xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2400pci.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 	<http://rt2x00.serialmonkey.com>
5 
6  */
7 
8 /*
9 	Module: rt2400pci
10 	Abstract: rt2400pci device specific routines.
11 	Supported chipsets: RT2460.
12  */
13 
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
21 
22 #include "rt2x00.h"
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2400pci.h"
26 
27 /*
28  * Register access.
29  * All access to the CSR registers will go through the methods
30  * rt2x00mmio_register_read and rt2x00mmio_register_write.
31  * BBP and RF register require indirect register access,
32  * and use the CSR registers BBPCSR and RFCSR to achieve this.
33  * These indirect registers work with busy bits,
34  * and we will try maximal REGISTER_BUSY_COUNT times to access
35  * the register while taking a REGISTER_BUSY_DELAY us delay
36  * between each attempt. When the busy bit is still set at that time,
37  * the access attempt is considered to have failed,
38  * and we will print an error.
39  */
40 #define WAIT_FOR_BBP(__dev, __reg) \
41 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
44 
45 static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
46 				const unsigned int word, const u8 value)
47 {
48 	u32 reg;
49 
50 	mutex_lock(&rt2x00dev->csr_mutex);
51 
52 	/*
53 	 * Wait until the BBP becomes available, afterwards we
54 	 * can safely write the new data into the register.
55 	 */
56 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
57 		reg = 0;
58 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
59 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
60 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
61 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
62 
63 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
64 	}
65 
66 	mutex_unlock(&rt2x00dev->csr_mutex);
67 }
68 
69 static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
70 			     const unsigned int word)
71 {
72 	u32 reg;
73 	u8 value;
74 
75 	mutex_lock(&rt2x00dev->csr_mutex);
76 
77 	/*
78 	 * Wait until the BBP becomes available, afterwards we
79 	 * can safely write the read request into the register.
80 	 * After the data has been written, we wait until hardware
81 	 * returns the correct value, if at any time the register
82 	 * doesn't become available in time, reg will be 0xffffffff
83 	 * which means we return 0xff to the caller.
84 	 */
85 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
86 		reg = 0;
87 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
88 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
89 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
90 
91 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
92 
93 		WAIT_FOR_BBP(rt2x00dev, &reg);
94 	}
95 
96 	value = rt2x00_get_field32(reg, BBPCSR_VALUE);
97 
98 	mutex_unlock(&rt2x00dev->csr_mutex);
99 
100 	return value;
101 }
102 
103 static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
104 			       const unsigned int word, const u32 value)
105 {
106 	u32 reg;
107 
108 	mutex_lock(&rt2x00dev->csr_mutex);
109 
110 	/*
111 	 * Wait until the RF becomes available, afterwards we
112 	 * can safely write the new data into the register.
113 	 */
114 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
115 		reg = 0;
116 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
117 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
118 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
119 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
120 
121 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
122 		rt2x00_rf_write(rt2x00dev, word, value);
123 	}
124 
125 	mutex_unlock(&rt2x00dev->csr_mutex);
126 }
127 
128 static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
129 {
130 	struct rt2x00_dev *rt2x00dev = eeprom->data;
131 	u32 reg;
132 
133 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
134 
135 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
136 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
137 	eeprom->reg_data_clock =
138 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
139 	eeprom->reg_chip_select =
140 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
141 }
142 
143 static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
144 {
145 	struct rt2x00_dev *rt2x00dev = eeprom->data;
146 	u32 reg = 0;
147 
148 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
149 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
150 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
151 			   !!eeprom->reg_data_clock);
152 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
153 			   !!eeprom->reg_chip_select);
154 
155 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
156 }
157 
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2400pci_rt2x00debug = {
160 	.owner	= THIS_MODULE,
161 	.csr	= {
162 		.read		= rt2x00mmio_register_read,
163 		.write		= rt2x00mmio_register_write,
164 		.flags		= RT2X00DEBUGFS_OFFSET,
165 		.word_base	= CSR_REG_BASE,
166 		.word_size	= sizeof(u32),
167 		.word_count	= CSR_REG_SIZE / sizeof(u32),
168 	},
169 	.eeprom	= {
170 		.read		= rt2x00_eeprom_read,
171 		.write		= rt2x00_eeprom_write,
172 		.word_base	= EEPROM_BASE,
173 		.word_size	= sizeof(u16),
174 		.word_count	= EEPROM_SIZE / sizeof(u16),
175 	},
176 	.bbp	= {
177 		.read		= rt2400pci_bbp_read,
178 		.write		= rt2400pci_bbp_write,
179 		.word_base	= BBP_BASE,
180 		.word_size	= sizeof(u8),
181 		.word_count	= BBP_SIZE / sizeof(u8),
182 	},
183 	.rf	= {
184 		.read		= rt2x00_rf_read,
185 		.write		= rt2400pci_rf_write,
186 		.word_base	= RF_BASE,
187 		.word_size	= sizeof(u32),
188 		.word_count	= RF_SIZE / sizeof(u32),
189 	},
190 };
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
192 
193 static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
194 {
195 	u32 reg;
196 
197 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
198 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
199 }
200 
201 #ifdef CONFIG_RT2X00_LIB_LEDS
202 static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
203 				     enum led_brightness brightness)
204 {
205 	struct rt2x00_led *led =
206 	    container_of(led_cdev, struct rt2x00_led, led_dev);
207 	unsigned int enabled = brightness != LED_OFF;
208 	u32 reg;
209 
210 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
211 
212 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
213 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
214 	else if (led->type == LED_TYPE_ACTIVITY)
215 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
216 
217 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
218 }
219 
220 static int rt2400pci_blink_set(struct led_classdev *led_cdev,
221 			       unsigned long *delay_on,
222 			       unsigned long *delay_off)
223 {
224 	struct rt2x00_led *led =
225 	    container_of(led_cdev, struct rt2x00_led, led_dev);
226 	u32 reg;
227 
228 	reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
229 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
230 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
231 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
232 
233 	return 0;
234 }
235 
236 static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
237 			       struct rt2x00_led *led,
238 			       enum led_type type)
239 {
240 	led->rt2x00dev = rt2x00dev;
241 	led->type = type;
242 	led->led_dev.brightness_set = rt2400pci_brightness_set;
243 	led->led_dev.blink_set = rt2400pci_blink_set;
244 	led->flags = LED_INITIALIZED;
245 }
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
247 
248 /*
249  * Configuration handlers.
250  */
251 static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
252 				    const unsigned int filter_flags)
253 {
254 	u32 reg;
255 
256 	/*
257 	 * Start configuration steps.
258 	 * Note that the version error will always be dropped
259 	 * since there is no filter for it at this time.
260 	 */
261 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
262 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
263 			   !(filter_flags & FIF_FCSFAIL));
264 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
265 			   !(filter_flags & FIF_PLCPFAIL));
266 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
267 			   !(filter_flags & FIF_CONTROL));
268 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
269 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
270 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
271 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
272 			   !rt2x00dev->intf_ap_count);
273 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
274 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
275 }
276 
277 static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
278 				  struct rt2x00_intf *intf,
279 				  struct rt2x00intf_conf *conf,
280 				  const unsigned int flags)
281 {
282 	unsigned int bcn_preload;
283 	u32 reg;
284 
285 	if (flags & CONFIG_UPDATE_TYPE) {
286 		/*
287 		 * Enable beacon config
288 		 */
289 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
290 		reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
291 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
292 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
293 
294 		/*
295 		 * Enable synchronisation.
296 		 */
297 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
298 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
299 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
300 	}
301 
302 	if (flags & CONFIG_UPDATE_MAC)
303 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
304 					       conf->mac, sizeof(conf->mac));
305 
306 	if (flags & CONFIG_UPDATE_BSSID)
307 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
308 					       conf->bssid,
309 					       sizeof(conf->bssid));
310 }
311 
312 static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
313 				 struct rt2x00lib_erp *erp,
314 				 u32 changed)
315 {
316 	int preamble_mask;
317 	u32 reg;
318 
319 	/*
320 	 * When short preamble is enabled, we should set bit 0x08
321 	 */
322 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
323 		preamble_mask = erp->short_preamble << 3;
324 
325 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
326 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
327 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
328 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
329 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
330 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
331 
332 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
333 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
334 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
335 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
336 				   GET_DURATION(ACK_SIZE, 10));
337 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
338 
339 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
340 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
341 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
342 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
343 				   GET_DURATION(ACK_SIZE, 20));
344 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
345 
346 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
347 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
348 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
349 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
350 				   GET_DURATION(ACK_SIZE, 55));
351 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
352 
353 		reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
354 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
355 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
356 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
357 				   GET_DURATION(ACK_SIZE, 110));
358 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
359 	}
360 
361 	if (changed & BSS_CHANGED_BASIC_RATES)
362 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
363 
364 	if (changed & BSS_CHANGED_ERP_SLOT) {
365 		reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
366 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
367 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
368 
369 		reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
370 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
371 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
372 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
373 
374 		reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
375 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
376 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
377 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
378 	}
379 
380 	if (changed & BSS_CHANGED_BEACON_INT) {
381 		reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
382 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
383 				   erp->beacon_int * 16);
384 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
385 				   erp->beacon_int * 16);
386 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
387 	}
388 }
389 
390 static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
391 				 struct antenna_setup *ant)
392 {
393 	u8 r1;
394 	u8 r4;
395 
396 	/*
397 	 * We should never come here because rt2x00lib is supposed
398 	 * to catch this and send us the correct antenna explicitely.
399 	 */
400 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
401 	       ant->tx == ANTENNA_SW_DIVERSITY);
402 
403 	r4 = rt2400pci_bbp_read(rt2x00dev, 4);
404 	r1 = rt2400pci_bbp_read(rt2x00dev, 1);
405 
406 	/*
407 	 * Configure the TX antenna.
408 	 */
409 	switch (ant->tx) {
410 	case ANTENNA_HW_DIVERSITY:
411 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
412 		break;
413 	case ANTENNA_A:
414 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
415 		break;
416 	case ANTENNA_B:
417 	default:
418 		rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
419 		break;
420 	}
421 
422 	/*
423 	 * Configure the RX antenna.
424 	 */
425 	switch (ant->rx) {
426 	case ANTENNA_HW_DIVERSITY:
427 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
428 		break;
429 	case ANTENNA_A:
430 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
431 		break;
432 	case ANTENNA_B:
433 	default:
434 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
435 		break;
436 	}
437 
438 	rt2400pci_bbp_write(rt2x00dev, 4, r4);
439 	rt2400pci_bbp_write(rt2x00dev, 1, r1);
440 }
441 
442 static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
443 				     struct rf_channel *rf)
444 {
445 	/*
446 	 * Switch on tuning bits.
447 	 */
448 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
449 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
450 
451 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
452 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
453 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
454 
455 	/*
456 	 * RF2420 chipset don't need any additional actions.
457 	 */
458 	if (rt2x00_rf(rt2x00dev, RF2420))
459 		return;
460 
461 	/*
462 	 * For the RT2421 chipsets we need to write an invalid
463 	 * reference clock rate to activate auto_tune.
464 	 * After that we set the value back to the correct channel.
465 	 */
466 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
467 	rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
468 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
469 
470 	msleep(1);
471 
472 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
473 	rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
474 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
475 
476 	msleep(1);
477 
478 	/*
479 	 * Switch off tuning bits.
480 	 */
481 	rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
482 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
483 
484 	rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
485 	rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
486 
487 	/*
488 	 * Clear false CRC during channel switch.
489 	 */
490 	rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
491 }
492 
493 static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
494 {
495 	rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
496 }
497 
498 static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
499 					 struct rt2x00lib_conf *libconf)
500 {
501 	u32 reg;
502 
503 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
504 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
505 			   libconf->conf->long_frame_max_tx_count);
506 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
507 			   libconf->conf->short_frame_max_tx_count);
508 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
509 }
510 
511 static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
512 				struct rt2x00lib_conf *libconf)
513 {
514 	enum dev_state state =
515 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
516 		STATE_SLEEP : STATE_AWAKE;
517 	u32 reg;
518 
519 	if (state == STATE_SLEEP) {
520 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
521 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
522 				   (rt2x00dev->beacon_int - 20) * 16);
523 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
524 				   libconf->conf->listen_interval - 1);
525 
526 		/* We must first disable autowake before it can be enabled */
527 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
528 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
529 
530 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
531 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
532 	} else {
533 		reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
534 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
535 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
536 	}
537 
538 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
539 }
540 
541 static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
542 			     struct rt2x00lib_conf *libconf,
543 			     const unsigned int flags)
544 {
545 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
546 		rt2400pci_config_channel(rt2x00dev, &libconf->rf);
547 	if (flags & IEEE80211_CONF_CHANGE_POWER)
548 		rt2400pci_config_txpower(rt2x00dev,
549 					 libconf->conf->power_level);
550 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
551 		rt2400pci_config_retry_limit(rt2x00dev, libconf);
552 	if (flags & IEEE80211_CONF_CHANGE_PS)
553 		rt2400pci_config_ps(rt2x00dev, libconf);
554 }
555 
556 static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
557 				const int cw_min, const int cw_max)
558 {
559 	u32 reg;
560 
561 	reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
562 	rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
563 	rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
564 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
565 }
566 
567 /*
568  * Link tuning
569  */
570 static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
571 				 struct link_qual *qual)
572 {
573 	u32 reg;
574 	u8 bbp;
575 
576 	/*
577 	 * Update FCS error count from register.
578 	 */
579 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
580 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
581 
582 	/*
583 	 * Update False CCA count from register.
584 	 */
585 	bbp = rt2400pci_bbp_read(rt2x00dev, 39);
586 	qual->false_cca = bbp;
587 }
588 
589 static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
590 				     struct link_qual *qual, u8 vgc_level)
591 {
592 	if (qual->vgc_level_reg != vgc_level) {
593 		rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
594 		qual->vgc_level = vgc_level;
595 		qual->vgc_level_reg = vgc_level;
596 	}
597 }
598 
599 static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
600 				  struct link_qual *qual)
601 {
602 	rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
603 }
604 
605 static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
606 				 struct link_qual *qual, const u32 count)
607 {
608 	/*
609 	 * The link tuner should not run longer then 60 seconds,
610 	 * and should run once every 2 seconds.
611 	 */
612 	if (count > 60 || !(count & 1))
613 		return;
614 
615 	/*
616 	 * Base r13 link tuning on the false cca count.
617 	 */
618 	if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
619 		rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
620 	else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
621 		rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
622 }
623 
624 /*
625  * Queue handlers.
626  */
627 static void rt2400pci_start_queue(struct data_queue *queue)
628 {
629 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
630 	u32 reg;
631 
632 	switch (queue->qid) {
633 	case QID_RX:
634 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
635 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
636 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
637 		break;
638 	case QID_BEACON:
639 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
640 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
641 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
642 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
643 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
644 		break;
645 	default:
646 		break;
647 	}
648 }
649 
650 static void rt2400pci_kick_queue(struct data_queue *queue)
651 {
652 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
653 	u32 reg;
654 
655 	switch (queue->qid) {
656 	case QID_AC_VO:
657 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
658 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
659 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
660 		break;
661 	case QID_AC_VI:
662 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
663 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
664 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
665 		break;
666 	case QID_ATIM:
667 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
668 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
669 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
670 		break;
671 	default:
672 		break;
673 	}
674 }
675 
676 static void rt2400pci_stop_queue(struct data_queue *queue)
677 {
678 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
679 	u32 reg;
680 
681 	switch (queue->qid) {
682 	case QID_AC_VO:
683 	case QID_AC_VI:
684 	case QID_ATIM:
685 		reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
686 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
687 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
688 		break;
689 	case QID_RX:
690 		reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
691 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
692 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
693 		break;
694 	case QID_BEACON:
695 		reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
696 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
697 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
698 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
699 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
700 
701 		/*
702 		 * Wait for possibly running tbtt tasklets.
703 		 */
704 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
705 		break;
706 	default:
707 		break;
708 	}
709 }
710 
711 /*
712  * Initialization functions.
713  */
714 static bool rt2400pci_get_entry_state(struct queue_entry *entry)
715 {
716 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
717 	u32 word;
718 
719 	if (entry->queue->qid == QID_RX) {
720 		word = rt2x00_desc_read(entry_priv->desc, 0);
721 
722 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
723 	} else {
724 		word = rt2x00_desc_read(entry_priv->desc, 0);
725 
726 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
727 		        rt2x00_get_field32(word, TXD_W0_VALID));
728 	}
729 }
730 
731 static void rt2400pci_clear_entry(struct queue_entry *entry)
732 {
733 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
734 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
735 	u32 word;
736 
737 	if (entry->queue->qid == QID_RX) {
738 		word = rt2x00_desc_read(entry_priv->desc, 2);
739 		rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
740 		rt2x00_desc_write(entry_priv->desc, 2, word);
741 
742 		word = rt2x00_desc_read(entry_priv->desc, 1);
743 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
744 		rt2x00_desc_write(entry_priv->desc, 1, word);
745 
746 		word = rt2x00_desc_read(entry_priv->desc, 0);
747 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
748 		rt2x00_desc_write(entry_priv->desc, 0, word);
749 	} else {
750 		word = rt2x00_desc_read(entry_priv->desc, 0);
751 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
752 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
753 		rt2x00_desc_write(entry_priv->desc, 0, word);
754 	}
755 }
756 
757 static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
758 {
759 	struct queue_entry_priv_mmio *entry_priv;
760 	u32 reg;
761 
762 	/*
763 	 * Initialize registers.
764 	 */
765 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
766 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
767 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
768 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
769 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
770 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
771 
772 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
773 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
774 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
775 			   entry_priv->desc_dma);
776 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
777 
778 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
779 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
780 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
781 			   entry_priv->desc_dma);
782 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
783 
784 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
785 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
786 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
787 			   entry_priv->desc_dma);
788 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
789 
790 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
791 	reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
792 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
793 			   entry_priv->desc_dma);
794 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
795 
796 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
797 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
798 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
799 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
800 
801 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
802 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
803 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
804 			   entry_priv->desc_dma);
805 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
806 
807 	return 0;
808 }
809 
810 static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
811 {
812 	u32 reg;
813 
814 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
815 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
816 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
817 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
818 
819 	reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
820 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
821 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
822 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
823 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
824 
825 	reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
826 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
827 			   (rt2x00dev->rx->data_size / 128));
828 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
829 
830 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
831 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
832 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
833 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
834 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
835 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
836 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
837 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
838 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
839 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
840 
841 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
842 
843 	reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
844 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
845 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
846 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
847 	rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
848 	rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
849 
850 	reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
851 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
852 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
853 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
854 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
855 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
856 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
857 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
858 
859 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
860 
861 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
862 		return -EBUSY;
863 
864 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
865 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
866 
867 	reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
868 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
869 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
870 
871 	reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
872 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
873 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
874 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
875 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
876 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
877 
878 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
879 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
880 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
881 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
882 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
883 
884 	reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
885 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
886 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
887 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
888 
889 	/*
890 	 * We must clear the FCS and FIFO error count.
891 	 * These registers are cleared on read,
892 	 * so we may pass a useless variable to store the value.
893 	 */
894 	reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
895 	reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
896 
897 	return 0;
898 }
899 
900 static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
901 {
902 	unsigned int i;
903 	u8 value;
904 
905 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
906 		value = rt2400pci_bbp_read(rt2x00dev, 0);
907 		if ((value != 0xff) && (value != 0x00))
908 			return 0;
909 		udelay(REGISTER_BUSY_DELAY);
910 	}
911 
912 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
913 	return -EACCES;
914 }
915 
916 static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
917 {
918 	unsigned int i;
919 	u16 eeprom;
920 	u8 reg_id;
921 	u8 value;
922 
923 	if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
924 		return -EACCES;
925 
926 	rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
927 	rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
928 	rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
929 	rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
930 	rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
931 	rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
932 	rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
933 	rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
934 	rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
935 	rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
936 	rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
937 	rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
938 	rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
939 	rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
940 
941 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
942 		eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
943 
944 		if (eeprom != 0xffff && eeprom != 0x0000) {
945 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
946 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
947 			rt2400pci_bbp_write(rt2x00dev, reg_id, value);
948 		}
949 	}
950 
951 	return 0;
952 }
953 
954 /*
955  * Device state switch handlers.
956  */
957 static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
958 				 enum dev_state state)
959 {
960 	int mask = (state == STATE_RADIO_IRQ_OFF);
961 	u32 reg;
962 	unsigned long flags;
963 
964 	/*
965 	 * When interrupts are being enabled, the interrupt registers
966 	 * should clear the register to assure a clean state.
967 	 */
968 	if (state == STATE_RADIO_IRQ_ON) {
969 		reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
970 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
971 	}
972 
973 	/*
974 	 * Only toggle the interrupts bits we are going to use.
975 	 * Non-checked interrupt bits are disabled by default.
976 	 */
977 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
978 
979 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
980 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
981 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
982 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
983 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
984 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
985 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
986 
987 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
988 
989 	if (state == STATE_RADIO_IRQ_OFF) {
990 		/*
991 		 * Ensure that all tasklets are finished before
992 		 * disabling the interrupts.
993 		 */
994 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
995 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
996 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
997 	}
998 }
999 
1000 static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1001 {
1002 	/*
1003 	 * Initialize all registers.
1004 	 */
1005 	if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1006 		     rt2400pci_init_registers(rt2x00dev) ||
1007 		     rt2400pci_init_bbp(rt2x00dev)))
1008 		return -EIO;
1009 
1010 	return 0;
1011 }
1012 
1013 static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1014 {
1015 	/*
1016 	 * Disable power
1017 	 */
1018 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1019 }
1020 
1021 static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1022 			       enum dev_state state)
1023 {
1024 	u32 reg, reg2;
1025 	unsigned int i;
1026 	char put_to_sleep;
1027 	char bbp_state;
1028 	char rf_state;
1029 
1030 	put_to_sleep = (state != STATE_AWAKE);
1031 
1032 	reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1033 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1034 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1035 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1036 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1037 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1038 
1039 	/*
1040 	 * Device is not guaranteed to be in the requested state yet.
1041 	 * We must wait until the register indicates that the
1042 	 * device has entered the correct state.
1043 	 */
1044 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1045 		reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1046 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1047 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1048 		if (bbp_state == state && rf_state == state)
1049 			return 0;
1050 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1051 		msleep(10);
1052 	}
1053 
1054 	return -EBUSY;
1055 }
1056 
1057 static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1058 				      enum dev_state state)
1059 {
1060 	int retval = 0;
1061 
1062 	switch (state) {
1063 	case STATE_RADIO_ON:
1064 		retval = rt2400pci_enable_radio(rt2x00dev);
1065 		break;
1066 	case STATE_RADIO_OFF:
1067 		rt2400pci_disable_radio(rt2x00dev);
1068 		break;
1069 	case STATE_RADIO_IRQ_ON:
1070 	case STATE_RADIO_IRQ_OFF:
1071 		rt2400pci_toggle_irq(rt2x00dev, state);
1072 		break;
1073 	case STATE_DEEP_SLEEP:
1074 	case STATE_SLEEP:
1075 	case STATE_STANDBY:
1076 	case STATE_AWAKE:
1077 		retval = rt2400pci_set_state(rt2x00dev, state);
1078 		break;
1079 	default:
1080 		retval = -ENOTSUPP;
1081 		break;
1082 	}
1083 
1084 	if (unlikely(retval))
1085 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1086 			   state, retval);
1087 
1088 	return retval;
1089 }
1090 
1091 /*
1092  * TX descriptor initialization
1093  */
1094 static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1095 				    struct txentry_desc *txdesc)
1096 {
1097 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1098 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1099 	__le32 *txd = entry_priv->desc;
1100 	u32 word;
1101 
1102 	/*
1103 	 * Start writing the descriptor words.
1104 	 */
1105 	word = rt2x00_desc_read(txd, 1);
1106 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1107 	rt2x00_desc_write(txd, 1, word);
1108 
1109 	word = rt2x00_desc_read(txd, 2);
1110 	rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1111 	rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1112 	rt2x00_desc_write(txd, 2, word);
1113 
1114 	word = rt2x00_desc_read(txd, 3);
1115 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1116 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1117 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1118 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1119 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1120 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1121 	rt2x00_desc_write(txd, 3, word);
1122 
1123 	word = rt2x00_desc_read(txd, 4);
1124 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1125 			   txdesc->u.plcp.length_low);
1126 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1127 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1128 	rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1129 			   txdesc->u.plcp.length_high);
1130 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1131 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1132 	rt2x00_desc_write(txd, 4, word);
1133 
1134 	/*
1135 	 * Writing TXD word 0 must the last to prevent a race condition with
1136 	 * the device, whereby the device may take hold of the TXD before we
1137 	 * finished updating it.
1138 	 */
1139 	word = rt2x00_desc_read(txd, 0);
1140 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1141 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1142 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1143 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1144 	rt2x00_set_field32(&word, TXD_W0_ACK,
1145 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1146 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1147 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1148 	rt2x00_set_field32(&word, TXD_W0_RTS,
1149 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1150 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1151 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1152 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1153 	rt2x00_desc_write(txd, 0, word);
1154 
1155 	/*
1156 	 * Register descriptor details in skb frame descriptor.
1157 	 */
1158 	skbdesc->desc = txd;
1159 	skbdesc->desc_len = TXD_DESC_SIZE;
1160 }
1161 
1162 /*
1163  * TX data initialization
1164  */
1165 static void rt2400pci_write_beacon(struct queue_entry *entry,
1166 				   struct txentry_desc *txdesc)
1167 {
1168 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1169 	u32 reg;
1170 
1171 	/*
1172 	 * Disable beaconing while we are reloading the beacon data,
1173 	 * otherwise we might be sending out invalid data.
1174 	 */
1175 	reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1176 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1177 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1178 
1179 	if (rt2x00queue_map_txskb(entry)) {
1180 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1181 		goto out;
1182 	}
1183 	/*
1184 	 * Enable beaconing again.
1185 	 */
1186 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1187 	/*
1188 	 * Write the TX descriptor for the beacon.
1189 	 */
1190 	rt2400pci_write_tx_desc(entry, txdesc);
1191 
1192 	/*
1193 	 * Dump beacon to userspace through debugfs.
1194 	 */
1195 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1196 out:
1197 	/*
1198 	 * Enable beaconing again.
1199 	 */
1200 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1201 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1202 }
1203 
1204 /*
1205  * RX control handlers
1206  */
1207 static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1208 				  struct rxdone_entry_desc *rxdesc)
1209 {
1210 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1211 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1212 	u32 word0;
1213 	u32 word2;
1214 	u32 word3;
1215 	u32 word4;
1216 	u64 tsf;
1217 	u32 rx_low;
1218 	u32 rx_high;
1219 
1220 	word0 = rt2x00_desc_read(entry_priv->desc, 0);
1221 	word2 = rt2x00_desc_read(entry_priv->desc, 2);
1222 	word3 = rt2x00_desc_read(entry_priv->desc, 3);
1223 	word4 = rt2x00_desc_read(entry_priv->desc, 4);
1224 
1225 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1226 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1227 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1228 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1229 
1230 	/*
1231 	 * We only get the lower 32bits from the timestamp,
1232 	 * to get the full 64bits we must complement it with
1233 	 * the timestamp from get_tsf().
1234 	 * Note that when a wraparound of the lower 32bits
1235 	 * has occurred between the frame arrival and the get_tsf()
1236 	 * call, we must decrease the higher 32bits with 1 to get
1237 	 * to correct value.
1238 	 */
1239 	tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1240 	rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1241 	rx_high = upper_32_bits(tsf);
1242 
1243 	if ((u32)tsf <= rx_low)
1244 		rx_high--;
1245 
1246 	/*
1247 	 * Obtain the status about this packet.
1248 	 * The signal is the PLCP value, and needs to be stripped
1249 	 * of the preamble bit (0x08).
1250 	 */
1251 	rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1252 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1253 	rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1254 	    entry->queue->rt2x00dev->rssi_offset;
1255 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1256 
1257 	rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1258 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1259 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1260 }
1261 
1262 /*
1263  * Interrupt functions.
1264  */
1265 static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1266 			     const enum data_queue_qid queue_idx)
1267 {
1268 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1269 	struct queue_entry_priv_mmio *entry_priv;
1270 	struct queue_entry *entry;
1271 	struct txdone_entry_desc txdesc;
1272 	u32 word;
1273 
1274 	while (!rt2x00queue_empty(queue)) {
1275 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1276 		entry_priv = entry->priv_data;
1277 		word = rt2x00_desc_read(entry_priv->desc, 0);
1278 
1279 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1280 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1281 			break;
1282 
1283 		/*
1284 		 * Obtain the status about this packet.
1285 		 */
1286 		txdesc.flags = 0;
1287 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1288 		case 0: /* Success */
1289 		case 1: /* Success with retry */
1290 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1291 			break;
1292 		case 2: /* Failure, excessive retries */
1293 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1294 			fallthrough;	/* this is a failed frame! */
1295 		default: /* Failure */
1296 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1297 		}
1298 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1299 
1300 		rt2x00lib_txdone(entry, &txdesc);
1301 	}
1302 }
1303 
1304 static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1305 					      struct rt2x00_field32 irq_field)
1306 {
1307 	u32 reg;
1308 
1309 	/*
1310 	 * Enable a single interrupt. The interrupt mask register
1311 	 * access needs locking.
1312 	 */
1313 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1314 
1315 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1316 	rt2x00_set_field32(&reg, irq_field, 0);
1317 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1318 
1319 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1320 }
1321 
1322 static void rt2400pci_txstatus_tasklet(struct tasklet_struct *t)
1323 {
1324 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1325 						    txstatus_tasklet);
1326 	u32 reg;
1327 
1328 	/*
1329 	 * Handle all tx queues.
1330 	 */
1331 	rt2400pci_txdone(rt2x00dev, QID_ATIM);
1332 	rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1333 	rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1334 
1335 	/*
1336 	 * Enable all TXDONE interrupts again.
1337 	 */
1338 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1339 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1340 
1341 		reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1342 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1343 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1344 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1345 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1346 
1347 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1348 	}
1349 }
1350 
1351 static void rt2400pci_tbtt_tasklet(struct tasklet_struct *t)
1352 {
1353 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
1354 	rt2x00lib_beacondone(rt2x00dev);
1355 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1356 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1357 }
1358 
1359 static void rt2400pci_rxdone_tasklet(struct tasklet_struct *t)
1360 {
1361 	struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1362 						    rxdone_tasklet);
1363 	if (rt2x00mmio_rxdone(rt2x00dev))
1364 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1365 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1366 		rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1367 }
1368 
1369 static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1370 {
1371 	struct rt2x00_dev *rt2x00dev = dev_instance;
1372 	u32 reg, mask;
1373 
1374 	/*
1375 	 * Get the interrupt sources & saved to local variable.
1376 	 * Write register value back to clear pending interrupts.
1377 	 */
1378 	reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1379 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1380 
1381 	if (!reg)
1382 		return IRQ_NONE;
1383 
1384 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1385 		return IRQ_HANDLED;
1386 
1387 	mask = reg;
1388 
1389 	/*
1390 	 * Schedule tasklets for interrupt handling.
1391 	 */
1392 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1393 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1394 
1395 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1396 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1397 
1398 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1399 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1400 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1401 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1402 		/*
1403 		 * Mask out all txdone interrupts.
1404 		 */
1405 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1406 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1407 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1408 	}
1409 
1410 	/*
1411 	 * Disable all interrupts for which a tasklet was scheduled right now,
1412 	 * the tasklet will reenable the appropriate interrupts.
1413 	 */
1414 	spin_lock(&rt2x00dev->irqmask_lock);
1415 
1416 	reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1417 	reg |= mask;
1418 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1419 
1420 	spin_unlock(&rt2x00dev->irqmask_lock);
1421 
1422 
1423 
1424 	return IRQ_HANDLED;
1425 }
1426 
1427 /*
1428  * Device probe functions.
1429  */
1430 static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1431 {
1432 	struct eeprom_93cx6 eeprom;
1433 	u32 reg;
1434 	u16 word;
1435 	u8 *mac;
1436 
1437 	reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1438 
1439 	eeprom.data = rt2x00dev;
1440 	eeprom.register_read = rt2400pci_eepromregister_read;
1441 	eeprom.register_write = rt2400pci_eepromregister_write;
1442 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1443 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1444 	eeprom.reg_data_in = 0;
1445 	eeprom.reg_data_out = 0;
1446 	eeprom.reg_data_clock = 0;
1447 	eeprom.reg_chip_select = 0;
1448 
1449 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1450 			       EEPROM_SIZE / sizeof(u16));
1451 
1452 	/*
1453 	 * Start validation of the data that has been read.
1454 	 */
1455 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1456 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1457 
1458 	word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1459 	if (word == 0xffff) {
1460 		rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1461 		return -EINVAL;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1468 {
1469 	u32 reg;
1470 	u16 value;
1471 	u16 eeprom;
1472 
1473 	/*
1474 	 * Read EEPROM word for configuration.
1475 	 */
1476 	eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1477 
1478 	/*
1479 	 * Identify RF chipset.
1480 	 */
1481 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1482 	reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1483 	rt2x00_set_chip(rt2x00dev, RT2460, value,
1484 			rt2x00_get_field32(reg, CSR0_REVISION));
1485 
1486 	if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1487 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1488 		return -ENODEV;
1489 	}
1490 
1491 	/*
1492 	 * Identify default antenna configuration.
1493 	 */
1494 	rt2x00dev->default_ant.tx =
1495 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1496 	rt2x00dev->default_ant.rx =
1497 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1498 
1499 	/*
1500 	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1501 	 * I am not 100% sure about this, but the legacy drivers do not
1502 	 * indicate antenna swapping in software is required when
1503 	 * diversity is enabled.
1504 	 */
1505 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1506 		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1507 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1508 		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1509 
1510 	/*
1511 	 * Store led mode, for correct led behaviour.
1512 	 */
1513 #ifdef CONFIG_RT2X00_LIB_LEDS
1514 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1515 
1516 	rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1517 	if (value == LED_MODE_TXRX_ACTIVITY ||
1518 	    value == LED_MODE_DEFAULT ||
1519 	    value == LED_MODE_ASUS)
1520 		rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1521 				   LED_TYPE_ACTIVITY);
1522 #endif /* CONFIG_RT2X00_LIB_LEDS */
1523 
1524 	/*
1525 	 * Detect if this device has an hardware controlled radio.
1526 	 */
1527 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1528 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1529 
1530 	/*
1531 	 * Check if the BBP tuning should be enabled.
1532 	 */
1533 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1534 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1535 
1536 	return 0;
1537 }
1538 
1539 /*
1540  * RF value list for RF2420 & RF2421
1541  * Supports: 2.4 GHz
1542  */
1543 static const struct rf_channel rf_vals_b[] = {
1544 	{ 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1545 	{ 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1546 	{ 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1547 	{ 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1548 	{ 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1549 	{ 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1550 	{ 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1551 	{ 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1552 	{ 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1553 	{ 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1554 	{ 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1555 	{ 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1556 	{ 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1557 	{ 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1558 };
1559 
1560 static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1561 {
1562 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1563 	struct channel_info *info;
1564 	char *tx_power;
1565 	unsigned int i;
1566 
1567 	/*
1568 	 * Initialize all hw fields.
1569 	 */
1570 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1571 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1572 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1573 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1574 
1575 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1576 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1577 				rt2x00_eeprom_addr(rt2x00dev,
1578 						   EEPROM_MAC_ADDR_0));
1579 
1580 	/*
1581 	 * Initialize hw_mode information.
1582 	 */
1583 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1584 	spec->supported_rates = SUPPORT_RATE_CCK;
1585 
1586 	spec->num_channels = ARRAY_SIZE(rf_vals_b);
1587 	spec->channels = rf_vals_b;
1588 
1589 	/*
1590 	 * Create channel information array
1591 	 */
1592 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1593 	if (!info)
1594 		return -ENOMEM;
1595 
1596 	spec->channels_info = info;
1597 
1598 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1599 	for (i = 0; i < 14; i++) {
1600 		info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1601 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1602 	}
1603 
1604 	return 0;
1605 }
1606 
1607 static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1608 {
1609 	int retval;
1610 	u32 reg;
1611 
1612 	/*
1613 	 * Allocate eeprom data.
1614 	 */
1615 	retval = rt2400pci_validate_eeprom(rt2x00dev);
1616 	if (retval)
1617 		return retval;
1618 
1619 	retval = rt2400pci_init_eeprom(rt2x00dev);
1620 	if (retval)
1621 		return retval;
1622 
1623 	/*
1624 	 * Enable rfkill polling by setting GPIO direction of the
1625 	 * rfkill switch GPIO pin correctly.
1626 	 */
1627 	reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1628 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1629 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1630 
1631 	/*
1632 	 * Initialize hw specifications.
1633 	 */
1634 	retval = rt2400pci_probe_hw_mode(rt2x00dev);
1635 	if (retval)
1636 		return retval;
1637 
1638 	/*
1639 	 * This device requires the atim queue and DMA-mapped skbs.
1640 	 */
1641 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1642 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1643 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1644 
1645 	/*
1646 	 * Set the rssi offset.
1647 	 */
1648 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1649 
1650 	return 0;
1651 }
1652 
1653 /*
1654  * IEEE80211 stack callback functions.
1655  */
1656 static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1657 			     struct ieee80211_vif *vif, u16 queue,
1658 			     const struct ieee80211_tx_queue_params *params)
1659 {
1660 	struct rt2x00_dev *rt2x00dev = hw->priv;
1661 
1662 	/*
1663 	 * We don't support variating cw_min and cw_max variables
1664 	 * per queue. So by default we only configure the TX queue,
1665 	 * and ignore all other configurations.
1666 	 */
1667 	if (queue != 0)
1668 		return -EINVAL;
1669 
1670 	if (rt2x00mac_conf_tx(hw, vif, queue, params))
1671 		return -EINVAL;
1672 
1673 	/*
1674 	 * Write configuration to register.
1675 	 */
1676 	rt2400pci_config_cw(rt2x00dev,
1677 			    rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1678 
1679 	return 0;
1680 }
1681 
1682 static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1683 			     struct ieee80211_vif *vif)
1684 {
1685 	struct rt2x00_dev *rt2x00dev = hw->priv;
1686 	u64 tsf;
1687 	u32 reg;
1688 
1689 	reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1690 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1691 	reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1692 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1693 
1694 	return tsf;
1695 }
1696 
1697 static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1698 {
1699 	struct rt2x00_dev *rt2x00dev = hw->priv;
1700 	u32 reg;
1701 
1702 	reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
1703 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1704 }
1705 
1706 static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1707 	.tx			= rt2x00mac_tx,
1708 	.start			= rt2x00mac_start,
1709 	.stop			= rt2x00mac_stop,
1710 	.add_interface		= rt2x00mac_add_interface,
1711 	.remove_interface	= rt2x00mac_remove_interface,
1712 	.config			= rt2x00mac_config,
1713 	.configure_filter	= rt2x00mac_configure_filter,
1714 	.sw_scan_start		= rt2x00mac_sw_scan_start,
1715 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1716 	.get_stats		= rt2x00mac_get_stats,
1717 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1718 	.conf_tx		= rt2400pci_conf_tx,
1719 	.get_tsf		= rt2400pci_get_tsf,
1720 	.tx_last_beacon		= rt2400pci_tx_last_beacon,
1721 	.rfkill_poll		= rt2x00mac_rfkill_poll,
1722 	.flush			= rt2x00mac_flush,
1723 	.set_antenna		= rt2x00mac_set_antenna,
1724 	.get_antenna		= rt2x00mac_get_antenna,
1725 	.get_ringparam		= rt2x00mac_get_ringparam,
1726 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1727 };
1728 
1729 static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1730 	.irq_handler		= rt2400pci_interrupt,
1731 	.txstatus_tasklet	= rt2400pci_txstatus_tasklet,
1732 	.tbtt_tasklet		= rt2400pci_tbtt_tasklet,
1733 	.rxdone_tasklet		= rt2400pci_rxdone_tasklet,
1734 	.probe_hw		= rt2400pci_probe_hw,
1735 	.initialize		= rt2x00mmio_initialize,
1736 	.uninitialize		= rt2x00mmio_uninitialize,
1737 	.get_entry_state	= rt2400pci_get_entry_state,
1738 	.clear_entry		= rt2400pci_clear_entry,
1739 	.set_device_state	= rt2400pci_set_device_state,
1740 	.rfkill_poll		= rt2400pci_rfkill_poll,
1741 	.link_stats		= rt2400pci_link_stats,
1742 	.reset_tuner		= rt2400pci_reset_tuner,
1743 	.link_tuner		= rt2400pci_link_tuner,
1744 	.start_queue		= rt2400pci_start_queue,
1745 	.kick_queue		= rt2400pci_kick_queue,
1746 	.stop_queue		= rt2400pci_stop_queue,
1747 	.flush_queue		= rt2x00mmio_flush_queue,
1748 	.write_tx_desc		= rt2400pci_write_tx_desc,
1749 	.write_beacon		= rt2400pci_write_beacon,
1750 	.fill_rxdone		= rt2400pci_fill_rxdone,
1751 	.config_filter		= rt2400pci_config_filter,
1752 	.config_intf		= rt2400pci_config_intf,
1753 	.config_erp		= rt2400pci_config_erp,
1754 	.config_ant		= rt2400pci_config_ant,
1755 	.config			= rt2400pci_config,
1756 };
1757 
1758 static void rt2400pci_queue_init(struct data_queue *queue)
1759 {
1760 	switch (queue->qid) {
1761 	case QID_RX:
1762 		queue->limit = 24;
1763 		queue->data_size = DATA_FRAME_SIZE;
1764 		queue->desc_size = RXD_DESC_SIZE;
1765 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1766 		break;
1767 
1768 	case QID_AC_VO:
1769 	case QID_AC_VI:
1770 	case QID_AC_BE:
1771 	case QID_AC_BK:
1772 		queue->limit = 24;
1773 		queue->data_size = DATA_FRAME_SIZE;
1774 		queue->desc_size = TXD_DESC_SIZE;
1775 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1776 		break;
1777 
1778 	case QID_BEACON:
1779 		queue->limit = 1;
1780 		queue->data_size = MGMT_FRAME_SIZE;
1781 		queue->desc_size = TXD_DESC_SIZE;
1782 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1783 		break;
1784 
1785 	case QID_ATIM:
1786 		queue->limit = 8;
1787 		queue->data_size = DATA_FRAME_SIZE;
1788 		queue->desc_size = TXD_DESC_SIZE;
1789 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1790 		break;
1791 
1792 	default:
1793 		BUG();
1794 		break;
1795 	}
1796 }
1797 
1798 static const struct rt2x00_ops rt2400pci_ops = {
1799 	.name			= KBUILD_MODNAME,
1800 	.max_ap_intf		= 1,
1801 	.eeprom_size		= EEPROM_SIZE,
1802 	.rf_size		= RF_SIZE,
1803 	.tx_queues		= NUM_TX_QUEUES,
1804 	.queue_init		= rt2400pci_queue_init,
1805 	.lib			= &rt2400pci_rt2x00_ops,
1806 	.hw			= &rt2400pci_mac80211_ops,
1807 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1808 	.debugfs		= &rt2400pci_rt2x00debug,
1809 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1810 };
1811 
1812 /*
1813  * RT2400pci module information.
1814  */
1815 static const struct pci_device_id rt2400pci_device_table[] = {
1816 	{ PCI_DEVICE(0x1814, 0x0101) },
1817 	{ 0, }
1818 };
1819 
1820 
1821 MODULE_AUTHOR(DRV_PROJECT);
1822 MODULE_VERSION(DRV_VERSION);
1823 MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1824 MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1825 MODULE_LICENSE("GPL");
1826 
1827 static int rt2400pci_probe(struct pci_dev *pci_dev,
1828 			   const struct pci_device_id *id)
1829 {
1830 	return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1831 }
1832 
1833 static struct pci_driver rt2400pci_driver = {
1834 	.name		= KBUILD_MODNAME,
1835 	.id_table	= rt2400pci_device_table,
1836 	.probe		= rt2400pci_probe,
1837 	.remove		= rt2x00pci_remove,
1838 	.driver.pm	= &rt2x00pci_pm_ops,
1839 };
1840 
1841 module_pci_driver(rt2400pci_driver);
1842