xref: /linux/drivers/net/wireless/mediatek/mt76/mt7996/init.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2022 MediaTek Inc.
4  */
5 
6 #include <linux/etherdevice.h>
7 #include <linux/of.h>
8 #include <linux/hwmon.h>
9 #include <linux/hwmon-sysfs.h>
10 #include <linux/thermal.h>
11 #include "mt7996.h"
12 #include "mac.h"
13 #include "mcu.h"
14 #include "coredump.h"
15 #include "eeprom.h"
16 
17 static const struct ieee80211_iface_limit if_limits[] = {
18 	{
19 		.max = 1,
20 		.types = BIT(NL80211_IFTYPE_ADHOC)
21 	}, {
22 		.max = 16,
23 		.types = BIT(NL80211_IFTYPE_AP)
24 #ifdef CONFIG_MAC80211_MESH
25 			 | BIT(NL80211_IFTYPE_MESH_POINT)
26 #endif
27 	}, {
28 		.max = MT7996_MAX_INTERFACES,
29 		.types = BIT(NL80211_IFTYPE_STATION)
30 	}
31 };
32 
33 static const struct ieee80211_iface_combination if_comb[] = {
34 	{
35 		.limits = if_limits,
36 		.n_limits = ARRAY_SIZE(if_limits),
37 		.max_interfaces = MT7996_MAX_INTERFACES,
38 		.num_different_channels = 1,
39 		.beacon_int_infra_match = true,
40 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
41 				       BIT(NL80211_CHAN_WIDTH_20) |
42 				       BIT(NL80211_CHAN_WIDTH_40) |
43 				       BIT(NL80211_CHAN_WIDTH_80) |
44 				       BIT(NL80211_CHAN_WIDTH_160),
45 		.beacon_int_min_gcd = 100,
46 	}
47 };
48 
49 static ssize_t mt7996_thermal_temp_show(struct device *dev,
50 					struct device_attribute *attr,
51 					char *buf)
52 {
53 	struct mt7996_phy *phy = dev_get_drvdata(dev);
54 	int i = to_sensor_dev_attr(attr)->index;
55 	int temperature;
56 
57 	switch (i) {
58 	case 0:
59 		temperature = mt7996_mcu_get_temperature(phy);
60 		if (temperature < 0)
61 			return temperature;
62 		/* display in millidegree celcius */
63 		return sprintf(buf, "%u\n", temperature * 1000);
64 	case 1:
65 	case 2:
66 		return sprintf(buf, "%u\n",
67 			       phy->throttle_temp[i - 1] * 1000);
68 	case 3:
69 		return sprintf(buf, "%hhu\n", phy->throttle_state);
70 	default:
71 		return -EINVAL;
72 	}
73 }
74 
75 static ssize_t mt7996_thermal_temp_store(struct device *dev,
76 					 struct device_attribute *attr,
77 					 const char *buf, size_t count)
78 {
79 	struct mt7996_phy *phy = dev_get_drvdata(dev);
80 	int ret, i = to_sensor_dev_attr(attr)->index;
81 	long val;
82 
83 	ret = kstrtol(buf, 10, &val);
84 	if (ret < 0)
85 		return ret;
86 
87 	mutex_lock(&phy->dev->mt76.mutex);
88 	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 40, 130);
89 
90 	/* add a safety margin ~10 */
91 	if ((i - 1 == MT7996_CRIT_TEMP_IDX &&
92 	     val > phy->throttle_temp[MT7996_MAX_TEMP_IDX] - 10) ||
93 	    (i - 1 == MT7996_MAX_TEMP_IDX &&
94 	     val - 10 < phy->throttle_temp[MT7996_CRIT_TEMP_IDX])) {
95 		dev_err(phy->dev->mt76.dev,
96 			"temp1_max shall be 10 degrees higher than temp1_crit.");
97 		mutex_unlock(&phy->dev->mt76.mutex);
98 		return -EINVAL;
99 	}
100 
101 	phy->throttle_temp[i - 1] = val;
102 	mutex_unlock(&phy->dev->mt76.mutex);
103 
104 	ret = mt7996_mcu_set_thermal_protect(phy, true);
105 	if (ret)
106 		return ret;
107 
108 	return count;
109 }
110 
111 static SENSOR_DEVICE_ATTR_RO(temp1_input, mt7996_thermal_temp, 0);
112 static SENSOR_DEVICE_ATTR_RW(temp1_crit, mt7996_thermal_temp, 1);
113 static SENSOR_DEVICE_ATTR_RW(temp1_max, mt7996_thermal_temp, 2);
114 static SENSOR_DEVICE_ATTR_RO(throttle1, mt7996_thermal_temp, 3);
115 
116 static struct attribute *mt7996_hwmon_attrs[] = {
117 	&sensor_dev_attr_temp1_input.dev_attr.attr,
118 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
119 	&sensor_dev_attr_temp1_max.dev_attr.attr,
120 	&sensor_dev_attr_throttle1.dev_attr.attr,
121 	NULL,
122 };
123 ATTRIBUTE_GROUPS(mt7996_hwmon);
124 
125 static int
126 mt7996_thermal_get_max_throttle_state(struct thermal_cooling_device *cdev,
127 				      unsigned long *state)
128 {
129 	*state = MT7996_CDEV_THROTTLE_MAX;
130 
131 	return 0;
132 }
133 
134 static int
135 mt7996_thermal_get_cur_throttle_state(struct thermal_cooling_device *cdev,
136 				      unsigned long *state)
137 {
138 	struct mt7996_phy *phy = cdev->devdata;
139 
140 	*state = phy->cdev_state;
141 
142 	return 0;
143 }
144 
145 static int
146 mt7996_thermal_set_cur_throttle_state(struct thermal_cooling_device *cdev,
147 				      unsigned long state)
148 {
149 	struct mt7996_phy *phy = cdev->devdata;
150 	u8 throttling = MT7996_THERMAL_THROTTLE_MAX - state;
151 	int ret;
152 
153 	if (state > MT7996_CDEV_THROTTLE_MAX) {
154 		dev_err(phy->dev->mt76.dev,
155 			"please specify a valid throttling state\n");
156 		return -EINVAL;
157 	}
158 
159 	if (state == phy->cdev_state)
160 		return 0;
161 
162 	/* cooling_device convention: 0 = no cooling, more = more cooling
163 	 * mcu convention: 1 = max cooling, more = less cooling
164 	 */
165 	ret = mt7996_mcu_set_thermal_throttling(phy, throttling);
166 	if (ret)
167 		return ret;
168 
169 	phy->cdev_state = state;
170 
171 	return 0;
172 }
173 
174 static const struct thermal_cooling_device_ops mt7996_thermal_ops = {
175 	.get_max_state = mt7996_thermal_get_max_throttle_state,
176 	.get_cur_state = mt7996_thermal_get_cur_throttle_state,
177 	.set_cur_state = mt7996_thermal_set_cur_throttle_state,
178 };
179 
180 static void mt7996_unregister_thermal(struct mt7996_phy *phy)
181 {
182 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
183 
184 	if (!phy->cdev)
185 		return;
186 
187 	sysfs_remove_link(&wiphy->dev.kobj, "cooling_device");
188 	thermal_cooling_device_unregister(phy->cdev);
189 }
190 
191 static int mt7996_thermal_init(struct mt7996_phy *phy)
192 {
193 	struct wiphy *wiphy = phy->mt76->hw->wiphy;
194 	struct thermal_cooling_device *cdev;
195 	struct device *hwmon;
196 	const char *name;
197 
198 	name = devm_kasprintf(&wiphy->dev, GFP_KERNEL, "mt7996_%s",
199 			      wiphy_name(wiphy));
200 
201 	cdev = thermal_cooling_device_register(name, phy, &mt7996_thermal_ops);
202 	if (!IS_ERR(cdev)) {
203 		if (sysfs_create_link(&wiphy->dev.kobj, &cdev->device.kobj,
204 				      "cooling_device") < 0)
205 			thermal_cooling_device_unregister(cdev);
206 		else
207 			phy->cdev = cdev;
208 	}
209 
210 	/* initialize critical/maximum high temperature */
211 	phy->throttle_temp[MT7996_CRIT_TEMP_IDX] = MT7996_CRIT_TEMP;
212 	phy->throttle_temp[MT7996_MAX_TEMP_IDX] = MT7996_MAX_TEMP;
213 
214 	if (!IS_REACHABLE(CONFIG_HWMON))
215 		return 0;
216 
217 	hwmon = devm_hwmon_device_register_with_groups(&wiphy->dev, name, phy,
218 						       mt7996_hwmon_groups);
219 
220 	if (IS_ERR(hwmon))
221 		return PTR_ERR(hwmon);
222 
223 	return 0;
224 }
225 
226 static void mt7996_led_set_config(struct led_classdev *led_cdev,
227 				  u8 delay_on, u8 delay_off)
228 {
229 	struct mt7996_dev *dev;
230 	struct mt76_phy *mphy;
231 	u32 val;
232 
233 	mphy = container_of(led_cdev, struct mt76_phy, leds.cdev);
234 	dev = container_of(mphy->dev, struct mt7996_dev, mt76);
235 
236 	/* select TX blink mode, 2: only data frames */
237 	mt76_rmw_field(dev, MT_TMAC_TCR0(mphy->band_idx), MT_TMAC_TCR0_TX_BLINK, 2);
238 
239 	/* enable LED */
240 	mt76_wr(dev, MT_LED_EN(mphy->band_idx), 1);
241 
242 	/* set LED Tx blink on/off time */
243 	val = FIELD_PREP(MT_LED_TX_BLINK_ON_MASK, delay_on) |
244 	      FIELD_PREP(MT_LED_TX_BLINK_OFF_MASK, delay_off);
245 	mt76_wr(dev, MT_LED_TX_BLINK(mphy->band_idx), val);
246 
247 	/* turn LED off */
248 	if (delay_off == 0xff && delay_on == 0x0) {
249 		val = MT_LED_CTRL_POLARITY | MT_LED_CTRL_KICK;
250 	} else {
251 		/* control LED */
252 		val = MT_LED_CTRL_BLINK_MODE | MT_LED_CTRL_KICK;
253 		if (mphy->band_idx == MT_BAND1)
254 			val |= MT_LED_CTRL_BLINK_BAND_SEL;
255 	}
256 
257 	if (mphy->leds.al)
258 		val |= MT_LED_CTRL_POLARITY;
259 
260 	mt76_wr(dev, MT_LED_CTRL(mphy->band_idx), val);
261 	mt76_clear(dev, MT_LED_CTRL(mphy->band_idx), MT_LED_CTRL_KICK);
262 }
263 
264 static int mt7996_led_set_blink(struct led_classdev *led_cdev,
265 				unsigned long *delay_on,
266 				unsigned long *delay_off)
267 {
268 	u16 delta_on = 0, delta_off = 0;
269 
270 #define HW_TICK		10
271 #define TO_HW_TICK(_t)	(((_t) > HW_TICK) ? ((_t) / HW_TICK) : HW_TICK)
272 
273 	if (*delay_on)
274 		delta_on = TO_HW_TICK(*delay_on);
275 	if (*delay_off)
276 		delta_off = TO_HW_TICK(*delay_off);
277 
278 	mt7996_led_set_config(led_cdev, delta_on, delta_off);
279 
280 	return 0;
281 }
282 
283 static void mt7996_led_set_brightness(struct led_classdev *led_cdev,
284 				      enum led_brightness brightness)
285 {
286 	if (!brightness)
287 		mt7996_led_set_config(led_cdev, 0, 0xff);
288 	else
289 		mt7996_led_set_config(led_cdev, 0xff, 0);
290 }
291 
292 static void __mt7996_init_txpower(struct mt7996_phy *phy,
293 				  struct ieee80211_supported_band *sband)
294 {
295 	struct mt7996_dev *dev = phy->dev;
296 	int i, nss = hweight16(phy->mt76->chainmask);
297 	int nss_delta = mt76_tx_power_nss_delta(nss);
298 	int pwr_delta = mt7996_eeprom_get_power_delta(dev, sband->band);
299 	struct mt76_power_limits limits;
300 
301 	for (i = 0; i < sband->n_channels; i++) {
302 		struct ieee80211_channel *chan = &sband->channels[i];
303 		int target_power = mt7996_eeprom_get_target_power(dev, chan);
304 
305 		target_power += pwr_delta;
306 		target_power = mt76_get_rate_power_limits(phy->mt76, chan,
307 							  &limits,
308 							  target_power);
309 		target_power += nss_delta;
310 		target_power = DIV_ROUND_UP(target_power, 2);
311 		chan->max_power = min_t(int, chan->max_reg_power,
312 					target_power);
313 		chan->orig_mpwr = target_power;
314 	}
315 }
316 
317 void mt7996_init_txpower(struct mt7996_phy *phy)
318 {
319 	if (!phy)
320 		return;
321 
322 	if (phy->mt76->cap.has_2ghz)
323 		__mt7996_init_txpower(phy, &phy->mt76->sband_2g.sband);
324 	if (phy->mt76->cap.has_5ghz)
325 		__mt7996_init_txpower(phy, &phy->mt76->sband_5g.sband);
326 	if (phy->mt76->cap.has_6ghz)
327 		__mt7996_init_txpower(phy, &phy->mt76->sband_6g.sband);
328 }
329 
330 static void
331 mt7996_regd_notifier(struct wiphy *wiphy,
332 		     struct regulatory_request *request)
333 {
334 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
335 	struct mt7996_dev *dev = mt7996_hw_dev(hw);
336 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
337 
338 	memcpy(dev->mt76.alpha2, request->alpha2, sizeof(dev->mt76.alpha2));
339 	dev->mt76.region = request->dfs_region;
340 
341 	if (dev->mt76.region == NL80211_DFS_UNSET)
342 		mt7996_mcu_rdd_background_enable(phy, NULL);
343 
344 	mt7996_init_txpower(phy);
345 
346 	phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
347 	mt7996_dfs_init_radar_detector(phy);
348 }
349 
350 static void
351 mt7996_init_wiphy(struct ieee80211_hw *hw, struct mtk_wed_device *wed)
352 {
353 	struct mt7996_phy *phy = mt7996_hw_phy(hw);
354 	struct mt76_dev *mdev = &phy->dev->mt76;
355 	struct wiphy *wiphy = hw->wiphy;
356 	u16 max_subframes = phy->dev->has_eht ? IEEE80211_MAX_AMPDU_BUF_EHT :
357 						IEEE80211_MAX_AMPDU_BUF_HE;
358 
359 	hw->queues = 4;
360 	hw->max_rx_aggregation_subframes = max_subframes;
361 	hw->max_tx_aggregation_subframes = max_subframes;
362 	hw->netdev_features = NETIF_F_RXCSUM;
363 	if (mtk_wed_device_active(wed))
364 		hw->netdev_features |= NETIF_F_HW_TC;
365 
366 	hw->radiotap_timestamp.units_pos =
367 		IEEE80211_RADIOTAP_TIMESTAMP_UNIT_US;
368 
369 	phy->slottime = 9;
370 	phy->beacon_rate = -1;
371 
372 	hw->sta_data_size = sizeof(struct mt7996_sta);
373 	hw->vif_data_size = sizeof(struct mt7996_vif);
374 
375 	wiphy->iface_combinations = if_comb;
376 	wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
377 	wiphy->reg_notifier = mt7996_regd_notifier;
378 	wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
379 	wiphy->mbssid_max_interfaces = 16;
380 
381 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BSS_COLOR);
382 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
383 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_LEGACY);
384 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HT);
385 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_VHT);
386 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_BEACON_RATE_HE);
387 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
388 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY);
389 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
390 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
391 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_MU_MIMO_AIR_SNIFFER);
392 
393 	if (!mdev->dev->of_node ||
394 	    !of_property_read_bool(mdev->dev->of_node,
395 				   "mediatek,disable-radar-background"))
396 		wiphy_ext_feature_set(wiphy,
397 				      NL80211_EXT_FEATURE_RADAR_BACKGROUND);
398 
399 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
400 	ieee80211_hw_set(hw, SUPPORTS_TX_ENCAP_OFFLOAD);
401 	ieee80211_hw_set(hw, SUPPORTS_RX_DECAP_OFFLOAD);
402 	ieee80211_hw_set(hw, WANT_MONITOR_VIF);
403 	ieee80211_hw_set(hw, SUPPORTS_MULTI_BSSID);
404 
405 	hw->max_tx_fragments = 4;
406 
407 	if (phy->mt76->cap.has_2ghz) {
408 		phy->mt76->sband_2g.sband.ht_cap.cap |=
409 			IEEE80211_HT_CAP_LDPC_CODING |
410 			IEEE80211_HT_CAP_MAX_AMSDU;
411 		phy->mt76->sband_2g.sband.ht_cap.ampdu_density =
412 			IEEE80211_HT_MPDU_DENSITY_2;
413 	}
414 
415 	if (phy->mt76->cap.has_5ghz) {
416 		phy->mt76->sband_5g.sband.ht_cap.cap |=
417 			IEEE80211_HT_CAP_LDPC_CODING |
418 			IEEE80211_HT_CAP_MAX_AMSDU;
419 
420 		phy->mt76->sband_5g.sband.vht_cap.cap |=
421 			IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
422 			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
423 			IEEE80211_VHT_CAP_SHORT_GI_160 |
424 			IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ;
425 		phy->mt76->sband_5g.sband.ht_cap.ampdu_density =
426 			IEEE80211_HT_MPDU_DENSITY_1;
427 
428 		ieee80211_hw_set(hw, SUPPORTS_VHT_EXT_NSS_BW);
429 	}
430 
431 	/* init led callbacks */
432 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
433 		phy->mt76->leds.cdev.brightness_set = mt7996_led_set_brightness;
434 		phy->mt76->leds.cdev.blink_set = mt7996_led_set_blink;
435 	}
436 
437 	mt76_set_stream_caps(phy->mt76, true);
438 	mt7996_set_stream_vht_txbf_caps(phy);
439 	mt7996_set_stream_he_eht_caps(phy);
440 	mt7996_init_txpower(phy);
441 
442 	wiphy->available_antennas_rx = phy->mt76->antenna_mask;
443 	wiphy->available_antennas_tx = phy->mt76->antenna_mask;
444 }
445 
446 static void
447 mt7996_mac_init_band(struct mt7996_dev *dev, u8 band)
448 {
449 	u32 mask, set;
450 
451 	/* clear estimated value of EIFS for Rx duration & OBSS time */
452 	mt76_wr(dev, MT_WF_RMAC_RSVD0(band), MT_WF_RMAC_RSVD0_EIFS_CLR);
453 
454 	/* clear backoff time for Rx duration  */
455 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME1(band),
456 		   MT_WF_RMAC_MIB_NONQOSD_BACKOFF);
457 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME3(band),
458 		   MT_WF_RMAC_MIB_QOS01_BACKOFF);
459 	mt76_clear(dev, MT_WF_RMAC_MIB_AIRTIME4(band),
460 		   MT_WF_RMAC_MIB_QOS23_BACKOFF);
461 
462 	/* clear backoff time and set software compensation for OBSS time */
463 	mask = MT_WF_RMAC_MIB_OBSS_BACKOFF | MT_WF_RMAC_MIB_ED_OFFSET;
464 	set = FIELD_PREP(MT_WF_RMAC_MIB_OBSS_BACKOFF, 0) |
465 	      FIELD_PREP(MT_WF_RMAC_MIB_ED_OFFSET, 4);
466 	mt76_rmw(dev, MT_WF_RMAC_MIB_AIRTIME0(band), mask, set);
467 
468 	/* filter out non-resp frames and get instanstaeous signal reporting */
469 	mask = MT_WTBLOFF_RSCR_RCPI_MODE | MT_WTBLOFF_RSCR_RCPI_PARAM;
470 	set = FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_MODE, 0) |
471 	      FIELD_PREP(MT_WTBLOFF_RSCR_RCPI_PARAM, 0x3);
472 	mt76_rmw(dev, MT_WTBLOFF_RSCR(band), mask, set);
473 
474 	/* MT_TXD5_TX_STATUS_HOST (MPDU format) has higher priority than
475 	 * MT_AGG_ACR_PPDU_TXS2H (PPDU format) even though ACR bit is set.
476 	 */
477 	mt76_set(dev, MT_AGG_ACR4(band), MT_AGG_ACR_PPDU_TXS2H);
478 }
479 
480 static void mt7996_mac_init_basic_rates(struct mt7996_dev *dev)
481 {
482 	int i;
483 
484 	for (i = 0; i < ARRAY_SIZE(mt76_rates); i++) {
485 		u16 rate = mt76_rates[i].hw_value;
486 		/* odd index for driver, even index for firmware */
487 		u16 idx = MT7996_BASIC_RATES_TBL + 2 * i;
488 
489 		rate = FIELD_PREP(MT_TX_RATE_MODE, rate >> 8) |
490 		       FIELD_PREP(MT_TX_RATE_IDX, rate & GENMASK(7, 0));
491 		mt7996_mcu_set_fixed_rate_table(&dev->phy, idx, rate, false);
492 	}
493 }
494 
495 void mt7996_mac_init(struct mt7996_dev *dev)
496 {
497 #define HIF_TXD_V2_1	0x21
498 	int i;
499 
500 	mt76_clear(dev, MT_MDP_DCR2, MT_MDP_DCR2_RX_TRANS_SHORT);
501 
502 	for (i = 0; i < mt7996_wtbl_size(dev); i++)
503 		mt7996_mac_wtbl_update(dev, i,
504 				       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
505 
506 	if (IS_ENABLED(CONFIG_MT76_LEDS)) {
507 		i = dev->mphy.leds.pin ? MT_LED_GPIO_MUX3 : MT_LED_GPIO_MUX2;
508 		mt76_rmw_field(dev, i, MT_LED_GPIO_SEL_MASK, 4);
509 	}
510 
511 	/* rro module init */
512 	if (is_mt7996(&dev->mt76))
513 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE, 2);
514 	else
515 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_PLATFORM_TYPE,
516 				   dev->hif2 ? 7 : 0);
517 
518 	if (dev->has_rro) {
519 		u16 timeout;
520 
521 		timeout = mt76_rr(dev, MT_HW_REV) == MT_HW_REV1 ? 512 : 128;
522 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_FLUSH_TIMEOUT, timeout);
523 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 1);
524 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 0);
525 	} else {
526 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_BYPASS_MODE, 3);
527 		mt7996_mcu_set_rro(dev, UNI_RRO_SET_TXFREE_PATH, 1);
528 	}
529 
530 	mt7996_mcu_wa_cmd(dev, MCU_WA_PARAM_CMD(SET),
531 			  MCU_WA_PARAM_HW_PATH_HIF_VER,
532 			  HIF_TXD_V2_1, 0);
533 
534 	for (i = MT_BAND0; i <= MT_BAND2; i++)
535 		mt7996_mac_init_band(dev, i);
536 
537 	mt7996_mac_init_basic_rates(dev);
538 }
539 
540 int mt7996_txbf_init(struct mt7996_dev *dev)
541 {
542 	int ret;
543 
544 	if (mt7996_band_valid(dev, MT_BAND1) ||
545 	    mt7996_band_valid(dev, MT_BAND2)) {
546 		ret = mt7996_mcu_set_txbf(dev, BF_MOD_EN_CTRL);
547 		if (ret)
548 			return ret;
549 	}
550 
551 	/* trigger sounding packets */
552 	ret = mt7996_mcu_set_txbf(dev, BF_SOUNDING_ON);
553 	if (ret)
554 		return ret;
555 
556 	/* enable eBF */
557 	return mt7996_mcu_set_txbf(dev, BF_HW_EN_UPDATE);
558 }
559 
560 static int mt7996_register_phy(struct mt7996_dev *dev, struct mt7996_phy *phy,
561 			       enum mt76_band_id band)
562 {
563 	struct mt76_phy *mphy;
564 	u32 mac_ofs, hif1_ofs = 0;
565 	int ret;
566 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
567 
568 	if (!mt7996_band_valid(dev, band) || band == MT_BAND0)
569 		return 0;
570 
571 	if (phy)
572 		return 0;
573 
574 	if (is_mt7996(&dev->mt76) && band == MT_BAND2 && dev->hif2) {
575 		hif1_ofs = MT_WFDMA0_PCIE1(0) - MT_WFDMA0(0);
576 		wed = &dev->mt76.mmio.wed_hif2;
577 	}
578 
579 	mphy = mt76_alloc_phy(&dev->mt76, sizeof(*phy), &mt7996_ops, band);
580 	if (!mphy)
581 		return -ENOMEM;
582 
583 	phy = mphy->priv;
584 	phy->dev = dev;
585 	phy->mt76 = mphy;
586 	mphy->dev->phys[band] = mphy;
587 
588 	INIT_DELAYED_WORK(&mphy->mac_work, mt7996_mac_work);
589 
590 	ret = mt7996_eeprom_parse_hw_cap(dev, phy);
591 	if (ret)
592 		goto error;
593 
594 	mac_ofs = band == MT_BAND2 ? MT_EE_MAC_ADDR3 : MT_EE_MAC_ADDR2;
595 	memcpy(mphy->macaddr, dev->mt76.eeprom.data + mac_ofs, ETH_ALEN);
596 	/* Make the extra PHY MAC address local without overlapping with
597 	 * the usual MAC address allocation scheme on multiple virtual interfaces
598 	 */
599 	if (!is_valid_ether_addr(mphy->macaddr)) {
600 		memcpy(mphy->macaddr, dev->mt76.eeprom.data + MT_EE_MAC_ADDR,
601 		       ETH_ALEN);
602 		mphy->macaddr[0] |= 2;
603 		mphy->macaddr[0] ^= BIT(7);
604 		if (band == MT_BAND2)
605 			mphy->macaddr[0] ^= BIT(6);
606 	}
607 	mt76_eeprom_override(mphy);
608 
609 	/* init wiphy according to mphy and phy */
610 	mt7996_init_wiphy(mphy->hw, wed);
611 	ret = mt7996_init_tx_queues(mphy->priv,
612 				    MT_TXQ_ID(band),
613 				    MT7996_TX_RING_SIZE,
614 				    MT_TXQ_RING_BASE(band) + hif1_ofs,
615 				    wed);
616 	if (ret)
617 		goto error;
618 
619 	ret = mt76_register_phy(mphy, true, mt76_rates,
620 				ARRAY_SIZE(mt76_rates));
621 	if (ret)
622 		goto error;
623 
624 	ret = mt7996_thermal_init(phy);
625 	if (ret)
626 		goto error;
627 
628 	ret = mt7996_init_debugfs(phy);
629 	if (ret)
630 		goto error;
631 
632 	if (wed == &dev->mt76.mmio.wed_hif2 && mtk_wed_device_active(wed)) {
633 		u32 irq_mask = dev->mt76.mmio.irqmask | MT_INT_TX_DONE_BAND2;
634 
635 		mt76_wr(dev, MT_INT1_MASK_CSR, irq_mask);
636 		mtk_wed_device_start(&dev->mt76.mmio.wed_hif2, irq_mask);
637 	}
638 
639 	return 0;
640 
641 error:
642 	mphy->dev->phys[band] = NULL;
643 	ieee80211_free_hw(mphy->hw);
644 	return ret;
645 }
646 
647 static void
648 mt7996_unregister_phy(struct mt7996_phy *phy, enum mt76_band_id band)
649 {
650 	struct mt76_phy *mphy;
651 
652 	if (!phy)
653 		return;
654 
655 	mt7996_unregister_thermal(phy);
656 
657 	mphy = phy->dev->mt76.phys[band];
658 	mt76_unregister_phy(mphy);
659 	ieee80211_free_hw(mphy->hw);
660 	phy->dev->mt76.phys[band] = NULL;
661 }
662 
663 static void mt7996_init_work(struct work_struct *work)
664 {
665 	struct mt7996_dev *dev = container_of(work, struct mt7996_dev,
666 				 init_work);
667 
668 	mt7996_mcu_set_eeprom(dev);
669 	mt7996_mac_init(dev);
670 	mt7996_txbf_init(dev);
671 }
672 
673 void mt7996_wfsys_reset(struct mt7996_dev *dev)
674 {
675 	mt76_set(dev, MT_WF_SUBSYS_RST, 0x1);
676 	msleep(20);
677 
678 	mt76_clear(dev, MT_WF_SUBSYS_RST, 0x1);
679 	msleep(20);
680 }
681 
682 static int mt7996_wed_rro_init(struct mt7996_dev *dev)
683 {
684 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
685 	struct mtk_wed_device *wed = &dev->mt76.mmio.wed;
686 	u32 reg = MT_RRO_ADDR_ELEM_SEG_ADDR0;
687 	struct mt7996_wed_rro_addr *addr;
688 	void *ptr;
689 	int i;
690 
691 	if (!dev->has_rro)
692 		return 0;
693 
694 	if (!mtk_wed_device_active(wed))
695 		return 0;
696 
697 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
698 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
699 					  MT7996_RRO_BA_BITMAP_CR_SIZE,
700 					  &dev->wed_rro.ba_bitmap[i].phy_addr,
701 					  GFP_KERNEL);
702 		if (!ptr)
703 			return -ENOMEM;
704 
705 		dev->wed_rro.ba_bitmap[i].ptr = ptr;
706 	}
707 
708 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
709 		int j;
710 
711 		ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
712 				MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr),
713 				&dev->wed_rro.addr_elem[i].phy_addr,
714 				GFP_KERNEL);
715 		if (!ptr)
716 			return -ENOMEM;
717 
718 		dev->wed_rro.addr_elem[i].ptr = ptr;
719 		memset(dev->wed_rro.addr_elem[i].ptr, 0,
720 		       MT7996_RRO_WINDOW_MAX_SIZE * sizeof(*addr));
721 
722 		addr = dev->wed_rro.addr_elem[i].ptr;
723 		for (j = 0; j < MT7996_RRO_WINDOW_MAX_SIZE; j++) {
724 			addr->signature = 0xff;
725 			addr++;
726 		}
727 
728 		wed->wlan.ind_cmd.addr_elem_phys[i] =
729 			dev->wed_rro.addr_elem[i].phy_addr;
730 	}
731 
732 	ptr = dmam_alloc_coherent(dev->mt76.dma_dev,
733 				  MT7996_RRO_WINDOW_MAX_LEN * sizeof(*addr),
734 				  &dev->wed_rro.session.phy_addr,
735 				  GFP_KERNEL);
736 	if (!ptr)
737 		return -ENOMEM;
738 
739 	dev->wed_rro.session.ptr = ptr;
740 	addr = dev->wed_rro.session.ptr;
741 	for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
742 		addr->signature = 0xff;
743 		addr++;
744 	}
745 
746 	/* rro hw init */
747 	/* TODO: remove line after WM has set */
748 	mt76_clear(dev, WF_RRO_AXI_MST_CFG, WF_RRO_AXI_MST_CFG_DIDX_OK);
749 
750 	/* setup BA bitmap cache address */
751 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE0,
752 		dev->wed_rro.ba_bitmap[0].phy_addr);
753 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE1, 0);
754 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT0,
755 		dev->wed_rro.ba_bitmap[1].phy_addr);
756 	mt76_wr(dev, MT_RRO_BA_BITMAP_BASE_EXT1, 0);
757 
758 	/* setup Address element address */
759 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
760 		mt76_wr(dev, reg, dev->wed_rro.addr_elem[i].phy_addr >> 4);
761 		reg += 4;
762 	}
763 
764 	/* setup Address element address - separate address segment mode */
765 	mt76_wr(dev, MT_RRO_ADDR_ARRAY_BASE1,
766 		MT_RRO_ADDR_ARRAY_ELEM_ADDR_SEG_MODE);
767 
768 	wed->wlan.ind_cmd.win_size = ffs(MT7996_RRO_WINDOW_MAX_LEN) - 6;
769 	wed->wlan.ind_cmd.particular_sid = MT7996_RRO_MAX_SESSION;
770 	wed->wlan.ind_cmd.particular_se_phys = dev->wed_rro.session.phy_addr;
771 	wed->wlan.ind_cmd.se_group_nums = MT7996_RRO_ADDR_ELEM_LEN;
772 	wed->wlan.ind_cmd.ack_sn_addr = MT_RRO_ACK_SN_CTRL;
773 
774 	mt76_wr(dev, MT_RRO_IND_CMD_SIGNATURE_BASE0, 0x15010e00);
775 	mt76_set(dev, MT_RRO_IND_CMD_SIGNATURE_BASE1,
776 		 MT_RRO_IND_CMD_SIGNATURE_BASE1_EN);
777 
778 	/* particular session configure */
779 	/* use max session idx + 1 as particular session id */
780 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG0, dev->wed_rro.session.phy_addr);
781 	mt76_wr(dev, MT_RRO_PARTICULAR_CFG1,
782 		MT_RRO_PARTICULAR_CONFG_EN |
783 		FIELD_PREP(MT_RRO_PARTICULAR_SID, MT7996_RRO_MAX_SESSION));
784 
785 	/* interrupt enable */
786 	mt76_wr(dev, MT_RRO_HOST_INT_ENA,
787 		MT_RRO_HOST_INT_ENA_HOST_RRO_DONE_ENA);
788 
789 	/* rro ind cmd queue init */
790 	return mt7996_dma_rro_init(dev);
791 #else
792 	return 0;
793 #endif
794 }
795 
796 static void mt7996_wed_rro_free(struct mt7996_dev *dev)
797 {
798 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
799 	int i;
800 
801 	if (!dev->has_rro)
802 		return;
803 
804 	if (!mtk_wed_device_active(&dev->mt76.mmio.wed))
805 		return;
806 
807 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.ba_bitmap); i++) {
808 		if (!dev->wed_rro.ba_bitmap[i].ptr)
809 			continue;
810 
811 		dmam_free_coherent(dev->mt76.dma_dev,
812 				   MT7996_RRO_BA_BITMAP_CR_SIZE,
813 				   dev->wed_rro.ba_bitmap[i].ptr,
814 				   dev->wed_rro.ba_bitmap[i].phy_addr);
815 	}
816 
817 	for (i = 0; i < ARRAY_SIZE(dev->wed_rro.addr_elem); i++) {
818 		if (!dev->wed_rro.addr_elem[i].ptr)
819 			continue;
820 
821 		dmam_free_coherent(dev->mt76.dma_dev,
822 				   MT7996_RRO_WINDOW_MAX_SIZE *
823 				   sizeof(struct mt7996_wed_rro_addr),
824 				   dev->wed_rro.addr_elem[i].ptr,
825 				   dev->wed_rro.addr_elem[i].phy_addr);
826 	}
827 
828 	if (!dev->wed_rro.session.ptr)
829 		return;
830 
831 	dmam_free_coherent(dev->mt76.dma_dev,
832 			   MT7996_RRO_WINDOW_MAX_LEN *
833 			   sizeof(struct mt7996_wed_rro_addr),
834 			   dev->wed_rro.session.ptr,
835 			   dev->wed_rro.session.phy_addr);
836 #endif
837 }
838 
839 static void mt7996_wed_rro_work(struct work_struct *work)
840 {
841 #ifdef CONFIG_NET_MEDIATEK_SOC_WED
842 	struct mt7996_dev *dev;
843 	LIST_HEAD(list);
844 
845 	dev = (struct mt7996_dev *)container_of(work, struct mt7996_dev,
846 						wed_rro.work);
847 
848 	spin_lock_bh(&dev->wed_rro.lock);
849 	list_splice_init(&dev->wed_rro.poll_list, &list);
850 	spin_unlock_bh(&dev->wed_rro.lock);
851 
852 	while (!list_empty(&list)) {
853 		struct mt7996_wed_rro_session_id *e;
854 		int i;
855 
856 		e = list_first_entry(&list, struct mt7996_wed_rro_session_id,
857 				     list);
858 		list_del_init(&e->list);
859 
860 		for (i = 0; i < MT7996_RRO_WINDOW_MAX_LEN; i++) {
861 			void *ptr = dev->wed_rro.session.ptr;
862 			struct mt7996_wed_rro_addr *elem;
863 			u32 idx, elem_id = i;
864 
865 			if (e->id == MT7996_RRO_MAX_SESSION)
866 				goto reset;
867 
868 			idx = e->id / MT7996_RRO_BA_BITMAP_SESSION_SIZE;
869 			if (idx >= ARRAY_SIZE(dev->wed_rro.addr_elem))
870 				goto out;
871 
872 			ptr = dev->wed_rro.addr_elem[idx].ptr;
873 			elem_id +=
874 				(e->id % MT7996_RRO_BA_BITMAP_SESSION_SIZE) *
875 				MT7996_RRO_WINDOW_MAX_LEN;
876 reset:
877 			elem = ptr + elem_id * sizeof(*elem);
878 			elem->signature = 0xff;
879 		}
880 		mt7996_mcu_wed_rro_reset_sessions(dev, e->id);
881 out:
882 		kfree(e);
883 	}
884 #endif
885 }
886 
887 static int mt7996_init_hardware(struct mt7996_dev *dev)
888 {
889 	int ret, idx;
890 
891 	mt76_wr(dev, MT_INT_SOURCE_CSR, ~0);
892 	if (is_mt7992(&dev->mt76)) {
893 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND0), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
894 		mt76_rmw(dev, MT_AFE_CTL_BAND_PLL_03(MT_BAND1), MT_AFE_CTL_BAND_PLL_03_MSB_EN, 0);
895 	}
896 
897 	INIT_WORK(&dev->init_work, mt7996_init_work);
898 	INIT_WORK(&dev->wed_rro.work, mt7996_wed_rro_work);
899 	INIT_LIST_HEAD(&dev->wed_rro.poll_list);
900 	spin_lock_init(&dev->wed_rro.lock);
901 
902 	ret = mt7996_dma_init(dev);
903 	if (ret)
904 		return ret;
905 
906 	set_bit(MT76_STATE_INITIALIZED, &dev->mphy.state);
907 
908 	ret = mt7996_mcu_init(dev);
909 	if (ret)
910 		return ret;
911 
912 	ret = mt7996_wed_rro_init(dev);
913 	if (ret)
914 		return ret;
915 
916 	ret = mt7996_eeprom_init(dev);
917 	if (ret < 0)
918 		return ret;
919 
920 	/* Beacon and mgmt frames should occupy wcid 0 */
921 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, MT7996_WTBL_STA);
922 	if (idx)
923 		return -ENOSPC;
924 
925 	dev->mt76.global_wcid.idx = idx;
926 	dev->mt76.global_wcid.hw_key_idx = -1;
927 	dev->mt76.global_wcid.tx_info |= MT_WCID_TX_INFO_SET;
928 	rcu_assign_pointer(dev->mt76.wcid[idx], &dev->mt76.global_wcid);
929 
930 	return 0;
931 }
932 
933 void mt7996_set_stream_vht_txbf_caps(struct mt7996_phy *phy)
934 {
935 	int sts;
936 	u32 *cap;
937 
938 	if (!phy->mt76->cap.has_5ghz)
939 		return;
940 
941 	sts = hweight16(phy->mt76->chainmask);
942 	cap = &phy->mt76->sband_5g.sband.vht_cap.cap;
943 
944 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
945 		IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
946 
947 	if (is_mt7996(phy->mt76->dev))
948 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 3);
949 	else
950 		*cap |= FIELD_PREP(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK, 4);
951 
952 	*cap &= ~(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK |
953 		  IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
954 		  IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
955 
956 	if (sts < 2)
957 		return;
958 
959 	*cap |= IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE |
960 		IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE |
961 		FIELD_PREP(IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK, sts - 1);
962 }
963 
964 static void
965 mt7996_set_stream_he_txbf_caps(struct mt7996_phy *phy,
966 			       struct ieee80211_sta_he_cap *he_cap, int vif)
967 {
968 	struct ieee80211_he_cap_elem *elem = &he_cap->he_cap_elem;
969 	int sts = hweight16(phy->mt76->chainmask);
970 	u8 c;
971 
972 #ifdef CONFIG_MAC80211_MESH
973 	if (vif == NL80211_IFTYPE_MESH_POINT)
974 		return;
975 #endif
976 
977 	elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
978 	elem->phy_cap_info[4] &= ~IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
979 
980 	c = IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK |
981 	    IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK;
982 	elem->phy_cap_info[5] &= ~c;
983 
984 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
985 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
986 	elem->phy_cap_info[6] &= ~c;
987 
988 	elem->phy_cap_info[7] &= ~IEEE80211_HE_PHY_CAP7_MAX_NC_MASK;
989 
990 	c = IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
991 	    IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
992 	    IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
993 	elem->phy_cap_info[2] |= c;
994 
995 	c = IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE;
996 
997 	if (is_mt7996(phy->mt76->dev))
998 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 |
999 		     IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4;
1000 	else
1001 		c |= IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 |
1002 		     IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5;
1003 
1004 	elem->phy_cap_info[4] |= c;
1005 
1006 	/* do not support NG16 due to spec D4.0 changes subcarrier idx */
1007 	c = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU |
1008 	    IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU;
1009 
1010 	if (vif == NL80211_IFTYPE_STATION)
1011 		c |= IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
1012 
1013 	elem->phy_cap_info[6] |= c;
1014 
1015 	if (sts < 2)
1016 		return;
1017 
1018 	/* the maximum cap is 4 x 3, (Nr, Nc) = (3, 2) */
1019 	elem->phy_cap_info[7] |= min_t(int, sts - 1, 2) << 3;
1020 
1021 	if (!(vif == NL80211_IFTYPE_AP || vif == NL80211_IFTYPE_STATION))
1022 		return;
1023 
1024 	elem->phy_cap_info[3] |= IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER;
1025 
1026 	c = FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK,
1027 		       sts - 1) |
1028 	    FIELD_PREP(IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK,
1029 		       sts - 1);
1030 	elem->phy_cap_info[5] |= c;
1031 
1032 	if (vif != NL80211_IFTYPE_AP)
1033 		return;
1034 
1035 	elem->phy_cap_info[4] |= IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
1036 
1037 	c = IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
1038 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB;
1039 	elem->phy_cap_info[6] |= c;
1040 
1041 	c = IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
1042 	    IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1043 	elem->phy_cap_info[7] |= c;
1044 }
1045 
1046 static void
1047 mt7996_init_he_caps(struct mt7996_phy *phy, enum nl80211_band band,
1048 		    struct ieee80211_sband_iftype_data *data,
1049 		    enum nl80211_iftype iftype)
1050 {
1051 	struct ieee80211_sta_he_cap *he_cap = &data->he_cap;
1052 	struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem;
1053 	struct ieee80211_he_mcs_nss_supp *he_mcs = &he_cap->he_mcs_nss_supp;
1054 	int i, nss = hweight8(phy->mt76->antenna_mask);
1055 	u16 mcs_map = 0;
1056 
1057 	for (i = 0; i < 8; i++) {
1058 		if (i < nss)
1059 			mcs_map |= (IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2));
1060 		else
1061 			mcs_map |= (IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2));
1062 	}
1063 
1064 	he_cap->has_he = true;
1065 
1066 	he_cap_elem->mac_cap_info[0] = IEEE80211_HE_MAC_CAP0_HTC_HE;
1067 	he_cap_elem->mac_cap_info[3] = IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
1068 				       IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
1069 	he_cap_elem->mac_cap_info[4] = IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU;
1070 
1071 	if (band == NL80211_BAND_2GHZ)
1072 		he_cap_elem->phy_cap_info[0] =
1073 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
1074 	else
1075 		he_cap_elem->phy_cap_info[0] =
1076 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
1077 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1078 
1079 	he_cap_elem->phy_cap_info[1] = IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD;
1080 	he_cap_elem->phy_cap_info[2] = IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ |
1081 				       IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1082 
1083 	switch (iftype) {
1084 	case NL80211_IFTYPE_AP:
1085 		he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_RES;
1086 		he_cap_elem->mac_cap_info[2] |= IEEE80211_HE_MAC_CAP2_BSR;
1087 		he_cap_elem->mac_cap_info[4] |= IEEE80211_HE_MAC_CAP4_BQR;
1088 		he_cap_elem->mac_cap_info[5] |=
1089 			IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX;
1090 		he_cap_elem->phy_cap_info[3] |=
1091 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1092 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1093 		he_cap_elem->phy_cap_info[6] |=
1094 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1095 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1096 		he_cap_elem->phy_cap_info[9] |=
1097 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1098 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1099 		break;
1100 	case NL80211_IFTYPE_STATION:
1101 		he_cap_elem->mac_cap_info[1] |=
1102 			IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US;
1103 
1104 		if (band == NL80211_BAND_2GHZ)
1105 			he_cap_elem->phy_cap_info[0] |=
1106 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G;
1107 		else
1108 			he_cap_elem->phy_cap_info[0] |=
1109 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G;
1110 
1111 		he_cap_elem->phy_cap_info[1] |=
1112 			IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
1113 			IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US;
1114 		he_cap_elem->phy_cap_info[3] |=
1115 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK |
1116 			IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK;
1117 		he_cap_elem->phy_cap_info[6] |=
1118 			IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
1119 			IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE |
1120 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT;
1121 		he_cap_elem->phy_cap_info[7] |=
1122 			IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
1123 			IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI;
1124 		he_cap_elem->phy_cap_info[8] |=
1125 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
1126 			IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
1127 			IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
1128 			IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484;
1129 		he_cap_elem->phy_cap_info[9] |=
1130 			IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
1131 			IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
1132 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
1133 			IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
1134 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
1135 			IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
1136 		break;
1137 	default:
1138 		break;
1139 	}
1140 
1141 	he_mcs->rx_mcs_80 = cpu_to_le16(mcs_map);
1142 	he_mcs->tx_mcs_80 = cpu_to_le16(mcs_map);
1143 	he_mcs->rx_mcs_160 = cpu_to_le16(mcs_map);
1144 	he_mcs->tx_mcs_160 = cpu_to_le16(mcs_map);
1145 
1146 	mt7996_set_stream_he_txbf_caps(phy, he_cap, iftype);
1147 
1148 	memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
1149 	if (he_cap_elem->phy_cap_info[6] &
1150 	    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
1151 		mt76_connac_gen_ppe_thresh(he_cap->ppe_thres, nss);
1152 	} else {
1153 		he_cap_elem->phy_cap_info[9] |=
1154 			u8_encode_bits(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US,
1155 				       IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK);
1156 	}
1157 
1158 	if (band == NL80211_BAND_6GHZ) {
1159 		u16 cap = IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS |
1160 			  IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
1161 
1162 		cap |= u16_encode_bits(IEEE80211_HT_MPDU_DENSITY_0_5,
1163 				       IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START) |
1164 		       u16_encode_bits(IEEE80211_VHT_MAX_AMPDU_1024K,
1165 				       IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP) |
1166 		       u16_encode_bits(IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454,
1167 				       IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
1168 
1169 		data->he_6ghz_capa.capa = cpu_to_le16(cap);
1170 	}
1171 }
1172 
1173 static void
1174 mt7996_init_eht_caps(struct mt7996_phy *phy, enum nl80211_band band,
1175 		     struct ieee80211_sband_iftype_data *data,
1176 		     enum nl80211_iftype iftype)
1177 {
1178 	struct ieee80211_sta_eht_cap *eht_cap = &data->eht_cap;
1179 	struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem;
1180 	struct ieee80211_eht_mcs_nss_supp *eht_nss = &eht_cap->eht_mcs_nss_supp;
1181 	enum nl80211_chan_width width = phy->mt76->chandef.width;
1182 	int nss = hweight8(phy->mt76->antenna_mask);
1183 	int sts = hweight16(phy->mt76->chainmask);
1184 	u8 val;
1185 
1186 	if (!phy->dev->has_eht)
1187 		return;
1188 
1189 	eht_cap->has_eht = true;
1190 
1191 	eht_cap_elem->mac_cap_info[0] =
1192 		IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1193 		IEEE80211_EHT_MAC_CAP0_OM_CONTROL;
1194 
1195 	eht_cap_elem->phy_cap_info[0] =
1196 		IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
1197 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER |
1198 		IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE;
1199 
1200 	/* Set the maximum capability regardless of the antenna configuration. */
1201 	val = is_mt7992(phy->mt76->dev) ? 4 : 3;
1202 	eht_cap_elem->phy_cap_info[0] |=
1203 		u8_encode_bits(u8_get_bits(val, BIT(0)),
1204 			       IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK);
1205 
1206 	eht_cap_elem->phy_cap_info[1] =
1207 		u8_encode_bits(u8_get_bits(val, GENMASK(2, 1)),
1208 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK) |
1209 		u8_encode_bits(val,
1210 			       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK);
1211 
1212 	eht_cap_elem->phy_cap_info[2] =
1213 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK) |
1214 		u8_encode_bits(sts - 1, IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK);
1215 
1216 	if (band == NL80211_BAND_6GHZ) {
1217 		eht_cap_elem->phy_cap_info[0] |=
1218 			IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
1219 
1220 		eht_cap_elem->phy_cap_info[1] |=
1221 			u8_encode_bits(val,
1222 				       IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK);
1223 
1224 		eht_cap_elem->phy_cap_info[2] |=
1225 			u8_encode_bits(sts - 1,
1226 				       IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK);
1227 	}
1228 
1229 	eht_cap_elem->phy_cap_info[3] =
1230 		IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1231 		IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1232 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1233 		IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK;
1234 
1235 	eht_cap_elem->phy_cap_info[4] =
1236 		u8_encode_bits(min_t(int, sts - 1, 2),
1237 			       IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK);
1238 
1239 	eht_cap_elem->phy_cap_info[5] =
1240 		u8_encode_bits(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US,
1241 			       IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK) |
1242 		u8_encode_bits(u8_get_bits(0x11, GENMASK(1, 0)),
1243 			       IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK);
1244 
1245 	val = width == NL80211_CHAN_WIDTH_320 ? 0xf :
1246 	      width == NL80211_CHAN_WIDTH_160 ? 0x7 :
1247 	      width == NL80211_CHAN_WIDTH_80 ? 0x3 : 0x1;
1248 	eht_cap_elem->phy_cap_info[6] =
1249 		u8_encode_bits(u8_get_bits(0x11, GENMASK(4, 2)),
1250 			       IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK) |
1251 		u8_encode_bits(val, IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK);
1252 
1253 	val = u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_RX) |
1254 	      u8_encode_bits(nss, IEEE80211_EHT_MCS_NSS_TX);
1255 #define SET_EHT_MAX_NSS(_bw, _val) do {				\
1256 		eht_nss->bw._##_bw.rx_tx_mcs9_max_nss = _val;	\
1257 		eht_nss->bw._##_bw.rx_tx_mcs11_max_nss = _val;	\
1258 		eht_nss->bw._##_bw.rx_tx_mcs13_max_nss = _val;	\
1259 	} while (0)
1260 
1261 	SET_EHT_MAX_NSS(80, val);
1262 	SET_EHT_MAX_NSS(160, val);
1263 	if (band == NL80211_BAND_6GHZ)
1264 		SET_EHT_MAX_NSS(320, val);
1265 #undef SET_EHT_MAX_NSS
1266 
1267 	if (iftype != NL80211_IFTYPE_AP)
1268 		return;
1269 
1270 	eht_cap_elem->phy_cap_info[3] |=
1271 		IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
1272 		IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK;
1273 
1274 	eht_cap_elem->phy_cap_info[7] =
1275 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ |
1276 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ |
1277 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ |
1278 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ;
1279 
1280 	if (band != NL80211_BAND_6GHZ)
1281 		return;
1282 
1283 	eht_cap_elem->phy_cap_info[7] |=
1284 		IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ |
1285 		IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ;
1286 }
1287 
1288 static void
1289 __mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy,
1290 				struct ieee80211_supported_band *sband,
1291 				enum nl80211_band band)
1292 {
1293 	struct ieee80211_sband_iftype_data *data = phy->iftype[band];
1294 	int i, n = 0;
1295 
1296 	for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
1297 		switch (i) {
1298 		case NL80211_IFTYPE_STATION:
1299 		case NL80211_IFTYPE_AP:
1300 #ifdef CONFIG_MAC80211_MESH
1301 		case NL80211_IFTYPE_MESH_POINT:
1302 #endif
1303 			break;
1304 		default:
1305 			continue;
1306 		}
1307 
1308 		data[n].types_mask = BIT(i);
1309 		mt7996_init_he_caps(phy, band, &data[n], i);
1310 		mt7996_init_eht_caps(phy, band, &data[n], i);
1311 
1312 		n++;
1313 	}
1314 
1315 	_ieee80211_set_sband_iftype_data(sband, data, n);
1316 }
1317 
1318 void mt7996_set_stream_he_eht_caps(struct mt7996_phy *phy)
1319 {
1320 	if (phy->mt76->cap.has_2ghz)
1321 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_2g.sband,
1322 						NL80211_BAND_2GHZ);
1323 
1324 	if (phy->mt76->cap.has_5ghz)
1325 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_5g.sband,
1326 						NL80211_BAND_5GHZ);
1327 
1328 	if (phy->mt76->cap.has_6ghz)
1329 		__mt7996_set_stream_he_eht_caps(phy, &phy->mt76->sband_6g.sband,
1330 						NL80211_BAND_6GHZ);
1331 }
1332 
1333 int mt7996_register_device(struct mt7996_dev *dev)
1334 {
1335 	struct ieee80211_hw *hw = mt76_hw(dev);
1336 	int ret;
1337 
1338 	dev->phy.dev = dev;
1339 	dev->phy.mt76 = &dev->mt76.phy;
1340 	dev->mt76.phy.priv = &dev->phy;
1341 	INIT_WORK(&dev->rc_work, mt7996_mac_sta_rc_work);
1342 	INIT_DELAYED_WORK(&dev->mphy.mac_work, mt7996_mac_work);
1343 	INIT_LIST_HEAD(&dev->sta_rc_list);
1344 	INIT_LIST_HEAD(&dev->twt_list);
1345 
1346 	init_waitqueue_head(&dev->reset_wait);
1347 	INIT_WORK(&dev->reset_work, mt7996_mac_reset_work);
1348 	INIT_WORK(&dev->dump_work, mt7996_mac_dump_work);
1349 	mutex_init(&dev->dump_mutex);
1350 
1351 	ret = mt7996_init_hardware(dev);
1352 	if (ret)
1353 		return ret;
1354 
1355 	mt7996_init_wiphy(hw, &dev->mt76.mmio.wed);
1356 
1357 	ret = mt76_register_device(&dev->mt76, true, mt76_rates,
1358 				   ARRAY_SIZE(mt76_rates));
1359 	if (ret)
1360 		return ret;
1361 
1362 	ret = mt7996_thermal_init(&dev->phy);
1363 	if (ret)
1364 		return ret;
1365 
1366 	ret = mt7996_register_phy(dev, mt7996_phy2(dev), MT_BAND1);
1367 	if (ret)
1368 		return ret;
1369 
1370 	ret = mt7996_register_phy(dev, mt7996_phy3(dev), MT_BAND2);
1371 	if (ret)
1372 		return ret;
1373 
1374 	ieee80211_queue_work(mt76_hw(dev), &dev->init_work);
1375 
1376 	dev->recovery.hw_init_done = true;
1377 
1378 	ret = mt7996_init_debugfs(&dev->phy);
1379 	if (ret)
1380 		goto error;
1381 
1382 	ret = mt7996_coredump_register(dev);
1383 	if (ret)
1384 		goto error;
1385 
1386 	return 0;
1387 
1388 error:
1389 	cancel_work_sync(&dev->init_work);
1390 
1391 	return ret;
1392 }
1393 
1394 void mt7996_unregister_device(struct mt7996_dev *dev)
1395 {
1396 	cancel_work_sync(&dev->wed_rro.work);
1397 	mt7996_unregister_phy(mt7996_phy3(dev), MT_BAND2);
1398 	mt7996_unregister_phy(mt7996_phy2(dev), MT_BAND1);
1399 	mt7996_unregister_thermal(&dev->phy);
1400 	mt7996_coredump_unregister(dev);
1401 	mt76_unregister_device(&dev->mt76);
1402 	mt7996_wed_rro_free(dev);
1403 	mt7996_mcu_exit(dev);
1404 	mt7996_tx_token_put(dev);
1405 	mt7996_dma_cleanup(dev);
1406 	tasklet_disable(&dev->mt76.irq_tasklet);
1407 
1408 	mt76_free_device(&dev->mt76);
1409 }
1410