xref: /linux/drivers/net/wireless/mediatek/mt76/mt7615/mac.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: ISC
2 /* Copyright (C) 2019 MediaTek Inc.
3  *
4  * Author: Ryder Lee <ryder.lee@mediatek.com>
5  *         Roy Luo <royluo@google.com>
6  *         Felix Fietkau <nbd@nbd.name>
7  *         Lorenzo Bianconi <lorenzo@kernel.org>
8  */
9 
10 #include <linux/devcoredump.h>
11 #include <linux/etherdevice.h>
12 #include <linux/timekeeping.h>
13 #include "mt7615.h"
14 #include "../trace.h"
15 #include "../dma.h"
16 #include "mt7615_trace.h"
17 #include "mac.h"
18 #include "mcu.h"
19 
20 #define to_rssi(field, rxv)		((FIELD_GET(field, rxv) - 220) / 2)
21 
22 static const struct mt7615_dfs_radar_spec etsi_radar_specs = {
23 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
24 	.radar_pattern = {
25 		[5] =  { 1, 0,  6, 32, 28, 0, 17,  990, 5010, 1, 1 },
26 		[6] =  { 1, 0,  9, 32, 28, 0, 27,  615, 5010, 1, 1 },
27 		[7] =  { 1, 0, 15, 32, 28, 0, 27,  240,  445, 1, 1 },
28 		[8] =  { 1, 0, 12, 32, 28, 0, 42,  240,  510, 1, 1 },
29 		[9] =  { 1, 1,  0,  0,  0, 0, 14, 2490, 3343, 0, 0, 12, 32, 28 },
30 		[10] = { 1, 1,  0,  0,  0, 0, 14, 2490, 3343, 0, 0, 15, 32, 24 },
31 		[11] = { 1, 1,  0,  0,  0, 0, 14,  823, 2510, 0, 0, 18, 32, 28 },
32 		[12] = { 1, 1,  0,  0,  0, 0, 14,  823, 2510, 0, 0, 27, 32, 24 },
33 	},
34 };
35 
36 static const struct mt7615_dfs_radar_spec fcc_radar_specs = {
37 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
38 	.radar_pattern = {
39 		[0] = { 1, 0,  9,  32, 28, 0, 13, 508, 3076, 1,  1 },
40 		[1] = { 1, 0, 12,  32, 28, 0, 17, 140,  240, 1,  1 },
41 		[2] = { 1, 0,  8,  32, 28, 0, 22, 190,  510, 1,  1 },
42 		[3] = { 1, 0,  6,  32, 28, 0, 32, 190,  510, 1,  1 },
43 		[4] = { 1, 0,  9, 255, 28, 0, 13, 323,  343, 1, 32 },
44 	},
45 };
46 
47 static const struct mt7615_dfs_radar_spec jp_radar_specs = {
48 	.pulse_th = { 110, -10, -80, 40, 5200, 128, 5200 },
49 	.radar_pattern = {
50 		[0] =  { 1, 0,  8, 32, 28, 0, 13,  508, 3076, 1,  1 },
51 		[1] =  { 1, 0, 12, 32, 28, 0, 17,  140,  240, 1,  1 },
52 		[2] =  { 1, 0,  8, 32, 28, 0, 22,  190,  510, 1,  1 },
53 		[3] =  { 1, 0,  6, 32, 28, 0, 32,  190,  510, 1,  1 },
54 		[4] =  { 1, 0,  9, 32, 28, 0, 13,  323,  343, 1, 32 },
55 		[13] = { 1, 0, 8,  32, 28, 0, 14, 3836, 3856, 1,  1 },
56 		[14] = { 1, 0, 8,  32, 28, 0, 14, 3990, 4010, 1,  1 },
57 	},
58 };
59 
60 static enum mt76_cipher_type
61 mt7615_mac_get_cipher(int cipher)
62 {
63 	switch (cipher) {
64 	case WLAN_CIPHER_SUITE_WEP40:
65 		return MT_CIPHER_WEP40;
66 	case WLAN_CIPHER_SUITE_WEP104:
67 		return MT_CIPHER_WEP104;
68 	case WLAN_CIPHER_SUITE_TKIP:
69 		return MT_CIPHER_TKIP;
70 	case WLAN_CIPHER_SUITE_AES_CMAC:
71 		return MT_CIPHER_BIP_CMAC_128;
72 	case WLAN_CIPHER_SUITE_CCMP:
73 		return MT_CIPHER_AES_CCMP;
74 	case WLAN_CIPHER_SUITE_CCMP_256:
75 		return MT_CIPHER_CCMP_256;
76 	case WLAN_CIPHER_SUITE_GCMP:
77 		return MT_CIPHER_GCMP;
78 	case WLAN_CIPHER_SUITE_GCMP_256:
79 		return MT_CIPHER_GCMP_256;
80 	case WLAN_CIPHER_SUITE_SMS4:
81 		return MT_CIPHER_WAPI;
82 	default:
83 		return MT_CIPHER_NONE;
84 	}
85 }
86 
87 static struct mt76_wcid *mt7615_rx_get_wcid(struct mt7615_dev *dev,
88 					    u8 idx, bool unicast)
89 {
90 	struct mt7615_sta *sta;
91 	struct mt76_wcid *wcid;
92 
93 	if (idx >= MT7615_WTBL_SIZE)
94 		return NULL;
95 
96 	wcid = rcu_dereference(dev->mt76.wcid[idx]);
97 	if (unicast || !wcid)
98 		return wcid;
99 
100 	if (!wcid->sta)
101 		return NULL;
102 
103 	sta = container_of(wcid, struct mt7615_sta, wcid);
104 	if (!sta->vif)
105 		return NULL;
106 
107 	return &sta->vif->sta.wcid;
108 }
109 
110 void mt7615_mac_reset_counters(struct mt7615_phy *phy)
111 {
112 	struct mt7615_dev *dev = phy->dev;
113 	int i;
114 
115 	for (i = 0; i < 4; i++) {
116 		mt76_rr(dev, MT_TX_AGG_CNT(0, i));
117 		mt76_rr(dev, MT_TX_AGG_CNT(1, i));
118 	}
119 
120 	memset(phy->mt76->aggr_stats, 0, sizeof(phy->mt76->aggr_stats));
121 	phy->mt76->survey_time = ktime_get_boottime();
122 
123 	/* reset airtime counters */
124 	mt76_rr(dev, MT_MIB_SDR9(0));
125 	mt76_rr(dev, MT_MIB_SDR9(1));
126 
127 	mt76_rr(dev, MT_MIB_SDR36(0));
128 	mt76_rr(dev, MT_MIB_SDR36(1));
129 
130 	mt76_rr(dev, MT_MIB_SDR37(0));
131 	mt76_rr(dev, MT_MIB_SDR37(1));
132 
133 	mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
134 	mt76_set(dev, MT_WF_RMAC_MIB_AIRTIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
135 }
136 
137 void mt7615_mac_set_timing(struct mt7615_phy *phy)
138 {
139 	s16 coverage_class = phy->coverage_class;
140 	struct mt7615_dev *dev = phy->dev;
141 	bool ext_phy = phy != &dev->phy;
142 	u32 val, reg_offset;
143 	u32 cck = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 231) |
144 		  FIELD_PREP(MT_TIMEOUT_VAL_CCA, 48);
145 	u32 ofdm = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, 60) |
146 		   FIELD_PREP(MT_TIMEOUT_VAL_CCA, 28);
147 	int sifs, offset;
148 	bool is_5ghz = phy->mt76->chandef.chan->band == NL80211_BAND_5GHZ;
149 
150 	if (!test_bit(MT76_STATE_RUNNING, &phy->mt76->state))
151 		return;
152 
153 	if (is_5ghz)
154 		sifs = 16;
155 	else
156 		sifs = 10;
157 
158 	if (ext_phy) {
159 		coverage_class = max_t(s16, dev->phy.coverage_class,
160 				       coverage_class);
161 		mt76_set(dev, MT_ARB_SCR,
162 			 MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
163 	} else {
164 		struct mt7615_phy *phy_ext = mt7615_ext_phy(dev);
165 
166 		if (phy_ext)
167 			coverage_class = max_t(s16, phy_ext->coverage_class,
168 					       coverage_class);
169 		mt76_set(dev, MT_ARB_SCR,
170 			 MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
171 	}
172 	udelay(1);
173 
174 	offset = 3 * coverage_class;
175 	reg_offset = FIELD_PREP(MT_TIMEOUT_VAL_PLCP, offset) |
176 		     FIELD_PREP(MT_TIMEOUT_VAL_CCA, offset);
177 	mt76_wr(dev, MT_TMAC_CDTR, cck + reg_offset);
178 	mt76_wr(dev, MT_TMAC_ODTR, ofdm + reg_offset);
179 
180 	mt76_wr(dev, MT_TMAC_ICR(ext_phy),
181 		FIELD_PREP(MT_IFS_EIFS, 360) |
182 		FIELD_PREP(MT_IFS_RIFS, 2) |
183 		FIELD_PREP(MT_IFS_SIFS, sifs) |
184 		FIELD_PREP(MT_IFS_SLOT, phy->slottime));
185 
186 	if (phy->slottime < 20 || is_5ghz)
187 		val = MT7615_CFEND_RATE_DEFAULT;
188 	else
189 		val = MT7615_CFEND_RATE_11B;
190 
191 	mt76_rmw_field(dev, MT_AGG_ACR(ext_phy), MT_AGG_ACR_CFEND_RATE, val);
192 	if (ext_phy)
193 		mt76_clear(dev, MT_ARB_SCR,
194 			   MT_ARB_SCR_TX1_DISABLE | MT_ARB_SCR_RX1_DISABLE);
195 	else
196 		mt76_clear(dev, MT_ARB_SCR,
197 			   MT_ARB_SCR_TX0_DISABLE | MT_ARB_SCR_RX0_DISABLE);
198 
199 }
200 
201 static void
202 mt7615_get_status_freq_info(struct mt7615_dev *dev, struct mt76_phy *mphy,
203 			    struct mt76_rx_status *status, u8 chfreq)
204 {
205 	if (!test_bit(MT76_HW_SCANNING, &mphy->state) &&
206 	    !test_bit(MT76_HW_SCHED_SCANNING, &mphy->state) &&
207 	    !test_bit(MT76_STATE_ROC, &mphy->state)) {
208 		status->freq = mphy->chandef.chan->center_freq;
209 		status->band = mphy->chandef.chan->band;
210 		return;
211 	}
212 
213 	status->band = chfreq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
214 	status->freq = ieee80211_channel_to_frequency(chfreq, status->band);
215 }
216 
217 static void mt7615_mac_fill_tm_rx(struct mt7615_phy *phy, __le32 *rxv)
218 {
219 #ifdef CONFIG_NL80211_TESTMODE
220 	u32 rxv1 = le32_to_cpu(rxv[0]);
221 	u32 rxv3 = le32_to_cpu(rxv[2]);
222 	u32 rxv4 = le32_to_cpu(rxv[3]);
223 	u32 rxv5 = le32_to_cpu(rxv[4]);
224 	u8 cbw = FIELD_GET(MT_RXV1_FRAME_MODE, rxv1);
225 	u8 mode = FIELD_GET(MT_RXV1_TX_MODE, rxv1);
226 	s16 foe = FIELD_GET(MT_RXV5_FOE, rxv5);
227 	u32 foe_const = (BIT(cbw + 1) & 0xf) * 10000;
228 
229 	if (!mode) {
230 		/* CCK */
231 		foe &= ~BIT(11);
232 		foe *= 1000;
233 		foe >>= 11;
234 	} else {
235 		if (foe > 2048)
236 			foe -= 4096;
237 
238 		foe = (foe * foe_const) >> 15;
239 	}
240 
241 	phy->test.last_freq_offset = foe;
242 	phy->test.last_rcpi[0] = FIELD_GET(MT_RXV4_RCPI0, rxv4);
243 	phy->test.last_rcpi[1] = FIELD_GET(MT_RXV4_RCPI1, rxv4);
244 	phy->test.last_rcpi[2] = FIELD_GET(MT_RXV4_RCPI2, rxv4);
245 	phy->test.last_rcpi[3] = FIELD_GET(MT_RXV4_RCPI3, rxv4);
246 	phy->test.last_ib_rssi[0] = FIELD_GET(MT_RXV3_IB_RSSI, rxv3);
247 	phy->test.last_wb_rssi[0] = FIELD_GET(MT_RXV3_WB_RSSI, rxv3);
248 #endif
249 }
250 
251 /* The HW does not translate the mac header to 802.3 for mesh point */
252 static int mt7615_reverse_frag0_hdr_trans(struct sk_buff *skb, u16 hdr_gap)
253 {
254 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
255 	struct ethhdr *eth_hdr = (struct ethhdr *)(skb->data + hdr_gap);
256 	struct mt7615_sta *msta = (struct mt7615_sta *)status->wcid;
257 	__le32 *rxd = (__le32 *)skb->data;
258 	struct ieee80211_sta *sta;
259 	struct ieee80211_vif *vif;
260 	struct ieee80211_hdr hdr;
261 	u16 frame_control;
262 
263 	if (le32_get_bits(rxd[1], MT_RXD1_NORMAL_ADDR_TYPE) !=
264 	    MT_RXD1_NORMAL_U2M)
265 		return -EINVAL;
266 
267 	if (!(le32_to_cpu(rxd[0]) & MT_RXD0_NORMAL_GROUP_4))
268 		return -EINVAL;
269 
270 	if (!msta || !msta->vif)
271 		return -EINVAL;
272 
273 	sta = container_of((void *)msta, struct ieee80211_sta, drv_priv);
274 	vif = container_of((void *)msta->vif, struct ieee80211_vif, drv_priv);
275 
276 	/* store the info from RXD and ethhdr to avoid being overridden */
277 	frame_control = le32_get_bits(rxd[4], MT_RXD4_FRAME_CONTROL);
278 	hdr.frame_control = cpu_to_le16(frame_control);
279 	hdr.seq_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_SEQ_CTRL));
280 	hdr.duration_id = 0;
281 
282 	ether_addr_copy(hdr.addr1, vif->addr);
283 	ether_addr_copy(hdr.addr2, sta->addr);
284 	switch (frame_control & (IEEE80211_FCTL_TODS |
285 				 IEEE80211_FCTL_FROMDS)) {
286 	case 0:
287 		ether_addr_copy(hdr.addr3, vif->bss_conf.bssid);
288 		break;
289 	case IEEE80211_FCTL_FROMDS:
290 		ether_addr_copy(hdr.addr3, eth_hdr->h_source);
291 		break;
292 	case IEEE80211_FCTL_TODS:
293 		ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
294 		break;
295 	case IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS:
296 		ether_addr_copy(hdr.addr3, eth_hdr->h_dest);
297 		ether_addr_copy(hdr.addr4, eth_hdr->h_source);
298 		break;
299 	default:
300 		break;
301 	}
302 
303 	skb_pull(skb, hdr_gap + sizeof(struct ethhdr) - 2);
304 	if (eth_hdr->h_proto == cpu_to_be16(ETH_P_AARP) ||
305 	    eth_hdr->h_proto == cpu_to_be16(ETH_P_IPX))
306 		ether_addr_copy(skb_push(skb, ETH_ALEN), bridge_tunnel_header);
307 	else if (be16_to_cpu(eth_hdr->h_proto) >= ETH_P_802_3_MIN)
308 		ether_addr_copy(skb_push(skb, ETH_ALEN), rfc1042_header);
309 	else
310 		skb_pull(skb, 2);
311 
312 	if (ieee80211_has_order(hdr.frame_control))
313 		memcpy(skb_push(skb, IEEE80211_HT_CTL_LEN), &rxd[7],
314 		       IEEE80211_HT_CTL_LEN);
315 
316 	if (ieee80211_is_data_qos(hdr.frame_control)) {
317 		__le16 qos_ctrl;
318 
319 		qos_ctrl = cpu_to_le16(le32_get_bits(rxd[6], MT_RXD6_QOS_CTL));
320 		memcpy(skb_push(skb, IEEE80211_QOS_CTL_LEN), &qos_ctrl,
321 		       IEEE80211_QOS_CTL_LEN);
322 	}
323 
324 	if (ieee80211_has_a4(hdr.frame_control))
325 		memcpy(skb_push(skb, sizeof(hdr)), &hdr, sizeof(hdr));
326 	else
327 		memcpy(skb_push(skb, sizeof(hdr) - 6), &hdr, sizeof(hdr) - 6);
328 
329 	status->flag &= ~(RX_FLAG_RADIOTAP_HE | RX_FLAG_RADIOTAP_HE_MU);
330 	return 0;
331 }
332 
333 static int mt7615_mac_fill_rx(struct mt7615_dev *dev, struct sk_buff *skb)
334 {
335 	struct mt76_rx_status *status = (struct mt76_rx_status *)skb->cb;
336 	struct mt76_phy *mphy = &dev->mt76.phy;
337 	struct mt7615_phy *phy = &dev->phy;
338 	struct ieee80211_supported_band *sband;
339 	struct ieee80211_hdr *hdr;
340 	struct mt7615_phy *phy2;
341 	__le32 *rxd = (__le32 *)skb->data;
342 	u32 rxd0 = le32_to_cpu(rxd[0]);
343 	u32 rxd1 = le32_to_cpu(rxd[1]);
344 	u32 rxd2 = le32_to_cpu(rxd[2]);
345 	u32 csum_mask = MT_RXD0_NORMAL_IP_SUM | MT_RXD0_NORMAL_UDP_TCP_SUM;
346 	u32 csum_status = *(u32 *)skb->cb;
347 	bool unicast, hdr_trans, remove_pad, insert_ccmp_hdr = false;
348 	u16 hdr_gap;
349 	int phy_idx;
350 	int i, idx;
351 	u8 chfreq, amsdu_info, qos_ctl = 0;
352 	u16 seq_ctrl = 0;
353 	__le16 fc = 0;
354 
355 	memset(status, 0, sizeof(*status));
356 
357 	chfreq = FIELD_GET(MT_RXD1_NORMAL_CH_FREQ, rxd1);
358 
359 	phy2 = dev->mt76.phys[MT_BAND1] ? dev->mt76.phys[MT_BAND1]->priv : NULL;
360 	if (!phy2)
361 		phy_idx = 0;
362 	else if (phy2->chfreq == phy->chfreq)
363 		phy_idx = -1;
364 	else if (phy->chfreq == chfreq)
365 		phy_idx = 0;
366 	else if (phy2->chfreq == chfreq)
367 		phy_idx = 1;
368 	else
369 		phy_idx = -1;
370 
371 	if (rxd2 & MT_RXD2_NORMAL_AMSDU_ERR)
372 		return -EINVAL;
373 
374 	hdr_trans = rxd1 & MT_RXD1_NORMAL_HDR_TRANS;
375 	if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_CM))
376 		return -EINVAL;
377 
378 	/* ICV error or CCMP/BIP/WPI MIC error */
379 	if (rxd2 & MT_RXD2_NORMAL_ICV_ERR)
380 		status->flag |= RX_FLAG_ONLY_MONITOR;
381 
382 	unicast = (rxd1 & MT_RXD1_NORMAL_ADDR_TYPE) == MT_RXD1_NORMAL_U2M;
383 	idx = FIELD_GET(MT_RXD2_NORMAL_WLAN_IDX, rxd2);
384 	status->wcid = mt7615_rx_get_wcid(dev, idx, unicast);
385 
386 	if (status->wcid) {
387 		struct mt7615_sta *msta;
388 
389 		msta = container_of(status->wcid, struct mt7615_sta, wcid);
390 		spin_lock_bh(&dev->mt76.sta_poll_lock);
391 		if (list_empty(&msta->wcid.poll_list))
392 			list_add_tail(&msta->wcid.poll_list,
393 				      &dev->mt76.sta_poll_list);
394 		spin_unlock_bh(&dev->mt76.sta_poll_lock);
395 	}
396 
397 	if (mt76_is_mmio(&dev->mt76) && (rxd0 & csum_mask) == csum_mask &&
398 	    !(csum_status & (BIT(0) | BIT(2) | BIT(3))))
399 		skb->ip_summed = CHECKSUM_UNNECESSARY;
400 
401 	if (rxd2 & MT_RXD2_NORMAL_FCS_ERR)
402 		status->flag |= RX_FLAG_FAILED_FCS_CRC;
403 
404 	if (rxd2 & MT_RXD2_NORMAL_TKIP_MIC_ERR)
405 		status->flag |= RX_FLAG_MMIC_ERROR;
406 
407 	if (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2) != 0 &&
408 	    !(rxd2 & (MT_RXD2_NORMAL_CLM | MT_RXD2_NORMAL_CM))) {
409 		status->flag |= RX_FLAG_DECRYPTED;
410 		status->flag |= RX_FLAG_IV_STRIPPED;
411 		status->flag |= RX_FLAG_MMIC_STRIPPED | RX_FLAG_MIC_STRIPPED;
412 	}
413 
414 	remove_pad = rxd1 & MT_RXD1_NORMAL_HDR_OFFSET;
415 
416 	if (rxd2 & MT_RXD2_NORMAL_MAX_LEN_ERROR)
417 		return -EINVAL;
418 
419 	rxd += 4;
420 	if (rxd0 & MT_RXD0_NORMAL_GROUP_4) {
421 		u32 v0 = le32_to_cpu(rxd[0]);
422 		u32 v2 = le32_to_cpu(rxd[2]);
423 
424 		fc = cpu_to_le16(FIELD_GET(MT_RXD4_FRAME_CONTROL, v0));
425 		qos_ctl = FIELD_GET(MT_RXD6_QOS_CTL, v2);
426 		seq_ctrl = FIELD_GET(MT_RXD6_SEQ_CTRL, v2);
427 
428 		rxd += 4;
429 		if ((u8 *)rxd - skb->data >= skb->len)
430 			return -EINVAL;
431 	}
432 
433 	if (rxd0 & MT_RXD0_NORMAL_GROUP_1) {
434 		u8 *data = (u8 *)rxd;
435 
436 		if (status->flag & RX_FLAG_DECRYPTED) {
437 			switch (FIELD_GET(MT_RXD2_NORMAL_SEC_MODE, rxd2)) {
438 			case MT_CIPHER_AES_CCMP:
439 			case MT_CIPHER_CCMP_CCX:
440 			case MT_CIPHER_CCMP_256:
441 				insert_ccmp_hdr =
442 					FIELD_GET(MT_RXD2_NORMAL_FRAG, rxd2);
443 				fallthrough;
444 			case MT_CIPHER_TKIP:
445 			case MT_CIPHER_TKIP_NO_MIC:
446 			case MT_CIPHER_GCMP:
447 			case MT_CIPHER_GCMP_256:
448 				status->iv[0] = data[5];
449 				status->iv[1] = data[4];
450 				status->iv[2] = data[3];
451 				status->iv[3] = data[2];
452 				status->iv[4] = data[1];
453 				status->iv[5] = data[0];
454 				break;
455 			default:
456 				break;
457 			}
458 		}
459 		rxd += 4;
460 		if ((u8 *)rxd - skb->data >= skb->len)
461 			return -EINVAL;
462 	}
463 
464 	if (rxd0 & MT_RXD0_NORMAL_GROUP_2) {
465 		status->timestamp = le32_to_cpu(rxd[0]);
466 		status->flag |= RX_FLAG_MACTIME_START;
467 
468 		if (!(rxd2 & (MT_RXD2_NORMAL_NON_AMPDU_SUB |
469 			      MT_RXD2_NORMAL_NON_AMPDU))) {
470 			status->flag |= RX_FLAG_AMPDU_DETAILS;
471 
472 			/* all subframes of an A-MPDU have the same timestamp */
473 			if (phy->rx_ampdu_ts != status->timestamp) {
474 				if (!++phy->ampdu_ref)
475 					phy->ampdu_ref++;
476 			}
477 			phy->rx_ampdu_ts = status->timestamp;
478 
479 			status->ampdu_ref = phy->ampdu_ref;
480 		}
481 
482 		rxd += 2;
483 		if ((u8 *)rxd - skb->data >= skb->len)
484 			return -EINVAL;
485 	}
486 
487 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
488 		u32 rxdg5 = le32_to_cpu(rxd[5]);
489 
490 		/*
491 		 * If both PHYs are on the same channel and we don't have a WCID,
492 		 * we need to figure out which PHY this packet was received on.
493 		 * On the primary PHY, the noise value for the chains belonging to the
494 		 * second PHY will be set to the noise value of the last packet from
495 		 * that PHY.
496 		 */
497 		if (phy_idx < 0) {
498 			int first_chain = ffs(phy2->mt76->chainmask) - 1;
499 
500 			phy_idx = ((rxdg5 >> (first_chain * 8)) & 0xff) == 0;
501 		}
502 	}
503 
504 	if (phy_idx == 1 && phy2) {
505 		mphy = dev->mt76.phys[MT_BAND1];
506 		phy = phy2;
507 		status->phy_idx = phy_idx;
508 	}
509 
510 	if (!mt7615_firmware_offload(dev) && chfreq != phy->chfreq)
511 		return -EINVAL;
512 
513 	mt7615_get_status_freq_info(dev, mphy, status, chfreq);
514 	if (status->band == NL80211_BAND_5GHZ)
515 		sband = &mphy->sband_5g.sband;
516 	else
517 		sband = &mphy->sband_2g.sband;
518 
519 	if (!test_bit(MT76_STATE_RUNNING, &mphy->state))
520 		return -EINVAL;
521 
522 	if (!sband->channels)
523 		return -EINVAL;
524 
525 	if (rxd0 & MT_RXD0_NORMAL_GROUP_3) {
526 		u32 rxdg0 = le32_to_cpu(rxd[0]);
527 		u32 rxdg1 = le32_to_cpu(rxd[1]);
528 		u32 rxdg3 = le32_to_cpu(rxd[3]);
529 		u8 stbc = FIELD_GET(MT_RXV1_HT_STBC, rxdg0);
530 		bool cck = false;
531 
532 		i = FIELD_GET(MT_RXV1_TX_RATE, rxdg0);
533 		switch (FIELD_GET(MT_RXV1_TX_MODE, rxdg0)) {
534 		case MT_PHY_TYPE_CCK:
535 			cck = true;
536 			fallthrough;
537 		case MT_PHY_TYPE_OFDM:
538 			i = mt76_get_rate(&dev->mt76, sband, i, cck);
539 			break;
540 		case MT_PHY_TYPE_HT_GF:
541 		case MT_PHY_TYPE_HT:
542 			status->encoding = RX_ENC_HT;
543 			if (i > 31)
544 				return -EINVAL;
545 			break;
546 		case MT_PHY_TYPE_VHT:
547 			status->nss = FIELD_GET(MT_RXV2_NSTS, rxdg1) + 1;
548 			status->encoding = RX_ENC_VHT;
549 			break;
550 		default:
551 			return -EINVAL;
552 		}
553 		status->rate_idx = i;
554 
555 		switch (FIELD_GET(MT_RXV1_FRAME_MODE, rxdg0)) {
556 		case MT_PHY_BW_20:
557 			break;
558 		case MT_PHY_BW_40:
559 			status->bw = RATE_INFO_BW_40;
560 			break;
561 		case MT_PHY_BW_80:
562 			status->bw = RATE_INFO_BW_80;
563 			break;
564 		case MT_PHY_BW_160:
565 			status->bw = RATE_INFO_BW_160;
566 			break;
567 		default:
568 			return -EINVAL;
569 		}
570 
571 		if (rxdg0 & MT_RXV1_HT_SHORT_GI)
572 			status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
573 		if (rxdg0 & MT_RXV1_HT_AD_CODE)
574 			status->enc_flags |= RX_ENC_FLAG_LDPC;
575 
576 		status->enc_flags |= RX_ENC_FLAG_STBC_MASK * stbc;
577 
578 		status->chains = mphy->antenna_mask;
579 		status->chain_signal[0] = to_rssi(MT_RXV4_RCPI0, rxdg3);
580 		status->chain_signal[1] = to_rssi(MT_RXV4_RCPI1, rxdg3);
581 		status->chain_signal[2] = to_rssi(MT_RXV4_RCPI2, rxdg3);
582 		status->chain_signal[3] = to_rssi(MT_RXV4_RCPI3, rxdg3);
583 
584 		mt7615_mac_fill_tm_rx(mphy->priv, rxd);
585 
586 		rxd += 6;
587 		if ((u8 *)rxd - skb->data >= skb->len)
588 			return -EINVAL;
589 	}
590 
591 	amsdu_info = FIELD_GET(MT_RXD1_NORMAL_PAYLOAD_FORMAT, rxd1);
592 	status->amsdu = !!amsdu_info;
593 	if (status->amsdu) {
594 		status->first_amsdu = amsdu_info == MT_RXD1_FIRST_AMSDU_FRAME;
595 		status->last_amsdu = amsdu_info == MT_RXD1_LAST_AMSDU_FRAME;
596 	}
597 
598 	hdr_gap = (u8 *)rxd - skb->data + 2 * remove_pad;
599 	if (hdr_trans && ieee80211_has_morefrags(fc)) {
600 		if (mt7615_reverse_frag0_hdr_trans(skb, hdr_gap))
601 			return -EINVAL;
602 		hdr_trans = false;
603 	} else {
604 		int pad_start = 0;
605 
606 		skb_pull(skb, hdr_gap);
607 		if (!hdr_trans && status->amsdu) {
608 			pad_start = ieee80211_get_hdrlen_from_skb(skb);
609 		} else if (hdr_trans && (rxd2 & MT_RXD2_NORMAL_HDR_TRANS_ERROR)) {
610 			/*
611 			 * When header translation failure is indicated,
612 			 * the hardware will insert an extra 2-byte field
613 			 * containing the data length after the protocol
614 			 * type field. This happens either when the LLC-SNAP
615 			 * pattern did not match, or if a VLAN header was
616 			 * detected.
617 			 */
618 			pad_start = 12;
619 			if (get_unaligned_be16(skb->data + pad_start) == ETH_P_8021Q)
620 				pad_start += 4;
621 			else
622 				pad_start = 0;
623 		}
624 
625 		if (pad_start) {
626 			memmove(skb->data + 2, skb->data, pad_start);
627 			skb_pull(skb, 2);
628 		}
629 	}
630 
631 	if (insert_ccmp_hdr && !hdr_trans) {
632 		u8 key_id = FIELD_GET(MT_RXD1_NORMAL_KEY_ID, rxd1);
633 
634 		mt76_insert_ccmp_hdr(skb, key_id);
635 	}
636 
637 	if (!hdr_trans) {
638 		hdr = (struct ieee80211_hdr *)skb->data;
639 		fc = hdr->frame_control;
640 		if (ieee80211_is_data_qos(fc)) {
641 			seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
642 			qos_ctl = *ieee80211_get_qos_ctl(hdr);
643 		}
644 	} else {
645 		status->flag |= RX_FLAG_8023;
646 	}
647 
648 	if (!status->wcid || !ieee80211_is_data_qos(fc))
649 		return 0;
650 
651 	status->aggr = unicast &&
652 		       !ieee80211_is_qos_nullfunc(fc);
653 	status->qos_ctl = qos_ctl;
654 	status->seqno = IEEE80211_SEQ_TO_SN(seq_ctrl);
655 
656 	return 0;
657 }
658 
659 static u16
660 mt7615_mac_tx_rate_val(struct mt7615_dev *dev,
661 		       struct mt76_phy *mphy,
662 		       const struct ieee80211_tx_rate *rate,
663 		       bool stbc, u8 *bw)
664 {
665 	u8 phy, nss, rate_idx;
666 	u16 rateval = 0;
667 
668 	*bw = 0;
669 
670 	if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
671 		rate_idx = ieee80211_rate_get_vht_mcs(rate);
672 		nss = ieee80211_rate_get_vht_nss(rate);
673 		phy = MT_PHY_TYPE_VHT;
674 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
675 			*bw = 1;
676 		else if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
677 			*bw = 2;
678 		else if (rate->flags & IEEE80211_TX_RC_160_MHZ_WIDTH)
679 			*bw = 3;
680 	} else if (rate->flags & IEEE80211_TX_RC_MCS) {
681 		rate_idx = rate->idx;
682 		nss = 1 + (rate->idx >> 3);
683 		phy = MT_PHY_TYPE_HT;
684 		if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
685 			phy = MT_PHY_TYPE_HT_GF;
686 		if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
687 			*bw = 1;
688 	} else {
689 		const struct ieee80211_rate *r;
690 		int band = mphy->chandef.chan->band;
691 		u16 val;
692 
693 		nss = 1;
694 		r = &mphy->hw->wiphy->bands[band]->bitrates[rate->idx];
695 		if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
696 			val = r->hw_value_short;
697 		else
698 			val = r->hw_value;
699 
700 		phy = val >> 8;
701 		rate_idx = val & 0xff;
702 	}
703 
704 	if (stbc && nss == 1) {
705 		nss++;
706 		rateval |= MT_TX_RATE_STBC;
707 	}
708 
709 	rateval |= (FIELD_PREP(MT_TX_RATE_IDX, rate_idx) |
710 		    FIELD_PREP(MT_TX_RATE_MODE, phy) |
711 		    FIELD_PREP(MT_TX_RATE_NSS, nss - 1));
712 
713 	return rateval;
714 }
715 
716 int mt7615_mac_write_txwi(struct mt7615_dev *dev, __le32 *txwi,
717 			  struct sk_buff *skb, struct mt76_wcid *wcid,
718 			  struct ieee80211_sta *sta, int pid,
719 			  struct ieee80211_key_conf *key,
720 			  enum mt76_txq_id qid, bool beacon)
721 {
722 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
723 	u8 fc_type, fc_stype, p_fmt, q_idx, omac_idx = 0, wmm_idx = 0;
724 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
725 	struct ieee80211_tx_rate *rate = &info->control.rates[0];
726 	u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
727 	bool multicast = is_multicast_ether_addr(hdr->addr1);
728 	struct ieee80211_vif *vif = info->control.vif;
729 	bool is_mmio = mt76_is_mmio(&dev->mt76);
730 	u32 val, sz_txd = is_mmio ? MT_TXD_SIZE : MT_USB_TXD_SIZE;
731 	struct mt76_phy *mphy = &dev->mphy;
732 	__le16 fc = hdr->frame_control;
733 	int tx_count = 8;
734 	u16 seqno = 0;
735 
736 	if (vif) {
737 		struct mt76_vif *mvif = (struct mt76_vif *)vif->drv_priv;
738 
739 		omac_idx = mvif->omac_idx;
740 		wmm_idx = mvif->wmm_idx;
741 	}
742 
743 	if (sta) {
744 		struct mt7615_sta *msta = (struct mt7615_sta *)sta->drv_priv;
745 
746 		tx_count = msta->rate_count;
747 	}
748 
749 	if (phy_idx && dev->mt76.phys[MT_BAND1])
750 		mphy = dev->mt76.phys[MT_BAND1];
751 
752 	fc_type = (le16_to_cpu(fc) & IEEE80211_FCTL_FTYPE) >> 2;
753 	fc_stype = (le16_to_cpu(fc) & IEEE80211_FCTL_STYPE) >> 4;
754 
755 	if (beacon) {
756 		p_fmt = MT_TX_TYPE_FW;
757 		q_idx = phy_idx ? MT_LMAC_BCN1 : MT_LMAC_BCN0;
758 	} else if (qid >= MT_TXQ_PSD) {
759 		p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
760 		q_idx = phy_idx ? MT_LMAC_ALTX1 : MT_LMAC_ALTX0;
761 	} else {
762 		p_fmt = is_mmio ? MT_TX_TYPE_CT : MT_TX_TYPE_SF;
763 		q_idx = wmm_idx * MT7615_MAX_WMM_SETS +
764 			mt7615_lmac_mapping(dev, skb_get_queue_mapping(skb));
765 	}
766 
767 	val = FIELD_PREP(MT_TXD0_TX_BYTES, skb->len + sz_txd) |
768 	      FIELD_PREP(MT_TXD0_P_IDX, MT_TX_PORT_IDX_LMAC) |
769 	      FIELD_PREP(MT_TXD0_Q_IDX, q_idx);
770 	txwi[0] = cpu_to_le32(val);
771 
772 	val = MT_TXD1_LONG_FORMAT |
773 	      FIELD_PREP(MT_TXD1_WLAN_IDX, wcid->idx) |
774 	      FIELD_PREP(MT_TXD1_HDR_FORMAT, MT_HDR_FORMAT_802_11) |
775 	      FIELD_PREP(MT_TXD1_HDR_INFO,
776 			 ieee80211_get_hdrlen_from_skb(skb) / 2) |
777 	      FIELD_PREP(MT_TXD1_TID,
778 			 skb->priority & IEEE80211_QOS_CTL_TID_MASK) |
779 	      FIELD_PREP(MT_TXD1_PKT_FMT, p_fmt) |
780 	      FIELD_PREP(MT_TXD1_OWN_MAC, omac_idx);
781 	txwi[1] = cpu_to_le32(val);
782 
783 	val = FIELD_PREP(MT_TXD2_FRAME_TYPE, fc_type) |
784 	      FIELD_PREP(MT_TXD2_SUB_TYPE, fc_stype) |
785 	      FIELD_PREP(MT_TXD2_MULTICAST, multicast);
786 	if (key) {
787 		if (multicast && ieee80211_is_robust_mgmt_frame(skb) &&
788 		    key->cipher == WLAN_CIPHER_SUITE_AES_CMAC) {
789 			val |= MT_TXD2_BIP;
790 			txwi[3] = 0;
791 		} else {
792 			txwi[3] = cpu_to_le32(MT_TXD3_PROTECT_FRAME);
793 		}
794 	} else {
795 		txwi[3] = 0;
796 	}
797 	txwi[2] = cpu_to_le32(val);
798 
799 	if (!(info->flags & IEEE80211_TX_CTL_AMPDU))
800 		txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
801 
802 	txwi[4] = 0;
803 	txwi[6] = 0;
804 
805 	if (rate->idx >= 0 && rate->count &&
806 	    !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) {
807 		bool stbc = info->flags & IEEE80211_TX_CTL_STBC;
808 		u8 bw;
809 		u16 rateval = mt7615_mac_tx_rate_val(dev, mphy, rate, stbc,
810 						     &bw);
811 
812 		txwi[2] |= cpu_to_le32(MT_TXD2_FIX_RATE);
813 
814 		val = MT_TXD6_FIXED_BW |
815 		      FIELD_PREP(MT_TXD6_BW, bw) |
816 		      FIELD_PREP(MT_TXD6_TX_RATE, rateval);
817 		txwi[6] |= cpu_to_le32(val);
818 
819 		if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
820 			txwi[6] |= cpu_to_le32(MT_TXD6_SGI);
821 
822 		if (info->flags & IEEE80211_TX_CTL_LDPC)
823 			txwi[6] |= cpu_to_le32(MT_TXD6_LDPC);
824 
825 		if (!(rate->flags & (IEEE80211_TX_RC_MCS |
826 				     IEEE80211_TX_RC_VHT_MCS)))
827 			txwi[2] |= cpu_to_le32(MT_TXD2_BA_DISABLE);
828 
829 		tx_count = rate->count;
830 	}
831 
832 	if (!ieee80211_is_beacon(fc)) {
833 		struct ieee80211_hw *hw = mt76_hw(dev);
834 
835 		val = MT_TXD5_TX_STATUS_HOST | FIELD_PREP(MT_TXD5_PID, pid);
836 		if (!ieee80211_hw_check(hw, SUPPORTS_PS))
837 			val |= MT_TXD5_SW_POWER_MGMT;
838 		txwi[5] = cpu_to_le32(val);
839 	} else {
840 		txwi[5] = 0;
841 		/* use maximum tx count for beacons */
842 		tx_count = 0x1f;
843 	}
844 
845 	val = FIELD_PREP(MT_TXD3_REM_TX_COUNT, tx_count);
846 	if (info->flags & IEEE80211_TX_CTL_INJECTED) {
847 		seqno = le16_to_cpu(hdr->seq_ctrl);
848 
849 		if (ieee80211_is_back_req(hdr->frame_control)) {
850 			struct ieee80211_bar *bar;
851 
852 			bar = (struct ieee80211_bar *)skb->data;
853 			seqno = le16_to_cpu(bar->start_seq_num);
854 		}
855 
856 		val |= MT_TXD3_SN_VALID |
857 		       FIELD_PREP(MT_TXD3_SEQ, IEEE80211_SEQ_TO_SN(seqno));
858 	}
859 
860 	txwi[3] |= cpu_to_le32(val);
861 
862 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
863 		txwi[3] |= cpu_to_le32(MT_TXD3_NO_ACK);
864 
865 	val = FIELD_PREP(MT_TXD7_TYPE, fc_type) |
866 	      FIELD_PREP(MT_TXD7_SUB_TYPE, fc_stype) |
867 	      FIELD_PREP(MT_TXD7_SPE_IDX, 0x18);
868 	txwi[7] = cpu_to_le32(val);
869 	if (!is_mmio) {
870 		val = FIELD_PREP(MT_TXD8_L_TYPE, fc_type) |
871 		      FIELD_PREP(MT_TXD8_L_SUB_TYPE, fc_stype);
872 		txwi[8] = cpu_to_le32(val);
873 	}
874 
875 	return 0;
876 }
877 EXPORT_SYMBOL_GPL(mt7615_mac_write_txwi);
878 
879 bool mt7615_mac_wtbl_update(struct mt7615_dev *dev, int idx, u32 mask)
880 {
881 	mt76_rmw(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_WLAN_IDX,
882 		 FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, idx) | mask);
883 
884 	return mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY,
885 			 0, 5000);
886 }
887 
888 void mt7615_mac_sta_poll(struct mt7615_dev *dev)
889 {
890 	static const u8 ac_to_tid[4] = {
891 		[IEEE80211_AC_BE] = 0,
892 		[IEEE80211_AC_BK] = 1,
893 		[IEEE80211_AC_VI] = 4,
894 		[IEEE80211_AC_VO] = 6
895 	};
896 	static const u8 hw_queue_map[] = {
897 		[IEEE80211_AC_BK] = 0,
898 		[IEEE80211_AC_BE] = 1,
899 		[IEEE80211_AC_VI] = 2,
900 		[IEEE80211_AC_VO] = 3,
901 	};
902 	struct ieee80211_sta *sta;
903 	struct mt7615_sta *msta;
904 	u32 addr, tx_time[4], rx_time[4];
905 	struct list_head sta_poll_list;
906 	int i;
907 
908 	INIT_LIST_HEAD(&sta_poll_list);
909 	spin_lock_bh(&dev->mt76.sta_poll_lock);
910 	list_splice_init(&dev->mt76.sta_poll_list, &sta_poll_list);
911 	spin_unlock_bh(&dev->mt76.sta_poll_lock);
912 
913 	while (!list_empty(&sta_poll_list)) {
914 		bool clear = false;
915 
916 		msta = list_first_entry(&sta_poll_list, struct mt7615_sta,
917 					wcid.poll_list);
918 
919 		spin_lock_bh(&dev->mt76.sta_poll_lock);
920 		list_del_init(&msta->wcid.poll_list);
921 		spin_unlock_bh(&dev->mt76.sta_poll_lock);
922 
923 		addr = mt7615_mac_wtbl_addr(dev, msta->wcid.idx) + 19 * 4;
924 
925 		for (i = 0; i < 4; i++, addr += 8) {
926 			u32 tx_last = msta->airtime_ac[i];
927 			u32 rx_last = msta->airtime_ac[i + 4];
928 
929 			msta->airtime_ac[i] = mt76_rr(dev, addr);
930 			msta->airtime_ac[i + 4] = mt76_rr(dev, addr + 4);
931 			tx_time[i] = msta->airtime_ac[i] - tx_last;
932 			rx_time[i] = msta->airtime_ac[i + 4] - rx_last;
933 
934 			if ((tx_last | rx_last) & BIT(30))
935 				clear = true;
936 		}
937 
938 		if (clear) {
939 			mt7615_mac_wtbl_update(dev, msta->wcid.idx,
940 					       MT_WTBL_UPDATE_ADM_COUNT_CLEAR);
941 			memset(msta->airtime_ac, 0, sizeof(msta->airtime_ac));
942 		}
943 
944 		if (!msta->wcid.sta)
945 			continue;
946 
947 		sta = container_of((void *)msta, struct ieee80211_sta,
948 				   drv_priv);
949 		for (i = 0; i < 4; i++) {
950 			u32 tx_cur = tx_time[i];
951 			u32 rx_cur = rx_time[hw_queue_map[i]];
952 			u8 tid = ac_to_tid[i];
953 
954 			if (!tx_cur && !rx_cur)
955 				continue;
956 
957 			ieee80211_sta_register_airtime(sta, tid, tx_cur,
958 						       rx_cur);
959 		}
960 	}
961 }
962 EXPORT_SYMBOL_GPL(mt7615_mac_sta_poll);
963 
964 static void
965 mt7615_mac_update_rate_desc(struct mt7615_phy *phy, struct mt7615_sta *sta,
966 			    struct ieee80211_tx_rate *probe_rate,
967 			    struct ieee80211_tx_rate *rates,
968 			    struct mt7615_rate_desc *rd)
969 {
970 	struct mt7615_dev *dev = phy->dev;
971 	struct mt76_phy *mphy = phy->mt76;
972 	struct ieee80211_tx_rate *ref;
973 	bool rateset, stbc = false;
974 	int n_rates = sta->n_rates;
975 	u8 bw, bw_prev;
976 	int i, j;
977 
978 	for (i = n_rates; i < 4; i++)
979 		rates[i] = rates[n_rates - 1];
980 
981 	rateset = !(sta->rate_set_tsf & BIT(0));
982 	memcpy(sta->rateset[rateset].rates, rates,
983 	       sizeof(sta->rateset[rateset].rates));
984 	if (probe_rate) {
985 		sta->rateset[rateset].probe_rate = *probe_rate;
986 		ref = &sta->rateset[rateset].probe_rate;
987 	} else {
988 		sta->rateset[rateset].probe_rate.idx = -1;
989 		ref = &sta->rateset[rateset].rates[0];
990 	}
991 
992 	rates = sta->rateset[rateset].rates;
993 	for (i = 0; i < ARRAY_SIZE(sta->rateset[rateset].rates); i++) {
994 		/*
995 		 * We don't support switching between short and long GI
996 		 * within the rate set. For accurate tx status reporting, we
997 		 * need to make sure that flags match.
998 		 * For improved performance, avoid duplicate entries by
999 		 * decrementing the MCS index if necessary
1000 		 */
1001 		if ((ref->flags ^ rates[i].flags) & IEEE80211_TX_RC_SHORT_GI)
1002 			rates[i].flags ^= IEEE80211_TX_RC_SHORT_GI;
1003 
1004 		for (j = 0; j < i; j++) {
1005 			if (rates[i].idx != rates[j].idx)
1006 				continue;
1007 			if ((rates[i].flags ^ rates[j].flags) &
1008 			    (IEEE80211_TX_RC_40_MHZ_WIDTH |
1009 			     IEEE80211_TX_RC_80_MHZ_WIDTH |
1010 			     IEEE80211_TX_RC_160_MHZ_WIDTH))
1011 				continue;
1012 
1013 			if (!rates[i].idx)
1014 				continue;
1015 
1016 			rates[i].idx--;
1017 		}
1018 	}
1019 
1020 	rd->val[0] = mt7615_mac_tx_rate_val(dev, mphy, &rates[0], stbc, &bw);
1021 	bw_prev = bw;
1022 
1023 	if (probe_rate) {
1024 		rd->probe_val = mt7615_mac_tx_rate_val(dev, mphy, probe_rate,
1025 						       stbc, &bw);
1026 		if (bw)
1027 			rd->bw_idx = 1;
1028 		else
1029 			bw_prev = 0;
1030 	} else {
1031 		rd->probe_val = rd->val[0];
1032 	}
1033 
1034 	rd->val[1] = mt7615_mac_tx_rate_val(dev, mphy, &rates[1], stbc, &bw);
1035 	if (bw_prev) {
1036 		rd->bw_idx = 3;
1037 		bw_prev = bw;
1038 	}
1039 
1040 	rd->val[2] = mt7615_mac_tx_rate_val(dev, mphy, &rates[2], stbc, &bw);
1041 	if (bw_prev) {
1042 		rd->bw_idx = 5;
1043 		bw_prev = bw;
1044 	}
1045 
1046 	rd->val[3] = mt7615_mac_tx_rate_val(dev, mphy, &rates[3], stbc, &bw);
1047 	if (bw_prev)
1048 		rd->bw_idx = 7;
1049 
1050 	rd->rateset = rateset;
1051 	rd->bw = bw;
1052 }
1053 
1054 static int
1055 mt7615_mac_queue_rate_update(struct mt7615_phy *phy, struct mt7615_sta *sta,
1056 			     struct ieee80211_tx_rate *probe_rate,
1057 			     struct ieee80211_tx_rate *rates)
1058 {
1059 	struct mt7615_dev *dev = phy->dev;
1060 	struct mt7615_wtbl_rate_desc *wrd;
1061 
1062 	if (work_pending(&dev->rate_work))
1063 		return -EBUSY;
1064 
1065 	wrd = kzalloc(sizeof(*wrd), GFP_ATOMIC);
1066 	if (!wrd)
1067 		return -ENOMEM;
1068 
1069 	wrd->sta = sta;
1070 	mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates,
1071 				    &wrd->rate);
1072 	list_add_tail(&wrd->node, &dev->wrd_head);
1073 	queue_work(dev->mt76.wq, &dev->rate_work);
1074 
1075 	return 0;
1076 }
1077 
1078 u32 mt7615_mac_get_sta_tid_sn(struct mt7615_dev *dev, int wcid, u8 tid)
1079 {
1080 	u32 addr, val, val2;
1081 	u8 offset;
1082 
1083 	addr = mt7615_mac_wtbl_addr(dev, wcid) + 11 * 4;
1084 
1085 	offset = tid * 12;
1086 	addr += 4 * (offset / 32);
1087 	offset %= 32;
1088 
1089 	val = mt76_rr(dev, addr);
1090 	val >>= offset;
1091 
1092 	if (offset > 20) {
1093 		addr += 4;
1094 		val2 = mt76_rr(dev, addr);
1095 		val |= val2 << (32 - offset);
1096 	}
1097 
1098 	return val & GENMASK(11, 0);
1099 }
1100 
1101 void mt7615_mac_set_rates(struct mt7615_phy *phy, struct mt7615_sta *sta,
1102 			  struct ieee80211_tx_rate *probe_rate,
1103 			  struct ieee80211_tx_rate *rates)
1104 {
1105 	int wcid = sta->wcid.idx, n_rates = sta->n_rates;
1106 	struct mt7615_dev *dev = phy->dev;
1107 	struct mt7615_rate_desc rd;
1108 	u32 w5, w27, addr;
1109 	u16 idx = sta->vif->mt76.omac_idx;
1110 
1111 	if (!mt76_is_mmio(&dev->mt76)) {
1112 		mt7615_mac_queue_rate_update(phy, sta, probe_rate, rates);
1113 		return;
1114 	}
1115 
1116 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
1117 		return;
1118 
1119 	memset(&rd, 0, sizeof(struct mt7615_rate_desc));
1120 	mt7615_mac_update_rate_desc(phy, sta, probe_rate, rates, &rd);
1121 
1122 	addr = mt7615_mac_wtbl_addr(dev, wcid);
1123 	w27 = mt76_rr(dev, addr + 27 * 4);
1124 	w27 &= ~MT_WTBL_W27_CC_BW_SEL;
1125 	w27 |= FIELD_PREP(MT_WTBL_W27_CC_BW_SEL, rd.bw);
1126 
1127 	w5 = mt76_rr(dev, addr + 5 * 4);
1128 	w5 &= ~(MT_WTBL_W5_BW_CAP | MT_WTBL_W5_CHANGE_BW_RATE |
1129 		MT_WTBL_W5_MPDU_OK_COUNT |
1130 		MT_WTBL_W5_MPDU_FAIL_COUNT |
1131 		MT_WTBL_W5_RATE_IDX);
1132 	w5 |= FIELD_PREP(MT_WTBL_W5_BW_CAP, rd.bw) |
1133 	      FIELD_PREP(MT_WTBL_W5_CHANGE_BW_RATE,
1134 			 rd.bw_idx ? rd.bw_idx - 1 : 7);
1135 
1136 	mt76_wr(dev, MT_WTBL_RIUCR0, w5);
1137 
1138 	mt76_wr(dev, MT_WTBL_RIUCR1,
1139 		FIELD_PREP(MT_WTBL_RIUCR1_RATE0, rd.probe_val) |
1140 		FIELD_PREP(MT_WTBL_RIUCR1_RATE1, rd.val[0]) |
1141 		FIELD_PREP(MT_WTBL_RIUCR1_RATE2_LO, rd.val[1]));
1142 
1143 	mt76_wr(dev, MT_WTBL_RIUCR2,
1144 		FIELD_PREP(MT_WTBL_RIUCR2_RATE2_HI, rd.val[1] >> 8) |
1145 		FIELD_PREP(MT_WTBL_RIUCR2_RATE3, rd.val[1]) |
1146 		FIELD_PREP(MT_WTBL_RIUCR2_RATE4, rd.val[2]) |
1147 		FIELD_PREP(MT_WTBL_RIUCR2_RATE5_LO, rd.val[2]));
1148 
1149 	mt76_wr(dev, MT_WTBL_RIUCR3,
1150 		FIELD_PREP(MT_WTBL_RIUCR3_RATE5_HI, rd.val[2] >> 4) |
1151 		FIELD_PREP(MT_WTBL_RIUCR3_RATE6, rd.val[3]) |
1152 		FIELD_PREP(MT_WTBL_RIUCR3_RATE7, rd.val[3]));
1153 
1154 	mt76_wr(dev, MT_WTBL_UPDATE,
1155 		FIELD_PREP(MT_WTBL_UPDATE_WLAN_IDX, wcid) |
1156 		MT_WTBL_UPDATE_RATE_UPDATE |
1157 		MT_WTBL_UPDATE_TX_COUNT_CLEAR);
1158 
1159 	mt76_wr(dev, addr + 27 * 4, w27);
1160 
1161 	idx = idx > HW_BSSID_MAX ? HW_BSSID_0 : idx;
1162 	addr = idx > 1 ? MT_LPON_TCR2(idx): MT_LPON_TCR0(idx);
1163 
1164 	mt76_rmw(dev, addr, MT_LPON_TCR_MODE, MT_LPON_TCR_READ); /* TSF read */
1165 	sta->rate_set_tsf = mt76_rr(dev, MT_LPON_UTTR0) & ~BIT(0);
1166 	sta->rate_set_tsf |= rd.rateset;
1167 
1168 	if (!(sta->wcid.tx_info & MT_WCID_TX_INFO_SET))
1169 		mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000);
1170 
1171 	sta->rate_count = 2 * MT7615_RATE_RETRY * n_rates;
1172 	sta->wcid.tx_info |= MT_WCID_TX_INFO_SET;
1173 	sta->rate_probe = !!probe_rate;
1174 }
1175 EXPORT_SYMBOL_GPL(mt7615_mac_set_rates);
1176 
1177 void mt7615_mac_enable_rtscts(struct mt7615_dev *dev,
1178 			      struct ieee80211_vif *vif, bool enable)
1179 {
1180 	struct mt7615_vif *mvif = (struct mt7615_vif *)vif->drv_priv;
1181 	u32 addr;
1182 
1183 	addr = mt7615_mac_wtbl_addr(dev, mvif->sta.wcid.idx) + 3 * 4;
1184 
1185 	if (enable)
1186 		mt76_set(dev, addr, MT_WTBL_W3_RTS);
1187 	else
1188 		mt76_clear(dev, addr, MT_WTBL_W3_RTS);
1189 }
1190 EXPORT_SYMBOL_GPL(mt7615_mac_enable_rtscts);
1191 
1192 static int
1193 mt7615_mac_wtbl_update_key(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1194 			   struct ieee80211_key_conf *key,
1195 			   enum mt76_cipher_type cipher, u16 cipher_mask)
1196 {
1197 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx) + 30 * 4;
1198 	u8 data[32] = {};
1199 
1200 	if (key->keylen > sizeof(data))
1201 		return -EINVAL;
1202 
1203 	mt76_rr_copy(dev, addr, data, sizeof(data));
1204 	if (cipher == MT_CIPHER_TKIP) {
1205 		/* Rx/Tx MIC keys are swapped */
1206 		memcpy(data, key->key, 16);
1207 		memcpy(data + 16, key->key + 24, 8);
1208 		memcpy(data + 24, key->key + 16, 8);
1209 	} else {
1210 		if (cipher_mask == BIT(cipher))
1211 			memcpy(data, key->key, key->keylen);
1212 		else if (cipher != MT_CIPHER_BIP_CMAC_128)
1213 			memcpy(data, key->key, 16);
1214 		if (cipher == MT_CIPHER_BIP_CMAC_128)
1215 			memcpy(data + 16, key->key, 16);
1216 	}
1217 
1218 	mt76_wr_copy(dev, addr, data, sizeof(data));
1219 
1220 	return 0;
1221 }
1222 
1223 static int
1224 mt7615_mac_wtbl_update_pk(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1225 			  enum mt76_cipher_type cipher, u16 cipher_mask,
1226 			  int keyidx)
1227 {
1228 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx), w0, w1;
1229 
1230 	if (!mt76_poll(dev, MT_WTBL_UPDATE, MT_WTBL_UPDATE_BUSY, 0, 5000))
1231 		return -ETIMEDOUT;
1232 
1233 	w0 = mt76_rr(dev, addr);
1234 	w1 = mt76_rr(dev, addr + 4);
1235 
1236 	if (cipher_mask)
1237 		w0 |= MT_WTBL_W0_RX_KEY_VALID;
1238 	else
1239 		w0 &= ~(MT_WTBL_W0_RX_KEY_VALID | MT_WTBL_W0_KEY_IDX);
1240 	if (cipher_mask & BIT(MT_CIPHER_BIP_CMAC_128))
1241 		w0 |= MT_WTBL_W0_RX_IK_VALID;
1242 	else
1243 		w0 &= ~MT_WTBL_W0_RX_IK_VALID;
1244 
1245 	if (cipher != MT_CIPHER_BIP_CMAC_128 || cipher_mask == BIT(cipher)) {
1246 		w0 &= ~MT_WTBL_W0_KEY_IDX;
1247 		w0 |= FIELD_PREP(MT_WTBL_W0_KEY_IDX, keyidx);
1248 	}
1249 
1250 	mt76_wr(dev, MT_WTBL_RICR0, w0);
1251 	mt76_wr(dev, MT_WTBL_RICR1, w1);
1252 
1253 	if (!mt7615_mac_wtbl_update(dev, wcid->idx,
1254 				    MT_WTBL_UPDATE_RXINFO_UPDATE))
1255 		return -ETIMEDOUT;
1256 
1257 	return 0;
1258 }
1259 
1260 static void
1261 mt7615_mac_wtbl_update_cipher(struct mt7615_dev *dev, struct mt76_wcid *wcid,
1262 			      enum mt76_cipher_type cipher, u16 cipher_mask)
1263 {
1264 	u32 addr = mt7615_mac_wtbl_addr(dev, wcid->idx);
1265 
1266 	if (cipher == MT_CIPHER_BIP_CMAC_128 &&
1267 	    cipher_mask & ~BIT(MT_CIPHER_BIP_CMAC_128))
1268 		return;
1269 
1270 	mt76_rmw(dev, addr + 2 * 4, MT_WTBL_W2_KEY_TYPE,
1271 		 FIELD_PREP(MT_WTBL_W2_KEY_TYPE, cipher));
1272 }
1273 
1274 int __mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
1275 			      struct mt76_wcid *wcid,
1276 			      struct ieee80211_key_conf *key)
1277 {
1278 	enum mt76_cipher_type cipher;
1279 	u16 cipher_mask = wcid->cipher;
1280 	int err;
1281 
1282 	cipher = mt7615_mac_get_cipher(key->cipher);
1283 	if (cipher == MT_CIPHER_NONE)
1284 		return -EOPNOTSUPP;
1285 
1286 	cipher_mask |= BIT(cipher);
1287 	mt7615_mac_wtbl_update_cipher(dev, wcid, cipher, cipher_mask);
1288 	err = mt7615_mac_wtbl_update_key(dev, wcid, key, cipher, cipher_mask);
1289 	if (err < 0)
1290 		return err;
1291 
1292 	err = mt7615_mac_wtbl_update_pk(dev, wcid, cipher, cipher_mask,
1293 					key->keyidx);
1294 	if (err < 0)
1295 		return err;
1296 
1297 	wcid->cipher = cipher_mask;
1298 
1299 	return 0;
1300 }
1301 
1302 int mt7615_mac_wtbl_set_key(struct mt7615_dev *dev,
1303 			    struct mt76_wcid *wcid,
1304 			    struct ieee80211_key_conf *key)
1305 {
1306 	int err;
1307 
1308 	spin_lock_bh(&dev->mt76.lock);
1309 	err = __mt7615_mac_wtbl_set_key(dev, wcid, key);
1310 	spin_unlock_bh(&dev->mt76.lock);
1311 
1312 	return err;
1313 }
1314 
1315 static bool mt7615_fill_txs(struct mt7615_dev *dev, struct mt7615_sta *sta,
1316 			    struct ieee80211_tx_info *info, __le32 *txs_data)
1317 {
1318 	struct ieee80211_supported_band *sband;
1319 	struct mt7615_rate_set *rs;
1320 	struct mt76_phy *mphy;
1321 	int first_idx = 0, last_idx;
1322 	int i, idx, count;
1323 	bool fixed_rate, ack_timeout;
1324 	bool ampdu, cck = false;
1325 	bool rs_idx;
1326 	u32 rate_set_tsf;
1327 	u32 final_rate, final_rate_flags, final_nss, txs;
1328 
1329 	txs = le32_to_cpu(txs_data[1]);
1330 	ampdu = txs & MT_TXS1_AMPDU;
1331 
1332 	txs = le32_to_cpu(txs_data[3]);
1333 	count = FIELD_GET(MT_TXS3_TX_COUNT, txs);
1334 	last_idx = FIELD_GET(MT_TXS3_LAST_TX_RATE, txs);
1335 
1336 	txs = le32_to_cpu(txs_data[0]);
1337 	fixed_rate = txs & MT_TXS0_FIXED_RATE;
1338 	final_rate = FIELD_GET(MT_TXS0_TX_RATE, txs);
1339 	ack_timeout = txs & MT_TXS0_ACK_TIMEOUT;
1340 
1341 	if (!ampdu && (txs & MT_TXS0_RTS_TIMEOUT))
1342 		return false;
1343 
1344 	if (txs & MT_TXS0_QUEUE_TIMEOUT)
1345 		return false;
1346 
1347 	if (!ack_timeout)
1348 		info->flags |= IEEE80211_TX_STAT_ACK;
1349 
1350 	info->status.ampdu_len = 1;
1351 	info->status.ampdu_ack_len = !!(info->flags &
1352 					IEEE80211_TX_STAT_ACK);
1353 
1354 	if (ampdu || (info->flags & IEEE80211_TX_CTL_AMPDU))
1355 		info->flags |= IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_CTL_AMPDU;
1356 
1357 	first_idx = max_t(int, 0, last_idx - (count - 1) / MT7615_RATE_RETRY);
1358 
1359 	if (fixed_rate) {
1360 		info->status.rates[0].count = count;
1361 		i = 0;
1362 		goto out;
1363 	}
1364 
1365 	rate_set_tsf = READ_ONCE(sta->rate_set_tsf);
1366 	rs_idx = !((u32)(le32_get_bits(txs_data[4], MT_TXS4_F0_TIMESTAMP) -
1367 			 rate_set_tsf) < 1000000);
1368 	rs_idx ^= rate_set_tsf & BIT(0);
1369 	rs = &sta->rateset[rs_idx];
1370 
1371 	if (!first_idx && rs->probe_rate.idx >= 0) {
1372 		info->status.rates[0] = rs->probe_rate;
1373 
1374 		spin_lock_bh(&dev->mt76.lock);
1375 		if (sta->rate_probe) {
1376 			struct mt7615_phy *phy = &dev->phy;
1377 
1378 			if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
1379 				phy = dev->mt76.phys[MT_BAND1]->priv;
1380 
1381 			mt7615_mac_set_rates(phy, sta, NULL, sta->rates);
1382 		}
1383 		spin_unlock_bh(&dev->mt76.lock);
1384 	} else {
1385 		info->status.rates[0] = rs->rates[first_idx / 2];
1386 	}
1387 	info->status.rates[0].count = 0;
1388 
1389 	for (i = 0, idx = first_idx; count && idx <= last_idx; idx++) {
1390 		struct ieee80211_tx_rate *cur_rate;
1391 		int cur_count;
1392 
1393 		cur_rate = &rs->rates[idx / 2];
1394 		cur_count = min_t(int, MT7615_RATE_RETRY, count);
1395 		count -= cur_count;
1396 
1397 		if (idx && (cur_rate->idx != info->status.rates[i].idx ||
1398 			    cur_rate->flags != info->status.rates[i].flags)) {
1399 			i++;
1400 			if (i == ARRAY_SIZE(info->status.rates)) {
1401 				i--;
1402 				break;
1403 			}
1404 
1405 			info->status.rates[i] = *cur_rate;
1406 			info->status.rates[i].count = 0;
1407 		}
1408 
1409 		info->status.rates[i].count += cur_count;
1410 	}
1411 
1412 out:
1413 	final_rate_flags = info->status.rates[i].flags;
1414 
1415 	switch (FIELD_GET(MT_TX_RATE_MODE, final_rate)) {
1416 	case MT_PHY_TYPE_CCK:
1417 		cck = true;
1418 		fallthrough;
1419 	case MT_PHY_TYPE_OFDM:
1420 		mphy = &dev->mphy;
1421 		if (sta->wcid.phy_idx && dev->mt76.phys[MT_BAND1])
1422 			mphy = dev->mt76.phys[MT_BAND1];
1423 
1424 		if (mphy->chandef.chan->band == NL80211_BAND_5GHZ)
1425 			sband = &mphy->sband_5g.sband;
1426 		else
1427 			sband = &mphy->sband_2g.sband;
1428 		final_rate &= MT_TX_RATE_IDX;
1429 		final_rate = mt76_get_rate(&dev->mt76, sband, final_rate,
1430 					   cck);
1431 		final_rate_flags = 0;
1432 		break;
1433 	case MT_PHY_TYPE_HT_GF:
1434 	case MT_PHY_TYPE_HT:
1435 		final_rate_flags |= IEEE80211_TX_RC_MCS;
1436 		final_rate &= MT_TX_RATE_IDX;
1437 		if (final_rate > 31)
1438 			return false;
1439 		break;
1440 	case MT_PHY_TYPE_VHT:
1441 		final_nss = FIELD_GET(MT_TX_RATE_NSS, final_rate);
1442 
1443 		if ((final_rate & MT_TX_RATE_STBC) && final_nss)
1444 			final_nss--;
1445 
1446 		final_rate_flags |= IEEE80211_TX_RC_VHT_MCS;
1447 		final_rate = (final_rate & MT_TX_RATE_IDX) | (final_nss << 4);
1448 		break;
1449 	default:
1450 		return false;
1451 	}
1452 
1453 	info->status.rates[i].idx = final_rate;
1454 	info->status.rates[i].flags = final_rate_flags;
1455 
1456 	return true;
1457 }
1458 
1459 static bool mt7615_mac_add_txs_skb(struct mt7615_dev *dev,
1460 				   struct mt7615_sta *sta, int pid,
1461 				   __le32 *txs_data)
1462 {
1463 	struct mt76_dev *mdev = &dev->mt76;
1464 	struct sk_buff_head list;
1465 	struct sk_buff *skb;
1466 
1467 	if (pid < MT_PACKET_ID_FIRST)
1468 		return false;
1469 
1470 	trace_mac_txdone(mdev, sta->wcid.idx, pid);
1471 
1472 	mt76_tx_status_lock(mdev, &list);
1473 	skb = mt76_tx_status_skb_get(mdev, &sta->wcid, pid, &list);
1474 	if (skb) {
1475 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1476 
1477 		if (!mt7615_fill_txs(dev, sta, info, txs_data)) {
1478 			info->status.rates[0].count = 0;
1479 			info->status.rates[0].idx = -1;
1480 		}
1481 
1482 		mt76_tx_status_skb_done(mdev, skb, &list);
1483 	}
1484 	mt76_tx_status_unlock(mdev, &list);
1485 
1486 	return !!skb;
1487 }
1488 
1489 static void mt7615_mac_add_txs(struct mt7615_dev *dev, void *data)
1490 {
1491 	struct ieee80211_tx_info info = {};
1492 	struct ieee80211_sta *sta = NULL;
1493 	struct mt7615_sta *msta = NULL;
1494 	struct mt76_wcid *wcid;
1495 	struct mt76_phy *mphy = &dev->mt76.phy;
1496 	__le32 *txs_data = data;
1497 	u8 wcidx;
1498 	u8 pid;
1499 
1500 	pid = le32_get_bits(txs_data[0], MT_TXS0_PID);
1501 	wcidx = le32_get_bits(txs_data[2], MT_TXS2_WCID);
1502 
1503 	if (pid == MT_PACKET_ID_NO_ACK)
1504 		return;
1505 
1506 	if (wcidx >= MT7615_WTBL_SIZE)
1507 		return;
1508 
1509 	rcu_read_lock();
1510 
1511 	wcid = rcu_dereference(dev->mt76.wcid[wcidx]);
1512 	if (!wcid)
1513 		goto out;
1514 
1515 	msta = container_of(wcid, struct mt7615_sta, wcid);
1516 	sta = wcid_to_sta(wcid);
1517 
1518 	spin_lock_bh(&dev->mt76.sta_poll_lock);
1519 	if (list_empty(&msta->wcid.poll_list))
1520 		list_add_tail(&msta->wcid.poll_list, &dev->mt76.sta_poll_list);
1521 	spin_unlock_bh(&dev->mt76.sta_poll_lock);
1522 
1523 	if (mt7615_mac_add_txs_skb(dev, msta, pid, txs_data))
1524 		goto out;
1525 
1526 	if (wcidx >= MT7615_WTBL_STA || !sta)
1527 		goto out;
1528 
1529 	if (wcid->phy_idx && dev->mt76.phys[MT_BAND1])
1530 		mphy = dev->mt76.phys[MT_BAND1];
1531 
1532 	if (mt7615_fill_txs(dev, msta, &info, txs_data)) {
1533 		spin_lock_bh(&dev->mt76.rx_lock);
1534 		ieee80211_tx_status_noskb(mphy->hw, sta, &info);
1535 		spin_unlock_bh(&dev->mt76.rx_lock);
1536 	}
1537 
1538 out:
1539 	rcu_read_unlock();
1540 }
1541 
1542 static void
1543 mt7615_txwi_free(struct mt7615_dev *dev, struct mt76_txwi_cache *txwi)
1544 {
1545 	struct mt76_dev *mdev = &dev->mt76;
1546 	__le32 *txwi_data;
1547 	u32 val;
1548 	u8 wcid;
1549 
1550 	mt76_connac_txp_skb_unmap(mdev, txwi);
1551 	if (!txwi->skb)
1552 		goto out;
1553 
1554 	txwi_data = (__le32 *)mt76_get_txwi_ptr(mdev, txwi);
1555 	val = le32_to_cpu(txwi_data[1]);
1556 	wcid = FIELD_GET(MT_TXD1_WLAN_IDX, val);
1557 	mt76_tx_complete_skb(mdev, wcid, txwi->skb);
1558 
1559 out:
1560 	txwi->skb = NULL;
1561 	mt76_put_txwi(mdev, txwi);
1562 }
1563 
1564 static void
1565 mt7615_mac_tx_free_token(struct mt7615_dev *dev, u16 token)
1566 {
1567 	struct mt76_dev *mdev = &dev->mt76;
1568 	struct mt76_txwi_cache *txwi;
1569 
1570 	trace_mac_tx_free(dev, token);
1571 	txwi = mt76_token_put(mdev, token);
1572 	if (!txwi)
1573 		return;
1574 
1575 	mt7615_txwi_free(dev, txwi);
1576 }
1577 
1578 static void mt7615_mac_tx_free(struct mt7615_dev *dev, void *data, int len)
1579 {
1580 	struct mt76_connac_tx_free *free = data;
1581 	void *tx_token = data + sizeof(*free);
1582 	void *end = data + len;
1583 	u8 i, count;
1584 
1585 	mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_PSD], false);
1586 	if (is_mt7615(&dev->mt76)) {
1587 		mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[MT_TXQ_BE], false);
1588 	} else {
1589 		for (i = 0; i < IEEE80211_NUM_ACS; i++)
1590 			mt76_queue_tx_cleanup(dev, dev->mphy.q_tx[i], false);
1591 	}
1592 
1593 	count = le16_get_bits(free->ctrl, MT_TX_FREE_MSDU_ID_CNT);
1594 	if (is_mt7615(&dev->mt76)) {
1595 		__le16 *token = tx_token;
1596 
1597 		if (WARN_ON_ONCE((void *)&token[count] > end))
1598 			return;
1599 
1600 		for (i = 0; i < count; i++)
1601 			mt7615_mac_tx_free_token(dev, le16_to_cpu(token[i]));
1602 	} else {
1603 		__le32 *token = tx_token;
1604 
1605 		if (WARN_ON_ONCE((void *)&token[count] > end))
1606 			return;
1607 
1608 		for (i = 0; i < count; i++)
1609 			mt7615_mac_tx_free_token(dev, le32_to_cpu(token[i]));
1610 	}
1611 
1612 	rcu_read_lock();
1613 	mt7615_mac_sta_poll(dev);
1614 	rcu_read_unlock();
1615 
1616 	mt76_worker_schedule(&dev->mt76.tx_worker);
1617 }
1618 
1619 bool mt7615_rx_check(struct mt76_dev *mdev, void *data, int len)
1620 {
1621 	struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
1622 	__le32 *rxd = (__le32 *)data;
1623 	__le32 *end = (__le32 *)&rxd[len / 4];
1624 	enum rx_pkt_type type;
1625 
1626 	type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
1627 
1628 	switch (type) {
1629 	case PKT_TYPE_TXRX_NOTIFY:
1630 		mt7615_mac_tx_free(dev, data, len);
1631 		return false;
1632 	case PKT_TYPE_TXS:
1633 		for (rxd++; rxd + 7 <= end; rxd += 7)
1634 			mt7615_mac_add_txs(dev, rxd);
1635 		return false;
1636 	default:
1637 		return true;
1638 	}
1639 }
1640 EXPORT_SYMBOL_GPL(mt7615_rx_check);
1641 
1642 void mt7615_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
1643 			 struct sk_buff *skb, u32 *info)
1644 {
1645 	struct mt7615_dev *dev = container_of(mdev, struct mt7615_dev, mt76);
1646 	__le32 *rxd = (__le32 *)skb->data;
1647 	__le32 *end = (__le32 *)&skb->data[skb->len];
1648 	enum rx_pkt_type type;
1649 	u16 flag;
1650 
1651 	type = le32_get_bits(rxd[0], MT_RXD0_PKT_TYPE);
1652 	flag = le32_get_bits(rxd[0], MT_RXD0_PKT_FLAG);
1653 	if (type == PKT_TYPE_RX_EVENT && flag == 0x1)
1654 		type = PKT_TYPE_NORMAL_MCU;
1655 
1656 	switch (type) {
1657 	case PKT_TYPE_TXS:
1658 		for (rxd++; rxd + 7 <= end; rxd += 7)
1659 			mt7615_mac_add_txs(dev, rxd);
1660 		dev_kfree_skb(skb);
1661 		break;
1662 	case PKT_TYPE_TXRX_NOTIFY:
1663 		mt7615_mac_tx_free(dev, skb->data, skb->len);
1664 		dev_kfree_skb(skb);
1665 		break;
1666 	case PKT_TYPE_RX_EVENT:
1667 		mt7615_mcu_rx_event(dev, skb);
1668 		break;
1669 	case PKT_TYPE_NORMAL_MCU:
1670 	case PKT_TYPE_NORMAL:
1671 		if (!mt7615_mac_fill_rx(dev, skb)) {
1672 			mt76_rx(&dev->mt76, q, skb);
1673 			return;
1674 		}
1675 		fallthrough;
1676 	default:
1677 		dev_kfree_skb(skb);
1678 		break;
1679 	}
1680 }
1681 EXPORT_SYMBOL_GPL(mt7615_queue_rx_skb);
1682 
1683 static void
1684 mt7615_mac_set_sensitivity(struct mt7615_phy *phy, int val, bool ofdm)
1685 {
1686 	struct mt7615_dev *dev = phy->dev;
1687 	bool ext_phy = phy != &dev->phy;
1688 
1689 	if (is_mt7663(&dev->mt76)) {
1690 		if (ofdm)
1691 			mt76_rmw(dev, MT7663_WF_PHY_MIN_PRI_PWR(ext_phy),
1692 				 MT_WF_PHY_PD_OFDM_MASK(0),
1693 				 MT_WF_PHY_PD_OFDM(0, val));
1694 		else
1695 			mt76_rmw(dev, MT7663_WF_PHY_RXTD_CCK_PD(ext_phy),
1696 				 MT_WF_PHY_PD_CCK_MASK(ext_phy),
1697 				 MT_WF_PHY_PD_CCK(ext_phy, val));
1698 		return;
1699 	}
1700 
1701 	if (ofdm)
1702 		mt76_rmw(dev, MT_WF_PHY_MIN_PRI_PWR(ext_phy),
1703 			 MT_WF_PHY_PD_OFDM_MASK(ext_phy),
1704 			 MT_WF_PHY_PD_OFDM(ext_phy, val));
1705 	else
1706 		mt76_rmw(dev, MT_WF_PHY_RXTD_CCK_PD(ext_phy),
1707 			 MT_WF_PHY_PD_CCK_MASK(ext_phy),
1708 			 MT_WF_PHY_PD_CCK(ext_phy, val));
1709 }
1710 
1711 static void
1712 mt7615_mac_set_default_sensitivity(struct mt7615_phy *phy)
1713 {
1714 	/* ofdm */
1715 	mt7615_mac_set_sensitivity(phy, 0x13c, true);
1716 	/* cck */
1717 	mt7615_mac_set_sensitivity(phy, 0x92, false);
1718 
1719 	phy->ofdm_sensitivity = -98;
1720 	phy->cck_sensitivity = -110;
1721 	phy->last_cca_adj = jiffies;
1722 }
1723 
1724 void mt7615_mac_set_scs(struct mt7615_phy *phy, bool enable)
1725 {
1726 	struct mt7615_dev *dev = phy->dev;
1727 	bool ext_phy = phy != &dev->phy;
1728 	u32 reg, mask;
1729 
1730 	mt7615_mutex_acquire(dev);
1731 
1732 	if (phy->scs_en == enable)
1733 		goto out;
1734 
1735 	if (is_mt7663(&dev->mt76)) {
1736 		reg = MT7663_WF_PHY_MIN_PRI_PWR(ext_phy);
1737 		mask = MT_WF_PHY_PD_BLK(0);
1738 	} else {
1739 		reg = MT_WF_PHY_MIN_PRI_PWR(ext_phy);
1740 		mask = MT_WF_PHY_PD_BLK(ext_phy);
1741 	}
1742 
1743 	if (enable) {
1744 		mt76_set(dev, reg, mask);
1745 		if (is_mt7622(&dev->mt76)) {
1746 			mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7 << 8);
1747 			mt76_set(dev, MT_MIB_M0_MISC_CR(0), 0x7);
1748 		}
1749 	} else {
1750 		mt76_clear(dev, reg, mask);
1751 	}
1752 
1753 	mt7615_mac_set_default_sensitivity(phy);
1754 	phy->scs_en = enable;
1755 
1756 out:
1757 	mt7615_mutex_release(dev);
1758 }
1759 
1760 void mt7615_mac_enable_nf(struct mt7615_dev *dev, bool ext_phy)
1761 {
1762 	u32 rxtd, reg;
1763 
1764 	if (is_mt7663(&dev->mt76))
1765 		reg = MT7663_WF_PHY_R0_PHYMUX_5;
1766 	else
1767 		reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
1768 
1769 	if (ext_phy)
1770 		rxtd = MT_WF_PHY_RXTD2(10);
1771 	else
1772 		rxtd = MT_WF_PHY_RXTD(12);
1773 
1774 	mt76_set(dev, rxtd, BIT(18) | BIT(29));
1775 	mt76_set(dev, reg, 0x5 << 12);
1776 }
1777 
1778 void mt7615_mac_cca_stats_reset(struct mt7615_phy *phy)
1779 {
1780 	struct mt7615_dev *dev = phy->dev;
1781 	bool ext_phy = phy != &dev->phy;
1782 	u32 reg;
1783 
1784 	if (is_mt7663(&dev->mt76))
1785 		reg = MT7663_WF_PHY_R0_PHYMUX_5;
1786 	else
1787 		reg = MT_WF_PHY_R0_PHYMUX_5(ext_phy);
1788 
1789 	/* reset PD and MDRDY counters */
1790 	mt76_clear(dev, reg, GENMASK(22, 20));
1791 	mt76_set(dev, reg, BIT(22) | BIT(20));
1792 }
1793 
1794 static void
1795 mt7615_mac_adjust_sensitivity(struct mt7615_phy *phy,
1796 			      u32 rts_err_rate, bool ofdm)
1797 {
1798 	struct mt7615_dev *dev = phy->dev;
1799 	int false_cca = ofdm ? phy->false_cca_ofdm : phy->false_cca_cck;
1800 	bool ext_phy = phy != &dev->phy;
1801 	s16 def_th = ofdm ? -98 : -110;
1802 	bool update = false;
1803 	s8 *sensitivity;
1804 	int signal;
1805 
1806 	sensitivity = ofdm ? &phy->ofdm_sensitivity : &phy->cck_sensitivity;
1807 	signal = mt76_get_min_avg_rssi(&dev->mt76, ext_phy);
1808 	if (!signal) {
1809 		mt7615_mac_set_default_sensitivity(phy);
1810 		return;
1811 	}
1812 
1813 	signal = min(signal, -72);
1814 	if (false_cca > 500) {
1815 		if (rts_err_rate > MT_FRAC(40, 100))
1816 			return;
1817 
1818 		/* decrease coverage */
1819 		if (*sensitivity == def_th && signal > -90) {
1820 			*sensitivity = -90;
1821 			update = true;
1822 		} else if (*sensitivity + 2 < signal) {
1823 			*sensitivity += 2;
1824 			update = true;
1825 		}
1826 	} else if ((false_cca > 0 && false_cca < 50) ||
1827 		   rts_err_rate > MT_FRAC(60, 100)) {
1828 		/* increase coverage */
1829 		if (*sensitivity - 2 >= def_th) {
1830 			*sensitivity -= 2;
1831 			update = true;
1832 		}
1833 	}
1834 
1835 	if (*sensitivity > signal) {
1836 		*sensitivity = signal;
1837 		update = true;
1838 	}
1839 
1840 	if (update) {
1841 		u16 val = ofdm ? *sensitivity * 2 + 512 : *sensitivity + 256;
1842 
1843 		mt7615_mac_set_sensitivity(phy, val, ofdm);
1844 		phy->last_cca_adj = jiffies;
1845 	}
1846 }
1847 
1848 static void
1849 mt7615_mac_scs_check(struct mt7615_phy *phy)
1850 {
1851 	struct mt7615_dev *dev = phy->dev;
1852 	struct mib_stats *mib = &phy->mib;
1853 	u32 val, rts_err_rate = 0;
1854 	u32 mdrdy_cck, mdrdy_ofdm, pd_cck, pd_ofdm;
1855 	bool ext_phy = phy != &dev->phy;
1856 
1857 	if (!phy->scs_en)
1858 		return;
1859 
1860 	if (is_mt7663(&dev->mt76))
1861 		val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
1862 	else
1863 		val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS0(ext_phy));
1864 	pd_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_CCK, val);
1865 	pd_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_PD_OFDM, val);
1866 
1867 	if (is_mt7663(&dev->mt76))
1868 		val = mt76_rr(dev, MT7663_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
1869 	else
1870 		val = mt76_rr(dev, MT_WF_PHY_R0_PHYCTRL_STS5(ext_phy));
1871 	mdrdy_cck = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_CCK, val);
1872 	mdrdy_ofdm = FIELD_GET(MT_WF_PHYCTRL_STAT_MDRDY_OFDM, val);
1873 
1874 	phy->false_cca_ofdm = pd_ofdm - mdrdy_ofdm;
1875 	phy->false_cca_cck = pd_cck - mdrdy_cck;
1876 	mt7615_mac_cca_stats_reset(phy);
1877 
1878 	if (mib->rts_cnt + mib->rts_retries_cnt)
1879 		rts_err_rate = MT_FRAC(mib->rts_retries_cnt,
1880 				       mib->rts_cnt + mib->rts_retries_cnt);
1881 
1882 	/* cck */
1883 	mt7615_mac_adjust_sensitivity(phy, rts_err_rate, false);
1884 	/* ofdm */
1885 	mt7615_mac_adjust_sensitivity(phy, rts_err_rate, true);
1886 
1887 	if (time_after(jiffies, phy->last_cca_adj + 10 * HZ))
1888 		mt7615_mac_set_default_sensitivity(phy);
1889 }
1890 
1891 static u8
1892 mt7615_phy_get_nf(struct mt7615_dev *dev, int idx)
1893 {
1894 	static const u8 nf_power[] = { 92, 89, 86, 83, 80, 75, 70, 65, 60, 55, 52 };
1895 	u32 reg, val, sum = 0, n = 0;
1896 	int i;
1897 
1898 	if (is_mt7663(&dev->mt76))
1899 		reg = MT7663_WF_PHY_RXTD(20);
1900 	else
1901 		reg = idx ? MT_WF_PHY_RXTD2(17) : MT_WF_PHY_RXTD(20);
1902 
1903 	for (i = 0; i < ARRAY_SIZE(nf_power); i++, reg += 4) {
1904 		val = mt76_rr(dev, reg);
1905 		sum += val * nf_power[i];
1906 		n += val;
1907 	}
1908 
1909 	if (!n)
1910 		return 0;
1911 
1912 	return sum / n;
1913 }
1914 
1915 static void
1916 mt7615_phy_update_channel(struct mt76_phy *mphy, int idx)
1917 {
1918 	struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
1919 	struct mt7615_phy *phy = mphy->priv;
1920 	struct mt76_channel_state *state;
1921 	u64 busy_time, tx_time, rx_time, obss_time;
1922 	u32 obss_reg = idx ? MT_WF_RMAC_MIB_TIME6 : MT_WF_RMAC_MIB_TIME5;
1923 	int nf;
1924 
1925 	busy_time = mt76_get_field(dev, MT_MIB_SDR9(idx),
1926 				   MT_MIB_SDR9_BUSY_MASK);
1927 	tx_time = mt76_get_field(dev, MT_MIB_SDR36(idx),
1928 				 MT_MIB_SDR36_TXTIME_MASK);
1929 	rx_time = mt76_get_field(dev, MT_MIB_SDR37(idx),
1930 				 MT_MIB_SDR37_RXTIME_MASK);
1931 	obss_time = mt76_get_field(dev, obss_reg, MT_MIB_OBSSTIME_MASK);
1932 
1933 	nf = mt7615_phy_get_nf(dev, idx);
1934 	if (!phy->noise)
1935 		phy->noise = nf << 4;
1936 	else if (nf)
1937 		phy->noise += nf - (phy->noise >> 4);
1938 
1939 	state = mphy->chan_state;
1940 	state->cc_busy += busy_time;
1941 	state->cc_tx += tx_time;
1942 	state->cc_rx += rx_time + obss_time;
1943 	state->cc_bss_rx += rx_time;
1944 	state->noise = -(phy->noise >> 4);
1945 }
1946 
1947 static void mt7615_update_survey(struct mt7615_dev *dev)
1948 {
1949 	struct mt76_dev *mdev = &dev->mt76;
1950 	struct mt76_phy *mphy_ext = mdev->phys[MT_BAND1];
1951 	ktime_t cur_time;
1952 
1953 	/* MT7615 can only update both phys simultaneously
1954 	 * since some reisters are shared across bands.
1955 	 */
1956 
1957 	mt7615_phy_update_channel(&mdev->phy, 0);
1958 	if (mphy_ext)
1959 		mt7615_phy_update_channel(mphy_ext, 1);
1960 
1961 	cur_time = ktime_get_boottime();
1962 
1963 	mt76_update_survey_active_time(&mdev->phy, cur_time);
1964 	if (mphy_ext)
1965 		mt76_update_survey_active_time(mphy_ext, cur_time);
1966 
1967 	/* reset obss airtime */
1968 	mt76_set(dev, MT_WF_RMAC_MIB_TIME0, MT_WF_RMAC_MIB_RXTIME_CLR);
1969 }
1970 
1971 void mt7615_update_channel(struct mt76_phy *mphy)
1972 {
1973 	struct mt7615_dev *dev = container_of(mphy->dev, struct mt7615_dev, mt76);
1974 
1975 	if (mt76_connac_pm_wake(&dev->mphy, &dev->pm))
1976 		return;
1977 
1978 	mt7615_update_survey(dev);
1979 	mt76_connac_power_save_sched(&dev->mphy, &dev->pm);
1980 }
1981 EXPORT_SYMBOL_GPL(mt7615_update_channel);
1982 
1983 static void
1984 mt7615_mac_update_mib_stats(struct mt7615_phy *phy)
1985 {
1986 	struct mt7615_dev *dev = phy->dev;
1987 	struct mib_stats *mib = &phy->mib;
1988 	bool ext_phy = phy != &dev->phy;
1989 	int i, aggr = 0;
1990 	u32 val, val2;
1991 
1992 	mib->fcs_err_cnt += mt76_get_field(dev, MT_MIB_SDR3(ext_phy),
1993 					   MT_MIB_SDR3_FCS_ERR_MASK);
1994 
1995 	val = mt76_get_field(dev, MT_MIB_SDR14(ext_phy),
1996 			     MT_MIB_AMPDU_MPDU_COUNT);
1997 	if (val) {
1998 		val2 = mt76_get_field(dev, MT_MIB_SDR15(ext_phy),
1999 				      MT_MIB_AMPDU_ACK_COUNT);
2000 		mib->aggr_per = 1000 * (val - val2) / val;
2001 	}
2002 
2003 	for (i = 0; i < 4; i++) {
2004 		val = mt76_rr(dev, MT_MIB_MB_SDR1(ext_phy, i));
2005 		mib->ba_miss_cnt += FIELD_GET(MT_MIB_BA_MISS_COUNT_MASK, val);
2006 		mib->ack_fail_cnt += FIELD_GET(MT_MIB_ACK_FAIL_COUNT_MASK,
2007 					       val);
2008 
2009 		val = mt76_rr(dev, MT_MIB_MB_SDR0(ext_phy, i));
2010 		mib->rts_cnt += FIELD_GET(MT_MIB_RTS_COUNT_MASK, val);
2011 		mib->rts_retries_cnt += FIELD_GET(MT_MIB_RTS_RETRIES_COUNT_MASK,
2012 						  val);
2013 
2014 		val = mt76_rr(dev, MT_TX_AGG_CNT(ext_phy, i));
2015 		phy->mt76->aggr_stats[aggr++] += val & 0xffff;
2016 		phy->mt76->aggr_stats[aggr++] += val >> 16;
2017 	}
2018 }
2019 
2020 void mt7615_pm_wake_work(struct work_struct *work)
2021 {
2022 	struct mt7615_dev *dev;
2023 	struct mt76_phy *mphy;
2024 
2025 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2026 						pm.wake_work);
2027 	mphy = dev->phy.mt76;
2028 
2029 	if (!mt7615_mcu_set_drv_ctrl(dev)) {
2030 		struct mt76_dev *mdev = &dev->mt76;
2031 		int i;
2032 
2033 		if (mt76_is_sdio(mdev)) {
2034 			mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
2035 			mt76_worker_schedule(&mdev->sdio.txrx_worker);
2036 		} else {
2037 			local_bh_disable();
2038 			mt76_for_each_q_rx(mdev, i)
2039 				napi_schedule(&mdev->napi[i]);
2040 			local_bh_enable();
2041 			mt76_connac_pm_dequeue_skbs(mphy, &dev->pm);
2042 			mt76_queue_tx_cleanup(dev, mdev->q_mcu[MT_MCUQ_WM],
2043 					      false);
2044 		}
2045 
2046 		if (test_bit(MT76_STATE_RUNNING, &mphy->state)) {
2047 			unsigned long timeout;
2048 
2049 			timeout = mt7615_get_macwork_timeout(dev);
2050 			ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work,
2051 						     timeout);
2052 		}
2053 	}
2054 
2055 	ieee80211_wake_queues(mphy->hw);
2056 	wake_up(&dev->pm.wait);
2057 }
2058 
2059 void mt7615_pm_power_save_work(struct work_struct *work)
2060 {
2061 	struct mt7615_dev *dev;
2062 	unsigned long delta;
2063 
2064 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2065 						pm.ps_work.work);
2066 
2067 	delta = dev->pm.idle_timeout;
2068 	if (test_bit(MT76_HW_SCANNING, &dev->mphy.state) ||
2069 	    test_bit(MT76_HW_SCHED_SCANNING, &dev->mphy.state))
2070 		goto out;
2071 
2072 	if (mutex_is_locked(&dev->mt76.mutex))
2073 		/* if mt76 mutex is held we should not put the device
2074 		 * to sleep since we are currently accessing device
2075 		 * register map. We need to wait for the next power_save
2076 		 * trigger.
2077 		 */
2078 		goto out;
2079 
2080 	if (time_is_after_jiffies(dev->pm.last_activity + delta)) {
2081 		delta = dev->pm.last_activity + delta - jiffies;
2082 		goto out;
2083 	}
2084 
2085 	if (!mt7615_mcu_set_fw_ctrl(dev))
2086 		return;
2087 out:
2088 	queue_delayed_work(dev->mt76.wq, &dev->pm.ps_work, delta);
2089 }
2090 
2091 void mt7615_mac_work(struct work_struct *work)
2092 {
2093 	struct mt7615_phy *phy;
2094 	struct mt76_phy *mphy;
2095 	unsigned long timeout;
2096 
2097 	mphy = (struct mt76_phy *)container_of(work, struct mt76_phy,
2098 					       mac_work.work);
2099 	phy = mphy->priv;
2100 
2101 	mt7615_mutex_acquire(phy->dev);
2102 
2103 	mt7615_update_survey(phy->dev);
2104 	if (++mphy->mac_work_count == 5) {
2105 		mphy->mac_work_count = 0;
2106 
2107 		mt7615_mac_update_mib_stats(phy);
2108 		mt7615_mac_scs_check(phy);
2109 	}
2110 
2111 	mt7615_mutex_release(phy->dev);
2112 
2113 	mt76_tx_status_check(mphy->dev, false);
2114 
2115 	timeout = mt7615_get_macwork_timeout(phy->dev);
2116 	ieee80211_queue_delayed_work(mphy->hw, &mphy->mac_work, timeout);
2117 }
2118 
2119 void mt7615_tx_token_put(struct mt7615_dev *dev)
2120 {
2121 	struct mt76_txwi_cache *txwi;
2122 	int id;
2123 
2124 	spin_lock_bh(&dev->mt76.token_lock);
2125 	idr_for_each_entry(&dev->mt76.token, txwi, id)
2126 		mt7615_txwi_free(dev, txwi);
2127 	spin_unlock_bh(&dev->mt76.token_lock);
2128 	idr_destroy(&dev->mt76.token);
2129 }
2130 EXPORT_SYMBOL_GPL(mt7615_tx_token_put);
2131 
2132 static void mt7615_dfs_stop_radar_detector(struct mt7615_phy *phy)
2133 {
2134 	struct mt7615_dev *dev = phy->dev;
2135 
2136 	if (phy->rdd_state & BIT(0))
2137 		mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 0,
2138 					MT_RX_SEL0, 0);
2139 	if (phy->rdd_state & BIT(1))
2140 		mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_STOP, 1,
2141 					MT_RX_SEL0, 0);
2142 }
2143 
2144 static int mt7615_dfs_start_rdd(struct mt7615_dev *dev, int chain)
2145 {
2146 	int err;
2147 
2148 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_START, chain,
2149 				      MT_RX_SEL0, 0);
2150 	if (err < 0)
2151 		return err;
2152 
2153 	return mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_DET_MODE, chain,
2154 				       MT_RX_SEL0, 1);
2155 }
2156 
2157 static int mt7615_dfs_start_radar_detector(struct mt7615_phy *phy)
2158 {
2159 	struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
2160 	struct mt7615_dev *dev = phy->dev;
2161 	bool ext_phy = phy != &dev->phy;
2162 	int err;
2163 
2164 	/* start CAC */
2165 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_START, ext_phy,
2166 				      MT_RX_SEL0, 0);
2167 	if (err < 0)
2168 		return err;
2169 
2170 	err = mt7615_dfs_start_rdd(dev, ext_phy);
2171 	if (err < 0)
2172 		return err;
2173 
2174 	phy->rdd_state |= BIT(ext_phy);
2175 
2176 	if (chandef->width == NL80211_CHAN_WIDTH_160 ||
2177 	    chandef->width == NL80211_CHAN_WIDTH_80P80) {
2178 		err = mt7615_dfs_start_rdd(dev, 1);
2179 		if (err < 0)
2180 			return err;
2181 
2182 		phy->rdd_state |= BIT(1);
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static int
2189 mt7615_dfs_init_radar_specs(struct mt7615_phy *phy)
2190 {
2191 	const struct mt7615_dfs_radar_spec *radar_specs;
2192 	struct mt7615_dev *dev = phy->dev;
2193 	int err, i, lpn = 500;
2194 
2195 	switch (dev->mt76.region) {
2196 	case NL80211_DFS_FCC:
2197 		radar_specs = &fcc_radar_specs;
2198 		lpn = 8;
2199 		break;
2200 	case NL80211_DFS_ETSI:
2201 		radar_specs = &etsi_radar_specs;
2202 		break;
2203 	case NL80211_DFS_JP:
2204 		radar_specs = &jp_radar_specs;
2205 		break;
2206 	default:
2207 		return -EINVAL;
2208 	}
2209 
2210 	/* avoid FCC radar detection in non-FCC region */
2211 	err = mt7615_mcu_set_fcc5_lpn(dev, lpn);
2212 	if (err < 0)
2213 		return err;
2214 
2215 	for (i = 0; i < ARRAY_SIZE(radar_specs->radar_pattern); i++) {
2216 		err = mt7615_mcu_set_radar_th(dev, i,
2217 					      &radar_specs->radar_pattern[i]);
2218 		if (err < 0)
2219 			return err;
2220 	}
2221 
2222 	return mt7615_mcu_set_pulse_th(dev, &radar_specs->pulse_th);
2223 }
2224 
2225 int mt7615_dfs_init_radar_detector(struct mt7615_phy *phy)
2226 {
2227 	struct cfg80211_chan_def *chandef = &phy->mt76->chandef;
2228 	struct mt7615_dev *dev = phy->dev;
2229 	bool ext_phy = phy != &dev->phy;
2230 	enum mt76_dfs_state dfs_state, prev_state;
2231 	int err;
2232 
2233 	if (is_mt7663(&dev->mt76))
2234 		return 0;
2235 
2236 	prev_state = phy->mt76->dfs_state;
2237 	dfs_state = mt76_phy_dfs_state(phy->mt76);
2238 	if ((chandef->chan->flags & IEEE80211_CHAN_RADAR) &&
2239 	    dfs_state < MT_DFS_STATE_CAC)
2240 		dfs_state = MT_DFS_STATE_ACTIVE;
2241 
2242 	if (prev_state == dfs_state)
2243 		return 0;
2244 
2245 	if (dfs_state == MT_DFS_STATE_DISABLED)
2246 		goto stop;
2247 
2248 	if (prev_state <= MT_DFS_STATE_DISABLED) {
2249 		err = mt7615_dfs_init_radar_specs(phy);
2250 		if (err < 0)
2251 			return err;
2252 
2253 		err = mt7615_dfs_start_radar_detector(phy);
2254 		if (err < 0)
2255 			return err;
2256 
2257 		phy->mt76->dfs_state = MT_DFS_STATE_CAC;
2258 	}
2259 
2260 	if (dfs_state == MT_DFS_STATE_CAC)
2261 		return 0;
2262 
2263 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_CAC_END,
2264 				      ext_phy, MT_RX_SEL0, 0);
2265 	if (err < 0) {
2266 		phy->mt76->dfs_state = MT_DFS_STATE_UNKNOWN;
2267 		return err;
2268 	}
2269 
2270 	phy->mt76->dfs_state = MT_DFS_STATE_ACTIVE;
2271 	return 0;
2272 
2273 stop:
2274 	err = mt76_connac_mcu_rdd_cmd(&dev->mt76, RDD_NORMAL_START, ext_phy,
2275 				      MT_RX_SEL0, 0);
2276 	if (err < 0)
2277 		return err;
2278 
2279 	mt7615_dfs_stop_radar_detector(phy);
2280 	phy->mt76->dfs_state = MT_DFS_STATE_DISABLED;
2281 
2282 	return 0;
2283 }
2284 
2285 int mt7615_mac_set_beacon_filter(struct mt7615_phy *phy,
2286 				 struct ieee80211_vif *vif,
2287 				 bool enable)
2288 {
2289 	struct mt7615_dev *dev = phy->dev;
2290 	bool ext_phy = phy != &dev->phy;
2291 	int err;
2292 
2293 	if (!mt7615_firmware_offload(dev))
2294 		return -EOPNOTSUPP;
2295 
2296 	switch (vif->type) {
2297 	case NL80211_IFTYPE_MONITOR:
2298 		return 0;
2299 	case NL80211_IFTYPE_MESH_POINT:
2300 	case NL80211_IFTYPE_ADHOC:
2301 	case NL80211_IFTYPE_AP:
2302 		if (enable)
2303 			phy->n_beacon_vif++;
2304 		else
2305 			phy->n_beacon_vif--;
2306 		fallthrough;
2307 	default:
2308 		break;
2309 	}
2310 
2311 	err = mt7615_mcu_set_bss_pm(dev, vif, !phy->n_beacon_vif);
2312 	if (err)
2313 		return err;
2314 
2315 	if (phy->n_beacon_vif) {
2316 		vif->driver_flags &= ~IEEE80211_VIF_BEACON_FILTER;
2317 		mt76_clear(dev, MT_WF_RFCR(ext_phy),
2318 			   MT_WF_RFCR_DROP_OTHER_BEACON);
2319 	} else {
2320 		vif->driver_flags |= IEEE80211_VIF_BEACON_FILTER;
2321 		mt76_set(dev, MT_WF_RFCR(ext_phy),
2322 			 MT_WF_RFCR_DROP_OTHER_BEACON);
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 void mt7615_coredump_work(struct work_struct *work)
2329 {
2330 	struct mt7615_dev *dev;
2331 	char *dump, *data;
2332 
2333 	dev = (struct mt7615_dev *)container_of(work, struct mt7615_dev,
2334 						coredump.work.work);
2335 
2336 	if (time_is_after_jiffies(dev->coredump.last_activity +
2337 				  4 * MT76_CONNAC_COREDUMP_TIMEOUT)) {
2338 		queue_delayed_work(dev->mt76.wq, &dev->coredump.work,
2339 				   MT76_CONNAC_COREDUMP_TIMEOUT);
2340 		return;
2341 	}
2342 
2343 	dump = vzalloc(MT76_CONNAC_COREDUMP_SZ);
2344 	data = dump;
2345 
2346 	while (true) {
2347 		struct sk_buff *skb;
2348 
2349 		spin_lock_bh(&dev->mt76.lock);
2350 		skb = __skb_dequeue(&dev->coredump.msg_list);
2351 		spin_unlock_bh(&dev->mt76.lock);
2352 
2353 		if (!skb)
2354 			break;
2355 
2356 		skb_pull(skb, sizeof(struct mt7615_mcu_rxd));
2357 		if (!dump || data + skb->len - dump > MT76_CONNAC_COREDUMP_SZ) {
2358 			dev_kfree_skb(skb);
2359 			continue;
2360 		}
2361 
2362 		memcpy(data, skb->data, skb->len);
2363 		data += skb->len;
2364 
2365 		dev_kfree_skb(skb);
2366 	}
2367 
2368 	if (dump)
2369 		dev_coredumpv(dev->mt76.dev, dump, MT76_CONNAC_COREDUMP_SZ,
2370 			      GFP_KERNEL);
2371 }
2372