xref: /linux/drivers/net/wireless/mediatek/mt76/mac80211.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 #include <linux/of.h>
17 #include "mt76.h"
18 
19 #define CHAN2G(_idx, _freq) {			\
20 	.band = NL80211_BAND_2GHZ,		\
21 	.center_freq = (_freq),			\
22 	.hw_value = (_idx),			\
23 	.max_power = 30,			\
24 }
25 
26 #define CHAN5G(_idx, _freq) {			\
27 	.band = NL80211_BAND_5GHZ,		\
28 	.center_freq = (_freq),			\
29 	.hw_value = (_idx),			\
30 	.max_power = 30,			\
31 }
32 
33 static const struct ieee80211_channel mt76_channels_2ghz[] = {
34 	CHAN2G(1, 2412),
35 	CHAN2G(2, 2417),
36 	CHAN2G(3, 2422),
37 	CHAN2G(4, 2427),
38 	CHAN2G(5, 2432),
39 	CHAN2G(6, 2437),
40 	CHAN2G(7, 2442),
41 	CHAN2G(8, 2447),
42 	CHAN2G(9, 2452),
43 	CHAN2G(10, 2457),
44 	CHAN2G(11, 2462),
45 	CHAN2G(12, 2467),
46 	CHAN2G(13, 2472),
47 	CHAN2G(14, 2484),
48 };
49 
50 static const struct ieee80211_channel mt76_channels_5ghz[] = {
51 	CHAN5G(36, 5180),
52 	CHAN5G(40, 5200),
53 	CHAN5G(44, 5220),
54 	CHAN5G(48, 5240),
55 
56 	CHAN5G(52, 5260),
57 	CHAN5G(56, 5280),
58 	CHAN5G(60, 5300),
59 	CHAN5G(64, 5320),
60 
61 	CHAN5G(100, 5500),
62 	CHAN5G(104, 5520),
63 	CHAN5G(108, 5540),
64 	CHAN5G(112, 5560),
65 	CHAN5G(116, 5580),
66 	CHAN5G(120, 5600),
67 	CHAN5G(124, 5620),
68 	CHAN5G(128, 5640),
69 	CHAN5G(132, 5660),
70 	CHAN5G(136, 5680),
71 	CHAN5G(140, 5700),
72 
73 	CHAN5G(149, 5745),
74 	CHAN5G(153, 5765),
75 	CHAN5G(157, 5785),
76 	CHAN5G(161, 5805),
77 	CHAN5G(165, 5825),
78 };
79 
80 static const struct ieee80211_tpt_blink mt76_tpt_blink[] = {
81 	{ .throughput =   0 * 1024, .blink_time = 334 },
82 	{ .throughput =   1 * 1024, .blink_time = 260 },
83 	{ .throughput =   5 * 1024, .blink_time = 220 },
84 	{ .throughput =  10 * 1024, .blink_time = 190 },
85 	{ .throughput =  20 * 1024, .blink_time = 170 },
86 	{ .throughput =  50 * 1024, .blink_time = 150 },
87 	{ .throughput =  70 * 1024, .blink_time = 130 },
88 	{ .throughput = 100 * 1024, .blink_time = 110 },
89 	{ .throughput = 200 * 1024, .blink_time =  80 },
90 	{ .throughput = 300 * 1024, .blink_time =  50 },
91 };
92 
93 static int mt76_led_init(struct mt76_dev *dev)
94 {
95 	struct device_node *np = dev->dev->of_node;
96 	struct ieee80211_hw *hw = dev->hw;
97 	int led_pin;
98 
99 	if (!dev->led_cdev.brightness_set && !dev->led_cdev.blink_set)
100 		return 0;
101 
102 	snprintf(dev->led_name, sizeof(dev->led_name),
103 		 "mt76-%s", wiphy_name(hw->wiphy));
104 
105 	dev->led_cdev.name = dev->led_name;
106 	dev->led_cdev.default_trigger =
107 		ieee80211_create_tpt_led_trigger(hw,
108 					IEEE80211_TPT_LEDTRIG_FL_RADIO,
109 					mt76_tpt_blink,
110 					ARRAY_SIZE(mt76_tpt_blink));
111 
112 	np = of_get_child_by_name(np, "led");
113 	if (np) {
114 		if (!of_property_read_u32(np, "led-sources", &led_pin))
115 			dev->led_pin = led_pin;
116 		dev->led_al = of_property_read_bool(np, "led-active-low");
117 	}
118 
119 	return devm_led_classdev_register(dev->dev, &dev->led_cdev);
120 }
121 
122 static void mt76_init_stream_cap(struct mt76_dev *dev,
123 				 struct ieee80211_supported_band *sband,
124 				 bool vht)
125 {
126 	struct ieee80211_sta_ht_cap *ht_cap = &sband->ht_cap;
127 	int i, nstream = __sw_hweight8(dev->antenna_mask);
128 	struct ieee80211_sta_vht_cap *vht_cap;
129 	u16 mcs_map = 0;
130 
131 	if (nstream > 1)
132 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
133 	else
134 		ht_cap->cap &= ~IEEE80211_HT_CAP_TX_STBC;
135 
136 	for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
137 		ht_cap->mcs.rx_mask[i] = i < nstream ? 0xff : 0;
138 
139 	if (!vht)
140 		return;
141 
142 	vht_cap = &sband->vht_cap;
143 	if (nstream > 1)
144 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
145 	else
146 		vht_cap->cap &= ~IEEE80211_VHT_CAP_TXSTBC;
147 
148 	for (i = 0; i < 8; i++) {
149 		if (i < nstream)
150 			mcs_map |= (IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2));
151 		else
152 			mcs_map |=
153 				(IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2));
154 	}
155 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
156 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
157 }
158 
159 void mt76_set_stream_caps(struct mt76_dev *dev, bool vht)
160 {
161 	if (dev->cap.has_2ghz)
162 		mt76_init_stream_cap(dev, &dev->sband_2g.sband, false);
163 	if (dev->cap.has_5ghz)
164 		mt76_init_stream_cap(dev, &dev->sband_5g.sband, vht);
165 }
166 EXPORT_SYMBOL_GPL(mt76_set_stream_caps);
167 
168 static int
169 mt76_init_sband(struct mt76_dev *dev, struct mt76_sband *msband,
170 		const struct ieee80211_channel *chan, int n_chan,
171 		struct ieee80211_rate *rates, int n_rates, bool vht)
172 {
173 	struct ieee80211_supported_band *sband = &msband->sband;
174 	struct ieee80211_sta_ht_cap *ht_cap;
175 	struct ieee80211_sta_vht_cap *vht_cap;
176 	void *chanlist;
177 	int size;
178 
179 	size = n_chan * sizeof(*chan);
180 	chanlist = devm_kmemdup(dev->dev, chan, size, GFP_KERNEL);
181 	if (!chanlist)
182 		return -ENOMEM;
183 
184 	msband->chan = devm_kcalloc(dev->dev, n_chan, sizeof(*msband->chan),
185 				    GFP_KERNEL);
186 	if (!msband->chan)
187 		return -ENOMEM;
188 
189 	sband->channels = chanlist;
190 	sband->n_channels = n_chan;
191 	sband->bitrates = rates;
192 	sband->n_bitrates = n_rates;
193 	dev->chandef.chan = &sband->channels[0];
194 
195 	ht_cap = &sband->ht_cap;
196 	ht_cap->ht_supported = true;
197 	ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
198 		       IEEE80211_HT_CAP_GRN_FLD |
199 		       IEEE80211_HT_CAP_SGI_20 |
200 		       IEEE80211_HT_CAP_SGI_40 |
201 		       (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
202 
203 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
204 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
205 	ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_4;
206 
207 	mt76_init_stream_cap(dev, sband, vht);
208 
209 	if (!vht)
210 		return 0;
211 
212 	vht_cap = &sband->vht_cap;
213 	vht_cap->vht_supported = true;
214 	vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC |
215 			IEEE80211_VHT_CAP_RXSTBC_1 |
216 			IEEE80211_VHT_CAP_SHORT_GI_80 |
217 			(3 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT);
218 
219 	return 0;
220 }
221 
222 static int
223 mt76_init_sband_2g(struct mt76_dev *dev, struct ieee80211_rate *rates,
224 		   int n_rates)
225 {
226 	dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = &dev->sband_2g.sband;
227 
228 	return mt76_init_sband(dev, &dev->sband_2g,
229 			       mt76_channels_2ghz,
230 			       ARRAY_SIZE(mt76_channels_2ghz),
231 			       rates, n_rates, false);
232 }
233 
234 static int
235 mt76_init_sband_5g(struct mt76_dev *dev, struct ieee80211_rate *rates,
236 		   int n_rates, bool vht)
237 {
238 	dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = &dev->sband_5g.sband;
239 
240 	return mt76_init_sband(dev, &dev->sband_5g,
241 			       mt76_channels_5ghz,
242 			       ARRAY_SIZE(mt76_channels_5ghz),
243 			       rates, n_rates, vht);
244 }
245 
246 static void
247 mt76_check_sband(struct mt76_dev *dev, int band)
248 {
249 	struct ieee80211_supported_band *sband = dev->hw->wiphy->bands[band];
250 	bool found = false;
251 	int i;
252 
253 	if (!sband)
254 		return;
255 
256 	for (i = 0; i < sband->n_channels; i++) {
257 		if (sband->channels[i].flags & IEEE80211_CHAN_DISABLED)
258 			continue;
259 
260 		found = true;
261 		break;
262 	}
263 
264 	if (found)
265 		return;
266 
267 	sband->n_channels = 0;
268 	dev->hw->wiphy->bands[band] = NULL;
269 }
270 
271 struct mt76_dev *
272 mt76_alloc_device(unsigned int size, const struct ieee80211_ops *ops)
273 {
274 	struct ieee80211_hw *hw;
275 	struct mt76_dev *dev;
276 
277 	hw = ieee80211_alloc_hw(size, ops);
278 	if (!hw)
279 		return NULL;
280 
281 	dev = hw->priv;
282 	dev->hw = hw;
283 	spin_lock_init(&dev->rx_lock);
284 	spin_lock_init(&dev->lock);
285 	spin_lock_init(&dev->cc_lock);
286 	init_waitqueue_head(&dev->tx_wait);
287 
288 	return dev;
289 }
290 EXPORT_SYMBOL_GPL(mt76_alloc_device);
291 
292 int mt76_register_device(struct mt76_dev *dev, bool vht,
293 			 struct ieee80211_rate *rates, int n_rates)
294 {
295 	struct ieee80211_hw *hw = dev->hw;
296 	struct wiphy *wiphy = hw->wiphy;
297 	int ret;
298 
299 	dev_set_drvdata(dev->dev, dev);
300 
301 	INIT_LIST_HEAD(&dev->txwi_cache);
302 
303 	SET_IEEE80211_DEV(hw, dev->dev);
304 	SET_IEEE80211_PERM_ADDR(hw, dev->macaddr);
305 
306 	wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
307 
308 	wiphy->available_antennas_tx = dev->antenna_mask;
309 	wiphy->available_antennas_rx = dev->antenna_mask;
310 
311 	hw->txq_data_size = sizeof(struct mt76_txq);
312 	hw->max_tx_fragments = 16;
313 
314 	ieee80211_hw_set(hw, SIGNAL_DBM);
315 	ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
316 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
317 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
318 	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
319 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
320 	ieee80211_hw_set(hw, SUPPORTS_CLONED_SKBS);
321 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
322 	ieee80211_hw_set(hw, TX_AMSDU);
323 	ieee80211_hw_set(hw, TX_FRAG_LIST);
324 	ieee80211_hw_set(hw, MFP_CAPABLE);
325 	ieee80211_hw_set(hw, AP_LINK_PS);
326 
327 	wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
328 
329 	if (dev->cap.has_2ghz) {
330 		ret = mt76_init_sband_2g(dev, rates, n_rates);
331 		if (ret)
332 			return ret;
333 	}
334 
335 	if (dev->cap.has_5ghz) {
336 		ret = mt76_init_sband_5g(dev, rates + 4, n_rates - 4, vht);
337 		if (ret)
338 			return ret;
339 	}
340 
341 	wiphy_read_of_freq_limits(dev->hw->wiphy);
342 	mt76_check_sband(dev, NL80211_BAND_2GHZ);
343 	mt76_check_sband(dev, NL80211_BAND_5GHZ);
344 
345 	ret = mt76_led_init(dev);
346 	if (ret)
347 		return ret;
348 
349 	return ieee80211_register_hw(hw);
350 }
351 EXPORT_SYMBOL_GPL(mt76_register_device);
352 
353 void mt76_unregister_device(struct mt76_dev *dev)
354 {
355 	struct ieee80211_hw *hw = dev->hw;
356 
357 	ieee80211_unregister_hw(hw);
358 	mt76_tx_free(dev);
359 }
360 EXPORT_SYMBOL_GPL(mt76_unregister_device);
361 
362 void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb)
363 {
364 	if (!test_bit(MT76_STATE_RUNNING, &dev->state)) {
365 		dev_kfree_skb(skb);
366 		return;
367 	}
368 
369 	__skb_queue_tail(&dev->rx_skb[q], skb);
370 }
371 EXPORT_SYMBOL_GPL(mt76_rx);
372 
373 static bool mt76_has_tx_pending(struct mt76_dev *dev)
374 {
375 	int i;
376 
377 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++) {
378 		if (dev->q_tx[i].queued)
379 			return true;
380 	}
381 
382 	return false;
383 }
384 
385 void mt76_set_channel(struct mt76_dev *dev)
386 {
387 	struct ieee80211_hw *hw = dev->hw;
388 	struct cfg80211_chan_def *chandef = &hw->conf.chandef;
389 	struct mt76_channel_state *state;
390 	bool offchannel = hw->conf.flags & IEEE80211_CONF_OFFCHANNEL;
391 	int timeout = HZ / 5;
392 
393 	if (offchannel)
394 		set_bit(MT76_OFFCHANNEL, &dev->state);
395 	else
396 		clear_bit(MT76_OFFCHANNEL, &dev->state);
397 
398 	wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(dev), timeout);
399 
400 	if (dev->drv->update_survey)
401 		dev->drv->update_survey(dev);
402 
403 	dev->chandef = *chandef;
404 
405 	if (!offchannel)
406 		dev->main_chan = chandef->chan;
407 
408 	if (chandef->chan != dev->main_chan) {
409 		state = mt76_channel_state(dev, chandef->chan);
410 		memset(state, 0, sizeof(*state));
411 	}
412 }
413 EXPORT_SYMBOL_GPL(mt76_set_channel);
414 
415 int mt76_get_survey(struct ieee80211_hw *hw, int idx,
416 		    struct survey_info *survey)
417 {
418 	struct mt76_dev *dev = hw->priv;
419 	struct mt76_sband *sband;
420 	struct ieee80211_channel *chan;
421 	struct mt76_channel_state *state;
422 	int ret = 0;
423 
424 	if (idx == 0 && dev->drv->update_survey)
425 		dev->drv->update_survey(dev);
426 
427 	sband = &dev->sband_2g;
428 	if (idx >= sband->sband.n_channels) {
429 		idx -= sband->sband.n_channels;
430 		sband = &dev->sband_5g;
431 	}
432 
433 	if (idx >= sband->sband.n_channels)
434 		return -ENOENT;
435 
436 	chan = &sband->sband.channels[idx];
437 	state = mt76_channel_state(dev, chan);
438 
439 	memset(survey, 0, sizeof(*survey));
440 	survey->channel = chan;
441 	survey->filled = SURVEY_INFO_TIME | SURVEY_INFO_TIME_BUSY;
442 	if (chan == dev->main_chan)
443 		survey->filled |= SURVEY_INFO_IN_USE;
444 
445 	spin_lock_bh(&dev->cc_lock);
446 	survey->time = div_u64(state->cc_active, 1000);
447 	survey->time_busy = div_u64(state->cc_busy, 1000);
448 	spin_unlock_bh(&dev->cc_lock);
449 
450 	return ret;
451 }
452 EXPORT_SYMBOL_GPL(mt76_get_survey);
453 
454 void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid,
455 			 struct ieee80211_key_conf *key)
456 {
457 	struct ieee80211_key_seq seq;
458 	int i;
459 
460 	wcid->rx_check_pn = false;
461 
462 	if (!key)
463 		return;
464 
465 	if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
466 		wcid->rx_check_pn = true;
467 
468 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
469 		ieee80211_get_key_rx_seq(key, i, &seq);
470 		memcpy(wcid->rx_key_pn[i], seq.ccmp.pn, sizeof(seq.ccmp.pn));
471 	}
472 }
473 EXPORT_SYMBOL(mt76_wcid_key_setup);
474 
475 static struct ieee80211_sta *mt76_rx_convert(struct sk_buff *skb)
476 {
477 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
478 	struct mt76_rx_status mstat;
479 
480 	mstat = *((struct mt76_rx_status *) skb->cb);
481 	memset(status, 0, sizeof(*status));
482 
483 	status->flag = mstat.flag;
484 	status->freq = mstat.freq;
485 	status->enc_flags = mstat.enc_flags;
486 	status->encoding = mstat.encoding;
487 	status->bw = mstat.bw;
488 	status->rate_idx = mstat.rate_idx;
489 	status->nss = mstat.nss;
490 	status->band = mstat.band;
491 	status->signal = mstat.signal;
492 	status->chains = mstat.chains;
493 
494 	BUILD_BUG_ON(sizeof(mstat) > sizeof(skb->cb));
495 	BUILD_BUG_ON(sizeof(status->chain_signal) != sizeof(mstat.chain_signal));
496 	memcpy(status->chain_signal, mstat.chain_signal, sizeof(mstat.chain_signal));
497 
498 	return wcid_to_sta(mstat.wcid);
499 }
500 
501 static int
502 mt76_check_ccmp_pn(struct sk_buff *skb)
503 {
504 	struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb;
505 	struct mt76_wcid *wcid = status->wcid;
506 	struct ieee80211_hdr *hdr;
507 	int ret;
508 
509 	if (!(status->flag & RX_FLAG_DECRYPTED))
510 		return 0;
511 
512 	if (!wcid || !wcid->rx_check_pn)
513 		return 0;
514 
515 	if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
516 		/*
517 		 * Validate the first fragment both here and in mac80211
518 		 * All further fragments will be validated by mac80211 only.
519 		 */
520 		hdr = (struct ieee80211_hdr *) skb->data;
521 		if (ieee80211_is_frag(hdr) &&
522 		    !ieee80211_is_first_frag(hdr->frame_control))
523 			return 0;
524 	}
525 
526 	BUILD_BUG_ON(sizeof(status->iv) != sizeof(wcid->rx_key_pn[0]));
527 	ret = memcmp(status->iv, wcid->rx_key_pn[status->tid],
528 		     sizeof(status->iv));
529 	if (ret <= 0)
530 		return -EINVAL; /* replay */
531 
532 	memcpy(wcid->rx_key_pn[status->tid], status->iv, sizeof(status->iv));
533 
534 	if (status->flag & RX_FLAG_IV_STRIPPED)
535 		status->flag |= RX_FLAG_PN_VALIDATED;
536 
537 	return 0;
538 }
539 
540 static void
541 mt76_check_ps(struct mt76_dev *dev, struct sk_buff *skb)
542 {
543 	struct mt76_rx_status *status = (struct mt76_rx_status *) skb->cb;
544 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
545 	struct ieee80211_sta *sta;
546 	struct mt76_wcid *wcid = status->wcid;
547 	bool ps;
548 
549 	if (!wcid || !wcid->sta)
550 		return;
551 
552 	sta = container_of((void *) wcid, struct ieee80211_sta, drv_priv);
553 
554 	if (!test_bit(MT_WCID_FLAG_CHECK_PS, &wcid->flags))
555 		return;
556 
557 	if (ieee80211_is_pspoll(hdr->frame_control)) {
558 		ieee80211_sta_pspoll(sta);
559 		return;
560 	}
561 
562 	if (ieee80211_has_morefrags(hdr->frame_control) ||
563 		!(ieee80211_is_mgmt(hdr->frame_control) ||
564 		  ieee80211_is_data(hdr->frame_control)))
565 		return;
566 
567 	ps = ieee80211_has_pm(hdr->frame_control);
568 
569 	if (ps && (ieee80211_is_data_qos(hdr->frame_control) ||
570 		   ieee80211_is_qos_nullfunc(hdr->frame_control)))
571 		ieee80211_sta_uapsd_trigger(sta, status->tid);
572 
573 	if (!!test_bit(MT_WCID_FLAG_PS, &wcid->flags) == ps)
574 		return;
575 
576 	if (ps)
577 		set_bit(MT_WCID_FLAG_PS, &wcid->flags);
578 	else
579 		clear_bit(MT_WCID_FLAG_PS, &wcid->flags);
580 
581 	dev->drv->sta_ps(dev, sta, ps);
582 	ieee80211_sta_ps_transition(sta, ps);
583 }
584 
585 void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames,
586 		      struct napi_struct *napi)
587 {
588 	struct ieee80211_sta *sta;
589 	struct sk_buff *skb;
590 
591 	spin_lock(&dev->rx_lock);
592 	while ((skb = __skb_dequeue(frames)) != NULL) {
593 		if (mt76_check_ccmp_pn(skb)) {
594 			dev_kfree_skb(skb);
595 			continue;
596 		}
597 
598 		sta = mt76_rx_convert(skb);
599 		ieee80211_rx_napi(dev->hw, sta, skb, napi);
600 	}
601 	spin_unlock(&dev->rx_lock);
602 }
603 
604 void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q,
605 			   struct napi_struct *napi)
606 {
607 	struct sk_buff_head frames;
608 	struct sk_buff *skb;
609 
610 	__skb_queue_head_init(&frames);
611 
612 	while ((skb = __skb_dequeue(&dev->rx_skb[q])) != NULL) {
613 		mt76_check_ps(dev, skb);
614 		mt76_rx_aggr_reorder(skb, &frames);
615 	}
616 
617 	mt76_rx_complete(dev, &frames, napi);
618 }
619 EXPORT_SYMBOL_GPL(mt76_rx_poll_complete);
620