1 /* 2 * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name> 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 #include <linux/of.h> 17 #include "mt76.h" 18 19 #define CHAN2G(_idx, _freq) { \ 20 .band = NL80211_BAND_2GHZ, \ 21 .center_freq = (_freq), \ 22 .hw_value = (_idx), \ 23 .max_power = 30, \ 24 } 25 26 #define CHAN5G(_idx, _freq) { \ 27 .band = NL80211_BAND_5GHZ, \ 28 .center_freq = (_freq), \ 29 .hw_value = (_idx), \ 30 .max_power = 30, \ 31 } 32 33 static const struct ieee80211_channel mt76_channels_2ghz[] = { 34 CHAN2G(1, 2412), 35 CHAN2G(2, 2417), 36 CHAN2G(3, 2422), 37 CHAN2G(4, 2427), 38 CHAN2G(5, 2432), 39 CHAN2G(6, 2437), 40 CHAN2G(7, 2442), 41 CHAN2G(8, 2447), 42 CHAN2G(9, 2452), 43 CHAN2G(10, 2457), 44 CHAN2G(11, 2462), 45 CHAN2G(12, 2467), 46 CHAN2G(13, 2472), 47 CHAN2G(14, 2484), 48 }; 49 50 static const struct ieee80211_channel mt76_channels_5ghz[] = { 51 CHAN5G(36, 5180), 52 CHAN5G(40, 5200), 53 CHAN5G(44, 5220), 54 CHAN5G(48, 5240), 55 56 CHAN5G(52, 5260), 57 CHAN5G(56, 5280), 58 CHAN5G(60, 5300), 59 CHAN5G(64, 5320), 60 61 CHAN5G(100, 5500), 62 CHAN5G(104, 5520), 63 CHAN5G(108, 5540), 64 CHAN5G(112, 5560), 65 CHAN5G(116, 5580), 66 CHAN5G(120, 5600), 67 CHAN5G(124, 5620), 68 CHAN5G(128, 5640), 69 CHAN5G(132, 5660), 70 CHAN5G(136, 5680), 71 CHAN5G(140, 5700), 72 73 CHAN5G(149, 5745), 74 CHAN5G(153, 5765), 75 CHAN5G(157, 5785), 76 CHAN5G(161, 5805), 77 CHAN5G(165, 5825), 78 }; 79 80 static const struct ieee80211_tpt_blink mt76_tpt_blink[] = { 81 { .throughput = 0 * 1024, .blink_time = 334 }, 82 { .throughput = 1 * 1024, .blink_time = 260 }, 83 { .throughput = 5 * 1024, .blink_time = 220 }, 84 { .throughput = 10 * 1024, .blink_time = 190 }, 85 { .throughput = 20 * 1024, .blink_time = 170 }, 86 { .throughput = 50 * 1024, .blink_time = 150 }, 87 { .throughput = 70 * 1024, .blink_time = 130 }, 88 { .throughput = 100 * 1024, .blink_time = 110 }, 89 { .throughput = 200 * 1024, .blink_time = 80 }, 90 { .throughput = 300 * 1024, .blink_time = 50 }, 91 }; 92 93 static int mt76_led_init(struct mt76_dev *dev) 94 { 95 struct device_node *np = dev->dev->of_node; 96 struct ieee80211_hw *hw = dev->hw; 97 int led_pin; 98 99 if (!dev->led_cdev.brightness_set && !dev->led_cdev.blink_set) 100 return 0; 101 102 snprintf(dev->led_name, sizeof(dev->led_name), 103 "mt76-%s", wiphy_name(hw->wiphy)); 104 105 dev->led_cdev.name = dev->led_name; 106 dev->led_cdev.default_trigger = 107 ieee80211_create_tpt_led_trigger(hw, 108 IEEE80211_TPT_LEDTRIG_FL_RADIO, 109 mt76_tpt_blink, 110 ARRAY_SIZE(mt76_tpt_blink)); 111 112 np = of_get_child_by_name(np, "led"); 113 if (np) { 114 if (!of_property_read_u32(np, "led-sources", &led_pin)) 115 dev->led_pin = led_pin; 116 dev->led_al = of_property_read_bool(np, "led-active-low"); 117 } 118 119 return devm_led_classdev_register(dev->dev, &dev->led_cdev); 120 } 121 122 static void mt76_init_stream_cap(struct mt76_dev *dev, 123 struct ieee80211_supported_band *sband, 124 bool vht) 125 { 126 struct ieee80211_sta_ht_cap *ht_cap = &sband->ht_cap; 127 int i, nstream = __sw_hweight8(dev->antenna_mask); 128 struct ieee80211_sta_vht_cap *vht_cap; 129 u16 mcs_map = 0; 130 131 if (nstream > 1) 132 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; 133 else 134 ht_cap->cap &= ~IEEE80211_HT_CAP_TX_STBC; 135 136 for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) 137 ht_cap->mcs.rx_mask[i] = i < nstream ? 0xff : 0; 138 139 if (!vht) 140 return; 141 142 vht_cap = &sband->vht_cap; 143 if (nstream > 1) 144 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 145 else 146 vht_cap->cap &= ~IEEE80211_VHT_CAP_TXSTBC; 147 148 for (i = 0; i < 8; i++) { 149 if (i < nstream) 150 mcs_map |= (IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2)); 151 else 152 mcs_map |= 153 (IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2)); 154 } 155 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 156 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 157 } 158 159 void mt76_set_stream_caps(struct mt76_dev *dev, bool vht) 160 { 161 if (dev->cap.has_2ghz) 162 mt76_init_stream_cap(dev, &dev->sband_2g.sband, false); 163 if (dev->cap.has_5ghz) 164 mt76_init_stream_cap(dev, &dev->sband_5g.sband, vht); 165 } 166 EXPORT_SYMBOL_GPL(mt76_set_stream_caps); 167 168 static int 169 mt76_init_sband(struct mt76_dev *dev, struct mt76_sband *msband, 170 const struct ieee80211_channel *chan, int n_chan, 171 struct ieee80211_rate *rates, int n_rates, bool vht) 172 { 173 struct ieee80211_supported_band *sband = &msband->sband; 174 struct ieee80211_sta_ht_cap *ht_cap; 175 struct ieee80211_sta_vht_cap *vht_cap; 176 void *chanlist; 177 int size; 178 179 size = n_chan * sizeof(*chan); 180 chanlist = devm_kmemdup(dev->dev, chan, size, GFP_KERNEL); 181 if (!chanlist) 182 return -ENOMEM; 183 184 msband->chan = devm_kcalloc(dev->dev, n_chan, sizeof(*msband->chan), 185 GFP_KERNEL); 186 if (!msband->chan) 187 return -ENOMEM; 188 189 sband->channels = chanlist; 190 sband->n_channels = n_chan; 191 sband->bitrates = rates; 192 sband->n_bitrates = n_rates; 193 dev->chandef.chan = &sband->channels[0]; 194 195 ht_cap = &sband->ht_cap; 196 ht_cap->ht_supported = true; 197 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 198 IEEE80211_HT_CAP_GRN_FLD | 199 IEEE80211_HT_CAP_SGI_20 | 200 IEEE80211_HT_CAP_SGI_40 | 201 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); 202 203 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 204 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 205 ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4; 206 207 mt76_init_stream_cap(dev, sband, vht); 208 209 if (!vht) 210 return 0; 211 212 vht_cap = &sband->vht_cap; 213 vht_cap->vht_supported = true; 214 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC | 215 IEEE80211_VHT_CAP_RXSTBC_1 | 216 IEEE80211_VHT_CAP_SHORT_GI_80 | 217 (3 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); 218 219 return 0; 220 } 221 222 static int 223 mt76_init_sband_2g(struct mt76_dev *dev, struct ieee80211_rate *rates, 224 int n_rates) 225 { 226 dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->sband_2g.sband; 227 228 return mt76_init_sband(dev, &dev->sband_2g, 229 mt76_channels_2ghz, 230 ARRAY_SIZE(mt76_channels_2ghz), 231 rates, n_rates, false); 232 } 233 234 static int 235 mt76_init_sband_5g(struct mt76_dev *dev, struct ieee80211_rate *rates, 236 int n_rates, bool vht) 237 { 238 dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->sband_5g.sband; 239 240 return mt76_init_sband(dev, &dev->sband_5g, 241 mt76_channels_5ghz, 242 ARRAY_SIZE(mt76_channels_5ghz), 243 rates, n_rates, vht); 244 } 245 246 static void 247 mt76_check_sband(struct mt76_dev *dev, int band) 248 { 249 struct ieee80211_supported_band *sband = dev->hw->wiphy->bands[band]; 250 bool found = false; 251 int i; 252 253 if (!sband) 254 return; 255 256 for (i = 0; i < sband->n_channels; i++) { 257 if (sband->channels[i].flags & IEEE80211_CHAN_DISABLED) 258 continue; 259 260 found = true; 261 break; 262 } 263 264 if (found) 265 return; 266 267 sband->n_channels = 0; 268 dev->hw->wiphy->bands[band] = NULL; 269 } 270 271 struct mt76_dev * 272 mt76_alloc_device(unsigned int size, const struct ieee80211_ops *ops) 273 { 274 struct ieee80211_hw *hw; 275 struct mt76_dev *dev; 276 277 hw = ieee80211_alloc_hw(size, ops); 278 if (!hw) 279 return NULL; 280 281 dev = hw->priv; 282 dev->hw = hw; 283 spin_lock_init(&dev->rx_lock); 284 spin_lock_init(&dev->lock); 285 spin_lock_init(&dev->cc_lock); 286 init_waitqueue_head(&dev->tx_wait); 287 288 return dev; 289 } 290 EXPORT_SYMBOL_GPL(mt76_alloc_device); 291 292 int mt76_register_device(struct mt76_dev *dev, bool vht, 293 struct ieee80211_rate *rates, int n_rates) 294 { 295 struct ieee80211_hw *hw = dev->hw; 296 struct wiphy *wiphy = hw->wiphy; 297 int ret; 298 299 dev_set_drvdata(dev->dev, dev); 300 301 INIT_LIST_HEAD(&dev->txwi_cache); 302 303 SET_IEEE80211_DEV(hw, dev->dev); 304 SET_IEEE80211_PERM_ADDR(hw, dev->macaddr); 305 306 wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR; 307 308 wiphy->available_antennas_tx = dev->antenna_mask; 309 wiphy->available_antennas_rx = dev->antenna_mask; 310 311 hw->txq_data_size = sizeof(struct mt76_txq); 312 hw->max_tx_fragments = 16; 313 314 ieee80211_hw_set(hw, SIGNAL_DBM); 315 ieee80211_hw_set(hw, PS_NULLFUNC_STACK); 316 ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING); 317 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 318 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE); 319 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); 320 ieee80211_hw_set(hw, SUPPORTS_CLONED_SKBS); 321 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); 322 ieee80211_hw_set(hw, TX_AMSDU); 323 ieee80211_hw_set(hw, TX_FRAG_LIST); 324 ieee80211_hw_set(hw, MFP_CAPABLE); 325 ieee80211_hw_set(hw, AP_LINK_PS); 326 327 wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 328 329 if (dev->cap.has_2ghz) { 330 ret = mt76_init_sband_2g(dev, rates, n_rates); 331 if (ret) 332 return ret; 333 } 334 335 if (dev->cap.has_5ghz) { 336 ret = mt76_init_sband_5g(dev, rates + 4, n_rates - 4, vht); 337 if (ret) 338 return ret; 339 } 340 341 wiphy_read_of_freq_limits(dev->hw->wiphy); 342 mt76_check_sband(dev, NL80211_BAND_2GHZ); 343 mt76_check_sband(dev, NL80211_BAND_5GHZ); 344 345 ret = mt76_led_init(dev); 346 if (ret) 347 return ret; 348 349 return ieee80211_register_hw(hw); 350 } 351 EXPORT_SYMBOL_GPL(mt76_register_device); 352 353 void mt76_unregister_device(struct mt76_dev *dev) 354 { 355 struct ieee80211_hw *hw = dev->hw; 356 357 ieee80211_unregister_hw(hw); 358 mt76_tx_free(dev); 359 } 360 EXPORT_SYMBOL_GPL(mt76_unregister_device); 361 362 void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb) 363 { 364 if (!test_bit(MT76_STATE_RUNNING, &dev->state)) { 365 dev_kfree_skb(skb); 366 return; 367 } 368 369 __skb_queue_tail(&dev->rx_skb[q], skb); 370 } 371 EXPORT_SYMBOL_GPL(mt76_rx); 372 373 static bool mt76_has_tx_pending(struct mt76_dev *dev) 374 { 375 int i; 376 377 for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++) { 378 if (dev->q_tx[i].queued) 379 return true; 380 } 381 382 return false; 383 } 384 385 void mt76_set_channel(struct mt76_dev *dev) 386 { 387 struct ieee80211_hw *hw = dev->hw; 388 struct cfg80211_chan_def *chandef = &hw->conf.chandef; 389 struct mt76_channel_state *state; 390 bool offchannel = hw->conf.flags & IEEE80211_CONF_OFFCHANNEL; 391 int timeout = HZ / 5; 392 393 if (offchannel) 394 set_bit(MT76_OFFCHANNEL, &dev->state); 395 else 396 clear_bit(MT76_OFFCHANNEL, &dev->state); 397 398 wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(dev), timeout); 399 400 if (dev->drv->update_survey) 401 dev->drv->update_survey(dev); 402 403 dev->chandef = *chandef; 404 405 if (!offchannel) 406 dev->main_chan = chandef->chan; 407 408 if (chandef->chan != dev->main_chan) { 409 state = mt76_channel_state(dev, chandef->chan); 410 memset(state, 0, sizeof(*state)); 411 } 412 } 413 EXPORT_SYMBOL_GPL(mt76_set_channel); 414 415 int mt76_get_survey(struct ieee80211_hw *hw, int idx, 416 struct survey_info *survey) 417 { 418 struct mt76_dev *dev = hw->priv; 419 struct mt76_sband *sband; 420 struct ieee80211_channel *chan; 421 struct mt76_channel_state *state; 422 int ret = 0; 423 424 if (idx == 0 && dev->drv->update_survey) 425 dev->drv->update_survey(dev); 426 427 sband = &dev->sband_2g; 428 if (idx >= sband->sband.n_channels) { 429 idx -= sband->sband.n_channels; 430 sband = &dev->sband_5g; 431 } 432 433 if (idx >= sband->sband.n_channels) 434 return -ENOENT; 435 436 chan = &sband->sband.channels[idx]; 437 state = mt76_channel_state(dev, chan); 438 439 memset(survey, 0, sizeof(*survey)); 440 survey->channel = chan; 441 survey->filled = SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY; 442 if (chan == dev->main_chan) 443 survey->filled |= SURVEY_INFO_IN_USE; 444 445 spin_lock_bh(&dev->cc_lock); 446 survey->time = div_u64(state->cc_active, 1000); 447 survey->time_busy = div_u64(state->cc_busy, 1000); 448 spin_unlock_bh(&dev->cc_lock); 449 450 return ret; 451 } 452 EXPORT_SYMBOL_GPL(mt76_get_survey); 453 454 void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid, 455 struct ieee80211_key_conf *key) 456 { 457 struct ieee80211_key_seq seq; 458 int i; 459 460 wcid->rx_check_pn = false; 461 462 if (!key) 463 return; 464 465 if (key->cipher == WLAN_CIPHER_SUITE_CCMP) 466 wcid->rx_check_pn = true; 467 468 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 469 ieee80211_get_key_rx_seq(key, i, &seq); 470 memcpy(wcid->rx_key_pn[i], seq.ccmp.pn, sizeof(seq.ccmp.pn)); 471 } 472 } 473 EXPORT_SYMBOL(mt76_wcid_key_setup); 474 475 static struct ieee80211_sta *mt76_rx_convert(struct sk_buff *skb) 476 { 477 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 478 struct mt76_rx_status mstat; 479 480 mstat = *((struct mt76_rx_status *) skb->cb); 481 memset(status, 0, sizeof(*status)); 482 483 status->flag = mstat.flag; 484 status->freq = mstat.freq; 485 status->enc_flags = mstat.enc_flags; 486 status->encoding = mstat.encoding; 487 status->bw = mstat.bw; 488 status->rate_idx = mstat.rate_idx; 489 status->nss = mstat.nss; 490 status->band = mstat.band; 491 status->signal = mstat.signal; 492 status->chains = mstat.chains; 493 494 BUILD_BUG_ON(sizeof(mstat) > sizeof(skb->cb)); 495 BUILD_BUG_ON(sizeof(status->chain_signal) != sizeof(mstat.chain_signal)); 496 memcpy(status->chain_signal, mstat.chain_signal, sizeof(mstat.chain_signal)); 497 498 return wcid_to_sta(mstat.wcid); 499 } 500 501 static int 502 mt76_check_ccmp_pn(struct sk_buff *skb) 503 { 504 struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb; 505 struct mt76_wcid *wcid = status->wcid; 506 struct ieee80211_hdr *hdr; 507 int ret; 508 509 if (!(status->flag & RX_FLAG_DECRYPTED)) 510 return 0; 511 512 if (!wcid || !wcid->rx_check_pn) 513 return 0; 514 515 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 516 /* 517 * Validate the first fragment both here and in mac80211 518 * All further fragments will be validated by mac80211 only. 519 */ 520 hdr = (struct ieee80211_hdr *) skb->data; 521 if (ieee80211_is_frag(hdr) && 522 !ieee80211_is_first_frag(hdr->frame_control)) 523 return 0; 524 } 525 526 BUILD_BUG_ON(sizeof(status->iv) != sizeof(wcid->rx_key_pn[0])); 527 ret = memcmp(status->iv, wcid->rx_key_pn[status->tid], 528 sizeof(status->iv)); 529 if (ret <= 0) 530 return -EINVAL; /* replay */ 531 532 memcpy(wcid->rx_key_pn[status->tid], status->iv, sizeof(status->iv)); 533 534 if (status->flag & RX_FLAG_IV_STRIPPED) 535 status->flag |= RX_FLAG_PN_VALIDATED; 536 537 return 0; 538 } 539 540 static void 541 mt76_check_ps(struct mt76_dev *dev, struct sk_buff *skb) 542 { 543 struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb; 544 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 545 struct ieee80211_sta *sta; 546 struct mt76_wcid *wcid = status->wcid; 547 bool ps; 548 549 if (!wcid || !wcid->sta) 550 return; 551 552 sta = container_of((void *) wcid, struct ieee80211_sta, drv_priv); 553 554 if (!test_bit(MT_WCID_FLAG_CHECK_PS, &wcid->flags)) 555 return; 556 557 if (ieee80211_is_pspoll(hdr->frame_control)) { 558 ieee80211_sta_pspoll(sta); 559 return; 560 } 561 562 if (ieee80211_has_morefrags(hdr->frame_control) || 563 !(ieee80211_is_mgmt(hdr->frame_control) || 564 ieee80211_is_data(hdr->frame_control))) 565 return; 566 567 ps = ieee80211_has_pm(hdr->frame_control); 568 569 if (ps && (ieee80211_is_data_qos(hdr->frame_control) || 570 ieee80211_is_qos_nullfunc(hdr->frame_control))) 571 ieee80211_sta_uapsd_trigger(sta, status->tid); 572 573 if (!!test_bit(MT_WCID_FLAG_PS, &wcid->flags) == ps) 574 return; 575 576 if (ps) 577 set_bit(MT_WCID_FLAG_PS, &wcid->flags); 578 else 579 clear_bit(MT_WCID_FLAG_PS, &wcid->flags); 580 581 dev->drv->sta_ps(dev, sta, ps); 582 ieee80211_sta_ps_transition(sta, ps); 583 } 584 585 void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames, 586 struct napi_struct *napi) 587 { 588 struct ieee80211_sta *sta; 589 struct sk_buff *skb; 590 591 spin_lock(&dev->rx_lock); 592 while ((skb = __skb_dequeue(frames)) != NULL) { 593 if (mt76_check_ccmp_pn(skb)) { 594 dev_kfree_skb(skb); 595 continue; 596 } 597 598 sta = mt76_rx_convert(skb); 599 ieee80211_rx_napi(dev->hw, sta, skb, napi); 600 } 601 spin_unlock(&dev->rx_lock); 602 } 603 604 void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q, 605 struct napi_struct *napi) 606 { 607 struct sk_buff_head frames; 608 struct sk_buff *skb; 609 610 __skb_queue_head_init(&frames); 611 612 while ((skb = __skb_dequeue(&dev->rx_skb[q])) != NULL) { 613 mt76_check_ps(dev, skb); 614 mt76_rx_aggr_reorder(skb, &frames); 615 } 616 617 mt76_rx_complete(dev, &frames, napi); 618 } 619 EXPORT_SYMBOL_GPL(mt76_rx_poll_complete); 620