1 /* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 Module: rt2500pci 21 Abstract: rt2500pci device specific routines. 22 Supported chipsets: RT2560. 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/etherdevice.h> 27 #include <linux/kernel.h> 28 #include <linux/module.h> 29 #include <linux/pci.h> 30 #include <linux/eeprom_93cx6.h> 31 #include <linux/slab.h> 32 33 #include "rt2x00.h" 34 #include "rt2x00mmio.h" 35 #include "rt2x00pci.h" 36 #include "rt2500pci.h" 37 38 /* 39 * Register access. 40 * All access to the CSR registers will go through the methods 41 * rt2x00mmio_register_read and rt2x00mmio_register_write. 42 * BBP and RF register require indirect register access, 43 * and use the CSR registers BBPCSR and RFCSR to achieve this. 44 * These indirect registers work with busy bits, 45 * and we will try maximal REGISTER_BUSY_COUNT times to access 46 * the register while taking a REGISTER_BUSY_DELAY us delay 47 * between each attampt. When the busy bit is still set at that time, 48 * the access attempt is considered to have failed, 49 * and we will print an error. 50 */ 51 #define WAIT_FOR_BBP(__dev, __reg) \ 52 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) 53 #define WAIT_FOR_RF(__dev, __reg) \ 54 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) 55 56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, 57 const unsigned int word, const u8 value) 58 { 59 u32 reg; 60 61 mutex_lock(&rt2x00dev->csr_mutex); 62 63 /* 64 * Wait until the BBP becomes available, afterwards we 65 * can safely write the new data into the register. 66 */ 67 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 68 reg = 0; 69 rt2x00_set_field32(®, BBPCSR_VALUE, value); 70 rt2x00_set_field32(®, BBPCSR_REGNUM, word); 71 rt2x00_set_field32(®, BBPCSR_BUSY, 1); 72 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); 73 74 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); 75 } 76 77 mutex_unlock(&rt2x00dev->csr_mutex); 78 } 79 80 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, 81 const unsigned int word, u8 *value) 82 { 83 u32 reg; 84 85 mutex_lock(&rt2x00dev->csr_mutex); 86 87 /* 88 * Wait until the BBP becomes available, afterwards we 89 * can safely write the read request into the register. 90 * After the data has been written, we wait until hardware 91 * returns the correct value, if at any time the register 92 * doesn't become available in time, reg will be 0xffffffff 93 * which means we return 0xff to the caller. 94 */ 95 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 96 reg = 0; 97 rt2x00_set_field32(®, BBPCSR_REGNUM, word); 98 rt2x00_set_field32(®, BBPCSR_BUSY, 1); 99 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); 100 101 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); 102 103 WAIT_FOR_BBP(rt2x00dev, ®); 104 } 105 106 *value = rt2x00_get_field32(reg, BBPCSR_VALUE); 107 108 mutex_unlock(&rt2x00dev->csr_mutex); 109 } 110 111 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, 112 const unsigned int word, const u32 value) 113 { 114 u32 reg; 115 116 mutex_lock(&rt2x00dev->csr_mutex); 117 118 /* 119 * Wait until the RF becomes available, afterwards we 120 * can safely write the new data into the register. 121 */ 122 if (WAIT_FOR_RF(rt2x00dev, ®)) { 123 reg = 0; 124 rt2x00_set_field32(®, RFCSR_VALUE, value); 125 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); 126 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); 127 rt2x00_set_field32(®, RFCSR_BUSY, 1); 128 129 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg); 130 rt2x00_rf_write(rt2x00dev, word, value); 131 } 132 133 mutex_unlock(&rt2x00dev->csr_mutex); 134 } 135 136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) 137 { 138 struct rt2x00_dev *rt2x00dev = eeprom->data; 139 u32 reg; 140 141 rt2x00mmio_register_read(rt2x00dev, CSR21, ®); 142 143 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); 144 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); 145 eeprom->reg_data_clock = 146 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); 147 eeprom->reg_chip_select = 148 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); 149 } 150 151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) 152 { 153 struct rt2x00_dev *rt2x00dev = eeprom->data; 154 u32 reg = 0; 155 156 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); 157 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); 158 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, 159 !!eeprom->reg_data_clock); 160 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, 161 !!eeprom->reg_chip_select); 162 163 rt2x00mmio_register_write(rt2x00dev, CSR21, reg); 164 } 165 166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 167 static const struct rt2x00debug rt2500pci_rt2x00debug = { 168 .owner = THIS_MODULE, 169 .csr = { 170 .read = rt2x00mmio_register_read, 171 .write = rt2x00mmio_register_write, 172 .flags = RT2X00DEBUGFS_OFFSET, 173 .word_base = CSR_REG_BASE, 174 .word_size = sizeof(u32), 175 .word_count = CSR_REG_SIZE / sizeof(u32), 176 }, 177 .eeprom = { 178 .read = rt2x00_eeprom_read, 179 .write = rt2x00_eeprom_write, 180 .word_base = EEPROM_BASE, 181 .word_size = sizeof(u16), 182 .word_count = EEPROM_SIZE / sizeof(u16), 183 }, 184 .bbp = { 185 .read = rt2500pci_bbp_read, 186 .write = rt2500pci_bbp_write, 187 .word_base = BBP_BASE, 188 .word_size = sizeof(u8), 189 .word_count = BBP_SIZE / sizeof(u8), 190 }, 191 .rf = { 192 .read = rt2x00_rf_read, 193 .write = rt2500pci_rf_write, 194 .word_base = RF_BASE, 195 .word_size = sizeof(u32), 196 .word_count = RF_SIZE / sizeof(u32), 197 }, 198 }; 199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 200 201 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) 202 { 203 u32 reg; 204 205 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, ®); 206 return rt2x00_get_field32(reg, GPIOCSR_VAL0); 207 } 208 209 #ifdef CONFIG_RT2X00_LIB_LEDS 210 static void rt2500pci_brightness_set(struct led_classdev *led_cdev, 211 enum led_brightness brightness) 212 { 213 struct rt2x00_led *led = 214 container_of(led_cdev, struct rt2x00_led, led_dev); 215 unsigned int enabled = brightness != LED_OFF; 216 u32 reg; 217 218 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, ®); 219 220 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 221 rt2x00_set_field32(®, LEDCSR_LINK, enabled); 222 else if (led->type == LED_TYPE_ACTIVITY) 223 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); 224 225 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); 226 } 227 228 static int rt2500pci_blink_set(struct led_classdev *led_cdev, 229 unsigned long *delay_on, 230 unsigned long *delay_off) 231 { 232 struct rt2x00_led *led = 233 container_of(led_cdev, struct rt2x00_led, led_dev); 234 u32 reg; 235 236 rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, ®); 237 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); 238 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); 239 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); 240 241 return 0; 242 } 243 244 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev, 245 struct rt2x00_led *led, 246 enum led_type type) 247 { 248 led->rt2x00dev = rt2x00dev; 249 led->type = type; 250 led->led_dev.brightness_set = rt2500pci_brightness_set; 251 led->led_dev.blink_set = rt2500pci_blink_set; 252 led->flags = LED_INITIALIZED; 253 } 254 #endif /* CONFIG_RT2X00_LIB_LEDS */ 255 256 /* 257 * Configuration handlers. 258 */ 259 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev, 260 const unsigned int filter_flags) 261 { 262 u32 reg; 263 264 /* 265 * Start configuration steps. 266 * Note that the version error will always be dropped 267 * and broadcast frames will always be accepted since 268 * there is no filter for it at this time. 269 */ 270 rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); 271 rt2x00_set_field32(®, RXCSR0_DROP_CRC, 272 !(filter_flags & FIF_FCSFAIL)); 273 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, 274 !(filter_flags & FIF_PLCPFAIL)); 275 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, 276 !(filter_flags & FIF_CONTROL)); 277 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, 278 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); 279 rt2x00_set_field32(®, RXCSR0_DROP_TODS, 280 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && 281 !rt2x00dev->intf_ap_count); 282 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); 283 rt2x00_set_field32(®, RXCSR0_DROP_MCAST, 284 !(filter_flags & FIF_ALLMULTI)); 285 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); 286 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 287 } 288 289 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev, 290 struct rt2x00_intf *intf, 291 struct rt2x00intf_conf *conf, 292 const unsigned int flags) 293 { 294 struct data_queue *queue = rt2x00dev->bcn; 295 unsigned int bcn_preload; 296 u32 reg; 297 298 if (flags & CONFIG_UPDATE_TYPE) { 299 /* 300 * Enable beacon config 301 */ 302 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 303 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, ®); 304 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); 305 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min); 306 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg); 307 308 /* 309 * Enable synchronisation. 310 */ 311 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 312 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); 313 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 314 } 315 316 if (flags & CONFIG_UPDATE_MAC) 317 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3, 318 conf->mac, sizeof(conf->mac)); 319 320 if (flags & CONFIG_UPDATE_BSSID) 321 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5, 322 conf->bssid, sizeof(conf->bssid)); 323 } 324 325 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev, 326 struct rt2x00lib_erp *erp, 327 u32 changed) 328 { 329 int preamble_mask; 330 u32 reg; 331 332 /* 333 * When short preamble is enabled, we should set bit 0x08 334 */ 335 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 336 preamble_mask = erp->short_preamble << 3; 337 338 rt2x00mmio_register_read(rt2x00dev, TXCSR1, ®); 339 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162); 340 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2); 341 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); 342 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); 343 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg); 344 345 rt2x00mmio_register_read(rt2x00dev, ARCSR2, ®); 346 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); 347 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); 348 rt2x00_set_field32(®, ARCSR2_LENGTH, 349 GET_DURATION(ACK_SIZE, 10)); 350 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg); 351 352 rt2x00mmio_register_read(rt2x00dev, ARCSR3, ®); 353 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); 354 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); 355 rt2x00_set_field32(®, ARCSR2_LENGTH, 356 GET_DURATION(ACK_SIZE, 20)); 357 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg); 358 359 rt2x00mmio_register_read(rt2x00dev, ARCSR4, ®); 360 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); 361 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); 362 rt2x00_set_field32(®, ARCSR2_LENGTH, 363 GET_DURATION(ACK_SIZE, 55)); 364 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg); 365 366 rt2x00mmio_register_read(rt2x00dev, ARCSR5, ®); 367 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); 368 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); 369 rt2x00_set_field32(®, ARCSR2_LENGTH, 370 GET_DURATION(ACK_SIZE, 110)); 371 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg); 372 } 373 374 if (changed & BSS_CHANGED_BASIC_RATES) 375 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates); 376 377 if (changed & BSS_CHANGED_ERP_SLOT) { 378 rt2x00mmio_register_read(rt2x00dev, CSR11, ®); 379 rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); 380 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 381 382 rt2x00mmio_register_read(rt2x00dev, CSR18, ®); 383 rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); 384 rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); 385 rt2x00mmio_register_write(rt2x00dev, CSR18, reg); 386 387 rt2x00mmio_register_read(rt2x00dev, CSR19, ®); 388 rt2x00_set_field32(®, CSR19_DIFS, erp->difs); 389 rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); 390 rt2x00mmio_register_write(rt2x00dev, CSR19, reg); 391 } 392 393 if (changed & BSS_CHANGED_BEACON_INT) { 394 rt2x00mmio_register_read(rt2x00dev, CSR12, ®); 395 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, 396 erp->beacon_int * 16); 397 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, 398 erp->beacon_int * 16); 399 rt2x00mmio_register_write(rt2x00dev, CSR12, reg); 400 } 401 402 } 403 404 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev, 405 struct antenna_setup *ant) 406 { 407 u32 reg; 408 u8 r14; 409 u8 r2; 410 411 /* 412 * We should never come here because rt2x00lib is supposed 413 * to catch this and send us the correct antenna explicitely. 414 */ 415 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 416 ant->tx == ANTENNA_SW_DIVERSITY); 417 418 rt2x00mmio_register_read(rt2x00dev, BBPCSR1, ®); 419 rt2500pci_bbp_read(rt2x00dev, 14, &r14); 420 rt2500pci_bbp_read(rt2x00dev, 2, &r2); 421 422 /* 423 * Configure the TX antenna. 424 */ 425 switch (ant->tx) { 426 case ANTENNA_A: 427 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); 428 rt2x00_set_field32(®, BBPCSR1_CCK, 0); 429 rt2x00_set_field32(®, BBPCSR1_OFDM, 0); 430 break; 431 case ANTENNA_B: 432 default: 433 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); 434 rt2x00_set_field32(®, BBPCSR1_CCK, 2); 435 rt2x00_set_field32(®, BBPCSR1_OFDM, 2); 436 break; 437 } 438 439 /* 440 * Configure the RX antenna. 441 */ 442 switch (ant->rx) { 443 case ANTENNA_A: 444 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); 445 break; 446 case ANTENNA_B: 447 default: 448 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); 449 break; 450 } 451 452 /* 453 * RT2525E and RT5222 need to flip TX I/Q 454 */ 455 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { 456 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); 457 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); 458 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); 459 460 /* 461 * RT2525E does not need RX I/Q Flip. 462 */ 463 if (rt2x00_rf(rt2x00dev, RF2525E)) 464 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); 465 } else { 466 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); 467 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); 468 } 469 470 rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg); 471 rt2500pci_bbp_write(rt2x00dev, 14, r14); 472 rt2500pci_bbp_write(rt2x00dev, 2, r2); 473 } 474 475 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, 476 struct rf_channel *rf, const int txpower) 477 { 478 u8 r70; 479 480 /* 481 * Set TXpower. 482 */ 483 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 484 485 /* 486 * Switch on tuning bits. 487 * For RT2523 devices we do not need to update the R1 register. 488 */ 489 if (!rt2x00_rf(rt2x00dev, RF2523)) 490 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); 491 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); 492 493 /* 494 * For RT2525 we should first set the channel to half band higher. 495 */ 496 if (rt2x00_rf(rt2x00dev, RF2525)) { 497 static const u32 vals[] = { 498 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, 499 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, 500 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, 501 0x00080d2e, 0x00080d3a 502 }; 503 504 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); 505 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); 506 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); 507 if (rf->rf4) 508 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); 509 } 510 511 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); 512 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); 513 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); 514 if (rf->rf4) 515 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); 516 517 /* 518 * Channel 14 requires the Japan filter bit to be set. 519 */ 520 r70 = 0x46; 521 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); 522 rt2500pci_bbp_write(rt2x00dev, 70, r70); 523 524 msleep(1); 525 526 /* 527 * Switch off tuning bits. 528 * For RT2523 devices we do not need to update the R1 register. 529 */ 530 if (!rt2x00_rf(rt2x00dev, RF2523)) { 531 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); 532 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); 533 } 534 535 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); 536 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); 537 538 /* 539 * Clear false CRC during channel switch. 540 */ 541 rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1); 542 } 543 544 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, 545 const int txpower) 546 { 547 u32 rf3; 548 549 rt2x00_rf_read(rt2x00dev, 3, &rf3); 550 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 551 rt2500pci_rf_write(rt2x00dev, 3, rf3); 552 } 553 554 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, 555 struct rt2x00lib_conf *libconf) 556 { 557 u32 reg; 558 559 rt2x00mmio_register_read(rt2x00dev, CSR11, ®); 560 rt2x00_set_field32(®, CSR11_LONG_RETRY, 561 libconf->conf->long_frame_max_tx_count); 562 rt2x00_set_field32(®, CSR11_SHORT_RETRY, 563 libconf->conf->short_frame_max_tx_count); 564 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 565 } 566 567 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev, 568 struct rt2x00lib_conf *libconf) 569 { 570 enum dev_state state = 571 (libconf->conf->flags & IEEE80211_CONF_PS) ? 572 STATE_SLEEP : STATE_AWAKE; 573 u32 reg; 574 575 if (state == STATE_SLEEP) { 576 rt2x00mmio_register_read(rt2x00dev, CSR20, ®); 577 rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, 578 (rt2x00dev->beacon_int - 20) * 16); 579 rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, 580 libconf->conf->listen_interval - 1); 581 582 /* We must first disable autowake before it can be enabled */ 583 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); 584 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 585 586 rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); 587 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 588 } else { 589 rt2x00mmio_register_read(rt2x00dev, CSR20, ®); 590 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); 591 rt2x00mmio_register_write(rt2x00dev, CSR20, reg); 592 } 593 594 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 595 } 596 597 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, 598 struct rt2x00lib_conf *libconf, 599 const unsigned int flags) 600 { 601 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 602 rt2500pci_config_channel(rt2x00dev, &libconf->rf, 603 libconf->conf->power_level); 604 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 605 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 606 rt2500pci_config_txpower(rt2x00dev, 607 libconf->conf->power_level); 608 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) 609 rt2500pci_config_retry_limit(rt2x00dev, libconf); 610 if (flags & IEEE80211_CONF_CHANGE_PS) 611 rt2500pci_config_ps(rt2x00dev, libconf); 612 } 613 614 /* 615 * Link tuning 616 */ 617 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, 618 struct link_qual *qual) 619 { 620 u32 reg; 621 622 /* 623 * Update FCS error count from register. 624 */ 625 rt2x00mmio_register_read(rt2x00dev, CNT0, ®); 626 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); 627 628 /* 629 * Update False CCA count from register. 630 */ 631 rt2x00mmio_register_read(rt2x00dev, CNT3, ®); 632 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); 633 } 634 635 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev, 636 struct link_qual *qual, u8 vgc_level) 637 { 638 if (qual->vgc_level_reg != vgc_level) { 639 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level); 640 qual->vgc_level = vgc_level; 641 qual->vgc_level_reg = vgc_level; 642 } 643 } 644 645 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev, 646 struct link_qual *qual) 647 { 648 rt2500pci_set_vgc(rt2x00dev, qual, 0x48); 649 } 650 651 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, 652 struct link_qual *qual, const u32 count) 653 { 654 /* 655 * To prevent collisions with MAC ASIC on chipsets 656 * up to version C the link tuning should halt after 20 657 * seconds while being associated. 658 */ 659 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D && 660 rt2x00dev->intf_associated && count > 20) 661 return; 662 663 /* 664 * Chipset versions C and lower should directly continue 665 * to the dynamic CCA tuning. Chipset version D and higher 666 * should go straight to dynamic CCA tuning when they 667 * are not associated. 668 */ 669 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D || 670 !rt2x00dev->intf_associated) 671 goto dynamic_cca_tune; 672 673 /* 674 * A too low RSSI will cause too much false CCA which will 675 * then corrupt the R17 tuning. To remidy this the tuning should 676 * be stopped (While making sure the R17 value will not exceed limits) 677 */ 678 if (qual->rssi < -80 && count > 20) { 679 if (qual->vgc_level_reg >= 0x41) 680 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); 681 return; 682 } 683 684 /* 685 * Special big-R17 for short distance 686 */ 687 if (qual->rssi >= -58) { 688 rt2500pci_set_vgc(rt2x00dev, qual, 0x50); 689 return; 690 } 691 692 /* 693 * Special mid-R17 for middle distance 694 */ 695 if (qual->rssi >= -74) { 696 rt2500pci_set_vgc(rt2x00dev, qual, 0x41); 697 return; 698 } 699 700 /* 701 * Leave short or middle distance condition, restore r17 702 * to the dynamic tuning range. 703 */ 704 if (qual->vgc_level_reg >= 0x41) { 705 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); 706 return; 707 } 708 709 dynamic_cca_tune: 710 711 /* 712 * R17 is inside the dynamic tuning range, 713 * start tuning the link based on the false cca counter. 714 */ 715 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) 716 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg); 717 else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) 718 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg); 719 } 720 721 /* 722 * Queue handlers. 723 */ 724 static void rt2500pci_start_queue(struct data_queue *queue) 725 { 726 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 727 u32 reg; 728 729 switch (queue->qid) { 730 case QID_RX: 731 rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); 732 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0); 733 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 734 break; 735 case QID_BEACON: 736 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 737 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); 738 rt2x00_set_field32(®, CSR14_TBCN, 1); 739 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 740 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 741 break; 742 default: 743 break; 744 } 745 } 746 747 static void rt2500pci_kick_queue(struct data_queue *queue) 748 { 749 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 750 u32 reg; 751 752 switch (queue->qid) { 753 case QID_AC_VO: 754 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 755 rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); 756 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 757 break; 758 case QID_AC_VI: 759 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 760 rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); 761 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 762 break; 763 case QID_ATIM: 764 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 765 rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); 766 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 767 break; 768 default: 769 break; 770 } 771 } 772 773 static void rt2500pci_stop_queue(struct data_queue *queue) 774 { 775 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 776 u32 reg; 777 778 switch (queue->qid) { 779 case QID_AC_VO: 780 case QID_AC_VI: 781 case QID_ATIM: 782 rt2x00mmio_register_read(rt2x00dev, TXCSR0, ®); 783 rt2x00_set_field32(®, TXCSR0_ABORT, 1); 784 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); 785 break; 786 case QID_RX: 787 rt2x00mmio_register_read(rt2x00dev, RXCSR0, ®); 788 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1); 789 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); 790 break; 791 case QID_BEACON: 792 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 793 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); 794 rt2x00_set_field32(®, CSR14_TBCN, 0); 795 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 796 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 797 798 /* 799 * Wait for possibly running tbtt tasklets. 800 */ 801 tasklet_kill(&rt2x00dev->tbtt_tasklet); 802 break; 803 default: 804 break; 805 } 806 } 807 808 /* 809 * Initialization functions. 810 */ 811 static bool rt2500pci_get_entry_state(struct queue_entry *entry) 812 { 813 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 814 u32 word; 815 816 if (entry->queue->qid == QID_RX) { 817 rt2x00_desc_read(entry_priv->desc, 0, &word); 818 819 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); 820 } else { 821 rt2x00_desc_read(entry_priv->desc, 0, &word); 822 823 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 824 rt2x00_get_field32(word, TXD_W0_VALID)); 825 } 826 } 827 828 static void rt2500pci_clear_entry(struct queue_entry *entry) 829 { 830 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 831 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 832 u32 word; 833 834 if (entry->queue->qid == QID_RX) { 835 rt2x00_desc_read(entry_priv->desc, 1, &word); 836 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); 837 rt2x00_desc_write(entry_priv->desc, 1, word); 838 839 rt2x00_desc_read(entry_priv->desc, 0, &word); 840 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); 841 rt2x00_desc_write(entry_priv->desc, 0, word); 842 } else { 843 rt2x00_desc_read(entry_priv->desc, 0, &word); 844 rt2x00_set_field32(&word, TXD_W0_VALID, 0); 845 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); 846 rt2x00_desc_write(entry_priv->desc, 0, word); 847 } 848 } 849 850 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev) 851 { 852 struct queue_entry_priv_mmio *entry_priv; 853 u32 reg; 854 855 /* 856 * Initialize registers. 857 */ 858 rt2x00mmio_register_read(rt2x00dev, TXCSR2, ®); 859 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); 860 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); 861 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit); 862 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); 863 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg); 864 865 entry_priv = rt2x00dev->tx[1].entries[0].priv_data; 866 rt2x00mmio_register_read(rt2x00dev, TXCSR3, ®); 867 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, 868 entry_priv->desc_dma); 869 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg); 870 871 entry_priv = rt2x00dev->tx[0].entries[0].priv_data; 872 rt2x00mmio_register_read(rt2x00dev, TXCSR5, ®); 873 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, 874 entry_priv->desc_dma); 875 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg); 876 877 entry_priv = rt2x00dev->atim->entries[0].priv_data; 878 rt2x00mmio_register_read(rt2x00dev, TXCSR4, ®); 879 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, 880 entry_priv->desc_dma); 881 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg); 882 883 entry_priv = rt2x00dev->bcn->entries[0].priv_data; 884 rt2x00mmio_register_read(rt2x00dev, TXCSR6, ®); 885 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, 886 entry_priv->desc_dma); 887 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg); 888 889 rt2x00mmio_register_read(rt2x00dev, RXCSR1, ®); 890 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); 891 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); 892 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg); 893 894 entry_priv = rt2x00dev->rx->entries[0].priv_data; 895 rt2x00mmio_register_read(rt2x00dev, RXCSR2, ®); 896 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, 897 entry_priv->desc_dma); 898 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg); 899 900 return 0; 901 } 902 903 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) 904 { 905 u32 reg; 906 907 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002); 908 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002); 909 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002); 910 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002); 911 912 rt2x00mmio_register_read(rt2x00dev, TIMECSR, ®); 913 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); 914 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); 915 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); 916 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg); 917 918 rt2x00mmio_register_read(rt2x00dev, CSR9, ®); 919 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, 920 rt2x00dev->rx->data_size / 128); 921 rt2x00mmio_register_write(rt2x00dev, CSR9, reg); 922 923 /* 924 * Always use CWmin and CWmax set in descriptor. 925 */ 926 rt2x00mmio_register_read(rt2x00dev, CSR11, ®); 927 rt2x00_set_field32(®, CSR11_CW_SELECT, 0); 928 rt2x00mmio_register_write(rt2x00dev, CSR11, reg); 929 930 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 931 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); 932 rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); 933 rt2x00_set_field32(®, CSR14_TBCN, 0); 934 rt2x00_set_field32(®, CSR14_TCFP, 0); 935 rt2x00_set_field32(®, CSR14_TATIMW, 0); 936 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 937 rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); 938 rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); 939 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 940 941 rt2x00mmio_register_write(rt2x00dev, CNT3, 0); 942 943 rt2x00mmio_register_read(rt2x00dev, TXCSR8, ®); 944 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); 945 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); 946 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); 947 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); 948 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); 949 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); 950 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); 951 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); 952 rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg); 953 954 rt2x00mmio_register_read(rt2x00dev, ARTCSR0, ®); 955 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); 956 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); 957 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); 958 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); 959 rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg); 960 961 rt2x00mmio_register_read(rt2x00dev, ARTCSR1, ®); 962 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); 963 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); 964 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); 965 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); 966 rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg); 967 968 rt2x00mmio_register_read(rt2x00dev, ARTCSR2, ®); 969 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); 970 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); 971 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); 972 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); 973 rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg); 974 975 rt2x00mmio_register_read(rt2x00dev, RXCSR3, ®); 976 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ 977 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); 978 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ 979 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); 980 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ 981 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); 982 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ 983 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); 984 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg); 985 986 rt2x00mmio_register_read(rt2x00dev, PCICSR, ®); 987 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); 988 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); 989 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); 990 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); 991 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); 992 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); 993 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); 994 rt2x00mmio_register_write(rt2x00dev, PCICSR, reg); 995 996 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); 997 998 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); 999 rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0); 1000 1001 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 1002 return -EBUSY; 1003 1004 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223); 1005 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518); 1006 1007 rt2x00mmio_register_read(rt2x00dev, MACCSR2, ®); 1008 rt2x00_set_field32(®, MACCSR2_DELAY, 64); 1009 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg); 1010 1011 rt2x00mmio_register_read(rt2x00dev, RALINKCSR, ®); 1012 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); 1013 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); 1014 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); 1015 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); 1016 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); 1017 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); 1018 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg); 1019 1020 rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200); 1021 1022 rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020); 1023 1024 rt2x00mmio_register_read(rt2x00dev, CSR1, ®); 1025 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); 1026 rt2x00_set_field32(®, CSR1_BBP_RESET, 0); 1027 rt2x00_set_field32(®, CSR1_HOST_READY, 0); 1028 rt2x00mmio_register_write(rt2x00dev, CSR1, reg); 1029 1030 rt2x00mmio_register_read(rt2x00dev, CSR1, ®); 1031 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); 1032 rt2x00_set_field32(®, CSR1_HOST_READY, 1); 1033 rt2x00mmio_register_write(rt2x00dev, CSR1, reg); 1034 1035 /* 1036 * We must clear the FCS and FIFO error count. 1037 * These registers are cleared on read, 1038 * so we may pass a useless variable to store the value. 1039 */ 1040 rt2x00mmio_register_read(rt2x00dev, CNT0, ®); 1041 rt2x00mmio_register_read(rt2x00dev, CNT4, ®); 1042 1043 return 0; 1044 } 1045 1046 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 1047 { 1048 unsigned int i; 1049 u8 value; 1050 1051 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1052 rt2500pci_bbp_read(rt2x00dev, 0, &value); 1053 if ((value != 0xff) && (value != 0x00)) 1054 return 0; 1055 udelay(REGISTER_BUSY_DELAY); 1056 } 1057 1058 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 1059 return -EACCES; 1060 } 1061 1062 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) 1063 { 1064 unsigned int i; 1065 u16 eeprom; 1066 u8 reg_id; 1067 u8 value; 1068 1069 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev))) 1070 return -EACCES; 1071 1072 rt2500pci_bbp_write(rt2x00dev, 3, 0x02); 1073 rt2500pci_bbp_write(rt2x00dev, 4, 0x19); 1074 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); 1075 rt2500pci_bbp_write(rt2x00dev, 15, 0x30); 1076 rt2500pci_bbp_write(rt2x00dev, 16, 0xac); 1077 rt2500pci_bbp_write(rt2x00dev, 18, 0x18); 1078 rt2500pci_bbp_write(rt2x00dev, 19, 0xff); 1079 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); 1080 rt2500pci_bbp_write(rt2x00dev, 21, 0x08); 1081 rt2500pci_bbp_write(rt2x00dev, 22, 0x08); 1082 rt2500pci_bbp_write(rt2x00dev, 23, 0x08); 1083 rt2500pci_bbp_write(rt2x00dev, 24, 0x70); 1084 rt2500pci_bbp_write(rt2x00dev, 25, 0x40); 1085 rt2500pci_bbp_write(rt2x00dev, 26, 0x08); 1086 rt2500pci_bbp_write(rt2x00dev, 27, 0x23); 1087 rt2500pci_bbp_write(rt2x00dev, 30, 0x10); 1088 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); 1089 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); 1090 rt2500pci_bbp_write(rt2x00dev, 34, 0x12); 1091 rt2500pci_bbp_write(rt2x00dev, 35, 0x50); 1092 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); 1093 rt2500pci_bbp_write(rt2x00dev, 40, 0x02); 1094 rt2500pci_bbp_write(rt2x00dev, 41, 0x60); 1095 rt2500pci_bbp_write(rt2x00dev, 53, 0x10); 1096 rt2500pci_bbp_write(rt2x00dev, 54, 0x18); 1097 rt2500pci_bbp_write(rt2x00dev, 56, 0x08); 1098 rt2500pci_bbp_write(rt2x00dev, 57, 0x10); 1099 rt2500pci_bbp_write(rt2x00dev, 58, 0x08); 1100 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); 1101 rt2500pci_bbp_write(rt2x00dev, 62, 0x10); 1102 1103 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 1104 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); 1105 1106 if (eeprom != 0xffff && eeprom != 0x0000) { 1107 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 1108 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 1109 rt2500pci_bbp_write(rt2x00dev, reg_id, value); 1110 } 1111 } 1112 1113 return 0; 1114 } 1115 1116 /* 1117 * Device state switch handlers. 1118 */ 1119 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, 1120 enum dev_state state) 1121 { 1122 int mask = (state == STATE_RADIO_IRQ_OFF); 1123 u32 reg; 1124 unsigned long flags; 1125 1126 /* 1127 * When interrupts are being enabled, the interrupt registers 1128 * should clear the register to assure a clean state. 1129 */ 1130 if (state == STATE_RADIO_IRQ_ON) { 1131 rt2x00mmio_register_read(rt2x00dev, CSR7, ®); 1132 rt2x00mmio_register_write(rt2x00dev, CSR7, reg); 1133 } 1134 1135 /* 1136 * Only toggle the interrupts bits we are going to use. 1137 * Non-checked interrupt bits are disabled by default. 1138 */ 1139 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); 1140 1141 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1142 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); 1143 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); 1144 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); 1145 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); 1146 rt2x00_set_field32(®, CSR8_RXDONE, mask); 1147 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1148 1149 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); 1150 1151 if (state == STATE_RADIO_IRQ_OFF) { 1152 /* 1153 * Ensure that all tasklets are finished. 1154 */ 1155 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1156 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1157 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1158 } 1159 } 1160 1161 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) 1162 { 1163 /* 1164 * Initialize all registers. 1165 */ 1166 if (unlikely(rt2500pci_init_queues(rt2x00dev) || 1167 rt2500pci_init_registers(rt2x00dev) || 1168 rt2500pci_init_bbp(rt2x00dev))) 1169 return -EIO; 1170 1171 return 0; 1172 } 1173 1174 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) 1175 { 1176 /* 1177 * Disable power 1178 */ 1179 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0); 1180 } 1181 1182 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, 1183 enum dev_state state) 1184 { 1185 u32 reg, reg2; 1186 unsigned int i; 1187 char put_to_sleep; 1188 char bbp_state; 1189 char rf_state; 1190 1191 put_to_sleep = (state != STATE_AWAKE); 1192 1193 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, ®); 1194 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); 1195 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); 1196 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); 1197 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); 1198 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); 1199 1200 /* 1201 * Device is not guaranteed to be in the requested state yet. 1202 * We must wait until the register indicates that the 1203 * device has entered the correct state. 1204 */ 1205 for (i = 0; i < REGISTER_BUSY_COUNT; i++) { 1206 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, ®2); 1207 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); 1208 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); 1209 if (bbp_state == state && rf_state == state) 1210 return 0; 1211 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); 1212 msleep(10); 1213 } 1214 1215 return -EBUSY; 1216 } 1217 1218 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, 1219 enum dev_state state) 1220 { 1221 int retval = 0; 1222 1223 switch (state) { 1224 case STATE_RADIO_ON: 1225 retval = rt2500pci_enable_radio(rt2x00dev); 1226 break; 1227 case STATE_RADIO_OFF: 1228 rt2500pci_disable_radio(rt2x00dev); 1229 break; 1230 case STATE_RADIO_IRQ_ON: 1231 case STATE_RADIO_IRQ_OFF: 1232 rt2500pci_toggle_irq(rt2x00dev, state); 1233 break; 1234 case STATE_DEEP_SLEEP: 1235 case STATE_SLEEP: 1236 case STATE_STANDBY: 1237 case STATE_AWAKE: 1238 retval = rt2500pci_set_state(rt2x00dev, state); 1239 break; 1240 default: 1241 retval = -ENOTSUPP; 1242 break; 1243 } 1244 1245 if (unlikely(retval)) 1246 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1247 state, retval); 1248 1249 return retval; 1250 } 1251 1252 /* 1253 * TX descriptor initialization 1254 */ 1255 static void rt2500pci_write_tx_desc(struct queue_entry *entry, 1256 struct txentry_desc *txdesc) 1257 { 1258 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1259 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1260 __le32 *txd = entry_priv->desc; 1261 u32 word; 1262 1263 /* 1264 * Start writing the descriptor words. 1265 */ 1266 rt2x00_desc_read(txd, 1, &word); 1267 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); 1268 rt2x00_desc_write(txd, 1, word); 1269 1270 rt2x00_desc_read(txd, 2, &word); 1271 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); 1272 rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs); 1273 rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min); 1274 rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max); 1275 rt2x00_desc_write(txd, 2, word); 1276 1277 rt2x00_desc_read(txd, 3, &word); 1278 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal); 1279 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service); 1280 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, 1281 txdesc->u.plcp.length_low); 1282 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, 1283 txdesc->u.plcp.length_high); 1284 rt2x00_desc_write(txd, 3, word); 1285 1286 rt2x00_desc_read(txd, 10, &word); 1287 rt2x00_set_field32(&word, TXD_W10_RTS, 1288 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); 1289 rt2x00_desc_write(txd, 10, word); 1290 1291 /* 1292 * Writing TXD word 0 must the last to prevent a race condition with 1293 * the device, whereby the device may take hold of the TXD before we 1294 * finished updating it. 1295 */ 1296 rt2x00_desc_read(txd, 0, &word); 1297 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); 1298 rt2x00_set_field32(&word, TXD_W0_VALID, 1); 1299 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1300 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1301 rt2x00_set_field32(&word, TXD_W0_ACK, 1302 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1303 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1304 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1305 rt2x00_set_field32(&word, TXD_W0_OFDM, 1306 (txdesc->rate_mode == RATE_MODE_OFDM)); 1307 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); 1308 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1309 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 1310 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); 1311 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1312 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); 1313 rt2x00_desc_write(txd, 0, word); 1314 1315 /* 1316 * Register descriptor details in skb frame descriptor. 1317 */ 1318 skbdesc->desc = txd; 1319 skbdesc->desc_len = TXD_DESC_SIZE; 1320 } 1321 1322 /* 1323 * TX data initialization 1324 */ 1325 static void rt2500pci_write_beacon(struct queue_entry *entry, 1326 struct txentry_desc *txdesc) 1327 { 1328 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1329 u32 reg; 1330 1331 /* 1332 * Disable beaconing while we are reloading the beacon data, 1333 * otherwise we might be sending out invalid data. 1334 */ 1335 rt2x00mmio_register_read(rt2x00dev, CSR14, ®); 1336 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); 1337 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 1338 1339 if (rt2x00queue_map_txskb(entry)) { 1340 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n"); 1341 goto out; 1342 } 1343 1344 /* 1345 * Write the TX descriptor for the beacon. 1346 */ 1347 rt2500pci_write_tx_desc(entry, txdesc); 1348 1349 /* 1350 * Dump beacon to userspace through debugfs. 1351 */ 1352 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); 1353 out: 1354 /* 1355 * Enable beaconing again. 1356 */ 1357 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); 1358 rt2x00mmio_register_write(rt2x00dev, CSR14, reg); 1359 } 1360 1361 /* 1362 * RX control handlers 1363 */ 1364 static void rt2500pci_fill_rxdone(struct queue_entry *entry, 1365 struct rxdone_entry_desc *rxdesc) 1366 { 1367 struct queue_entry_priv_mmio *entry_priv = entry->priv_data; 1368 u32 word0; 1369 u32 word2; 1370 1371 rt2x00_desc_read(entry_priv->desc, 0, &word0); 1372 rt2x00_desc_read(entry_priv->desc, 2, &word2); 1373 1374 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1375 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1376 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1377 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1378 1379 /* 1380 * Obtain the status about this packet. 1381 * When frame was received with an OFDM bitrate, 1382 * the signal is the PLCP value. If it was received with 1383 * a CCK bitrate the signal is the rate in 100kbit/s. 1384 */ 1385 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); 1386 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - 1387 entry->queue->rt2x00dev->rssi_offset; 1388 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1389 1390 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1391 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1392 else 1393 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1394 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1395 rxdesc->dev_flags |= RXDONE_MY_BSS; 1396 } 1397 1398 /* 1399 * Interrupt functions. 1400 */ 1401 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, 1402 const enum data_queue_qid queue_idx) 1403 { 1404 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); 1405 struct queue_entry_priv_mmio *entry_priv; 1406 struct queue_entry *entry; 1407 struct txdone_entry_desc txdesc; 1408 u32 word; 1409 1410 while (!rt2x00queue_empty(queue)) { 1411 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); 1412 entry_priv = entry->priv_data; 1413 rt2x00_desc_read(entry_priv->desc, 0, &word); 1414 1415 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || 1416 !rt2x00_get_field32(word, TXD_W0_VALID)) 1417 break; 1418 1419 /* 1420 * Obtain the status about this packet. 1421 */ 1422 txdesc.flags = 0; 1423 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { 1424 case 0: /* Success */ 1425 case 1: /* Success with retry */ 1426 __set_bit(TXDONE_SUCCESS, &txdesc.flags); 1427 break; 1428 case 2: /* Failure, excessive retries */ 1429 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); 1430 /* Don't break, this is a failed frame! */ 1431 default: /* Failure */ 1432 __set_bit(TXDONE_FAILURE, &txdesc.flags); 1433 } 1434 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); 1435 1436 rt2x00lib_txdone(entry, &txdesc); 1437 } 1438 } 1439 1440 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, 1441 struct rt2x00_field32 irq_field) 1442 { 1443 u32 reg; 1444 1445 /* 1446 * Enable a single interrupt. The interrupt mask register 1447 * access needs locking. 1448 */ 1449 spin_lock_irq(&rt2x00dev->irqmask_lock); 1450 1451 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1452 rt2x00_set_field32(®, irq_field, 0); 1453 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1454 1455 spin_unlock_irq(&rt2x00dev->irqmask_lock); 1456 } 1457 1458 static void rt2500pci_txstatus_tasklet(unsigned long data) 1459 { 1460 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 1461 u32 reg; 1462 1463 /* 1464 * Handle all tx queues. 1465 */ 1466 rt2500pci_txdone(rt2x00dev, QID_ATIM); 1467 rt2500pci_txdone(rt2x00dev, QID_AC_VO); 1468 rt2500pci_txdone(rt2x00dev, QID_AC_VI); 1469 1470 /* 1471 * Enable all TXDONE interrupts again. 1472 */ 1473 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) { 1474 spin_lock_irq(&rt2x00dev->irqmask_lock); 1475 1476 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1477 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); 1478 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); 1479 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); 1480 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1481 1482 spin_unlock_irq(&rt2x00dev->irqmask_lock); 1483 } 1484 } 1485 1486 static void rt2500pci_tbtt_tasklet(unsigned long data) 1487 { 1488 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 1489 rt2x00lib_beacondone(rt2x00dev); 1490 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1491 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE); 1492 } 1493 1494 static void rt2500pci_rxdone_tasklet(unsigned long data) 1495 { 1496 struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; 1497 if (rt2x00mmio_rxdone(rt2x00dev)) 1498 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 1499 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1500 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE); 1501 } 1502 1503 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) 1504 { 1505 struct rt2x00_dev *rt2x00dev = dev_instance; 1506 u32 reg, mask; 1507 1508 /* 1509 * Get the interrupt sources & saved to local variable. 1510 * Write register value back to clear pending interrupts. 1511 */ 1512 rt2x00mmio_register_read(rt2x00dev, CSR7, ®); 1513 rt2x00mmio_register_write(rt2x00dev, CSR7, reg); 1514 1515 if (!reg) 1516 return IRQ_NONE; 1517 1518 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 1519 return IRQ_HANDLED; 1520 1521 mask = reg; 1522 1523 /* 1524 * Schedule tasklets for interrupt handling. 1525 */ 1526 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) 1527 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); 1528 1529 if (rt2x00_get_field32(reg, CSR7_RXDONE)) 1530 tasklet_schedule(&rt2x00dev->rxdone_tasklet); 1531 1532 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) || 1533 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) || 1534 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) { 1535 tasklet_schedule(&rt2x00dev->txstatus_tasklet); 1536 /* 1537 * Mask out all txdone interrupts. 1538 */ 1539 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1); 1540 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1); 1541 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1); 1542 } 1543 1544 /* 1545 * Disable all interrupts for which a tasklet was scheduled right now, 1546 * the tasklet will reenable the appropriate interrupts. 1547 */ 1548 spin_lock(&rt2x00dev->irqmask_lock); 1549 1550 rt2x00mmio_register_read(rt2x00dev, CSR8, ®); 1551 reg |= mask; 1552 rt2x00mmio_register_write(rt2x00dev, CSR8, reg); 1553 1554 spin_unlock(&rt2x00dev->irqmask_lock); 1555 1556 return IRQ_HANDLED; 1557 } 1558 1559 /* 1560 * Device probe functions. 1561 */ 1562 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1563 { 1564 struct eeprom_93cx6 eeprom; 1565 u32 reg; 1566 u16 word; 1567 u8 *mac; 1568 1569 rt2x00mmio_register_read(rt2x00dev, CSR21, ®); 1570 1571 eeprom.data = rt2x00dev; 1572 eeprom.register_read = rt2500pci_eepromregister_read; 1573 eeprom.register_write = rt2500pci_eepromregister_write; 1574 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? 1575 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; 1576 eeprom.reg_data_in = 0; 1577 eeprom.reg_data_out = 0; 1578 eeprom.reg_data_clock = 0; 1579 eeprom.reg_chip_select = 0; 1580 1581 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, 1582 EEPROM_SIZE / sizeof(u16)); 1583 1584 /* 1585 * Start validation of the data that has been read. 1586 */ 1587 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1588 if (!is_valid_ether_addr(mac)) { 1589 eth_random_addr(mac); 1590 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); 1591 } 1592 1593 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); 1594 if (word == 0xffff) { 1595 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1596 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1597 ANTENNA_SW_DIVERSITY); 1598 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1599 ANTENNA_SW_DIVERSITY); 1600 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 1601 LED_MODE_DEFAULT); 1602 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1603 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1604 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); 1605 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1606 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1607 } 1608 1609 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); 1610 if (word == 0xffff) { 1611 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 1612 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); 1613 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); 1614 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1615 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1616 } 1617 1618 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); 1619 if (word == 0xffff) { 1620 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, 1621 DEFAULT_RSSI_OFFSET); 1622 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); 1623 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", 1624 word); 1625 } 1626 1627 return 0; 1628 } 1629 1630 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) 1631 { 1632 u32 reg; 1633 u16 value; 1634 u16 eeprom; 1635 1636 /* 1637 * Read EEPROM word for configuration. 1638 */ 1639 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); 1640 1641 /* 1642 * Identify RF chipset. 1643 */ 1644 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1645 rt2x00mmio_register_read(rt2x00dev, CSR0, ®); 1646 rt2x00_set_chip(rt2x00dev, RT2560, value, 1647 rt2x00_get_field32(reg, CSR0_REVISION)); 1648 1649 if (!rt2x00_rf(rt2x00dev, RF2522) && 1650 !rt2x00_rf(rt2x00dev, RF2523) && 1651 !rt2x00_rf(rt2x00dev, RF2524) && 1652 !rt2x00_rf(rt2x00dev, RF2525) && 1653 !rt2x00_rf(rt2x00dev, RF2525E) && 1654 !rt2x00_rf(rt2x00dev, RF5222)) { 1655 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1656 return -ENODEV; 1657 } 1658 1659 /* 1660 * Identify default antenna configuration. 1661 */ 1662 rt2x00dev->default_ant.tx = 1663 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1664 rt2x00dev->default_ant.rx = 1665 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1666 1667 /* 1668 * Store led mode, for correct led behaviour. 1669 */ 1670 #ifdef CONFIG_RT2X00_LIB_LEDS 1671 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1672 1673 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1674 if (value == LED_MODE_TXRX_ACTIVITY || 1675 value == LED_MODE_DEFAULT || 1676 value == LED_MODE_ASUS) 1677 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual, 1678 LED_TYPE_ACTIVITY); 1679 #endif /* CONFIG_RT2X00_LIB_LEDS */ 1680 1681 /* 1682 * Detect if this device has an hardware controlled radio. 1683 */ 1684 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) { 1685 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1686 /* 1687 * On this device RFKILL initialized during probe does not work. 1688 */ 1689 __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags); 1690 } 1691 1692 /* 1693 * Check if the BBP tuning should be enabled. 1694 */ 1695 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); 1696 if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) 1697 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); 1698 1699 /* 1700 * Read the RSSI <-> dBm offset information. 1701 */ 1702 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); 1703 rt2x00dev->rssi_offset = 1704 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); 1705 1706 return 0; 1707 } 1708 1709 /* 1710 * RF value list for RF2522 1711 * Supports: 2.4 GHz 1712 */ 1713 static const struct rf_channel rf_vals_bg_2522[] = { 1714 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, 1715 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, 1716 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, 1717 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, 1718 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, 1719 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, 1720 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, 1721 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, 1722 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, 1723 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, 1724 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, 1725 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, 1726 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, 1727 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, 1728 }; 1729 1730 /* 1731 * RF value list for RF2523 1732 * Supports: 2.4 GHz 1733 */ 1734 static const struct rf_channel rf_vals_bg_2523[] = { 1735 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, 1736 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, 1737 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, 1738 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, 1739 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, 1740 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, 1741 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, 1742 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, 1743 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, 1744 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, 1745 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, 1746 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, 1747 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, 1748 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, 1749 }; 1750 1751 /* 1752 * RF value list for RF2524 1753 * Supports: 2.4 GHz 1754 */ 1755 static const struct rf_channel rf_vals_bg_2524[] = { 1756 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, 1757 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, 1758 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, 1759 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, 1760 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, 1761 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, 1762 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, 1763 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, 1764 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, 1765 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, 1766 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, 1767 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, 1768 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, 1769 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, 1770 }; 1771 1772 /* 1773 * RF value list for RF2525 1774 * Supports: 2.4 GHz 1775 */ 1776 static const struct rf_channel rf_vals_bg_2525[] = { 1777 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, 1778 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, 1779 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, 1780 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, 1781 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, 1782 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, 1783 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, 1784 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, 1785 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, 1786 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, 1787 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, 1788 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, 1789 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, 1790 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, 1791 }; 1792 1793 /* 1794 * RF value list for RF2525e 1795 * Supports: 2.4 GHz 1796 */ 1797 static const struct rf_channel rf_vals_bg_2525e[] = { 1798 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, 1799 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, 1800 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, 1801 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, 1802 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, 1803 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, 1804 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, 1805 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, 1806 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, 1807 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, 1808 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, 1809 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, 1810 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, 1811 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, 1812 }; 1813 1814 /* 1815 * RF value list for RF5222 1816 * Supports: 2.4 GHz & 5.2 GHz 1817 */ 1818 static const struct rf_channel rf_vals_5222[] = { 1819 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, 1820 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, 1821 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, 1822 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, 1823 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, 1824 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, 1825 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, 1826 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, 1827 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, 1828 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, 1829 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, 1830 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, 1831 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, 1832 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, 1833 1834 /* 802.11 UNI / HyperLan 2 */ 1835 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, 1836 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, 1837 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, 1838 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, 1839 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, 1840 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, 1841 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, 1842 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, 1843 1844 /* 802.11 HyperLan 2 */ 1845 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, 1846 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, 1847 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, 1848 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, 1849 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, 1850 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, 1851 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, 1852 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, 1853 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, 1854 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, 1855 1856 /* 802.11 UNII */ 1857 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, 1858 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, 1859 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, 1860 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, 1861 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, 1862 }; 1863 1864 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1865 { 1866 struct hw_mode_spec *spec = &rt2x00dev->spec; 1867 struct channel_info *info; 1868 char *tx_power; 1869 unsigned int i; 1870 1871 /* 1872 * Initialize all hw fields. 1873 */ 1874 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); 1875 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); 1876 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); 1877 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); 1878 1879 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1880 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1881 rt2x00_eeprom_addr(rt2x00dev, 1882 EEPROM_MAC_ADDR_0)); 1883 1884 /* 1885 * Disable powersaving as default. 1886 */ 1887 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; 1888 1889 /* 1890 * Initialize hw_mode information. 1891 */ 1892 spec->supported_bands = SUPPORT_BAND_2GHZ; 1893 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 1894 1895 if (rt2x00_rf(rt2x00dev, RF2522)) { 1896 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); 1897 spec->channels = rf_vals_bg_2522; 1898 } else if (rt2x00_rf(rt2x00dev, RF2523)) { 1899 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); 1900 spec->channels = rf_vals_bg_2523; 1901 } else if (rt2x00_rf(rt2x00dev, RF2524)) { 1902 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); 1903 spec->channels = rf_vals_bg_2524; 1904 } else if (rt2x00_rf(rt2x00dev, RF2525)) { 1905 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); 1906 spec->channels = rf_vals_bg_2525; 1907 } else if (rt2x00_rf(rt2x00dev, RF2525E)) { 1908 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); 1909 spec->channels = rf_vals_bg_2525e; 1910 } else if (rt2x00_rf(rt2x00dev, RF5222)) { 1911 spec->supported_bands |= SUPPORT_BAND_5GHZ; 1912 spec->num_channels = ARRAY_SIZE(rf_vals_5222); 1913 spec->channels = rf_vals_5222; 1914 } 1915 1916 /* 1917 * Create channel information array 1918 */ 1919 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1920 if (!info) 1921 return -ENOMEM; 1922 1923 spec->channels_info = info; 1924 1925 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1926 for (i = 0; i < 14; i++) { 1927 info[i].max_power = MAX_TXPOWER; 1928 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1929 } 1930 1931 if (spec->num_channels > 14) { 1932 for (i = 14; i < spec->num_channels; i++) { 1933 info[i].max_power = MAX_TXPOWER; 1934 info[i].default_power1 = DEFAULT_TXPOWER; 1935 } 1936 } 1937 1938 return 0; 1939 } 1940 1941 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) 1942 { 1943 int retval; 1944 u32 reg; 1945 1946 /* 1947 * Allocate eeprom data. 1948 */ 1949 retval = rt2500pci_validate_eeprom(rt2x00dev); 1950 if (retval) 1951 return retval; 1952 1953 retval = rt2500pci_init_eeprom(rt2x00dev); 1954 if (retval) 1955 return retval; 1956 1957 /* 1958 * Enable rfkill polling by setting GPIO direction of the 1959 * rfkill switch GPIO pin correctly. 1960 */ 1961 rt2x00mmio_register_read(rt2x00dev, GPIOCSR, ®); 1962 rt2x00_set_field32(®, GPIOCSR_DIR0, 1); 1963 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg); 1964 1965 /* 1966 * Initialize hw specifications. 1967 */ 1968 retval = rt2500pci_probe_hw_mode(rt2x00dev); 1969 if (retval) 1970 return retval; 1971 1972 /* 1973 * This device requires the atim queue and DMA-mapped skbs. 1974 */ 1975 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1976 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); 1977 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1978 1979 /* 1980 * Set the rssi offset. 1981 */ 1982 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1983 1984 return 0; 1985 } 1986 1987 /* 1988 * IEEE80211 stack callback functions. 1989 */ 1990 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw, 1991 struct ieee80211_vif *vif) 1992 { 1993 struct rt2x00_dev *rt2x00dev = hw->priv; 1994 u64 tsf; 1995 u32 reg; 1996 1997 rt2x00mmio_register_read(rt2x00dev, CSR17, ®); 1998 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; 1999 rt2x00mmio_register_read(rt2x00dev, CSR16, ®); 2000 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); 2001 2002 return tsf; 2003 } 2004 2005 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) 2006 { 2007 struct rt2x00_dev *rt2x00dev = hw->priv; 2008 u32 reg; 2009 2010 rt2x00mmio_register_read(rt2x00dev, CSR15, ®); 2011 return rt2x00_get_field32(reg, CSR15_BEACON_SENT); 2012 } 2013 2014 static const struct ieee80211_ops rt2500pci_mac80211_ops = { 2015 .tx = rt2x00mac_tx, 2016 .start = rt2x00mac_start, 2017 .stop = rt2x00mac_stop, 2018 .add_interface = rt2x00mac_add_interface, 2019 .remove_interface = rt2x00mac_remove_interface, 2020 .config = rt2x00mac_config, 2021 .configure_filter = rt2x00mac_configure_filter, 2022 .sw_scan_start = rt2x00mac_sw_scan_start, 2023 .sw_scan_complete = rt2x00mac_sw_scan_complete, 2024 .get_stats = rt2x00mac_get_stats, 2025 .bss_info_changed = rt2x00mac_bss_info_changed, 2026 .conf_tx = rt2x00mac_conf_tx, 2027 .get_tsf = rt2500pci_get_tsf, 2028 .tx_last_beacon = rt2500pci_tx_last_beacon, 2029 .rfkill_poll = rt2x00mac_rfkill_poll, 2030 .flush = rt2x00mac_flush, 2031 .set_antenna = rt2x00mac_set_antenna, 2032 .get_antenna = rt2x00mac_get_antenna, 2033 .get_ringparam = rt2x00mac_get_ringparam, 2034 .tx_frames_pending = rt2x00mac_tx_frames_pending, 2035 }; 2036 2037 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { 2038 .irq_handler = rt2500pci_interrupt, 2039 .txstatus_tasklet = rt2500pci_txstatus_tasklet, 2040 .tbtt_tasklet = rt2500pci_tbtt_tasklet, 2041 .rxdone_tasklet = rt2500pci_rxdone_tasklet, 2042 .probe_hw = rt2500pci_probe_hw, 2043 .initialize = rt2x00mmio_initialize, 2044 .uninitialize = rt2x00mmio_uninitialize, 2045 .get_entry_state = rt2500pci_get_entry_state, 2046 .clear_entry = rt2500pci_clear_entry, 2047 .set_device_state = rt2500pci_set_device_state, 2048 .rfkill_poll = rt2500pci_rfkill_poll, 2049 .link_stats = rt2500pci_link_stats, 2050 .reset_tuner = rt2500pci_reset_tuner, 2051 .link_tuner = rt2500pci_link_tuner, 2052 .start_queue = rt2500pci_start_queue, 2053 .kick_queue = rt2500pci_kick_queue, 2054 .stop_queue = rt2500pci_stop_queue, 2055 .flush_queue = rt2x00mmio_flush_queue, 2056 .write_tx_desc = rt2500pci_write_tx_desc, 2057 .write_beacon = rt2500pci_write_beacon, 2058 .fill_rxdone = rt2500pci_fill_rxdone, 2059 .config_filter = rt2500pci_config_filter, 2060 .config_intf = rt2500pci_config_intf, 2061 .config_erp = rt2500pci_config_erp, 2062 .config_ant = rt2500pci_config_ant, 2063 .config = rt2500pci_config, 2064 }; 2065 2066 static void rt2500pci_queue_init(struct data_queue *queue) 2067 { 2068 switch (queue->qid) { 2069 case QID_RX: 2070 queue->limit = 32; 2071 queue->data_size = DATA_FRAME_SIZE; 2072 queue->desc_size = RXD_DESC_SIZE; 2073 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2074 break; 2075 2076 case QID_AC_VO: 2077 case QID_AC_VI: 2078 case QID_AC_BE: 2079 case QID_AC_BK: 2080 queue->limit = 32; 2081 queue->data_size = DATA_FRAME_SIZE; 2082 queue->desc_size = TXD_DESC_SIZE; 2083 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2084 break; 2085 2086 case QID_BEACON: 2087 queue->limit = 1; 2088 queue->data_size = MGMT_FRAME_SIZE; 2089 queue->desc_size = TXD_DESC_SIZE; 2090 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2091 break; 2092 2093 case QID_ATIM: 2094 queue->limit = 8; 2095 queue->data_size = DATA_FRAME_SIZE; 2096 queue->desc_size = TXD_DESC_SIZE; 2097 queue->priv_size = sizeof(struct queue_entry_priv_mmio); 2098 break; 2099 2100 default: 2101 BUG(); 2102 break; 2103 } 2104 } 2105 2106 static const struct rt2x00_ops rt2500pci_ops = { 2107 .name = KBUILD_MODNAME, 2108 .max_ap_intf = 1, 2109 .eeprom_size = EEPROM_SIZE, 2110 .rf_size = RF_SIZE, 2111 .tx_queues = NUM_TX_QUEUES, 2112 .queue_init = rt2500pci_queue_init, 2113 .lib = &rt2500pci_rt2x00_ops, 2114 .hw = &rt2500pci_mac80211_ops, 2115 #ifdef CONFIG_RT2X00_LIB_DEBUGFS 2116 .debugfs = &rt2500pci_rt2x00debug, 2117 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 2118 }; 2119 2120 /* 2121 * RT2500pci module information. 2122 */ 2123 static const struct pci_device_id rt2500pci_device_table[] = { 2124 { PCI_DEVICE(0x1814, 0x0201) }, 2125 { 0, } 2126 }; 2127 2128 MODULE_AUTHOR(DRV_PROJECT); 2129 MODULE_VERSION(DRV_VERSION); 2130 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); 2131 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards"); 2132 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); 2133 MODULE_LICENSE("GPL"); 2134 2135 static int rt2500pci_probe(struct pci_dev *pci_dev, 2136 const struct pci_device_id *id) 2137 { 2138 return rt2x00pci_probe(pci_dev, &rt2500pci_ops); 2139 } 2140 2141 static struct pci_driver rt2500pci_driver = { 2142 .name = KBUILD_MODNAME, 2143 .id_table = rt2500pci_device_table, 2144 .probe = rt2500pci_probe, 2145 .remove = rt2x00pci_remove, 2146 .suspend = rt2x00pci_suspend, 2147 .resume = rt2x00pci_resume, 2148 }; 2149 2150 module_pci_driver(rt2500pci_driver); 2151