xref: /linux/drivers/net/wireless/mediatek/mt76/mt76x02_util.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 /*
2  * Copyright (C) 2018 Stanislaw Gruszka <stf_xl@wp.pl>
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/module.h>
19 #include "mt76x02.h"
20 
21 #define CCK_RATE(_idx, _rate) {					\
22 	.bitrate = _rate,					\
23 	.flags = IEEE80211_RATE_SHORT_PREAMBLE,			\
24 	.hw_value = (MT_PHY_TYPE_CCK << 8) | _idx,		\
25 	.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx),	\
26 }
27 
28 #define OFDM_RATE(_idx, _rate) {				\
29 	.bitrate = _rate,					\
30 	.hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx,		\
31 	.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx,	\
32 }
33 
34 struct ieee80211_rate mt76x02_rates[] = {
35 	CCK_RATE(0, 10),
36 	CCK_RATE(1, 20),
37 	CCK_RATE(2, 55),
38 	CCK_RATE(3, 110),
39 	OFDM_RATE(0, 60),
40 	OFDM_RATE(1, 90),
41 	OFDM_RATE(2, 120),
42 	OFDM_RATE(3, 180),
43 	OFDM_RATE(4, 240),
44 	OFDM_RATE(5, 360),
45 	OFDM_RATE(6, 480),
46 	OFDM_RATE(7, 540),
47 };
48 EXPORT_SYMBOL_GPL(mt76x02_rates);
49 
50 static const struct ieee80211_iface_limit mt76x02_if_limits[] = {
51 	{
52 		.max = 1,
53 		.types = BIT(NL80211_IFTYPE_ADHOC)
54 	}, {
55 		.max = 8,
56 		.types = BIT(NL80211_IFTYPE_STATION) |
57 #ifdef CONFIG_MAC80211_MESH
58 			 BIT(NL80211_IFTYPE_MESH_POINT) |
59 #endif
60 			 BIT(NL80211_IFTYPE_AP)
61 	 },
62 };
63 
64 static const struct ieee80211_iface_combination mt76x02_if_comb[] = {
65 	{
66 		.limits = mt76x02_if_limits,
67 		.n_limits = ARRAY_SIZE(mt76x02_if_limits),
68 		.max_interfaces = 8,
69 		.num_different_channels = 1,
70 		.beacon_int_infra_match = true,
71 		.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
72 				       BIT(NL80211_CHAN_WIDTH_20) |
73 				       BIT(NL80211_CHAN_WIDTH_40) |
74 				       BIT(NL80211_CHAN_WIDTH_80),
75 	}
76 };
77 
78 static void
79 mt76x02_led_set_config(struct mt76_dev *mdev, u8 delay_on,
80 		       u8 delay_off)
81 {
82 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev,
83 					       mt76);
84 	u32 val;
85 
86 	val = MT_LED_STATUS_DURATION(0xff) |
87 	      MT_LED_STATUS_OFF(delay_off) |
88 	      MT_LED_STATUS_ON(delay_on);
89 
90 	mt76_wr(dev, MT_LED_S0(mdev->led_pin), val);
91 	mt76_wr(dev, MT_LED_S1(mdev->led_pin), val);
92 
93 	val = MT_LED_CTRL_REPLAY(mdev->led_pin) |
94 	      MT_LED_CTRL_KICK(mdev->led_pin);
95 	if (mdev->led_al)
96 		val |= MT_LED_CTRL_POLARITY(mdev->led_pin);
97 	mt76_wr(dev, MT_LED_CTRL, val);
98 }
99 
100 static int
101 mt76x02_led_set_blink(struct led_classdev *led_cdev,
102 		      unsigned long *delay_on,
103 		      unsigned long *delay_off)
104 {
105 	struct mt76_dev *mdev = container_of(led_cdev, struct mt76_dev,
106 					     led_cdev);
107 	u8 delta_on, delta_off;
108 
109 	delta_off = max_t(u8, *delay_off / 10, 1);
110 	delta_on = max_t(u8, *delay_on / 10, 1);
111 
112 	mt76x02_led_set_config(mdev, delta_on, delta_off);
113 
114 	return 0;
115 }
116 
117 static void
118 mt76x02_led_set_brightness(struct led_classdev *led_cdev,
119 			   enum led_brightness brightness)
120 {
121 	struct mt76_dev *mdev = container_of(led_cdev, struct mt76_dev,
122 					     led_cdev);
123 
124 	if (!brightness)
125 		mt76x02_led_set_config(mdev, 0, 0xff);
126 	else
127 		mt76x02_led_set_config(mdev, 0xff, 0);
128 }
129 
130 void mt76x02_init_device(struct mt76x02_dev *dev)
131 {
132 	struct ieee80211_hw *hw = mt76_hw(dev);
133 	struct wiphy *wiphy = hw->wiphy;
134 
135 	INIT_DELAYED_WORK(&dev->mt76.mac_work, mt76x02_mac_work);
136 
137 	hw->queues = 4;
138 	hw->max_rates = 1;
139 	hw->max_report_rates = 7;
140 	hw->max_rate_tries = 1;
141 	hw->extra_tx_headroom = 2;
142 
143 	wiphy->interface_modes =
144 		BIT(NL80211_IFTYPE_STATION) |
145 		BIT(NL80211_IFTYPE_AP) |
146 #ifdef CONFIG_MAC80211_MESH
147 		BIT(NL80211_IFTYPE_MESH_POINT) |
148 #endif
149 		BIT(NL80211_IFTYPE_ADHOC);
150 
151 	if (mt76_is_usb(dev)) {
152 		hw->extra_tx_headroom += sizeof(struct mt76x02_txwi) +
153 					 MT_DMA_HDR_LEN;
154 	} else {
155 		INIT_DELAYED_WORK(&dev->wdt_work, mt76x02_wdt_work);
156 
157 		mt76x02_dfs_init_detector(dev);
158 
159 		wiphy->reg_notifier = mt76x02_regd_notifier;
160 		wiphy->iface_combinations = mt76x02_if_comb;
161 		wiphy->n_iface_combinations = ARRAY_SIZE(mt76x02_if_comb);
162 		wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
163 
164 		/* init led callbacks */
165 		if (IS_ENABLED(CONFIG_MT76_LEDS)) {
166 			dev->mt76.led_cdev.brightness_set =
167 					mt76x02_led_set_brightness;
168 			dev->mt76.led_cdev.blink_set = mt76x02_led_set_blink;
169 		}
170 	}
171 
172 	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
173 
174 	hw->sta_data_size = sizeof(struct mt76x02_sta);
175 	hw->vif_data_size = sizeof(struct mt76x02_vif);
176 
177 	ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
178 	ieee80211_hw_set(hw, SUPPORTS_REORDERING_BUFFER);
179 
180 	dev->mt76.global_wcid.idx = 255;
181 	dev->mt76.global_wcid.hw_key_idx = -1;
182 	dev->slottime = 9;
183 
184 	if (is_mt76x2(dev)) {
185 		dev->mt76.sband_2g.sband.ht_cap.cap |=
186 				IEEE80211_HT_CAP_LDPC_CODING;
187 		dev->mt76.sband_5g.sband.ht_cap.cap |=
188 				IEEE80211_HT_CAP_LDPC_CODING;
189 		dev->mt76.chainmask = 0x202;
190 		dev->mt76.antenna_mask = 3;
191 	} else {
192 		dev->mt76.chainmask = 0x101;
193 		dev->mt76.antenna_mask = 1;
194 	}
195 }
196 EXPORT_SYMBOL_GPL(mt76x02_init_device);
197 
198 void mt76x02_configure_filter(struct ieee80211_hw *hw,
199 			      unsigned int changed_flags,
200 			      unsigned int *total_flags, u64 multicast)
201 {
202 	struct mt76x02_dev *dev = hw->priv;
203 	u32 flags = 0;
204 
205 #define MT76_FILTER(_flag, _hw) do { \
206 		flags |= *total_flags & FIF_##_flag;			\
207 		dev->mt76.rxfilter &= ~(_hw);				\
208 		dev->mt76.rxfilter |= !(flags & FIF_##_flag) * (_hw);	\
209 	} while (0)
210 
211 	mutex_lock(&dev->mt76.mutex);
212 
213 	dev->mt76.rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS;
214 
215 	MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR);
216 	MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR);
217 	MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK |
218 			     MT_RX_FILTR_CFG_CTS |
219 			     MT_RX_FILTR_CFG_CFEND |
220 			     MT_RX_FILTR_CFG_CFACK |
221 			     MT_RX_FILTR_CFG_BA |
222 			     MT_RX_FILTR_CFG_CTRL_RSV);
223 	MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL);
224 
225 	*total_flags = flags;
226 	mt76_wr(dev, MT_RX_FILTR_CFG, dev->mt76.rxfilter);
227 
228 	mutex_unlock(&dev->mt76.mutex);
229 }
230 EXPORT_SYMBOL_GPL(mt76x02_configure_filter);
231 
232 int mt76x02_sta_add(struct mt76_dev *mdev, struct ieee80211_vif *vif,
233 		    struct ieee80211_sta *sta)
234 {
235 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
236 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
237 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
238 	int idx = 0;
239 
240 	memset(msta, 0, sizeof(*msta));
241 
242 	idx = mt76_wcid_alloc(dev->mt76.wcid_mask, ARRAY_SIZE(dev->mt76.wcid));
243 	if (idx < 0)
244 		return -ENOSPC;
245 
246 	msta->vif = mvif;
247 	msta->wcid.sta = 1;
248 	msta->wcid.idx = idx;
249 	msta->wcid.hw_key_idx = -1;
250 	mt76x02_mac_wcid_setup(dev, idx, mvif->idx, sta->addr);
251 	mt76x02_mac_wcid_set_drop(dev, idx, false);
252 
253 	if (vif->type == NL80211_IFTYPE_AP)
254 		set_bit(MT_WCID_FLAG_CHECK_PS, &msta->wcid.flags);
255 
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(mt76x02_sta_add);
259 
260 void mt76x02_sta_remove(struct mt76_dev *mdev, struct ieee80211_vif *vif,
261 			struct ieee80211_sta *sta)
262 {
263 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
264 	struct mt76_wcid *wcid = (struct mt76_wcid *)sta->drv_priv;
265 	int idx = wcid->idx;
266 
267 	mt76x02_mac_wcid_set_drop(dev, idx, true);
268 	mt76x02_mac_wcid_setup(dev, idx, 0, NULL);
269 }
270 EXPORT_SYMBOL_GPL(mt76x02_sta_remove);
271 
272 static void
273 mt76x02_vif_init(struct mt76x02_dev *dev, struct ieee80211_vif *vif,
274 		 unsigned int idx)
275 {
276 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
277 	struct mt76_txq *mtxq;
278 
279 	memset(mvif, 0, sizeof(*mvif));
280 
281 	mvif->idx = idx;
282 	mvif->group_wcid.idx = MT_VIF_WCID(idx);
283 	mvif->group_wcid.hw_key_idx = -1;
284 	mtxq = (struct mt76_txq *) vif->txq->drv_priv;
285 	mtxq->wcid = &mvif->group_wcid;
286 
287 	mt76_txq_init(&dev->mt76, vif->txq);
288 }
289 
290 int
291 mt76x02_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
292 {
293 	struct mt76x02_dev *dev = hw->priv;
294 	unsigned int idx = 0;
295 
296 	/* Allow to change address in HW if we create first interface. */
297 	if (!dev->vif_mask &&
298 	    (((vif->addr[0] ^ dev->mt76.macaddr[0]) & ~GENMASK(4, 1)) ||
299 	     memcmp(vif->addr + 1, dev->mt76.macaddr + 1, ETH_ALEN - 1)))
300 		mt76x02_mac_setaddr(dev, vif->addr);
301 
302 	if (vif->addr[0] & BIT(1))
303 		idx = 1 + (((dev->mt76.macaddr[0] ^ vif->addr[0]) >> 2) & 7);
304 
305 	/*
306 	 * Client mode typically only has one configurable BSSID register,
307 	 * which is used for bssidx=0. This is linked to the MAC address.
308 	 * Since mac80211 allows changing interface types, and we cannot
309 	 * force the use of the primary MAC address for a station mode
310 	 * interface, we need some other way of configuring a per-interface
311 	 * remote BSSID.
312 	 * The hardware provides an AP-Client feature, where bssidx 0-7 are
313 	 * used for AP mode and bssidx 8-15 for client mode.
314 	 * We shift the station interface bss index by 8 to force the
315 	 * hardware to recognize the BSSID.
316 	 * The resulting bssidx mismatch for unicast frames is ignored by hw.
317 	 */
318 	if (vif->type == NL80211_IFTYPE_STATION)
319 		idx += 8;
320 
321 	if (dev->vif_mask & BIT(idx))
322 		return -EBUSY;
323 
324 	dev->vif_mask |= BIT(idx);
325 
326 	mt76x02_vif_init(dev, vif, idx);
327 	return 0;
328 }
329 EXPORT_SYMBOL_GPL(mt76x02_add_interface);
330 
331 void mt76x02_remove_interface(struct ieee80211_hw *hw,
332 			      struct ieee80211_vif *vif)
333 {
334 	struct mt76x02_dev *dev = hw->priv;
335 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
336 
337 	mt76_txq_remove(&dev->mt76, vif->txq);
338 	dev->vif_mask &= ~BIT(mvif->idx);
339 }
340 EXPORT_SYMBOL_GPL(mt76x02_remove_interface);
341 
342 int mt76x02_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
343 			 struct ieee80211_ampdu_params *params)
344 {
345 	enum ieee80211_ampdu_mlme_action action = params->action;
346 	struct ieee80211_sta *sta = params->sta;
347 	struct mt76x02_dev *dev = hw->priv;
348 	struct mt76x02_sta *msta = (struct mt76x02_sta *) sta->drv_priv;
349 	struct ieee80211_txq *txq = sta->txq[params->tid];
350 	u16 tid = params->tid;
351 	u16 *ssn = &params->ssn;
352 	struct mt76_txq *mtxq;
353 
354 	if (!txq)
355 		return -EINVAL;
356 
357 	mtxq = (struct mt76_txq *)txq->drv_priv;
358 
359 	switch (action) {
360 	case IEEE80211_AMPDU_RX_START:
361 		mt76_rx_aggr_start(&dev->mt76, &msta->wcid, tid,
362 				   *ssn, params->buf_size);
363 		mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid));
364 		break;
365 	case IEEE80211_AMPDU_RX_STOP:
366 		mt76_rx_aggr_stop(&dev->mt76, &msta->wcid, tid);
367 		mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4,
368 			   BIT(16 + tid));
369 		break;
370 	case IEEE80211_AMPDU_TX_OPERATIONAL:
371 		mtxq->aggr = true;
372 		mtxq->send_bar = false;
373 		ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
374 		break;
375 	case IEEE80211_AMPDU_TX_STOP_FLUSH:
376 	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
377 		mtxq->aggr = false;
378 		ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
379 		break;
380 	case IEEE80211_AMPDU_TX_START:
381 		mtxq->agg_ssn = IEEE80211_SN_TO_SEQ(*ssn);
382 		ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
383 		break;
384 	case IEEE80211_AMPDU_TX_STOP_CONT:
385 		mtxq->aggr = false;
386 		ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
387 		break;
388 	}
389 
390 	return 0;
391 }
392 EXPORT_SYMBOL_GPL(mt76x02_ampdu_action);
393 
394 int mt76x02_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
395 		    struct ieee80211_vif *vif, struct ieee80211_sta *sta,
396 		    struct ieee80211_key_conf *key)
397 {
398 	struct mt76x02_dev *dev = hw->priv;
399 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
400 	struct mt76x02_sta *msta;
401 	struct mt76_wcid *wcid;
402 	int idx = key->keyidx;
403 	int ret;
404 
405 	/* fall back to sw encryption for unsupported ciphers */
406 	switch (key->cipher) {
407 	case WLAN_CIPHER_SUITE_WEP40:
408 	case WLAN_CIPHER_SUITE_WEP104:
409 	case WLAN_CIPHER_SUITE_TKIP:
410 	case WLAN_CIPHER_SUITE_CCMP:
411 		break;
412 	default:
413 		return -EOPNOTSUPP;
414 	}
415 
416 	/*
417 	 * The hardware does not support per-STA RX GTK, fall back
418 	 * to software mode for these.
419 	 */
420 	if ((vif->type == NL80211_IFTYPE_ADHOC ||
421 	     vif->type == NL80211_IFTYPE_MESH_POINT) &&
422 	    (key->cipher == WLAN_CIPHER_SUITE_TKIP ||
423 	     key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
424 	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
425 		return -EOPNOTSUPP;
426 
427 	/*
428 	 * In USB AP mode, broadcast/multicast frames are setup in beacon
429 	 * data registers and sent via HW beacons engine, they require to
430 	 * be already encrypted.
431 	 */
432 	if (mt76_is_usb(dev) &&
433 	    vif->type == NL80211_IFTYPE_AP &&
434 	    !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
435 		return -EOPNOTSUPP;
436 
437 	msta = sta ? (struct mt76x02_sta *) sta->drv_priv : NULL;
438 	wcid = msta ? &msta->wcid : &mvif->group_wcid;
439 
440 	if (cmd == SET_KEY) {
441 		key->hw_key_idx = wcid->idx;
442 		wcid->hw_key_idx = idx;
443 		if (key->flags & IEEE80211_KEY_FLAG_RX_MGMT) {
444 			key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
445 			wcid->sw_iv = true;
446 		}
447 	} else {
448 		if (idx == wcid->hw_key_idx) {
449 			wcid->hw_key_idx = -1;
450 			wcid->sw_iv = false;
451 		}
452 
453 		key = NULL;
454 	}
455 	mt76_wcid_key_setup(&dev->mt76, wcid, key);
456 
457 	if (!msta) {
458 		if (key || wcid->hw_key_idx == idx) {
459 			ret = mt76x02_mac_wcid_set_key(dev, wcid->idx, key);
460 			if (ret)
461 				return ret;
462 		}
463 
464 		return mt76x02_mac_shared_key_setup(dev, mvif->idx, idx, key);
465 	}
466 
467 	return mt76x02_mac_wcid_set_key(dev, msta->wcid.idx, key);
468 }
469 EXPORT_SYMBOL_GPL(mt76x02_set_key);
470 
471 int mt76x02_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
472 		    u16 queue, const struct ieee80211_tx_queue_params *params)
473 {
474 	struct mt76x02_dev *dev = hw->priv;
475 	u8 cw_min = 5, cw_max = 10, qid;
476 	u32 val;
477 
478 	qid = dev->mt76.q_tx[queue].q->hw_idx;
479 
480 	if (params->cw_min)
481 		cw_min = fls(params->cw_min);
482 	if (params->cw_max)
483 		cw_max = fls(params->cw_max);
484 
485 	val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) |
486 	      FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) |
487 	      FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) |
488 	      FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max);
489 	mt76_wr(dev, MT_EDCA_CFG_AC(qid), val);
490 
491 	val = mt76_rr(dev, MT_WMM_TXOP(qid));
492 	val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(qid));
493 	val |= params->txop << MT_WMM_TXOP_SHIFT(qid);
494 	mt76_wr(dev, MT_WMM_TXOP(qid), val);
495 
496 	val = mt76_rr(dev, MT_WMM_AIFSN);
497 	val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(qid));
498 	val |= params->aifs << MT_WMM_AIFSN_SHIFT(qid);
499 	mt76_wr(dev, MT_WMM_AIFSN, val);
500 
501 	val = mt76_rr(dev, MT_WMM_CWMIN);
502 	val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(qid));
503 	val |= cw_min << MT_WMM_CWMIN_SHIFT(qid);
504 	mt76_wr(dev, MT_WMM_CWMIN, val);
505 
506 	val = mt76_rr(dev, MT_WMM_CWMAX);
507 	val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(qid));
508 	val |= cw_max << MT_WMM_CWMAX_SHIFT(qid);
509 	mt76_wr(dev, MT_WMM_CWMAX, val);
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(mt76x02_conf_tx);
514 
515 void mt76x02_set_tx_ackto(struct mt76x02_dev *dev)
516 {
517 	u8 ackto, sifs, slottime = dev->slottime;
518 
519 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
520 	slottime += 3 * dev->coverage_class;
521 	mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG,
522 		       MT_BKOFF_SLOT_CFG_SLOTTIME, slottime);
523 
524 	sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG,
525 			      MT_XIFS_TIME_CFG_OFDM_SIFS);
526 
527 	ackto = slottime + sifs;
528 	mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG,
529 		       MT_TX_TIMEOUT_CFG_ACKTO, ackto);
530 }
531 EXPORT_SYMBOL_GPL(mt76x02_set_tx_ackto);
532 
533 void mt76x02_set_coverage_class(struct ieee80211_hw *hw,
534 				s16 coverage_class)
535 {
536 	struct mt76x02_dev *dev = hw->priv;
537 
538 	mutex_lock(&dev->mt76.mutex);
539 	dev->coverage_class = coverage_class;
540 	mt76x02_set_tx_ackto(dev);
541 	mutex_unlock(&dev->mt76.mutex);
542 }
543 EXPORT_SYMBOL_GPL(mt76x02_set_coverage_class);
544 
545 int mt76x02_set_rts_threshold(struct ieee80211_hw *hw, u32 val)
546 {
547 	struct mt76x02_dev *dev = hw->priv;
548 
549 	if (val != ~0 && val > 0xffff)
550 		return -EINVAL;
551 
552 	mutex_lock(&dev->mt76.mutex);
553 	mt76x02_mac_set_rts_thresh(dev, val);
554 	mutex_unlock(&dev->mt76.mutex);
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(mt76x02_set_rts_threshold);
559 
560 void mt76x02_sta_rate_tbl_update(struct ieee80211_hw *hw,
561 				struct ieee80211_vif *vif,
562 				struct ieee80211_sta *sta)
563 {
564 	struct mt76x02_dev *dev = hw->priv;
565 	struct mt76x02_sta *msta = (struct mt76x02_sta *) sta->drv_priv;
566 	struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates);
567 	struct ieee80211_tx_rate rate = {};
568 
569 	if (!rates)
570 		return;
571 
572 	rate.idx = rates->rate[0].idx;
573 	rate.flags = rates->rate[0].flags;
574 	mt76x02_mac_wcid_set_rate(dev, &msta->wcid, &rate);
575 }
576 EXPORT_SYMBOL_GPL(mt76x02_sta_rate_tbl_update);
577 
578 void mt76x02_remove_hdr_pad(struct sk_buff *skb, int len)
579 {
580 	int hdrlen;
581 
582 	if (!len)
583 		return;
584 
585 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
586 	memmove(skb->data + len, skb->data, hdrlen);
587 	skb_pull(skb, len);
588 }
589 EXPORT_SYMBOL_GPL(mt76x02_remove_hdr_pad);
590 
591 void mt76x02_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
592 		     const u8 *mac)
593 {
594 	struct mt76x02_dev *dev = hw->priv;
595 
596 	set_bit(MT76_SCANNING, &dev->mt76.state);
597 }
598 EXPORT_SYMBOL_GPL(mt76x02_sw_scan);
599 
600 void mt76x02_sw_scan_complete(struct ieee80211_hw *hw,
601 			      struct ieee80211_vif *vif)
602 {
603 	struct mt76x02_dev *dev = hw->priv;
604 
605 	clear_bit(MT76_SCANNING, &dev->mt76.state);
606 	if (dev->cal.gain_init_done) {
607 		/* Restore AGC gain and resume calibration after scanning. */
608 		dev->cal.low_gain = -1;
609 		ieee80211_queue_delayed_work(hw, &dev->cal_work, 0);
610 	}
611 }
612 EXPORT_SYMBOL_GPL(mt76x02_sw_scan_complete);
613 
614 void mt76x02_sta_ps(struct mt76_dev *mdev, struct ieee80211_sta *sta,
615 		    bool ps)
616 {
617 	struct mt76x02_dev *dev = container_of(mdev, struct mt76x02_dev, mt76);
618 	struct mt76x02_sta *msta = (struct mt76x02_sta *)sta->drv_priv;
619 	int idx = msta->wcid.idx;
620 
621 	mt76_stop_tx_queues(&dev->mt76, sta, true);
622 	if (mt76_is_mmio(dev))
623 		mt76x02_mac_wcid_set_drop(dev, idx, ps);
624 }
625 EXPORT_SYMBOL_GPL(mt76x02_sta_ps);
626 
627 void mt76x02_bss_info_changed(struct ieee80211_hw *hw,
628 			      struct ieee80211_vif *vif,
629 			      struct ieee80211_bss_conf *info,
630 			      u32 changed)
631 {
632 	struct mt76x02_vif *mvif = (struct mt76x02_vif *)vif->drv_priv;
633 	struct mt76x02_dev *dev = hw->priv;
634 
635 	mutex_lock(&dev->mt76.mutex);
636 
637 	if (changed & BSS_CHANGED_BSSID)
638 		mt76x02_mac_set_bssid(dev, mvif->idx, info->bssid);
639 
640 	if (changed & BSS_CHANGED_HT || changed & BSS_CHANGED_ERP_CTS_PROT)
641 		mt76x02_mac_set_tx_protection(dev, info->use_cts_prot,
642 					      info->ht_operation_mode);
643 
644 	if (changed & BSS_CHANGED_BEACON_INT) {
645 		mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
646 			       MT_BEACON_TIME_CFG_INTVAL,
647 			       info->beacon_int << 4);
648 		dev->mt76.beacon_int = info->beacon_int;
649 	}
650 
651 	if (changed & BSS_CHANGED_BEACON_ENABLED)
652 		mt76x02_mac_set_beacon_enable(dev, vif, info->enable_beacon);
653 
654 	if (changed & BSS_CHANGED_ERP_PREAMBLE)
655 		mt76x02_mac_set_short_preamble(dev, info->use_short_preamble);
656 
657 	if (changed & BSS_CHANGED_ERP_SLOT) {
658 		int slottime = info->use_short_slot ? 9 : 20;
659 
660 		dev->slottime = slottime;
661 		mt76x02_set_tx_ackto(dev);
662 	}
663 
664 	mutex_unlock(&dev->mt76.mutex);
665 }
666 EXPORT_SYMBOL_GPL(mt76x02_bss_info_changed);
667 
668 void mt76x02_config_mac_addr_list(struct mt76x02_dev *dev)
669 {
670 	struct ieee80211_hw *hw = mt76_hw(dev);
671 	struct wiphy *wiphy = hw->wiphy;
672 	int i;
673 
674 	for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) {
675 		u8 *addr = dev->macaddr_list[i].addr;
676 
677 		memcpy(addr, dev->mt76.macaddr, ETH_ALEN);
678 
679 		if (!i)
680 			continue;
681 
682 		addr[0] |= BIT(1);
683 		addr[0] ^= ((i - 1) << 2);
684 	}
685 	wiphy->addresses = dev->macaddr_list;
686 	wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list);
687 }
688 EXPORT_SYMBOL_GPL(mt76x02_config_mac_addr_list);
689 
690 MODULE_LICENSE("Dual BSD/GPL");
691