xref: /linux/drivers/net/wireless/mediatek/mt76/mt7996/init.c (revision 96fcecd9ba81a66b2b061cdcc10da1cc1b2a9b90)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2022 MediaTek Inc.
4  */
5 
6 #include <linux/etherdevice.h>
7 #include <linux/of.h>
8 #include <linux/hwmon.h>
9 #include <linux/hwmon-sysfs.h>
10 #include <linux/thermal.h>
11 #include "mt7996.h"
12 #include "mac.h"
13 #include "mcu.h"
14 #include "coredump.h"
15 #include "eeprom.h"
16 
17 static const struct ieee80211_iface_limit if_limits[] = {
18 	{
19 		.max = 16,
20 		.types = BIT(NL80211_IFTYPE_AP)
21 #ifdef CONFIG_MAC80211_MESH
22 			 | BIT(NL80211_IFTYPE_MESH_POINT)
23 #endif
24 	}, {
25 		.max = MT7996_MAX_INTERFACES,
26 		.types = BIT(NL80211_IFTYPE_STATION)
27 	}
28 };
29 
30 static const struct ieee80211_iface_combination if_comb[] = {
31 	{
32 		.limits = if_limits,
33 		.n_limits = ARRAY_SIZE(if_limits),
34 		.max_interfaces = MT7996_MAX_INTERFACES,
35 		.num_different_channels = 1,
36 		.beacon_int_infra_match = true,
37 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
38 				       BIT(NL80211_CHAN_WIDTH_20) |
39 				       BIT(NL80211_CHAN_WIDTH_40) |
40 				       BIT(NL80211_CHAN_WIDTH_80) |
41 				       BIT(NL80211_CHAN_WIDTH_160),
42 		.beacon_int_min_gcd = 100,
43 	}
44 };
45 
46 static ssize_t mt7996_thermal_temp_show(struct device *dev,
47 					struct device_attribute *attr,
48 					char *buf)
49 {
50 	struct mt7996_phy *phy = dev_get_drvdata(dev);
51 	int i = to_sensor_dev_attr(attr)->index;
52 	int temperature;
53 
54 	switch (i) {
55 	case 0:
56 		temperature = mt7996_mcu_get_temperature(phy);
57 		if (temperature < 0)
58 			return temperature;
59 		/* display in millidegree celcius */
60 		return sprintf(buf, "%u\n", temperature * 1000);
61 	case 1:
62 	case 2:
63 		return sprintf(buf, "%u\n",
64 			       phy->throttle_temp[i - 1] * 1000);
65 	case 3:
66 		return sprintf(buf, "%hhu\n", phy->throttle_state);
67 	default:
68 		return -EINVAL;
69 	}
70 }
71 
72 static ssize_t mt7996_thermal_temp_store(struct device *dev,
73 					 struct device_attribute *attr,
74 					 const char *buf, size_t count)
75 {
76 	struct mt7996_phy *phy = dev_get_drvdata(dev);
77 	int ret, i = to_sensor_dev_attr(attr)->index;
78 	long val;
79 
80 	ret = kstrtol(buf, 10, &val);
81 	if (ret < 0)
82 		return ret;
83 
84 	mutex_lock(&phy->dev->mt76.mutex);
85 	val = DIV_ROUND_CLOSEST(clamp_val(val, 40 * 1000, 130 * 1000), 1000);
86 
87 	/* add a safety margin ~10 */
88 	if ((i - 1 == MT7996_CRIT_TEMP_IDX &&
89 	     val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) ||
90 	    (i - 1 == MT7996_MAX_TEMP_IDX &&
91 	     val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) {
92 		dev_err(phy->dev->mt76.dev,
93 			"temp1_max shall be 10 degrees higher than temp1_crit.");
94 		mutex_unlock(&phy->dev->mt76.mutex);
95 		return -EINVAL;
96 	}
97 
98 	phy->throttle_temp[i - 1] = val;
99 	mutex_unlock(&phy->dev->mt76.mutex);
100 
101 	ret = mt7996_mcu_set_thermal_protect(phy, true);
102 	if (ret)
103 		return ret;
104 
105 	return count;
106 }
107 
108 static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0);
109 static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1);
110 static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2);
111 static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3);
112 
113 static struct attribute *mt7996_hwmon_attrs[] = {
114 	&sensor_dev_attr_temp1_input.dev_attr.attr,
115 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
116 	&sensor_dev_attr_temp1_max.dev_attr.attr,
117 	&sensor_dev_attr_throttle1.dev_attr.attr,
118 	NULL,
119 };
120 ATTRIBUTE_GROUPS(mt7996_hwmon);
121 
122 static int
123 mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev,
124 				      unsigned long *state)
125 {
126 	*state = MT7996_CDEV_THROTTLE_MAX;
127 
128 	return 0;
129 }
130 
131 static int
132 mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev,
133 				      unsigned long *state)
134 {
135 	struct mt7996_phy *phy = cdev->devdata;
136 
137 	*state = phy->cdev_state;
138 
139 	return 0;
140 }
141 
142 static int
143 mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev,
144 				      unsigned long state)
145 {
146 	struct mt7996_phy *phy = cdev->devdata;
147 	u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state;
148 	int ret;
149 
150 	if (state > MT7996_CDEV_THROTTLE_MAX) {
151 		dev_err(phy->dev->mt76.dev,
152 			"please specify a valid throttling state\n");
153 		return -EINVAL;
154 	}
155 
156 	if (state == phy->cdev_state)
157 		return 0;
158 
159 	/* cooling_device convention: 0 = no cooling, more = more cooling
160 	 * mcu convention: 1 = max cooling, more = less cooling
161 	 */
162 	ret = mt7996_mcu_set_thermal_throttling(phy, throttling);
163 	if (ret)
164 		return ret;
165 
166 	phy->cdev_state = state;
167 
168 	return 0;
169 }
170 
171 static const struct thermal_cooling_device_ops mt7996_thermal_ops = {
172 	.get_max_state = mt7996_thermal_get_max_throttle_state,
173 	.get_cur_state = mt7996_thermal_get_cur_throttle_state,
174 	.set_cur_state = mt7996_thermal_set_cur_throttle_state,
175 };
176 
177 static void mt7996_unregister_thermal(struct mt7996_phy *phy)
178 {
179 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
180 
181 	if (!phy->cdev)
182 		return;
183 
184 	sysfs_remove_link(&wiphy->dev.kobj, "cooling_device");
185 	thermal_cooling_device_unregister(phy->cdev);
186 }
187 
188 static int mt7996_thermal_init(struct mt7996_phy *phy)
189 {
190 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
191 	struct thermal_cooling_device *cdev;
192 	struct device *hwmon;
193 	const char *name;
194 
195 	name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s",
196 			      wiphy_name(wiphy));
197 
198 	cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops);
199 	if (!IS_ERR(cdev)) {
200 		if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj,
201 				      "cooling_device") < 0)
202 			thermal_cooling_device_unregister(cdev);
203 		else
204 			phy->cdev = cdev;
205 	}
206 
207 	/* initialize critical/maximum high temperature */
208 	phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP;
209 	phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP;
210 
211 	if (!IS_REACHABLE(CONFIG_HWMON))
212 		return 0;
213 
214 	hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy,
215 						       mt7996_hwmon_groups);
216 
217 	if (IS_ERR(hwmon))
218 		return PTR_ERR(hwmon);
219 
220 	return 0;
221 }
222 
223 static void mt7996_led_set_config(struct led_classdev *led_cdev,
224 				  u8 delay_on, u8 delay_off)
225 {
226 	struct mt7996_dev *dev;
227 	struct mt76_phy *mphy;
228 	u32 val;
229 
230 	mphy = container_of(led_cdev, struct mt76_phy, leds.cdev);
231 	dev = container_of(mphy->dev, struct mt7996_dev, mt76);
232 
233 	/* select TX blink mode, 2: only data frames */
234 	mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2);
235 
236 	/* enable LED */
237 	mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1);
238 
239 	/* set LED Tx blink on/off time */
240 	val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) |
241 	      FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off);
242 	mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val);
243 
244 	/* turn LED off */
245 	if (delay_off == 0xff && delay_on == 0x0) {
246 		val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK;
247 	} else {
248 		/* control LED */
249 		val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK;
250 		if (mphy->band_idx == MT_BAND1)
251 			val |= MT_LED_CTRL_BLINK_BAND_SEL;
252 	}
253 
254 	if (mphy->leds.al)
255 		val |= MT_LED_CTRL_POLARITY;
256 
257 	mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val);
258 	mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK);
259 }
260 
261 static int mt7996_led_set_blink(struct led_classdev *led_cdev,
262 				unsigned long *delay_on,
263 				unsigned long *delay_off)
264 {
265 	u16 delta_on = 0, delta_off = 0;
266 
267 #define HW_TICK		10
268 #define TO_HW_TICK(_t)	(((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK)
269 
270 	if (*delay_on)
271 		delta_on = TO_HW_TICK(*delay_on);
272 	if (*delay_off)
273 		delta_off = TO_HW_TICK(*delay_off);
274 
275 	mt7996_led_set_config(led_cdev, delta_on, delta_off);
276 
277 	return 0;
278 }
279 
280 static void mt7996_led_set_brightness(struct led_classdev *led_cdev,
281 				      enum led_brightness brightness)
282 {
283 	if (!brightness)
284 		mt7996_led_set_config(led_cdev, 0, 0xff);
285 	else
286 		mt7996_led_set_config(led_cdev, 0xff, 0);
287 }
288 
289 static void __mt7996_init_txpower(struct mt7996_phy *phy,
290 				  struct ieee80211_supported_band *sband)
291 {
292 	struct mt7996_dev *dev = phy->dev;
293 	int i, nss = hweight16(phy->mt76->chainmask);
294 	int nss_delta = mt76_tx_power_nss_delta(nss);
295 	int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band);
296 	struct mt76_power_limits limits;
297 
298 	for (i = 0; i < sband->n_channels; i++) {
299 		struct ieee80211_channel *chan = &sband->channels[i];
300 		int target_power = mt7996_eeprom_get_target_power(dev, chan);
301 
302 		target_power += pwr_delta;
303 		target_power = mt76_get_rate_power_limits(phy->mt76, chan,
304 							  &limits,
305 							  target_power);
306 		target_power += nss_delta;
307 		target_power = DIV_ROUND_UP(target_power, 2);
308 		chan->max_power = min_t(int, chan->max_reg_power,
309 					target_power);
310 		chan->orig_mpwr = target_power;
311 	}
312 }
313 
314 void mt7996_init_txpower(struct mt7996_phy *phy)
315 {
316 	if (!phy)
317 		return;
318 
319 	if (phy->mt76->cap.has_2ghz)
320 		__mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband);
321 	if (phy->mt76->cap.has_5ghz)
322 		__mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband);
323 	if (phy->mt76->cap.has_6ghz)
324 		__mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband);
325 }
326 
327 static void
328 mt7996_regd_notifier(struct wiphy *wiphy,
329 		     struct regulatory_request *request)
330 {
331 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
332 	struct mt7996_dev *dev = mt7996_hw_dev(hw);
333 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
334 
335 	memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
336 	dev->mt76.region = request->dfs_region;
337 
338 	if (dev->mt76.region == NL80211_DFS_UNSET)
339 		mt7996_mcu_rdd_background_enable(phy, NULL);
340 
341 	mt7996_init_txpower(phy);
342 
343 	phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
344 	mt7996_dfs_init_radar_detector(phy);
345 }
346 
347 static void
348 mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed)
349 {
350 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
351 	struct mt76_dev *mdev = &phy->dev->mt76;
352 	struct wiphy *wiphy = hw->wiphy;
353 	u16 max_subframes = phy->dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT :
354 						IEEE80211_MAX_AMPDU_BUF_HE;
355 
356 	hw->queues = 4;
357 	hw->max_rx_aggregation_subframes = max_subframes;
358 	hw->max_tx_aggregation_subframes = max_subframes;
359 	hw->netdev_features = NETIF_F_RXCSUM;
360 	if (mtk_wed_device_active(wed))
361 		hw->netdev_features |= NETIF_F_HW_TC;
362 
363 	hw->radiotap_timestamp.units_pos =
364 		IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
365 
366 	phy->slottime = 9;
367 	phy->beacon_rate = -1;
368 
369 	hw->sta_data_size = sizeof(struct mt7996_sta);
370 	hw->vif_data_size = sizeof(struct mt7996_vif);
371 
372 	wiphy->iface_combinations = if_comb;
373 	wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
374 	wiphy->reg_notifier = mt7996_regd_notifier;
375 	wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
376 	wiphy->mbssid_max_interfaces = 16;
377 
378 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR);
379 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
380 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
381 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT);
382 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT);
383 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE);
384 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
385 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY);
386 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
387 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
388 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER);
389 
390 	if (mt7996_has_background_radar(phy->dev) &&
391 	    (!mdev->dev->of_node ||
392 	     !of_property_read_bool(mdev->dev->of_node,
393 				    "mediatek,disable-radar-background")))
394 		wiphy_ext_feature_set(wiphy,
395 				      NL80211_EXT_FEATURE_RADAR_BACKGROUND);
396 
397 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
398 	ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD);
399 	ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
400 	ieee80211_hw_set(hw, WANT_MONITOR_VIF);
401 	ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
402 
403 	hw->max_tx_fragments = 4;
404 
405 	if (phy->mt76->cap.has_2ghz) {
406 		phy->mt76->sband_2g.sband.ht_cap.cap |=
407 			IEEE80211_HT_CAP_LDPC_CODING |
408 			IEEE80211_HT_CAP_MAX_AMSDU;
409 		phy->mt76->sband_2g.sband.ht_cap.ampdu_density =
410 			IEEE80211_HT_MPDU_DENSITY_2;
411 	}
412 
413 	if (phy->mt76->cap.has_5ghz) {
414 		phy->mt76->sband_5g.sband.ht_cap.cap |=
415 			IEEE80211_HT_CAP_LDPC_CODING |
416 			IEEE80211_HT_CAP_MAX_AMSDU;
417 
418 		phy->mt76->sband_5g.sband.vht_cap.cap |=
419 			IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
420 			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
421 			IEEE80211_VHT_CAP_SHORT_GI_160 |
422 			IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
423 		phy->mt76->sband_5g.sband.ht_cap.ampdu_density =
424 			IEEE80211_HT_MPDU_DENSITY_1;
425 
426 		ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
427 	}
428 
429 	/* init led callbacks */
430 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
431 		phy->mt76->leds.cdev.brightness_set = mt7996_led_set_brightness;
432 		phy->mt76->leds.cdev.blink_set = mt7996_led_set_blink;
433 	}
434 
435 	mt76_set_stream_caps(phy->mt76, true);
436 	mt7996_set_stream_vht_txbf_caps(phy);
437 	mt7996_set_stream_he_eht_caps(phy);
438 	mt7996_init_txpower(phy);
439 
440 	wiphy->available_antennas_rx = phy->mt76->antenna_mask;
441 	wiphy->available_antennas_tx = phy->mt76->antenna_mask;
442 
443 	wiphy->max_scan_ssids = 4;
444 	wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
445 }
446 
447 static void
448 mt7996_mac_init_band(struct mt7996_dev *dev, u8 band)
449 {
450 	u32 mask, set;
451 
452 	/* clear estimated value of EIFS for Rx duration & OBSS time */
453 	mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR);
454 
455 	/* clear backoff time for Rx duration  */
456 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band),
457 		   MT_WF_RMAC_MIB_NONQOSD_BACKOFF);
458 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band),
459 		   MT_WF_RMAC_MIB_QOS01_BACKOFF);
460 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band),
461 		   MT_WF_RMAC_MIB_QOS23_BACKOFF);
462 
463 	/* clear backoff time for Tx duration */
464 	mt76_clear(dev, MT_WTBLOFF_ACR(band),
465 		   MT_WTBLOFF_ADM_BACKOFFTIME);
466 
467 	/* clear backoff time and set software compensation for OBSS time */
468 	mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET;
469 	set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) |
470 	      FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4);
471 	mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set);
472 
473 	/* filter out non-resp frames and get instanstaeous signal reporting */
474 	mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM;
475 	set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) |
476 	      FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3);
477 	mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set);
478 
479 	/* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than
480 	 * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set.
481 	 */
482 	mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H);
483 }
484 
485 static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev)
486 {
487 	int i;
488 
489 	for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) {
490 		u16 rate = mt76_rates[i].hw_value;
491 		/* odd index for driver, even index for firmware */
492 		u16 idx = MT7996_BASIC_RATES_TBL + 2 * i;
493 
494 		rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) |
495 		       FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0));
496 		mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false);
497 	}
498 }
499 
500 void mt7996_mac_init(struct mt7996_dev *dev)
501 {
502 #define HIF_TXD_V2_1	0x21
503 	int i;
504 
505 	mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT);
506 
507 	for (i = 0; i < mt7996_wtbl_size(dev); i++)
508 		mt7996_mac_wtbl_update(dev, i,
509 				       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
510 
511 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
512 		i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2;
513 		mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4);
514 	}
515 
516 	/* rro module init */
517 	if (is_mt7996(&dev->mt76))
518 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2);
519 	else
520 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE,
521 				   dev->hif2 ? 7 : 0);
522 
523 	if (dev->has_rro) {
524 		u16 timeout;
525 
526 		timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128;
527 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout);
528 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1);
529 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0);
530 	} else {
531 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3);
532 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1);
533 	}
534 
535 	mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET),
536 			  MCU_WA_PARAM_HW_PATH_HIF_VER,
537 			  HIF_TXD_V2_1, 0);
538 
539 	for (i = MT_BAND0; i <= MT_BAND2; i++)
540 		mt7996_mac_init_band(dev, i);
541 
542 	mt7996_mac_init_basic_rates(dev);
543 }
544 
545 int mt7996_txbf_init(struct mt7996_dev *dev)
546 {
547 	int ret;
548 
549 	if (mt7996_band_valid(dev, MT_BAND1) ||
550 	    mt7996_band_valid(dev, MT_BAND2)) {
551 		ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL);
552 		if (ret)
553 			return ret;
554 	}
555 
556 	/* trigger sounding packets */
557 	ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON);
558 	if (ret)
559 		return ret;
560 
561 	/* enable eBF */
562 	return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE);
563 }
564 
565 static int mt7996_register_phy(struct mt7996_dev *dev, struct mt7996_phy *phy,
566 			       enum mt76_band_id band)
567 {
568 	struct mt76_phy *mphy;
569 	u32 mac_ofs, hif1_ofs = 0;
570 	int ret;
571 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
572 
573 	if (!mt7996_band_valid(dev, band) || band == MT_BAND0)
574 		return 0;
575 
576 	if (phy)
577 		return 0;
578 
579 	if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) {
580 		hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0);
581 		wed = &dev->mt76.mmio.wed_hif2;
582 	}
583 
584 	mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7996_ops, band);
585 	if (!mphy)
586 		return -ENOMEM;
587 
588 	phy = mphy->priv;
589 	phy->dev = dev;
590 	phy->mt76 = mphy;
591 	mphy->dev->phys[band] = mphy;
592 
593 	INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work);
594 
595 	ret = mt7996_eeprom_parse_hw_cap(dev, phy);
596 	if (ret)
597 		goto error;
598 
599 	mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2;
600 	memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
601 	/* Make the extra PHY MAC address local without overlapping with
602 	 * the usual MAC address allocation scheme on multiple virtual interfaces
603 	 */
604 	if (!is_valid_ether_addr(mphy->macaddr)) {
605 		memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
606 		       ETH_ALEN);
607 		mphy->macaddr[0] |= 2;
608 		mphy->macaddr[0] ^= BIT(7);
609 		if (band == MT_BAND2)
610 			mphy->macaddr[0] ^= BIT(6);
611 	}
612 	mt76_eeprom_override(mphy);
613 
614 	/* init wiphy according to mphy and phy */
615 	mt7996_init_wiphy(mphy->hw, wed);
616 	ret = mt7996_init_tx_queues(mphy->priv,
617 				    MT_TXQ_ID(band),
618 				    MT7996_TX_RING_SIZE,
619 				    MT_TXQ_RING_BASE(band) + hif1_ofs,
620 				    wed);
621 	if (ret)
622 		goto error;
623 
624 	ret = mt76_register_phy(mphy, true, mt76_rates,
625 				ARRAY_SIZE(mt76_rates));
626 	if (ret)
627 		goto error;
628 
629 	ret = mt7996_thermal_init(phy);
630 	if (ret)
631 		goto error;
632 
633 	ret = mt7996_init_debugfs(phy);
634 	if (ret)
635 		goto error;
636 
637 	if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) {
638 		u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2;
639 
640 		mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask);
641 		mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask);
642 	}
643 
644 	return 0;
645 
646 error:
647 	mphy->dev->phys[band] = NULL;
648 	ieee80211_free_hw(mphy->hw);
649 	return ret;
650 }
651 
652 static void
653 mt7996_unregister_phy(struct mt7996_phy *phy, enum mt76_band_id band)
654 {
655 	struct mt76_phy *mphy;
656 
657 	if (!phy)
658 		return;
659 
660 	mt7996_unregister_thermal(phy);
661 
662 	mphy = phy->dev->mt76.phys[band];
663 	mt76_unregister_phy(mphy);
664 	ieee80211_free_hw(mphy->hw);
665 	phy->dev->mt76.phys[band] = NULL;
666 }
667 
668 static void mt7996_init_work(struct work_struct *work)
669 {
670 	struct mt7996_dev *dev = container_of(work, struct mt7996_dev,
671 				 init_work);
672 
673 	mt7996_mcu_set_eeprom(dev);
674 	mt7996_mac_init(dev);
675 	mt7996_txbf_init(dev);
676 }
677 
678 void mt7996_wfsys_reset(struct mt7996_dev *dev)
679 {
680 	mt76_set(dev, MT_WF_SUBSYS_RST, 0x1);
681 	msleep(20);
682 
683 	mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1);
684 	msleep(20);
685 }
686 
687 static int mt7996_wed_rro_init(struct mt7996_dev *dev)
688 {
689 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
690 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
691 	u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0;
692 	struct mt7996_wed_rro_addr *addr;
693 	void *ptr;
694 	int i;
695 
696 	if (!dev->has_rro)
697 		return 0;
698 
699 	if (!mtk_wed_device_active(wed))
700 		return 0;
701 
702 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
703 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
704 					  MT7996_RRO_BA_BITMAP_CR_SIZE,
705 					  &dev->wed_rro.ba_bitmap[i].phy_addr,
706 					  GFP_KERNEL);
707 		if (!ptr)
708 			return -ENOMEM;
709 
710 		dev->wed_rro.ba_bitmap[i].ptr = ptr;
711 	}
712 
713 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
714 		int j;
715 
716 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
717 				MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr),
718 				&dev->wed_rro.addr_elem[i].phy_addr,
719 				GFP_KERNEL);
720 		if (!ptr)
721 			return -ENOMEM;
722 
723 		dev->wed_rro.addr_elem[i].ptr = ptr;
724 		memset(dev->wed_rro.addr_elem[i].ptr, 0,
725 		       MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr));
726 
727 		addr = dev->wed_rro.addr_elem[i].ptr;
728 		for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) {
729 			addr->signature = 0xff;
730 			addr++;
731 		}
732 
733 		wed->wlan.ind_cmd.addr_elem_phys[i] =
734 			dev->wed_rro.addr_elem[i].phy_addr;
735 	}
736 
737 	ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
738 				  MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr),
739 				  &dev->wed_rro.session.phy_addr,
740 				  GFP_KERNEL);
741 	if (!ptr)
742 		return -ENOMEM;
743 
744 	dev->wed_rro.session.ptr = ptr;
745 	addr = dev->wed_rro.session.ptr;
746 	for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
747 		addr->signature = 0xff;
748 		addr++;
749 	}
750 
751 	/* rro hw init */
752 	/* TODO: remove line after WM has set */
753 	mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK);
754 
755 	/* setup BA bitmap cache address */
756 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0,
757 		dev->wed_rro.ba_bitmap[0].phy_addr);
758 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0);
759 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0,
760 		dev->wed_rro.ba_bitmap[1].phy_addr);
761 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0);
762 
763 	/* setup Address element address */
764 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
765 		mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4);
766 		reg += 4;
767 	}
768 
769 	/* setup Address element address - separate address segment mode */
770 	mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1,
771 		MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE);
772 
773 	wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6;
774 	wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION;
775 	wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr;
776 	wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN;
777 	wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL;
778 
779 	mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00);
780 	mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1,
781 		 MT_RRO_IND_CMD_SIGNATURE_BASE1_EN);
782 
783 	/* particular session configure */
784 	/* use max session idx + 1 as particular session id */
785 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr);
786 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG1,
787 		MT_RRO_PARTICULAR_CONFG_EN |
788 		FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION));
789 
790 	/* interrupt enable */
791 	mt76_wr(dev, MT_RRO_HOST_INT_ENA,
792 		MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA);
793 
794 	/* rro ind cmd queue init */
795 	return mt7996_dma_rro_init(dev);
796 #else
797 	return 0;
798 #endif
799 }
800 
801 static void mt7996_wed_rro_free(struct mt7996_dev *dev)
802 {
803 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
804 	int i;
805 
806 	if (!dev->has_rro)
807 		return;
808 
809 	if (!mtk_wed_device_active(&dev->mt76.mmio.wed))
810 		return;
811 
812 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
813 		if (!dev->wed_rro.ba_bitmap[i].ptr)
814 			continue;
815 
816 		dmam_free_coherent(dev->mt76.dma_dev,
817 				   MT7996_RRO_BA_BITMAP_CR_SIZE,
818 				   dev->wed_rro.ba_bitmap[i].ptr,
819 				   dev->wed_rro.ba_bitmap[i].phy_addr);
820 	}
821 
822 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
823 		if (!dev->wed_rro.addr_elem[i].ptr)
824 			continue;
825 
826 		dmam_free_coherent(dev->mt76.dma_dev,
827 				   MT7996_RRO_WINDOW_MAX_SIZE *
828 				   sizeof(struct mt7996_wed_rro_addr),
829 				   dev->wed_rro.addr_elem[i].ptr,
830 				   dev->wed_rro.addr_elem[i].phy_addr);
831 	}
832 
833 	if (!dev->wed_rro.session.ptr)
834 		return;
835 
836 	dmam_free_coherent(dev->mt76.dma_dev,
837 			   MT7996_RRO_WINDOW_MAX_LEN *
838 			   sizeof(struct mt7996_wed_rro_addr),
839 			   dev->wed_rro.session.ptr,
840 			   dev->wed_rro.session.phy_addr);
841 #endif
842 }
843 
844 static void mt7996_wed_rro_work(struct work_struct *work)
845 {
846 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
847 	struct mt7996_dev *dev;
848 	LIST_HEAD(list);
849 
850 	dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev,
851 						wed_rro.work);
852 
853 	spin_lock_bh(&dev->wed_rro.lock);
854 	list_splice_init(&dev->wed_rro.poll_list, &list);
855 	spin_unlock_bh(&dev->wed_rro.lock);
856 
857 	while (!list_empty(&list)) {
858 		struct mt7996_wed_rro_session_id *e;
859 		int i;
860 
861 		e = list_first_entry(&list, struct mt7996_wed_rro_session_id,
862 				     list);
863 		list_del_init(&e->list);
864 
865 		for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
866 			void *ptr = dev->wed_rro.session.ptr;
867 			struct mt7996_wed_rro_addr *elem;
868 			u32 idx, elem_id = i;
869 
870 			if (e->id == MT7996_RRO_MAX_SESSION)
871 				goto reset;
872 
873 			idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE;
874 			if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem))
875 				goto out;
876 
877 			ptr = dev->wed_rro.addr_elem[idx].ptr;
878 			elem_id +=
879 				(e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) *
880 				MT7996_RRO_WINDOW_MAX_LEN;
881 reset:
882 			elem = ptr + elem_id * sizeof(*elem);
883 			elem->signature = 0xff;
884 		}
885 		mt7996_mcu_wed_rro_reset_sessions(dev, e->id);
886 out:
887 		kfree(e);
888 	}
889 #endif
890 }
891 
892 static int mt7996_variant_type_init(struct mt7996_dev *dev)
893 {
894 	u32 val = mt76_rr(dev, MT_PAD_GPIO);
895 	u8 var_type;
896 
897 	switch (mt76_chip(&dev->mt76)) {
898 	case 0x7990:
899 		if (val & MT_PAD_GPIO_2ADIE_TBTC)
900 			var_type = MT7996_VAR_TYPE_233;
901 		else
902 			var_type = MT7996_VAR_TYPE_444;
903 		break;
904 	case 0x7992:
905 		if (val & MT_PAD_GPIO_ADIE_SINGLE)
906 			var_type = MT7992_VAR_TYPE_23;
907 		else if (u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB_7992))
908 			var_type = MT7992_VAR_TYPE_44;
909 		else
910 			return -EINVAL;
911 		break;
912 	default:
913 		return -EINVAL;
914 	}
915 
916 	dev->var.type = var_type;
917 	return 0;
918 }
919 
920 static int mt7996_variant_fem_init(struct mt7996_dev *dev)
921 {
922 #define MT7976C_EFUSE_OFFSET	0x470
923 	u8 buf[MT7996_EEPROM_BLOCK_SIZE], idx, adie_idx, adie_comb;
924 	u32 regval, val = mt76_rr(dev, MT_PAD_GPIO);
925 	u16 adie_id, adie_ver;
926 	bool is_7976c;
927 	int ret;
928 
929 	if (is_mt7992(&dev->mt76)) {
930 		adie_idx = (val & MT_PAD_GPIO_ADIE_SINGLE) ? 0 : 1;
931 		adie_comb = u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB_7992);
932 	} else {
933 		adie_idx = 0;
934 		adie_comb = u32_get_bits(val, MT_PAD_GPIO_ADIE_COMB);
935 	}
936 
937 	ret = mt7996_mcu_rf_regval(dev, MT_ADIE_CHIP_ID(adie_idx), &regval, false);
938 	if (ret)
939 		return ret;
940 
941 	ret = mt7996_mcu_get_eeprom(dev, MT7976C_EFUSE_OFFSET, buf, sizeof(buf));
942 	if (ret && ret != -EINVAL)
943 		return ret;
944 
945 	adie_ver = u32_get_bits(regval, MT_ADIE_VERSION_MASK);
946 	idx = MT7976C_EFUSE_OFFSET % MT7996_EEPROM_BLOCK_SIZE;
947 	is_7976c = adie_ver == 0x8a10 || adie_ver == 0x8b00 ||
948 		   adie_ver == 0x8c10 || buf[idx] == 0xc;
949 
950 	adie_id = u32_get_bits(regval, MT_ADIE_CHIP_ID_MASK);
951 	if (adie_id == 0x7975 || adie_id == 0x7979 ||
952 	    (adie_id == 0x7976 && is_7976c))
953 		dev->var.fem = MT7996_FEM_INT;
954 	else if (adie_id == 0x7977 && adie_comb == 1)
955 		dev->var.fem = MT7996_FEM_MIX;
956 	else
957 		dev->var.fem = MT7996_FEM_EXT;
958 
959 	return 0;
960 }
961 
962 static int mt7996_init_hardware(struct mt7996_dev *dev)
963 {
964 	int ret, idx;
965 
966 	mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
967 	if (is_mt7992(&dev->mt76)) {
968 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
969 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
970 	}
971 
972 	INIT_WORK(&dev->init_work, mt7996_init_work);
973 	INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work);
974 	INIT_LIST_HEAD(&dev->wed_rro.poll_list);
975 	spin_lock_init(&dev->wed_rro.lock);
976 
977 	ret = mt7996_variant_type_init(dev);
978 	if (ret)
979 		return ret;
980 
981 	ret = mt7996_dma_init(dev);
982 	if (ret)
983 		return ret;
984 
985 	set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
986 
987 	ret = mt7996_mcu_init(dev);
988 	if (ret)
989 		return ret;
990 
991 	ret = mt7996_wed_rro_init(dev);
992 	if (ret)
993 		return ret;
994 
995 	ret = mt7996_variant_fem_init(dev);
996 	if (ret)
997 		return ret;
998 
999 	ret = mt7996_eeprom_init(dev);
1000 	if (ret < 0)
1001 		return ret;
1002 
1003 	/* Beacon and mgmt frames should occupy wcid 0 */
1004 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA);
1005 	if (idx)
1006 		return -ENOSPC;
1007 
1008 	dev->mt76.global_wcid.idx = idx;
1009 	dev->mt76.global_wcid.hw_key_idx = -1;
1010 	dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET;
1011 	rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
1012 
1013 	return 0;
1014 }
1015 
1016 void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy)
1017 {
1018 	int sts;
1019 	u32 *cap;
1020 
1021 	if (!phy->mt76->cap.has_5ghz)
1022 		return;
1023 
1024 	sts = hweight16(phy->mt76->chainmask);
1025 	cap = &phy->mt76->sband_5g.sband.vht_cap.cap;
1026 
1027 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
1028 		IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
1029 
1030 	if (is_mt7996(phy->mt76->dev))
1031 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 3);
1032 	else
1033 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 4);
1034 
1035 	*cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK |
1036 		  IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
1037 		  IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
1038 
1039 	if (sts < 2)
1040 		return;
1041 
1042 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
1043 		IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE |
1044 		FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1);
1045 }
1046 
1047 static void
1048 mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy,
1049 			       struct ieee80211_sta_he_cap *he_cap, int vif)
1050 {
1051 	struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem;
1052 	int sts = hweight16(phy->mt76->chainmask);
1053 	u8 c;
1054 
1055 #ifdef CONFIG_MAC80211_MESH
1056 	if (vif == NL80211_IFTYPE_MESH_POINT)
1057 		return;
1058 #endif
1059 
1060 	elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1061 	elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1062 
1063 	c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK |
1064 	    IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
1065 	elem->phy_cap_info[5] &= ~c;
1066 
1067 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1068 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1069 	elem->phy_cap_info[6] &= ~c;
1070 
1071 	elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
1072 
1073 	c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
1074 	    IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
1075 	    IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
1076 	elem->phy_cap_info[2] |= c;
1077 
1078 	c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE;
1079 
1080 	if (is_mt7996(phy->mt76->dev))
1081 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 |
1082 		     IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4;
1083 	else
1084 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 |
1085 		     IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5;
1086 
1087 	elem->phy_cap_info[4] |= c;
1088 
1089 	/* do not support NG16 due to spec D4.0 changes subcarrier idx */
1090 	c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
1091 	    IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU;
1092 
1093 	if (vif == NL80211_IFTYPE_STATION)
1094 		c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
1095 
1096 	elem->phy_cap_info[6] |= c;
1097 
1098 	if (sts < 2)
1099 		return;
1100 
1101 	/* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */
1102 	elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3;
1103 
1104 	if (!(vif == NL80211_IFTYPE_AP || vif == NL80211_IFTYPE_STATION))
1105 		return;
1106 
1107 	elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1108 
1109 	c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK,
1110 		       sts - 1) |
1111 	    FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK,
1112 		       sts - 1);
1113 	elem->phy_cap_info[5] |= c;
1114 
1115 	if (vif != NL80211_IFTYPE_AP)
1116 		return;
1117 
1118 	elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1119 
1120 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1121 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1122 	elem->phy_cap_info[6] |= c;
1123 
1124 	c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
1125 	    IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1126 	elem->phy_cap_info[7] |= c;
1127 }
1128 
1129 static void
1130 mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band,
1131 		    struct ieee80211_sband_iftype_data *data,
1132 		    enum nl80211_iftype iftype)
1133 {
1134 	struct ieee80211_sta_he_cap *he_cap = &data->he_cap;
1135 	struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
1136 	struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp;
1137 	int i, nss = hweight8(phy->mt76->antenna_mask);
1138 	u16 mcs_map = 0;
1139 
1140 	for (i = 0; i < 8; i++) {
1141 		if (i < nss)
1142 			mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2));
1143 		else
1144 			mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2));
1145 	}
1146 
1147 	he_cap->has_he = true;
1148 
1149 	he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE;
1150 	he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
1151 				       IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
1152 	he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU;
1153 
1154 	if (band == NL80211_BAND_2GHZ)
1155 		he_cap_elem->phy_cap_info[0] =
1156 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
1157 	else
1158 		he_cap_elem->phy_cap_info[0] =
1159 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
1160 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1161 
1162 	he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
1163 	he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
1164 				       IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1165 
1166 	switch (iftype) {
1167 	case NL80211_IFTYPE_AP:
1168 		he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES;
1169 		he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR;
1170 		he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR;
1171 		he_cap_elem->mac_cap_info[5] |=
1172 			IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX;
1173 		he_cap_elem->phy_cap_info[3] |=
1174 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1175 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1176 		he_cap_elem->phy_cap_info[6] |=
1177 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1178 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1179 		he_cap_elem->phy_cap_info[9] |=
1180 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1181 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1182 		break;
1183 	case NL80211_IFTYPE_STATION:
1184 		he_cap_elem->mac_cap_info[1] |=
1185 			IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US;
1186 
1187 		if (band == NL80211_BAND_2GHZ)
1188 			he_cap_elem->phy_cap_info[0] |=
1189 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G;
1190 		else
1191 			he_cap_elem->phy_cap_info[0] |=
1192 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G;
1193 
1194 		he_cap_elem->phy_cap_info[1] |=
1195 			IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
1196 			IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US;
1197 		he_cap_elem->phy_cap_info[3] |=
1198 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1199 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1200 		he_cap_elem->phy_cap_info[6] |=
1201 			IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
1202 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1203 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1204 		he_cap_elem->phy_cap_info[7] |=
1205 			IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
1206 			IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI;
1207 		he_cap_elem->phy_cap_info[8] |=
1208 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
1209 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
1210 			IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
1211 			IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
1212 		he_cap_elem->phy_cap_info[9] |=
1213 			IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
1214 			IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
1215 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1216 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
1217 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
1218 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
1219 		break;
1220 	default:
1221 		break;
1222 	}
1223 
1224 	he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map);
1225 	he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map);
1226 	he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map);
1227 	he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map);
1228 
1229 	mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype);
1230 
1231 	memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
1232 	if (he_cap_elem->phy_cap_info[6] &
1233 	    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
1234 		mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss);
1235 	} else {
1236 		he_cap_elem->phy_cap_info[9] |=
1237 			u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US,
1238 				       IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK);
1239 	}
1240 
1241 	if (band == NL80211_BAND_6GHZ) {
1242 		u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
1243 			  IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
1244 
1245 		cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5,
1246 				       IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) |
1247 		       u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K,
1248 				       IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) |
1249 		       u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454,
1250 				       IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
1251 
1252 		data->he_6ghz_capa.capa = cpu_to_le16(cap);
1253 	}
1254 }
1255 
1256 static void
1257 mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band,
1258 		     struct ieee80211_sband_iftype_data *data,
1259 		     enum nl80211_iftype iftype)
1260 {
1261 	struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap;
1262 	struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
1263 	struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp;
1264 	enum nl80211_chan_width width = phy->mt76->chandef.width;
1265 	int nss = hweight8(phy->mt76->antenna_mask);
1266 	int sts = hweight16(phy->mt76->chainmask);
1267 	u8 val;
1268 
1269 	if (!phy->dev->has_eht)
1270 		return;
1271 
1272 	eht_cap->has_eht = true;
1273 
1274 	eht_cap_elem->mac_cap_info[0] =
1275 		IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1276 		IEEE80211_EHT_MAC_CAP0_OM_CONTROL;
1277 
1278 	eht_cap_elem->phy_cap_info[0] =
1279 		IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
1280 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
1281 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE;
1282 
1283 	/* Set the maximum capability regardless of the antenna configuration. */
1284 	val = is_mt7992(phy->mt76->dev) ? 4 : 3;
1285 	eht_cap_elem->phy_cap_info[0] |=
1286 		u8_encode_bits(u8_get_bits(val, BIT(0)),
1287 			       IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK);
1288 
1289 	eht_cap_elem->phy_cap_info[1] =
1290 		u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)),
1291 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK) |
1292 		u8_encode_bits(val,
1293 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK);
1294 
1295 	eht_cap_elem->phy_cap_info[2] =
1296 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK) |
1297 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK);
1298 
1299 	if (band == NL80211_BAND_6GHZ) {
1300 		eht_cap_elem->phy_cap_info[0] |=
1301 			IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
1302 
1303 		eht_cap_elem->phy_cap_info[1] |=
1304 			u8_encode_bits(val,
1305 				       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK);
1306 
1307 		eht_cap_elem->phy_cap_info[2] |=
1308 			u8_encode_bits(sts - 1,
1309 				       IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK);
1310 	}
1311 
1312 	eht_cap_elem->phy_cap_info[3] =
1313 		IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1314 		IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1315 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1316 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK;
1317 
1318 	eht_cap_elem->phy_cap_info[4] =
1319 		u8_encode_bits(min_t(int, sts - 1, 2),
1320 			       IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK);
1321 
1322 	eht_cap_elem->phy_cap_info[5] =
1323 		u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US,
1324 			       IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) |
1325 		u8_encode_bits(u8_get_bits(0x11, GENMASK(1, 0)),
1326 			       IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK);
1327 
1328 	val = width == NL80211_CHAN_WIDTH_320 ? 0xf :
1329 	      width == NL80211_CHAN_WIDTH_160 ? 0x7 :
1330 	      width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1;
1331 	eht_cap_elem->phy_cap_info[6] =
1332 		u8_encode_bits(u8_get_bits(0x11, GENMASK(4, 2)),
1333 			       IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK) |
1334 		u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK);
1335 
1336 	val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) |
1337 	      u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX);
1338 #define SET_EHT_MAX_NSS(_bw, _val) do {				\
1339 		eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val;	\
1340 		eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val;	\
1341 		eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val;	\
1342 	} while (0)
1343 
1344 	SET_EHT_MAX_NSS(80, val);
1345 	SET_EHT_MAX_NSS(160, val);
1346 	if (band == NL80211_BAND_6GHZ)
1347 		SET_EHT_MAX_NSS(320, val);
1348 #undef SET_EHT_MAX_NSS
1349 
1350 	if (iftype != NL80211_IFTYPE_AP)
1351 		return;
1352 
1353 	eht_cap_elem->phy_cap_info[3] |=
1354 		IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
1355 		IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK;
1356 
1357 	eht_cap_elem->phy_cap_info[7] =
1358 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
1359 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
1360 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
1361 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ;
1362 
1363 	if (band != NL80211_BAND_6GHZ)
1364 		return;
1365 
1366 	eht_cap_elem->phy_cap_info[7] |=
1367 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
1368 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
1369 }
1370 
1371 static void
1372 __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy,
1373 				struct ieee80211_supported_band *sband,
1374 				enum nl80211_band band)
1375 {
1376 	struct ieee80211_sband_iftype_data *data = phy->iftype[band];
1377 	int i, n = 0;
1378 
1379 	for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
1380 		switch (i) {
1381 		case NL80211_IFTYPE_STATION:
1382 		case NL80211_IFTYPE_AP:
1383 #ifdef CONFIG_MAC80211_MESH
1384 		case NL80211_IFTYPE_MESH_POINT:
1385 #endif
1386 			break;
1387 		default:
1388 			continue;
1389 		}
1390 
1391 		data[n].types_mask = BIT(i);
1392 		mt7996_init_he_caps(phy, band, &data[n], i);
1393 		mt7996_init_eht_caps(phy, band, &data[n], i);
1394 
1395 		n++;
1396 	}
1397 
1398 	_ieee80211_set_sband_iftype_data(sband, data, n);
1399 }
1400 
1401 void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy)
1402 {
1403 	if (phy->mt76->cap.has_2ghz)
1404 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband,
1405 						NL80211_BAND_2GHZ);
1406 
1407 	if (phy->mt76->cap.has_5ghz)
1408 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband,
1409 						NL80211_BAND_5GHZ);
1410 
1411 	if (phy->mt76->cap.has_6ghz)
1412 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband,
1413 						NL80211_BAND_6GHZ);
1414 }
1415 
1416 int mt7996_register_device(struct mt7996_dev *dev)
1417 {
1418 	struct ieee80211_hw *hw = mt76_hw(dev);
1419 	int ret;
1420 
1421 	dev->phy.dev = dev;
1422 	dev->phy.mt76 = &dev->mt76.phy;
1423 	dev->mt76.phy.priv = &dev->phy;
1424 	INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work);
1425 	INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work);
1426 	INIT_LIST_HEAD(&dev->sta_rc_list);
1427 	INIT_LIST_HEAD(&dev->twt_list);
1428 
1429 	init_waitqueue_head(&dev->reset_wait);
1430 	INIT_WORK(&dev->reset_work, mt7996_mac_reset_work);
1431 	INIT_WORK(&dev->dump_work, mt7996_mac_dump_work);
1432 	mutex_init(&dev->dump_mutex);
1433 
1434 	ret = mt7996_init_hardware(dev);
1435 	if (ret)
1436 		return ret;
1437 
1438 	mt7996_init_wiphy(hw, &dev->mt76.mmio.wed);
1439 
1440 	ret = mt76_register_device(&dev->mt76, true, mt76_rates,
1441 				   ARRAY_SIZE(mt76_rates));
1442 	if (ret)
1443 		return ret;
1444 
1445 	ret = mt7996_thermal_init(&dev->phy);
1446 	if (ret)
1447 		return ret;
1448 
1449 	ret = mt7996_register_phy(dev, mt7996_phy2(dev), MT_BAND1);
1450 	if (ret)
1451 		return ret;
1452 
1453 	ret = mt7996_register_phy(dev, mt7996_phy3(dev), MT_BAND2);
1454 	if (ret)
1455 		return ret;
1456 
1457 	ieee80211_queue_work(mt76_hw(dev), &dev->init_work);
1458 
1459 	dev->recovery.hw_init_done = true;
1460 
1461 	ret = mt7996_init_debugfs(&dev->phy);
1462 	if (ret)
1463 		goto error;
1464 
1465 	ret = mt7996_coredump_register(dev);
1466 	if (ret)
1467 		goto error;
1468 
1469 	return 0;
1470 
1471 error:
1472 	cancel_work_sync(&dev->init_work);
1473 
1474 	return ret;
1475 }
1476 
1477 void mt7996_unregister_device(struct mt7996_dev *dev)
1478 {
1479 	cancel_work_sync(&dev->wed_rro.work);
1480 	mt7996_unregister_phy(mt7996_phy3(dev), MT_BAND2);
1481 	mt7996_unregister_phy(mt7996_phy2(dev), MT_BAND1);
1482 	mt7996_unregister_thermal(&dev->phy);
1483 	mt7996_coredump_unregister(dev);
1484 	mt76_unregister_device(&dev->mt76);
1485 	mt7996_wed_rro_free(dev);
1486 	mt7996_mcu_exit(dev);
1487 	mt7996_tx_token_put(dev);
1488 	mt7996_dma_cleanup(dev);
1489 	tasklet_disable(&dev->mt76.irq_tasklet);
1490 
1491 	mt76_free_device(&dev->mt76);
1492 }
1493