xref: /linux/drivers/net/wireless/mediatek/mt76/mt7996/init.c (revision d8310914848223de7ec04d55bd15f013f0dad803)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2022 MediaTek Inc.
4  */
5 
6 #include <linux/etherdevice.h>
7 #include <linux/of.h>
8 #include <linux/hwmon.h>
9 #include <linux/hwmon-sysfs.h>
10 #include <linux/thermal.h>
11 #include "mt7996.h"
12 #include "mac.h"
13 #include "mcu.h"
14 #include "coredump.h"
15 #include "eeprom.h"
16 
17 static const struct ieee80211_iface_limit if_limits[] = {
18 	{
19 		.max = 1,
20 		.types = BIT(NL80211_IFTYPE_ADHOC)
21 	}, {
22 		.max = 16,
23 		.types = BIT(NL80211_IFTYPE_AP)
24 #ifdef CONFIG_MAC80211_MESH
25 			 | BIT(NL80211_IFTYPE_MESH_POINT)
26 #endif
27 	}, {
28 		.max = MT7996_MAX_INTERFACES,
29 		.types = BIT(NL80211_IFTYPE_STATION)
30 	}
31 };
32 
33 static const struct ieee80211_iface_combination if_comb[] = {
34 	{
35 		.limits = if_limits,
36 		.n_limits = ARRAY_SIZE(if_limits),
37 		.max_interfaces = MT7996_MAX_INTERFACES,
38 		.num_different_channels = 1,
39 		.beacon_int_infra_match = true,
40 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
41 				       BIT(NL80211_CHAN_WIDTH_20) |
42 				       BIT(NL80211_CHAN_WIDTH_40) |
43 				       BIT(NL80211_CHAN_WIDTH_80) |
44 				       BIT(NL80211_CHAN_WIDTH_160),
45 	}
46 };
47 
48 static ssize_t mt7996_thermal_temp_show(struct device *dev,
49 					struct device_attribute *attr,
50 					char *buf)
51 {
52 	struct mt7996_phy *phy = dev_get_drvdata(dev);
53 	int i = to_sensor_dev_attr(attr)->index;
54 	int temperature;
55 
56 	switch (i) {
57 	case 0:
58 		temperature = mt7996_mcu_get_temperature(phy);
59 		if (temperature < 0)
60 			return temperature;
61 		/* display in millidegree celcius */
62 		return sprintf(buf, "%u\n", temperature * 1000);
63 	case 1:
64 	case 2:
65 		return sprintf(buf, "%u\n",
66 			       phy->throttle_temp[i - 1] * 1000);
67 	case 3:
68 		return sprintf(buf, "%hhu\n", phy->throttle_state);
69 	default:
70 		return -EINVAL;
71 	}
72 }
73 
74 static ssize_t mt7996_thermal_temp_store(struct device *dev,
75 					 struct device_attribute *attr,
76 					 const char *buf, size_t count)
77 {
78 	struct mt7996_phy *phy = dev_get_drvdata(dev);
79 	int ret, i = to_sensor_dev_attr(attr)->index;
80 	long val;
81 
82 	ret = kstrtol(buf, 10, &val);
83 	if (ret < 0)
84 		return ret;
85 
86 	mutex_lock(&phy->dev->mt76.mutex);
87 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 40, 130);
88 
89 	/* add a safety margin ~10 */
90 	if ((i - 1 == MT7996_CRIT_TEMP_IDX &&
91 	     val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) ||
92 	    (i - 1 == MT7996_MAX_TEMP_IDX &&
93 	     val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) {
94 		dev_err(phy->dev->mt76.dev,
95 			"temp1_max shall be 10 degrees higher than temp1_crit.");
96 		mutex_unlock(&phy->dev->mt76.mutex);
97 		return -EINVAL;
98 	}
99 
100 	phy->throttle_temp[i - 1] = val;
101 	mutex_unlock(&phy->dev->mt76.mutex);
102 
103 	ret = mt7996_mcu_set_thermal_protect(phy, true);
104 	if (ret)
105 		return ret;
106 
107 	return count;
108 }
109 
110 static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0);
111 static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1);
112 static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2);
113 static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3);
114 
115 static struct attribute *mt7996_hwmon_attrs[] = {
116 	&sensor_dev_attr_temp1_input.dev_attr.attr,
117 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
118 	&sensor_dev_attr_temp1_max.dev_attr.attr,
119 	&sensor_dev_attr_throttle1.dev_attr.attr,
120 	NULL,
121 };
122 ATTRIBUTE_GROUPS(mt7996_hwmon);
123 
124 static int
125 mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev,
126 				      unsigned long *state)
127 {
128 	*state = MT7996_CDEV_THROTTLE_MAX;
129 
130 	return 0;
131 }
132 
133 static int
134 mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev,
135 				      unsigned long *state)
136 {
137 	struct mt7996_phy *phy = cdev->devdata;
138 
139 	*state = phy->cdev_state;
140 
141 	return 0;
142 }
143 
144 static int
145 mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev,
146 				      unsigned long state)
147 {
148 	struct mt7996_phy *phy = cdev->devdata;
149 	u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state;
150 	int ret;
151 
152 	if (state > MT7996_CDEV_THROTTLE_MAX) {
153 		dev_err(phy->dev->mt76.dev,
154 			"please specify a valid throttling state\n");
155 		return -EINVAL;
156 	}
157 
158 	if (state == phy->cdev_state)
159 		return 0;
160 
161 	/* cooling_device convention: 0 = no cooling, more = more cooling
162 	 * mcu convention: 1 = max cooling, more = less cooling
163 	 */
164 	ret = mt7996_mcu_set_thermal_throttling(phy, throttling);
165 	if (ret)
166 		return ret;
167 
168 	phy->cdev_state = state;
169 
170 	return 0;
171 }
172 
173 static const struct thermal_cooling_device_ops mt7996_thermal_ops = {
174 	.get_max_state = mt7996_thermal_get_max_throttle_state,
175 	.get_cur_state = mt7996_thermal_get_cur_throttle_state,
176 	.set_cur_state = mt7996_thermal_set_cur_throttle_state,
177 };
178 
179 static void mt7996_unregister_thermal(struct mt7996_phy *phy)
180 {
181 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
182 
183 	if (!phy->cdev)
184 		return;
185 
186 	sysfs_remove_link(&wiphy->dev.kobj, "cooling_device");
187 	thermal_cooling_device_unregister(phy->cdev);
188 }
189 
190 static int mt7996_thermal_init(struct mt7996_phy *phy)
191 {
192 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
193 	struct thermal_cooling_device *cdev;
194 	struct device *hwmon;
195 	const char *name;
196 
197 	name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s",
198 			      wiphy_name(wiphy));
199 
200 	cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops);
201 	if (!IS_ERR(cdev)) {
202 		if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj,
203 				      "cooling_device") < 0)
204 			thermal_cooling_device_unregister(cdev);
205 		else
206 			phy->cdev = cdev;
207 	}
208 
209 	/* initialize critical/maximum high temperature */
210 	phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP;
211 	phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP;
212 
213 	if (!IS_REACHABLE(CONFIG_HWMON))
214 		return 0;
215 
216 	hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy,
217 						       mt7996_hwmon_groups);
218 
219 	if (IS_ERR(hwmon))
220 		return PTR_ERR(hwmon);
221 
222 	return 0;
223 }
224 
225 static void mt7996_led_set_config(struct led_classdev *led_cdev,
226 				  u8 delay_on, u8 delay_off)
227 {
228 	struct mt7996_dev *dev;
229 	struct mt76_phy *mphy;
230 	u32 val;
231 
232 	mphy = container_of(led_cdev, struct mt76_phy, leds.cdev);
233 	dev = container_of(mphy->dev, struct mt7996_dev, mt76);
234 
235 	/* select TX blink mode, 2: only data frames */
236 	mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2);
237 
238 	/* enable LED */
239 	mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1);
240 
241 	/* set LED Tx blink on/off time */
242 	val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) |
243 	      FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off);
244 	mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val);
245 
246 	/* turn LED off */
247 	if (delay_off == 0xff && delay_on == 0x0) {
248 		val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK;
249 	} else {
250 		/* control LED */
251 		val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK;
252 		if (mphy->band_idx == MT_BAND1)
253 			val |= MT_LED_CTRL_BLINK_BAND_SEL;
254 	}
255 
256 	if (mphy->leds.al)
257 		val |= MT_LED_CTRL_POLARITY;
258 
259 	mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val);
260 	mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK);
261 }
262 
263 static int mt7996_led_set_blink(struct led_classdev *led_cdev,
264 				unsigned long *delay_on,
265 				unsigned long *delay_off)
266 {
267 	u16 delta_on = 0, delta_off = 0;
268 
269 #define HW_TICK		10
270 #define TO_HW_TICK(_t)	(((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK)
271 
272 	if (*delay_on)
273 		delta_on = TO_HW_TICK(*delay_on);
274 	if (*delay_off)
275 		delta_off = TO_HW_TICK(*delay_off);
276 
277 	mt7996_led_set_config(led_cdev, delta_on, delta_off);
278 
279 	return 0;
280 }
281 
282 static void mt7996_led_set_brightness(struct led_classdev *led_cdev,
283 				      enum led_brightness brightness)
284 {
285 	if (!brightness)
286 		mt7996_led_set_config(led_cdev, 0, 0xff);
287 	else
288 		mt7996_led_set_config(led_cdev, 0xff, 0);
289 }
290 
291 static void __mt7996_init_txpower(struct mt7996_phy *phy,
292 				  struct ieee80211_supported_band *sband)
293 {
294 	struct mt7996_dev *dev = phy->dev;
295 	int i, nss = hweight16(phy->mt76->chainmask);
296 	int nss_delta = mt76_tx_power_nss_delta(nss);
297 	int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band);
298 	struct mt76_power_limits limits;
299 
300 	for (i = 0; i < sband->n_channels; i++) {
301 		struct ieee80211_channel *chan = &sband->channels[i];
302 		int target_power = mt7996_eeprom_get_target_power(dev, chan);
303 
304 		target_power += pwr_delta;
305 		target_power = mt76_get_rate_power_limits(phy->mt76, chan,
306 							  &limits,
307 							  target_power);
308 		target_power += nss_delta;
309 		target_power = DIV_ROUND_UP(target_power, 2);
310 		chan->max_power = min_t(int, chan->max_reg_power,
311 					target_power);
312 		chan->orig_mpwr = target_power;
313 	}
314 }
315 
316 void mt7996_init_txpower(struct mt7996_phy *phy)
317 {
318 	if (!phy)
319 		return;
320 
321 	if (phy->mt76->cap.has_2ghz)
322 		__mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband);
323 	if (phy->mt76->cap.has_5ghz)
324 		__mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband);
325 	if (phy->mt76->cap.has_6ghz)
326 		__mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband);
327 }
328 
329 static void
330 mt7996_regd_notifier(struct wiphy *wiphy,
331 		     struct regulatory_request *request)
332 {
333 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
334 	struct mt7996_dev *dev = mt7996_hw_dev(hw);
335 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
336 
337 	memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
338 	dev->mt76.region = request->dfs_region;
339 
340 	if (dev->mt76.region == NL80211_DFS_UNSET)
341 		mt7996_mcu_rdd_background_enable(phy, NULL);
342 
343 	mt7996_init_txpower(phy);
344 
345 	phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
346 	mt7996_dfs_init_radar_detector(phy);
347 }
348 
349 static void
350 mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed)
351 {
352 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
353 	struct mt76_dev *mdev = &phy->dev->mt76;
354 	struct wiphy *wiphy = hw->wiphy;
355 	u16 max_subframes = phy->dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT :
356 						IEEE80211_MAX_AMPDU_BUF_HE;
357 
358 	hw->queues = 4;
359 	hw->max_rx_aggregation_subframes = max_subframes;
360 	hw->max_tx_aggregation_subframes = max_subframes;
361 	hw->netdev_features = NETIF_F_RXCSUM;
362 	if (mtk_wed_device_active(wed))
363 		hw->netdev_features |= NETIF_F_HW_TC;
364 
365 	hw->radiotap_timestamp.units_pos =
366 		IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
367 
368 	phy->slottime = 9;
369 	phy->beacon_rate = -1;
370 
371 	hw->sta_data_size = sizeof(struct mt7996_sta);
372 	hw->vif_data_size = sizeof(struct mt7996_vif);
373 
374 	wiphy->iface_combinations = if_comb;
375 	wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
376 	wiphy->reg_notifier = mt7996_regd_notifier;
377 	wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
378 	wiphy->mbssid_max_interfaces = 16;
379 
380 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR);
381 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
382 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
383 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT);
384 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT);
385 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE);
386 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
387 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY);
388 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
389 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
390 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER);
391 
392 	if (!mdev->dev->of_node ||
393 	    !of_property_read_bool(mdev->dev->of_node,
394 				   "mediatek,disable-radar-background"))
395 		wiphy_ext_feature_set(wiphy,
396 				      NL80211_EXT_FEATURE_RADAR_BACKGROUND);
397 
398 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
399 	ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD);
400 	ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
401 	ieee80211_hw_set(hw, WANT_MONITOR_VIF);
402 	ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
403 
404 	hw->max_tx_fragments = 4;
405 
406 	if (phy->mt76->cap.has_2ghz) {
407 		phy->mt76->sband_2g.sband.ht_cap.cap |=
408 			IEEE80211_HT_CAP_LDPC_CODING |
409 			IEEE80211_HT_CAP_MAX_AMSDU;
410 		phy->mt76->sband_2g.sband.ht_cap.ampdu_density =
411 			IEEE80211_HT_MPDU_DENSITY_2;
412 	}
413 
414 	if (phy->mt76->cap.has_5ghz) {
415 		phy->mt76->sband_5g.sband.ht_cap.cap |=
416 			IEEE80211_HT_CAP_LDPC_CODING |
417 			IEEE80211_HT_CAP_MAX_AMSDU;
418 
419 		phy->mt76->sband_5g.sband.vht_cap.cap |=
420 			IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
421 			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
422 			IEEE80211_VHT_CAP_SHORT_GI_160 |
423 			IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
424 		phy->mt76->sband_5g.sband.ht_cap.ampdu_density =
425 			IEEE80211_HT_MPDU_DENSITY_1;
426 
427 		ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
428 	}
429 
430 	/* init led callbacks */
431 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
432 		phy->mt76->leds.cdev.brightness_set = mt7996_led_set_brightness;
433 		phy->mt76->leds.cdev.blink_set = mt7996_led_set_blink;
434 	}
435 
436 	mt76_set_stream_caps(phy->mt76, true);
437 	mt7996_set_stream_vht_txbf_caps(phy);
438 	mt7996_set_stream_he_eht_caps(phy);
439 	mt7996_init_txpower(phy);
440 
441 	wiphy->available_antennas_rx = phy->mt76->antenna_mask;
442 	wiphy->available_antennas_tx = phy->mt76->antenna_mask;
443 }
444 
445 static void
446 mt7996_mac_init_band(struct mt7996_dev *dev, u8 band)
447 {
448 	u32 mask, set;
449 
450 	/* clear estimated value of EIFS for Rx duration & OBSS time */
451 	mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR);
452 
453 	/* clear backoff time for Rx duration  */
454 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band),
455 		   MT_WF_RMAC_MIB_NONQOSD_BACKOFF);
456 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band),
457 		   MT_WF_RMAC_MIB_QOS01_BACKOFF);
458 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band),
459 		   MT_WF_RMAC_MIB_QOS23_BACKOFF);
460 
461 	/* clear backoff time and set software compensation for OBSS time */
462 	mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET;
463 	set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) |
464 	      FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4);
465 	mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set);
466 
467 	/* filter out non-resp frames and get instanstaeous signal reporting */
468 	mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM;
469 	set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) |
470 	      FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3);
471 	mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set);
472 
473 	/* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than
474 	 * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set.
475 	 */
476 	mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H);
477 }
478 
479 static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev)
480 {
481 	int i;
482 
483 	for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) {
484 		u16 rate = mt76_rates[i].hw_value;
485 		/* odd index for driver, even index for firmware */
486 		u16 idx = MT7996_BASIC_RATES_TBL + 2 * i;
487 
488 		rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) |
489 		       FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0));
490 		mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false);
491 	}
492 }
493 
494 void mt7996_mac_init(struct mt7996_dev *dev)
495 {
496 #define HIF_TXD_V2_1	4
497 	int i;
498 
499 	mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT);
500 
501 	for (i = 0; i < mt7996_wtbl_size(dev); i++)
502 		mt7996_mac_wtbl_update(dev, i,
503 				       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
504 
505 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
506 		i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2;
507 		mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4);
508 	}
509 
510 	/* txs report queue */
511 	mt76_rmw_field(dev, MT_DMA_TCRF1(0), MT_DMA_TCRF1_QIDX, 0);
512 	mt76_rmw_field(dev, MT_DMA_TCRF1(1), MT_DMA_TCRF1_QIDX, 6);
513 	mt76_rmw_field(dev, MT_DMA_TCRF1(2), MT_DMA_TCRF1_QIDX, 0);
514 
515 	/* rro module init */
516 	if (is_mt7996(&dev->mt76))
517 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2);
518 	else
519 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE,
520 				   dev->hif2 ? 7 : 0);
521 
522 	if (dev->has_rro) {
523 		u16 timeout;
524 
525 		timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128;
526 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout);
527 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1);
528 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0);
529 	} else {
530 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3);
531 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1);
532 	}
533 
534 	mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET),
535 			  MCU_WA_PARAM_HW_PATH_HIF_VER,
536 			  HIF_TXD_V2_1, 0);
537 
538 	for (i = MT_BAND0; i <= MT_BAND2; i++)
539 		mt7996_mac_init_band(dev, i);
540 
541 	mt7996_mac_init_basic_rates(dev);
542 }
543 
544 int mt7996_txbf_init(struct mt7996_dev *dev)
545 {
546 	int ret;
547 
548 	if (mt7996_band_valid(dev, MT_BAND1) ||
549 	    mt7996_band_valid(dev, MT_BAND2)) {
550 		ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL);
551 		if (ret)
552 			return ret;
553 	}
554 
555 	/* trigger sounding packets */
556 	ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON);
557 	if (ret)
558 		return ret;
559 
560 	/* enable eBF */
561 	return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE);
562 }
563 
564 static int mt7996_register_phy(struct mt7996_dev *dev, struct mt7996_phy *phy,
565 			       enum mt76_band_id band)
566 {
567 	struct mt76_phy *mphy;
568 	u32 mac_ofs, hif1_ofs = 0;
569 	int ret;
570 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
571 
572 	if (!mt7996_band_valid(dev, band) || band == MT_BAND0)
573 		return 0;
574 
575 	if (phy)
576 		return 0;
577 
578 	if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) {
579 		hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0);
580 		wed = &dev->mt76.mmio.wed_hif2;
581 	}
582 
583 	mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7996_ops, band);
584 	if (!mphy)
585 		return -ENOMEM;
586 
587 	phy = mphy->priv;
588 	phy->dev = dev;
589 	phy->mt76 = mphy;
590 	mphy->dev->phys[band] = mphy;
591 
592 	INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work);
593 
594 	ret = mt7996_eeprom_parse_hw_cap(dev, phy);
595 	if (ret)
596 		goto error;
597 
598 	mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2;
599 	memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
600 	/* Make the extra PHY MAC address local without overlapping with
601 	 * the usual MAC address allocation scheme on multiple virtual interfaces
602 	 */
603 	if (!is_valid_ether_addr(mphy->macaddr)) {
604 		memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
605 		       ETH_ALEN);
606 		mphy->macaddr[0] |= 2;
607 		mphy->macaddr[0] ^= BIT(7);
608 		if (band == MT_BAND2)
609 			mphy->macaddr[0] ^= BIT(6);
610 	}
611 	mt76_eeprom_override(mphy);
612 
613 	/* init wiphy according to mphy and phy */
614 	mt7996_init_wiphy(mphy->hw, wed);
615 	ret = mt7996_init_tx_queues(mphy->priv,
616 				    MT_TXQ_ID(band),
617 				    MT7996_TX_RING_SIZE,
618 				    MT_TXQ_RING_BASE(band) + hif1_ofs,
619 				    wed);
620 	if (ret)
621 		goto error;
622 
623 	ret = mt76_register_phy(mphy, true, mt76_rates,
624 				ARRAY_SIZE(mt76_rates));
625 	if (ret)
626 		goto error;
627 
628 	ret = mt7996_thermal_init(phy);
629 	if (ret)
630 		goto error;
631 
632 	ret = mt7996_init_debugfs(phy);
633 	if (ret)
634 		goto error;
635 
636 	if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) {
637 		u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2;
638 
639 		mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask);
640 		mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask);
641 	}
642 
643 	return 0;
644 
645 error:
646 	mphy->dev->phys[band] = NULL;
647 	ieee80211_free_hw(mphy->hw);
648 	return ret;
649 }
650 
651 static void
652 mt7996_unregister_phy(struct mt7996_phy *phy, enum mt76_band_id band)
653 {
654 	struct mt76_phy *mphy;
655 
656 	if (!phy)
657 		return;
658 
659 	mt7996_unregister_thermal(phy);
660 
661 	mphy = phy->dev->mt76.phys[band];
662 	mt76_unregister_phy(mphy);
663 	ieee80211_free_hw(mphy->hw);
664 	phy->dev->mt76.phys[band] = NULL;
665 }
666 
667 static void mt7996_init_work(struct work_struct *work)
668 {
669 	struct mt7996_dev *dev = container_of(work, struct mt7996_dev,
670 				 init_work);
671 
672 	mt7996_mcu_set_eeprom(dev);
673 	mt7996_mac_init(dev);
674 	mt7996_txbf_init(dev);
675 }
676 
677 void mt7996_wfsys_reset(struct mt7996_dev *dev)
678 {
679 	mt76_set(dev, MT_WF_SUBSYS_RST, 0x1);
680 	msleep(20);
681 
682 	mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1);
683 	msleep(20);
684 }
685 
686 static int mt7996_wed_rro_init(struct mt7996_dev *dev)
687 {
688 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
689 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
690 	u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0;
691 	struct mt7996_wed_rro_addr *addr;
692 	void *ptr;
693 	int i;
694 
695 	if (!dev->has_rro)
696 		return 0;
697 
698 	if (!mtk_wed_device_active(wed))
699 		return 0;
700 
701 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
702 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
703 					  MT7996_RRO_BA_BITMAP_CR_SIZE,
704 					  &dev->wed_rro.ba_bitmap[i].phy_addr,
705 					  GFP_KERNEL);
706 		if (!ptr)
707 			return -ENOMEM;
708 
709 		dev->wed_rro.ba_bitmap[i].ptr = ptr;
710 	}
711 
712 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
713 		int j;
714 
715 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
716 				MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr),
717 				&dev->wed_rro.addr_elem[i].phy_addr,
718 				GFP_KERNEL);
719 		if (!ptr)
720 			return -ENOMEM;
721 
722 		dev->wed_rro.addr_elem[i].ptr = ptr;
723 		memset(dev->wed_rro.addr_elem[i].ptr, 0,
724 		       MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr));
725 
726 		addr = dev->wed_rro.addr_elem[i].ptr;
727 		for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) {
728 			addr->signature = 0xff;
729 			addr++;
730 		}
731 
732 		wed->wlan.ind_cmd.addr_elem_phys[i] =
733 			dev->wed_rro.addr_elem[i].phy_addr;
734 	}
735 
736 	ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
737 				  MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr),
738 				  &dev->wed_rro.session.phy_addr,
739 				  GFP_KERNEL);
740 	if (!ptr)
741 		return -ENOMEM;
742 
743 	dev->wed_rro.session.ptr = ptr;
744 	addr = dev->wed_rro.session.ptr;
745 	for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
746 		addr->signature = 0xff;
747 		addr++;
748 	}
749 
750 	/* rro hw init */
751 	/* TODO: remove line after WM has set */
752 	mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK);
753 
754 	/* setup BA bitmap cache address */
755 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0,
756 		dev->wed_rro.ba_bitmap[0].phy_addr);
757 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0);
758 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0,
759 		dev->wed_rro.ba_bitmap[1].phy_addr);
760 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0);
761 
762 	/* setup Address element address */
763 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
764 		mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4);
765 		reg += 4;
766 	}
767 
768 	/* setup Address element address - separate address segment mode */
769 	mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1,
770 		MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE);
771 
772 	wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6;
773 	wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION;
774 	wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr;
775 	wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN;
776 	wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL;
777 
778 	mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00);
779 	mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1,
780 		 MT_RRO_IND_CMD_SIGNATURE_BASE1_EN);
781 
782 	/* particular session configure */
783 	/* use max session idx + 1 as particular session id */
784 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr);
785 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG1,
786 		MT_RRO_PARTICULAR_CONFG_EN |
787 		FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION));
788 
789 	/* interrupt enable */
790 	mt76_wr(dev, MT_RRO_HOST_INT_ENA,
791 		MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA);
792 
793 	/* rro ind cmd queue init */
794 	return mt7996_dma_rro_init(dev);
795 #else
796 	return 0;
797 #endif
798 }
799 
800 static void mt7996_wed_rro_free(struct mt7996_dev *dev)
801 {
802 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
803 	int i;
804 
805 	if (!dev->has_rro)
806 		return;
807 
808 	if (!mtk_wed_device_active(&dev->mt76.mmio.wed))
809 		return;
810 
811 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
812 		if (!dev->wed_rro.ba_bitmap[i].ptr)
813 			continue;
814 
815 		dmam_free_coherent(dev->mt76.dma_dev,
816 				   MT7996_RRO_BA_BITMAP_CR_SIZE,
817 				   dev->wed_rro.ba_bitmap[i].ptr,
818 				   dev->wed_rro.ba_bitmap[i].phy_addr);
819 	}
820 
821 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
822 		if (!dev->wed_rro.addr_elem[i].ptr)
823 			continue;
824 
825 		dmam_free_coherent(dev->mt76.dma_dev,
826 				   MT7996_RRO_WINDOW_MAX_SIZE *
827 				   sizeof(struct mt7996_wed_rro_addr),
828 				   dev->wed_rro.addr_elem[i].ptr,
829 				   dev->wed_rro.addr_elem[i].phy_addr);
830 	}
831 
832 	if (!dev->wed_rro.session.ptr)
833 		return;
834 
835 	dmam_free_coherent(dev->mt76.dma_dev,
836 			   MT7996_RRO_WINDOW_MAX_LEN *
837 			   sizeof(struct mt7996_wed_rro_addr),
838 			   dev->wed_rro.session.ptr,
839 			   dev->wed_rro.session.phy_addr);
840 #endif
841 }
842 
843 static void mt7996_wed_rro_work(struct work_struct *work)
844 {
845 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
846 	struct mt7996_dev *dev;
847 	LIST_HEAD(list);
848 
849 	dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev,
850 						wed_rro.work);
851 
852 	spin_lock_bh(&dev->wed_rro.lock);
853 	list_splice_init(&dev->wed_rro.poll_list, &list);
854 	spin_unlock_bh(&dev->wed_rro.lock);
855 
856 	while (!list_empty(&list)) {
857 		struct mt7996_wed_rro_session_id *e;
858 		int i;
859 
860 		e = list_first_entry(&list, struct mt7996_wed_rro_session_id,
861 				     list);
862 		list_del_init(&e->list);
863 
864 		for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
865 			void *ptr = dev->wed_rro.session.ptr;
866 			struct mt7996_wed_rro_addr *elem;
867 			u32 idx, elem_id = i;
868 
869 			if (e->id == MT7996_RRO_MAX_SESSION)
870 				goto reset;
871 
872 			idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE;
873 			if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem))
874 				goto out;
875 
876 			ptr = dev->wed_rro.addr_elem[idx].ptr;
877 			elem_id +=
878 				(e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) *
879 				MT7996_RRO_WINDOW_MAX_LEN;
880 reset:
881 			elem = ptr + elem_id * sizeof(*elem);
882 			elem->signature = 0xff;
883 		}
884 		mt7996_mcu_wed_rro_reset_sessions(dev, e->id);
885 out:
886 		kfree(e);
887 	}
888 #endif
889 }
890 
891 static int mt7996_init_hardware(struct mt7996_dev *dev)
892 {
893 	int ret, idx;
894 
895 	mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
896 	if (is_mt7992(&dev->mt76)) {
897 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
898 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
899 	}
900 
901 	INIT_WORK(&dev->init_work, mt7996_init_work);
902 	INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work);
903 	INIT_LIST_HEAD(&dev->wed_rro.poll_list);
904 	spin_lock_init(&dev->wed_rro.lock);
905 
906 	ret = mt7996_dma_init(dev);
907 	if (ret)
908 		return ret;
909 
910 	set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
911 
912 	ret = mt7996_mcu_init(dev);
913 	if (ret)
914 		return ret;
915 
916 	ret = mt7996_wed_rro_init(dev);
917 	if (ret)
918 		return ret;
919 
920 	ret = mt7996_eeprom_init(dev);
921 	if (ret < 0)
922 		return ret;
923 
924 	/* Beacon and mgmt frames should occupy wcid 0 */
925 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA);
926 	if (idx)
927 		return -ENOSPC;
928 
929 	dev->mt76.global_wcid.idx = idx;
930 	dev->mt76.global_wcid.hw_key_idx = -1;
931 	dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET;
932 	rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
933 
934 	return 0;
935 }
936 
937 void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy)
938 {
939 	int sts;
940 	u32 *cap;
941 
942 	if (!phy->mt76->cap.has_5ghz)
943 		return;
944 
945 	sts = hweight16(phy->mt76->chainmask);
946 	cap = &phy->mt76->sband_5g.sband.vht_cap.cap;
947 
948 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
949 		IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
950 		FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, sts - 1);
951 
952 	*cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK |
953 		  IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
954 		  IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
955 
956 	if (sts < 2)
957 		return;
958 
959 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
960 		IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE |
961 		FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1);
962 }
963 
964 static void
965 mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy,
966 			       struct ieee80211_sta_he_cap *he_cap, int vif)
967 {
968 	struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem;
969 	int sts = hweight16(phy->mt76->chainmask);
970 	u8 c;
971 
972 #ifdef CONFIG_MAC80211_MESH
973 	if (vif == NL80211_IFTYPE_MESH_POINT)
974 		return;
975 #endif
976 
977 	elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
978 	elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
979 
980 	c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK |
981 	    IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
982 	elem->phy_cap_info[5] &= ~c;
983 
984 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
985 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
986 	elem->phy_cap_info[6] &= ~c;
987 
988 	elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
989 
990 	c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
991 	    IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
992 	    IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
993 	elem->phy_cap_info[2] |= c;
994 
995 	c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
996 	    IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 |
997 	    IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4;
998 	elem->phy_cap_info[4] |= c;
999 
1000 	/* do not support NG16 due to spec D4.0 changes subcarrier idx */
1001 	c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
1002 	    IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU;
1003 
1004 	if (vif == NL80211_IFTYPE_STATION)
1005 		c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
1006 
1007 	elem->phy_cap_info[6] |= c;
1008 
1009 	if (sts < 2)
1010 		return;
1011 
1012 	/* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */
1013 	elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3;
1014 
1015 	if (vif != NL80211_IFTYPE_AP)
1016 		return;
1017 
1018 	elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1019 	elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1020 
1021 	c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK,
1022 		       sts - 1) |
1023 	    FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK,
1024 		       sts - 1);
1025 	elem->phy_cap_info[5] |= c;
1026 
1027 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1028 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1029 	elem->phy_cap_info[6] |= c;
1030 
1031 	c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
1032 	    IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1033 	elem->phy_cap_info[7] |= c;
1034 }
1035 
1036 static void
1037 mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band,
1038 		    struct ieee80211_sband_iftype_data *data,
1039 		    enum nl80211_iftype iftype)
1040 {
1041 	struct ieee80211_sta_he_cap *he_cap = &data->he_cap;
1042 	struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
1043 	struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp;
1044 	int i, nss = hweight8(phy->mt76->antenna_mask);
1045 	u16 mcs_map = 0;
1046 
1047 	for (i = 0; i < 8; i++) {
1048 		if (i < nss)
1049 			mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2));
1050 		else
1051 			mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2));
1052 	}
1053 
1054 	he_cap->has_he = true;
1055 
1056 	he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE;
1057 	he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
1058 				       IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
1059 	he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU;
1060 
1061 	if (band == NL80211_BAND_2GHZ)
1062 		he_cap_elem->phy_cap_info[0] =
1063 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
1064 	else
1065 		he_cap_elem->phy_cap_info[0] =
1066 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
1067 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1068 
1069 	he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
1070 	he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
1071 				       IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1072 
1073 	switch (iftype) {
1074 	case NL80211_IFTYPE_AP:
1075 		he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES;
1076 		he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR;
1077 		he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR;
1078 		he_cap_elem->mac_cap_info[5] |=
1079 			IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX;
1080 		he_cap_elem->phy_cap_info[3] |=
1081 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1082 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1083 		he_cap_elem->phy_cap_info[6] |=
1084 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1085 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1086 		he_cap_elem->phy_cap_info[9] |=
1087 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1088 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1089 		break;
1090 	case NL80211_IFTYPE_STATION:
1091 		he_cap_elem->mac_cap_info[1] |=
1092 			IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US;
1093 
1094 		if (band == NL80211_BAND_2GHZ)
1095 			he_cap_elem->phy_cap_info[0] |=
1096 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G;
1097 		else
1098 			he_cap_elem->phy_cap_info[0] |=
1099 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G;
1100 
1101 		he_cap_elem->phy_cap_info[1] |=
1102 			IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
1103 			IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US;
1104 		he_cap_elem->phy_cap_info[3] |=
1105 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1106 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1107 		he_cap_elem->phy_cap_info[6] |=
1108 			IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
1109 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1110 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1111 		he_cap_elem->phy_cap_info[7] |=
1112 			IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
1113 			IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI;
1114 		he_cap_elem->phy_cap_info[8] |=
1115 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
1116 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
1117 			IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
1118 			IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
1119 		he_cap_elem->phy_cap_info[9] |=
1120 			IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
1121 			IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
1122 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1123 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
1124 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
1125 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
1126 		break;
1127 	default:
1128 		break;
1129 	}
1130 
1131 	he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map);
1132 	he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map);
1133 	he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map);
1134 	he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map);
1135 
1136 	mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype);
1137 
1138 	memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
1139 	if (he_cap_elem->phy_cap_info[6] &
1140 	    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
1141 		mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss);
1142 	} else {
1143 		he_cap_elem->phy_cap_info[9] |=
1144 			u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US,
1145 				       IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK);
1146 	}
1147 
1148 	if (band == NL80211_BAND_6GHZ) {
1149 		u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
1150 			  IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
1151 
1152 		cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5,
1153 				       IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) |
1154 		       u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K,
1155 				       IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) |
1156 		       u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454,
1157 				       IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
1158 
1159 		data->he_6ghz_capa.capa = cpu_to_le16(cap);
1160 	}
1161 }
1162 
1163 static void
1164 mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band,
1165 		     struct ieee80211_sband_iftype_data *data,
1166 		     enum nl80211_iftype iftype)
1167 {
1168 	struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap;
1169 	struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
1170 	struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp;
1171 	enum nl80211_chan_width width = phy->mt76->chandef.width;
1172 	int nss = hweight8(phy->mt76->antenna_mask);
1173 	int sts = hweight16(phy->mt76->chainmask);
1174 	u8 val;
1175 
1176 	if (!phy->dev->has_eht)
1177 		return;
1178 
1179 	eht_cap->has_eht = true;
1180 
1181 	eht_cap_elem->mac_cap_info[0] =
1182 		IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1183 		IEEE80211_EHT_MAC_CAP0_OM_CONTROL;
1184 
1185 	eht_cap_elem->phy_cap_info[0] =
1186 		IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ |
1187 		IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
1188 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
1189 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE;
1190 
1191 	val = max_t(u8, sts - 1, 3);
1192 	eht_cap_elem->phy_cap_info[0] |=
1193 		u8_encode_bits(u8_get_bits(val, BIT(0)),
1194 			       IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK);
1195 
1196 	eht_cap_elem->phy_cap_info[1] =
1197 		u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)),
1198 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK) |
1199 		u8_encode_bits(val,
1200 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK) |
1201 		u8_encode_bits(val,
1202 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK);
1203 
1204 	eht_cap_elem->phy_cap_info[2] =
1205 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK) |
1206 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK) |
1207 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK);
1208 
1209 	eht_cap_elem->phy_cap_info[3] =
1210 		IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1211 		IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1212 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1213 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1214 		IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
1215 		IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1216 		IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK;
1217 
1218 	eht_cap_elem->phy_cap_info[4] =
1219 		u8_encode_bits(min_t(int, sts - 1, 2),
1220 			       IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK);
1221 
1222 	eht_cap_elem->phy_cap_info[5] =
1223 		IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
1224 		u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US,
1225 			       IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) |
1226 		u8_encode_bits(u8_get_bits(0x11, GENMASK(1, 0)),
1227 			       IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK);
1228 
1229 	val = width == NL80211_CHAN_WIDTH_320 ? 0xf :
1230 	      width == NL80211_CHAN_WIDTH_160 ? 0x7 :
1231 	      width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1;
1232 	eht_cap_elem->phy_cap_info[6] =
1233 		u8_encode_bits(u8_get_bits(0x11, GENMASK(4, 2)),
1234 			       IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK) |
1235 		u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK);
1236 
1237 	eht_cap_elem->phy_cap_info[7] =
1238 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
1239 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
1240 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
1241 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
1242 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ |
1243 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
1244 
1245 	val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) |
1246 	      u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX);
1247 #define SET_EHT_MAX_NSS(_bw, _val) do {				\
1248 		eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val;	\
1249 		eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val;	\
1250 		eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val;	\
1251 	} while (0)
1252 
1253 	SET_EHT_MAX_NSS(80, val);
1254 	SET_EHT_MAX_NSS(160, val);
1255 	SET_EHT_MAX_NSS(320, val);
1256 #undef SET_EHT_MAX_NSS
1257 }
1258 
1259 static void
1260 __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy,
1261 				struct ieee80211_supported_band *sband,
1262 				enum nl80211_band band)
1263 {
1264 	struct ieee80211_sband_iftype_data *data = phy->iftype[band];
1265 	int i, n = 0;
1266 
1267 	for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
1268 		switch (i) {
1269 		case NL80211_IFTYPE_STATION:
1270 		case NL80211_IFTYPE_AP:
1271 #ifdef CONFIG_MAC80211_MESH
1272 		case NL80211_IFTYPE_MESH_POINT:
1273 #endif
1274 			break;
1275 		default:
1276 			continue;
1277 		}
1278 
1279 		data[n].types_mask = BIT(i);
1280 		mt7996_init_he_caps(phy, band, &data[n], i);
1281 		mt7996_init_eht_caps(phy, band, &data[n], i);
1282 
1283 		n++;
1284 	}
1285 
1286 	_ieee80211_set_sband_iftype_data(sband, data, n);
1287 }
1288 
1289 void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy)
1290 {
1291 	if (phy->mt76->cap.has_2ghz)
1292 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband,
1293 						NL80211_BAND_2GHZ);
1294 
1295 	if (phy->mt76->cap.has_5ghz)
1296 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband,
1297 						NL80211_BAND_5GHZ);
1298 
1299 	if (phy->mt76->cap.has_6ghz)
1300 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband,
1301 						NL80211_BAND_6GHZ);
1302 }
1303 
1304 int mt7996_register_device(struct mt7996_dev *dev)
1305 {
1306 	struct ieee80211_hw *hw = mt76_hw(dev);
1307 	int ret;
1308 
1309 	dev->phy.dev = dev;
1310 	dev->phy.mt76 = &dev->mt76.phy;
1311 	dev->mt76.phy.priv = &dev->phy;
1312 	INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work);
1313 	INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work);
1314 	INIT_LIST_HEAD(&dev->sta_rc_list);
1315 	INIT_LIST_HEAD(&dev->twt_list);
1316 
1317 	init_waitqueue_head(&dev->reset_wait);
1318 	INIT_WORK(&dev->reset_work, mt7996_mac_reset_work);
1319 	INIT_WORK(&dev->dump_work, mt7996_mac_dump_work);
1320 	mutex_init(&dev->dump_mutex);
1321 
1322 	ret = mt7996_init_hardware(dev);
1323 	if (ret)
1324 		return ret;
1325 
1326 	mt7996_init_wiphy(hw, &dev->mt76.mmio.wed);
1327 
1328 	ret = mt76_register_device(&dev->mt76, true, mt76_rates,
1329 				   ARRAY_SIZE(mt76_rates));
1330 	if (ret)
1331 		return ret;
1332 
1333 	ret = mt7996_thermal_init(&dev->phy);
1334 	if (ret)
1335 		return ret;
1336 
1337 	ret = mt7996_register_phy(dev, mt7996_phy2(dev), MT_BAND1);
1338 	if (ret)
1339 		return ret;
1340 
1341 	ret = mt7996_register_phy(dev, mt7996_phy3(dev), MT_BAND2);
1342 	if (ret)
1343 		return ret;
1344 
1345 	ieee80211_queue_work(mt76_hw(dev), &dev->init_work);
1346 
1347 	dev->recovery.hw_init_done = true;
1348 
1349 	ret = mt7996_init_debugfs(&dev->phy);
1350 	if (ret)
1351 		goto error;
1352 
1353 	ret = mt7996_coredump_register(dev);
1354 	if (ret)
1355 		goto error;
1356 
1357 	return 0;
1358 
1359 error:
1360 	cancel_work_sync(&dev->init_work);
1361 
1362 	return ret;
1363 }
1364 
1365 void mt7996_unregister_device(struct mt7996_dev *dev)
1366 {
1367 	cancel_work_sync(&dev->wed_rro.work);
1368 	mt7996_unregister_phy(mt7996_phy3(dev), MT_BAND2);
1369 	mt7996_unregister_phy(mt7996_phy2(dev), MT_BAND1);
1370 	mt7996_unregister_thermal(&dev->phy);
1371 	mt7996_coredump_unregister(dev);
1372 	mt76_unregister_device(&dev->mt76);
1373 	mt7996_wed_rro_free(dev);
1374 	mt7996_mcu_exit(dev);
1375 	mt7996_tx_token_put(dev);
1376 	mt7996_dma_cleanup(dev);
1377 	tasklet_disable(&dev->mt76.irq_tasklet);
1378 
1379 	mt76_free_device(&dev->mt76);
1380 }
1381