 	retval = rt2500usb_validate_eeprom(rt2x00dev);
1780 	if (retval)
1781 		return retval;
1782 
1783 	retval = rt2500usb_init_eeprom(rt2x00dev);
1784 	if (retval)
1785 		return retval;
1786 
1787 	/*
1788 	 * Enable rfkill polling by setting GPIO direction of the
1789 	 * rfkill switch GPIO pin correctly.
1790 	 */
1791 	rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1792 	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1793 	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1794 
1795 	/*
1796 	 * Initialize hw specifications.
1797 	 */
1798 	retval = rt2500usb_probe_hw_mode(rt2x00dev);
1799 	if (retval)
1800 		return retval;
1801 
1802 	/*
1803 	 * This device requires the atim queue
1804 	 */
1805 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1806 	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1807 	if (!modparam_nohwcrypt) {
1808 		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1809 		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1810 	}
1811 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1812 	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1813 
1814 	/*
1815 	 * Set the rssi offset.
1816 	 */
1817 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1818 
1819 	return 0;
1820 }
1821 
1822 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1823 	.tx			= rt2x00mac_tx,
1824 	.start			= rt2x00mac_start,
1825 	.stop			= rt2x00mac_stop,
1826 	.add_interface		= rt2x00mac_add_interface,
1827 	.remove_interface	= rt2x00mac_remove_interface,
1828 	.config			= rt2x00mac_config,
1829 	.configure_filter	= rt2x00mac_configure_filter,
1830 	.set_tim		= rt2x00mac_set_tim,
1831 	.set_key		= rt2x00mac_set_key,
1832 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1833 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1834 	.get_stats		= rt2x00mac_get_stats,
1835 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1836 	.conf_tx		= rt2x00mac_conf_tx,
1837 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1838 	.flush			= rt2x00mac_flush,
1839 	.set_antenna		= rt2x00mac_set_antenna,
1840 	.get_antenna		= rt2x00mac_get_antenna,
1841 	.get_ringparam		= rt2x00mac_get_ringparam,
1842 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1843 };
1844 
1845 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1846 	.probe_hw		= rt2500usb_probe_hw,
1847 	.initialize		= rt2x00usb_initialize,
1848 	.uninitialize		= rt2x00usb_uninitialize,
1849 	.clear_entry		= rt2x00usb_clear_entry,
1850 	.set_device_state	= rt2500usb_set_device_state,
1851 	.rfkill_poll		= rt2500usb_rfkill_poll,
1852 	.link_stats		= rt2500usb_link_stats,
1853 	.reset_tuner		= rt2500usb_reset_tuner,
1854 	.watchdog		= rt2x00usb_watchdog,
1855 	.start_queue		= rt2500usb_start_queue,
1856 	.kick_queue		= rt2x00usb_kick_queue,
1857 	.stop_queue		= rt2500usb_stop_queue,
1858 	.flush_queue		= rt2x00usb_flush_queue,
1859 	.write_tx_desc		= rt2500usb_write_tx_desc,
1860 	.write_beacon		= rt2500usb_write_beacon,
1861 	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1862 	.fill_rxdone		= rt2500usb_fill_rxdone,
1863 	.config_shared_key	= rt2500usb_config_key,
1864 	.config_pairwise_key	= rt2500usb_config_key,
1865 	.config_filter		= rt2500usb_config_filter,
1866 	.config_intf		= rt2500usb_config_intf,
1867 	.config_erp		= rt2500usb_config_erp,
1868 	.config_ant		= rt2500usb_config_ant,
1869 	.config			= rt2500usb_config,
1870 };
1871 
1872 static void rt2500usb_queue_init(struct data_queue *queue)
1873 {
1874 	switch (queue->qid) {
1875 	case QID_RX:
1876 		queue->limit = 32;
1877 		queue->data_size = DATA_FRAME_SIZE;
1878 		queue->desc_size = RXD_DESC_SIZE;
1879 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1880 		break;
1881 
1882 	case QID_AC_VO:
1883 	case QID_AC_VI:
1884 	case QID_AC_BE:
1885 	case QID_AC_BK:
1886 		queue->limit = 32;
1887 		queue->data_size = DATA_FRAME_SIZE;
1888 		queue->desc_size = TXD_DESC_SIZE;
1889 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1890 		break;
1891 
1892 	case QID_BEACON:
1893 		queue->limit = 1;
1894 		queue->data_size = MGMT_FRAME_SIZE;
1895 		queue->desc_size = TXD_DESC_SIZE;
1896 		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1897 		break;
1898 
1899 	case QID_ATIM:
1900 		queue->limit = 8;
1901 		queue->data_size = DATA_FRAME_SIZE;
1902 		queue->desc_size = TXD_DESC_SIZE;
1903 		queue->priv_size = sizeof(struct queue_entry_priv_usb);
1904 		break;
1905 
1906 	default:
1907 		BUG();
1908 		break;
1909 	}
1910 }
1911 
1912 static const struct rt2x00_ops rt2500usb_ops = {
1913 	.name			= KBUILD_MODNAME,
1914 	.max_ap_intf		= 1,
1915 	.eeprom_size		= EEPROM_SIZE,
1916 	.rf_size		= RF_SIZE,
1917 	.tx_queues		= NUM_TX_QUEUES,
1918 	.queue_init		= rt2500usb_queue_init,
1919 	.lib			= &rt2500usb_rt2x00_ops,
1920 	.hw			= &rt2500usb_mac80211_ops,
1921 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1922 	.debugfs		= &rt2500usb_rt2x00debug,
1923 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1924 };
1925 
1926 /*
1927  * rt2500usb module information.
1928  */
1929 static struct usb_device_id rt2500usb_device_table[] = {
1930 	/* ASUS */
1931 	{ USB_DEVICE(0x0b05, 0x1706) },
1932 	{ USB_DEVICE(0x0b05, 0x1707) },
1933 	/* Belkin */
1934 	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1935 	{ USB_DEVICE(0x050d, 0x7051) },
1936 	/* Cisco Systems */
1937 	{ USB_DEVICE(0x13b1, 0x000d) },
1938 	{ USB_DEVICE(0x13b1, 0x0011) },
1939 	{ USB_DEVICE(0x13b1, 0x001a) },
1940 	/* Conceptronic */
1941 	{ USB_DEVICE(0x14b2, 0x3c02) },
1942 	/* D-LINK */
1943 	{ USB_DEVICE(0x2001, 0x3c00) },
1944 	/* Gigabyte */
1945 	{ USB_DEVICE(0x1044, 0x8001) },
1946 	{ USB_DEVICE(0x1044, 0x8007) },
1947 	/* Hercules */
1948 	{ USB_DEVICE(0x06f8, 0xe000) },
1949 	/* Melco */
1950 	{ USB_DEVICE(0x0411, 0x005e) },
1951 	{ USB_DEVICE(0x0411, 0x0066) },
1952 	{ USB_DEVICE(0x0411, 0x0067) },
1953 	{ USB_DEVICE(0x0411, 0x008b) },
1954 	{ USB_DEVICE(0x0411, 0x0097) },
1955 	/* MSI */
1956 	{ USB_DEVICE(0x0db0, 0x6861) },
1957 	{ USB_DEVICE(0x0db0, 0x6865) },
1958 	{ USB_DEVICE(0x0db0, 0x6869) },
1959 	/* Ralink */
1960 	{ USB_DEVICE(0x148f, 0x1706) },
1961 	{ USB_DEVICE(0x148f, 0x2570) },
1962 	{ USB_DEVICE(0x148f, 0x9020) },
1963 	/* Sagem */
1964 	{ USB_DEVICE(0x079b, 0x004b) },
1965 	/* Siemens */
1966 	{ USB_DEVICE(0x0681, 0x3c06) },
1967 	/* SMC */
1968 	{ USB_DEVICE(0x0707, 0xee13) },
1969 	/* Spairon */
1970 	{ USB_DEVICE(0x114b, 0x0110) },
1971 	/* SURECOM */
1972 	{ USB_DEVICE(0x0769, 0x11f3) },
1973 	/* Trust */
1974 	{ USB_DEVICE(0x0eb0, 0x9020) },
1975 	/* VTech */
1976 	{ USB_DEVICE(0x0f88, 0x3012) },
1977 	/* Zinwell */
1978 	{ USB_DEVICE(0x5a57, 0x0260) },
1979 	{ 0, }
1980 };
1981 
1982 MODULE_AUTHOR(DRV_PROJECT);
1983 MODULE_VERSION(DRV_VERSION);
1984 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1985 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1986 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1987 MODULE_LICENSE("GPL");
1988 
1989 static int rt2500usb_probe(struct usb_interface *usb_intf,
1990 			   const struct usb_device_id *id)
1991 {
1992 	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1993 }
1994 
1995 static struct usb_driver rt2500usb_driver = {
1996 	.name		= KBUILD_MODNAME,
1997 	.id_table	= rt2500usb_device_table,
1998 	.probe		= rt2500usb_probe,
1999 	.disconnect	= rt2x00usb_disconnect,
2000 	.suspend	= rt2x00usb_suspend,
2001 	.resume		= rt2x00usb_resume,
2002 	.reset_resume	= rt2x00usb_resume,
2003 	.disable_hub_initiated_lpm = 1,
2004 };
2005 
2006 module_usb_driver(rt2500usb_driver);
2007