xref: /linux/drivers/net/wireless/mediatek/mt76/mt76x02_util.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/module.h>
19 #include "mt76x02.h"
20 
21 #define CCK_RATE(_idx, _rate) {					\
22 	.bitrate = _rate,					\
23 	.flags = IEEE80211_RATE_SHORT_PREAMBLE,			\
24 	.hw_value = (MT_PHY_TYPE_CCK << 8) | _idx,		\
25 	.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx),	\
26 }
27 
28 #define OFDM_RATE(_idx, _rate) {				\
29 	.bitrate = _rate,					\
30 	.hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx,		\
31 	.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx,	\
32 }
33 
34 struct ieee80211_rate mt76x02_rates[] = {
35 	CCK_RATE(0, 10),
36 	CCK_RATE(1, 20),
37 	CCK_RATE(2, 55),
38 	CCK_RATE(3, 110),
39 	OFDM_RATE(0, 60),
40 	OFDM_RATE(1, 90),
41 	OFDM_RATE(2, 120),
42 	OFDM_RATE(3, 180),
43 	OFDM_RATE(4, 240),
44 	OFDM_RATE(5, 360),
45 	OFDM_RATE(6, 480),
46 	OFDM_RATE(7, 540),
47 };
48 EXPORT_SYMBOL_GPL(mt76x02_rates);
49 
50 static const struct ieee80211_iface_limit mt76x02_if_limits[] = {
51 	{
52 		.max = 1,
53 		.types = BIT(NL80211_IFTYPE_ADHOC)
54 	}, {
55 		.max = 8,
56 		.types = BIT(NL80211_IFTYPE_STATION) |
57 #ifdef CONFIG_MAC80211_MESH
58 			 BIT(NL80211_IFTYPE_MESH_POINT) |
59 #endif
60 			 BIT(NL80211_IFTYPE_AP)
61 	 },
62 };
63 
64 static const struct ieee80211_iface_combination mt76x02_if_comb[] = {
65 	{
66 		.limits = mt76x02_if_limits,
67 		.n_limits = ARRAY_SIZE(mt76x02_if_limits),
68 		.max_interfaces = 8,
69 		.num_different_channels = 1,
70 		.beacon_int_infra_match = true,
71 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
72 				       BIT(NL80211_CHAN_WIDTH_20) |
73 				       BIT(NL80211_CHAN_WIDTH_40) |
74 				       BIT(NL80211_CHAN_WIDTH_80),
75 	}
76 };
77 
78 void mt76x02_init_device(struct mt76x02_dev *dev)
79 {
80 	struct ieee80211_hw *hw = mt76_hw(dev);
81 	struct wiphy *wiphy = hw->wiphy;
82 
83 	INIT_DELAYED_WORK(&dev->mac_work, mt76x02_mac_work);
84 
85 	hw->queues = 4;
86 	hw->max_rates = 1;
87 	hw->max_report_rates = 7;
88 	hw->max_rate_tries = 1;
89 	hw->extra_tx_headroom = 2;
90 
91 	if (mt76_is_usb(dev)) {
92 		hw->extra_tx_headroom += sizeof(struct mt76x02_txwi) +
93 					 MT_DMA_HDR_LEN;
94 		wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
95 	} else {
96 		mt76x02_dfs_init_detector(dev);
97 
98 		wiphy->reg_notifier = mt76x02_regd_notifier;
99 		wiphy->iface_combinations = mt76x02_if_comb;
100 		wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02_if_comb);
101 		wiphy->interface_modes =
102 			BIT(NL80211_IFTYPE_STATION) |
103 			BIT(NL80211_IFTYPE_AP) |
104 #ifdef CONFIG_MAC80211_MESH
105 			BIT(NL80211_IFTYPE_MESH_POINT) |
106 #endif
107 			BIT(NL80211_IFTYPE_ADHOC);
108 
109 		wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
110 	}
111 
112 	hw->sta_data_size = sizeof(struct mt76x02_sta);
113 	hw->vif_data_size = sizeof(struct mt76x02_vif);
114 
115 	ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
116 	ieee80211_hw_set(hw, SUPPORTS_REORDERING_BUFFER);
117 
118 	dev->mt76.global_wcid.idx = 255;
119 	dev->mt76.global_wcid.hw_key_idx = -1;
120 	dev->slottime = 9;
121 
122 	if (is_mt76x2(dev)) {
123 		dev->mt76.sband_2g.sband.ht_cap.cap |=
124 				IEEE80211_HT_CAP_LDPC_CODING;
125 		dev->mt76.sband_5g.sband.ht_cap.cap |=
126 				IEEE80211_HT_CAP_LDPC_CODING;
127 		dev->mt76.chainmask = 0x202;
128 		dev->mt76.antenna_mask = 3;
129 	} else {
130 		dev->mt76.chainmask = 0x101;
131 		dev->mt76.antenna_mask = 1;
132 	}
133 }
134 EXPORT_SYMBOL_GPL(mt76x02_init_device);
135 
136 void mt76x02_configure_filter(struct ieee80211_hw *hw,
137 			      unsigned int changed_flags,
138 			      unsigned int *total_flags, u64 multicast)
139 {
140 	struct mt76x02_dev *dev = hw->priv;
141 	u32 flags = 0;
142 
143 #define MT76_FILTER(_flag, _hw) do { \
144 		flags |= *total_flags & FIF_##_flag;			\
145 		dev->mt76.rxfilter &= ~(_hw);				\
146 		dev->mt76.rxfilter |= !(flags & FIF_##_flag) * (_hw);	\
147 	} while (0)
148 
149 	mutex_lock(&dev->mt76.mutex);
150 
151 	dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS;
152 
153 	MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR);
154 	MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR);
155 	MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK |
156 			     MT_RX_FILTR_CFG_CTS |
157 			     MT_RX_FILTR_CFG_CFEND |
158 			     MT_RX_FILTR_CFG_CFACK |
159 			     MT_RX_FILTR_CFG_BA |
160 			     MT_RX_FILTR_CFG_CTRL_RSV);
161 	MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL);
162 
163 	*total_flags = flags;
164 	mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
165 
166 	mutex_unlock(&dev->mt76.mutex);
167 }
168 EXPORT_SYMBOL_GPL(mt76x02_configure_filter);
169 
170 int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
171 		    struct ieee80211_sta *sta)
172 {
173 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
174 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
175 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
176 	int idx = 0;
177 
178 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, ARRAY_SIZE(dev->mt76.wcid));
179 	if (idx < 0)
180 		return -ENOSPC;
181 
182 	msta->vif = mvif;
183 	msta->wcid.sta = 1;
184 	msta->wcid.idx = idx;
185 	msta->wcid.hw_key_idx = -1;
186 	mt76x02_mac_wcid_setup(dev, idx, mvif->idx, sta->addr);
187 	mt76x02_mac_wcid_set_drop(dev, idx, false);
188 
189 	if (vif->type == NL80211_IFTYPE_AP)
190 		set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags);
191 
192 	ewma_signal_init(&msta->rssi);
193 
194 	return 0;
195 }
196 EXPORT_SYMBOL_GPL(mt76x02_sta_add);
197 
198 void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
199 			struct ieee80211_sta *sta)
200 {
201 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
202 	struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv;
203 	int idx = wcid->idx;
204 
205 	mt76x02_mac_wcid_set_drop(dev, idx, true);
206 	mt76x02_mac_wcid_setup(dev, idx, 0, NULL);
207 }
208 EXPORT_SYMBOL_GPL(mt76x02_sta_remove);
209 
210 void mt76x02_vif_init(struct mt76x02_dev *dev, struct ieee80211_vif *vif,
211 		      unsigned int idx)
212 {
213 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
214 	struct mt76_txq *mtxq;
215 
216 	mvif->idx = idx;
217 	mvif->group_wcid.idx = MT_VIF_WCID(idx);
218 	mvif->group_wcid.hw_key_idx = -1;
219 	mtxq = (struct mt76_txq *) vif->txq->drv_priv;
220 	mtxq->wcid = &mvif->group_wcid;
221 
222 	mt76_txq_init(&dev->mt76, vif->txq);
223 }
224 EXPORT_SYMBOL_GPL(mt76x02_vif_init);
225 
226 int
227 mt76x02_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
228 {
229 	struct mt76x02_dev *dev = hw->priv;
230 	unsigned int idx = 0;
231 
232 	if (vif->addr[0] & BIT(1))
233 		idx = 1 + (((dev->mt76.macaddr[0] ^ vif->addr[0]) >> 2) & 7);
234 
235 	/*
236 	 * Client mode typically only has one configurable BSSID register,
237 	 * which is used for bssidx=0. This is linked to the MAC address.
238 	 * Since mac80211 allows changing interface types, and we cannot
239 	 * force the use of the primary MAC address for a station mode
240 	 * interface, we need some other way of configuring a per-interface
241 	 * remote BSSID.
242 	 * The hardware provides an AP-Client feature, where bssidx 0-7 are
243 	 * used for AP mode and bssidx 8-15 for client mode.
244 	 * We shift the station interface bss index by 8 to force the
245 	 * hardware to recognize the BSSID.
246 	 * The resulting bssidx mismatch for unicast frames is ignored by hw.
247 	 */
248 	if (vif->type == NL80211_IFTYPE_STATION)
249 		idx += 8;
250 
251 	mt76x02_vif_init(dev, vif, idx);
252 	return 0;
253 }
254 EXPORT_SYMBOL_GPL(mt76x02_add_interface);
255 
256 void mt76x02_remove_interface(struct ieee80211_hw *hw,
257 			      struct ieee80211_vif *vif)
258 {
259 	struct mt76x02_dev *dev = hw->priv;
260 
261 	mt76_txq_remove(&dev->mt76, vif->txq);
262 }
263 EXPORT_SYMBOL_GPL(mt76x02_remove_interface);
264 
265 int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
266 			 struct ieee80211_ampdu_params *params)
267 {
268 	enum ieee80211_ampdu_mlme_action action = params->action;
269 	struct ieee80211_sta *sta = params->sta;
270 	struct mt76x02_dev *dev = hw->priv;
271 	struct mt76x02_sta *msta = (struct mt76x02_sta *) sta->drv_priv;
272 	struct ieee80211_txq *txq = sta->txq[params->tid];
273 	u16 tid = params->tid;
274 	u16 *ssn = &params->ssn;
275 	struct mt76_txq *mtxq;
276 
277 	if (!txq)
278 		return -EINVAL;
279 
280 	mtxq = (struct mt76_txq *)txq->drv_priv;
281 
282 	switch (action) {
283 	case IEEE80211_AMPDU_RX_START:
284 		mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid,
285 				   *ssn, params->buf_size);
286 		mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid));
287 		break;
288 	case IEEE80211_AMPDU_RX_STOP:
289 		mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid);
290 		mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4,
291 			   BIT(16 + tid));
292 		break;
293 	case IEEE80211_AMPDU_TX_OPERATIONAL:
294 		mtxq->aggr = true;
295 		mtxq->send_bar = false;
296 		ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
297 		break;
298 	case IEEE80211_AMPDU_TX_STOP_FLUSH:
299 	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
300 		mtxq->aggr = false;
301 		ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
302 		break;
303 	case IEEE80211_AMPDU_TX_START:
304 		mtxq->agg_ssn = *ssn << 4;
305 		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
306 		break;
307 	case IEEE80211_AMPDU_TX_STOP_CONT:
308 		mtxq->aggr = false;
309 		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
310 		break;
311 	}
312 
313 	return 0;
314 }
315 EXPORT_SYMBOL_GPL(mt76x02_ampdu_action);
316 
317 int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
318 		    struct ieee80211_vif *vif, struct ieee80211_sta *sta,
319 		    struct ieee80211_key_conf *key)
320 {
321 	struct mt76x02_dev *dev = hw->priv;
322 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
323 	struct mt76x02_sta *msta;
324 	struct mt76_wcid *wcid;
325 	int idx = key->keyidx;
326 	int ret;
327 
328 	/* fall back to sw encryption for unsupported ciphers */
329 	switch (key->cipher) {
330 	case WLAN_CIPHER_SUITE_WEP40:
331 	case WLAN_CIPHER_SUITE_WEP104:
332 	case WLAN_CIPHER_SUITE_TKIP:
333 	case WLAN_CIPHER_SUITE_CCMP:
334 		break;
335 	default:
336 		return -EOPNOTSUPP;
337 	}
338 
339 	/*
340 	 * The hardware does not support per-STA RX GTK, fall back
341 	 * to software mode for these.
342 	 */
343 	if ((vif->type == NL80211_IFTYPE_ADHOC ||
344 	     vif->type == NL80211_IFTYPE_MESH_POINT) &&
345 	    (key->cipher == WLAN_CIPHER_SUITE_TKIP ||
346 	     key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
347 	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
348 		return -EOPNOTSUPP;
349 
350 	msta = sta ? (struct mt76x02_sta *) sta->drv_priv : NULL;
351 	wcid = msta ? &msta->wcid : &mvif->group_wcid;
352 
353 	if (cmd == SET_KEY) {
354 		key->hw_key_idx = wcid->idx;
355 		wcid->hw_key_idx = idx;
356 		if (key->flags & IEEE80211_KEY_FLAG_RX_MGMT) {
357 			key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
358 			wcid->sw_iv = true;
359 		}
360 	} else {
361 		if (idx == wcid->hw_key_idx) {
362 			wcid->hw_key_idx = -1;
363 			wcid->sw_iv = true;
364 		}
365 
366 		key = NULL;
367 	}
368 	mt76_wcid_key_setup(&dev->mt76, wcid, key);
369 
370 	if (!msta) {
371 		if (key || wcid->hw_key_idx == idx) {
372 			ret = mt76x02_mac_wcid_set_key(dev, wcid->idx, key);
373 			if (ret)
374 				return ret;
375 		}
376 
377 		return mt76x02_mac_shared_key_setup(dev, mvif->idx, idx, key);
378 	}
379 
380 	return mt76x02_mac_wcid_set_key(dev, msta->wcid.idx, key);
381 }
382 EXPORT_SYMBOL_GPL(mt76x02_set_key);
383 
384 int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
385 		    u16 queue, const struct ieee80211_tx_queue_params *params)
386 {
387 	struct mt76x02_dev *dev = hw->priv;
388 	u8 cw_min = 5, cw_max = 10, qid;
389 	u32 val;
390 
391 	qid = dev->mt76.q_tx[queue].hw_idx;
392 
393 	if (params->cw_min)
394 		cw_min = fls(params->cw_min);
395 	if (params->cw_max)
396 		cw_max = fls(params->cw_max);
397 
398 	val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) |
399 	      FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) |
400 	      FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) |
401 	      FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max);
402 	mt76_wr(dev, MT_EDCA_CFG_AC(qid), val);
403 
404 	val = mt76_rr(dev, MT_WMM_TXOP(qid));
405 	val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(qid));
406 	val |= params->txop << MT_WMM_TXOP_SHIFT(qid);
407 	mt76_wr(dev, MT_WMM_TXOP(qid), val);
408 
409 	val = mt76_rr(dev, MT_WMM_AIFSN);
410 	val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(qid));
411 	val |= params->aifs << MT_WMM_AIFSN_SHIFT(qid);
412 	mt76_wr(dev, MT_WMM_AIFSN, val);
413 
414 	val = mt76_rr(dev, MT_WMM_CWMIN);
415 	val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(qid));
416 	val |= cw_min << MT_WMM_CWMIN_SHIFT(qid);
417 	mt76_wr(dev, MT_WMM_CWMIN, val);
418 
419 	val = mt76_rr(dev, MT_WMM_CWMAX);
420 	val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(qid));
421 	val |= cw_max << MT_WMM_CWMAX_SHIFT(qid);
422 	mt76_wr(dev, MT_WMM_CWMAX, val);
423 
424 	return 0;
425 }
426 EXPORT_SYMBOL_GPL(mt76x02_conf_tx);
427 
428 void mt76x02_set_tx_ackto(struct mt76x02_dev *dev)
429 {
430 	u8 ackto, sifs, slottime = dev->slottime;
431 
432 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
433 	slottime += 3 * dev->coverage_class;
434 	mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG,
435 		       MT_BKOFF_SLOT_CFG_SLOTTIME, slottime);
436 
437 	sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG,
438 			      MT_XIFS_TIME_CFG_OFDM_SIFS);
439 
440 	ackto = slottime + sifs;
441 	mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG,
442 		       MT_TX_TIMEOUT_CFG_ACKTO, ackto);
443 }
444 EXPORT_SYMBOL_GPL(mt76x02_set_tx_ackto);
445 
446 void mt76x02_set_coverage_class(struct ieee80211_hw *hw,
447 				s16 coverage_class)
448 {
449 	struct mt76x02_dev *dev = hw->priv;
450 
451 	mutex_lock(&dev->mt76.mutex);
452 	dev->coverage_class = coverage_class;
453 	mt76x02_set_tx_ackto(dev);
454 	mutex_unlock(&dev->mt76.mutex);
455 }
456 EXPORT_SYMBOL_GPL(mt76x02_set_coverage_class);
457 
458 int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val)
459 {
460 	struct mt76x02_dev *dev = hw->priv;
461 
462 	if (val != ~0 && val > 0xffff)
463 		return -EINVAL;
464 
465 	mutex_lock(&dev->mt76.mutex);
466 	mt76x02_mac_set_tx_protection(dev, val);
467 	mutex_unlock(&dev->mt76.mutex);
468 
469 	return 0;
470 }
471 EXPORT_SYMBOL_GPL(mt76x02_set_rts_threshold);
472 
473 void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw,
474 				struct ieee80211_vif *vif,
475 				struct ieee80211_sta *sta)
476 {
477 	struct mt76x02_dev *dev = hw->priv;
478 	struct mt76x02_sta *msta = (struct mt76x02_sta *) sta->drv_priv;
479 	struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates);
480 	struct ieee80211_tx_rate rate = {};
481 
482 	if (!rates)
483 		return;
484 
485 	rate.idx = rates->rate[0].idx;
486 	rate.flags = rates->rate[0].flags;
487 	mt76x02_mac_wcid_set_rate(dev, &msta->wcid, &rate);
488 	msta->wcid.max_txpwr_adj = mt76x02_tx_get_max_txpwr_adj(dev, &rate);
489 }
490 EXPORT_SYMBOL_GPL(mt76x02_sta_rate_tbl_update);
491 
492 int mt76x02_insert_hdr_pad(struct sk_buff *skb)
493 {
494 	int len = ieee80211_get_hdrlen_from_skb(skb);
495 
496 	if (len % 4 == 0)
497 		return 0;
498 
499 	skb_push(skb, 2);
500 	memmove(skb->data, skb->data + 2, len);
501 
502 	skb->data[len] = 0;
503 	skb->data[len + 1] = 0;
504 	return 2;
505 }
506 EXPORT_SYMBOL_GPL(mt76x02_insert_hdr_pad);
507 
508 void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len)
509 {
510 	int hdrlen;
511 
512 	if (!len)
513 		return;
514 
515 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
516 	memmove(skb->data + len, skb->data, hdrlen);
517 	skb_pull(skb, len);
518 }
519 EXPORT_SYMBOL_GPL(mt76x02_remove_hdr_pad);
520 
521 void mt76x02_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
522 		     const u8 *mac)
523 {
524 	struct mt76x02_dev *dev = hw->priv;
525 
526 	if (mt76_is_mmio(dev))
527 		tasklet_disable(&dev->pre_tbtt_tasklet);
528 	set_bit(MT76_SCANNING, &dev->mt76.state);
529 }
530 EXPORT_SYMBOL_GPL(mt76x02_sw_scan);
531 
532 void mt76x02_sw_scan_complete(struct ieee80211_hw *hw,
533 			      struct ieee80211_vif *vif)
534 {
535 	struct mt76x02_dev *dev = hw->priv;
536 
537 	clear_bit(MT76_SCANNING, &dev->mt76.state);
538 	if (mt76_is_mmio(dev))
539 		tasklet_enable(&dev->pre_tbtt_tasklet);
540 
541 	if (dev->cal.gain_init_done) {
542 		/* Restore AGC gain and resume calibration after scanning. */
543 		dev->cal.low_gain = -1;
544 		ieee80211_queue_delayed_work(hw, &dev->cal_work, 0);
545 	}
546 }
547 EXPORT_SYMBOL_GPL(mt76x02_sw_scan_complete);
548 
549 int mt76x02_get_txpower(struct ieee80211_hw *hw,
550 			struct ieee80211_vif *vif, int *dbm)
551 {
552 	struct mt76x02_dev *dev = hw->priv;
553 	u8 nstreams = dev->mt76.chainmask & 0xf;
554 
555 	*dbm = dev->mt76.txpower_cur / 2;
556 
557 	/* convert from per-chain power to combined
558 	 * output on 2x2 devices
559 	 */
560 	if (nstreams > 1)
561 		*dbm += 3;
562 
563 	return 0;
564 }
565 EXPORT_SYMBOL_GPL(mt76x02_get_txpower);
566 
567 void mt76x02_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta,
568 		    bool ps)
569 {
570 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
571 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
572 	int idx = msta->wcid.idx;
573 
574 	mt76_stop_tx_queues(&dev->mt76, sta, true);
575 	mt76x02_mac_wcid_set_drop(dev, idx, ps);
576 }
577 EXPORT_SYMBOL_GPL(mt76x02_sta_ps);
578 
579 const u16 mt76x02_beacon_offsets[16] = {
580 	/* 1024 byte per beacon */
581 	0xc000,
582 	0xc400,
583 	0xc800,
584 	0xcc00,
585 	0xd000,
586 	0xd400,
587 	0xd800,
588 	0xdc00,
589 	/* BSS idx 8-15 not used for beacons */
590 	0xc000,
591 	0xc000,
592 	0xc000,
593 	0xc000,
594 	0xc000,
595 	0xc000,
596 	0xc000,
597 	0xc000,
598 };
599 
600 static void mt76x02_set_beacon_offsets(struct mt76x02_dev *dev)
601 {
602 	u16 val, base = MT_BEACON_BASE;
603 	u32 regs[4] = {};
604 	int i;
605 
606 	for (i = 0; i < 16; i++) {
607 		val = mt76x02_beacon_offsets[i] - base;
608 		regs[i / 4] |= (val / 64) << (8 * (i % 4));
609 	}
610 
611 	for (i = 0; i < 4; i++)
612 		mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]);
613 }
614 
615 void mt76x02_init_beacon_config(struct mt76x02_dev *dev)
616 {
617 	static const u8 null_addr[ETH_ALEN] = {};
618 	int i;
619 
620 	mt76_wr(dev, MT_MAC_BSSID_DW0,
621 		get_unaligned_le32(dev->mt76.macaddr));
622 	mt76_wr(dev, MT_MAC_BSSID_DW1,
623 		get_unaligned_le16(dev->mt76.macaddr + 4) |
624 		FIELD_PREP(MT_MAC_BSSID_DW1_MBSS_MODE, 3) | /* 8 beacons */
625 		MT_MAC_BSSID_DW1_MBSS_LOCAL_BIT);
626 
627 	/* Fire a pre-TBTT interrupt 8 ms before TBTT */
628 	mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_PRE_TBTT,
629 		       8 << 4);
630 	mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_GP_TIMER,
631 		       MT_DFS_GP_INTERVAL);
632 	mt76_wr(dev, MT_INT_TIMER_EN, 0);
633 
634 	mt76_wr(dev, MT_BCN_BYPASS_MASK, 0xffff);
635 
636 	for (i = 0; i < 8; i++) {
637 		mt76x02_mac_set_bssid(dev, i, null_addr);
638 		mt76x02_mac_set_beacon(dev, i, NULL);
639 	}
640 	mt76x02_set_beacon_offsets(dev);
641 }
642 EXPORT_SYMBOL_GPL(mt76x02_init_beacon_config);
643 
644 void mt76x02_bss_info_changed(struct ieee80211_hw *hw,
645 			      struct ieee80211_vif *vif,
646 			      struct ieee80211_bss_conf *info,
647 			      u32 changed)
648 {
649 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
650 	struct mt76x02_dev *dev = hw->priv;
651 
652 	mutex_lock(&dev->mt76.mutex);
653 
654 	if (changed & BSS_CHANGED_BSSID)
655 		mt76x02_mac_set_bssid(dev, mvif->idx, info->bssid);
656 
657 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
658 		tasklet_disable(&dev->pre_tbtt_tasklet);
659 		mt76x02_mac_set_beacon_enable(dev, mvif->idx,
660 					      info->enable_beacon);
661 		tasklet_enable(&dev->pre_tbtt_tasklet);
662 	}
663 
664 	if (changed & BSS_CHANGED_BEACON_INT) {
665 		mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
666 			       MT_BEACON_TIME_CFG_INTVAL,
667 			       info->beacon_int << 4);
668 		dev->beacon_int = info->beacon_int;
669 		dev->tbtt_count = 0;
670 	}
671 
672 	if (changed & BSS_CHANGED_ERP_PREAMBLE)
673 		mt76x02_mac_set_short_preamble(dev, info->use_short_preamble);
674 
675 	if (changed & BSS_CHANGED_ERP_SLOT) {
676 		int slottime = info->use_short_slot ? 9 : 20;
677 
678 		dev->slottime = slottime;
679 		mt76x02_set_tx_ackto(dev);
680 	}
681 
682 	mutex_unlock(&dev->mt76.mutex);
683 }
684 EXPORT_SYMBOL_GPL(mt76x02_bss_info_changed);
685 
686 void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev)
687 {
688 	struct ieee80211_hw *hw = mt76_hw(dev);
689 	struct wiphy *wiphy = hw->wiphy;
690 	int i;
691 
692 	for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) {
693 		u8 *addr = dev->macaddr_list[i].addr;
694 
695 		memcpy(addr, dev->mt76.macaddr, ETH_ALEN);
696 
697 		if (!i)
698 			continue;
699 
700 		addr[0] |= BIT(1);
701 		addr[0] ^= ((i - 1) << 2);
702 	}
703 	wiphy->addresses = dev->macaddr_list;
704 	wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list);
705 }
706 EXPORT_SYMBOL_GPL(mt76x02_config_mac_addr_list);
707 
708 MODULE_LICENSE("Dual BSD/GPL");
709