xref: /linux/drivers/net/wireless/mediatek/mt76/dma.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
4  */
5 
6 #include <linux/dma-mapping.h>
7 #include "mt76.h"
8 #include "dma.h"
9 
10 static int
11 mt76_dma_alloc_queue(struct mt76_dev *dev, struct mt76_queue *q,
12 		     int idx, int n_desc, int bufsize,
13 		     u32 ring_base)
14 {
15 	int size;
16 	int i;
17 
18 	spin_lock_init(&q->lock);
19 
20 	q->regs = dev->mmio.regs + ring_base + idx * MT_RING_SIZE;
21 	q->ndesc = n_desc;
22 	q->buf_size = bufsize;
23 	q->hw_idx = idx;
24 
25 	size = q->ndesc * sizeof(struct mt76_desc);
26 	q->desc = dmam_alloc_coherent(dev->dev, size, &q->desc_dma, GFP_KERNEL);
27 	if (!q->desc)
28 		return -ENOMEM;
29 
30 	size = q->ndesc * sizeof(*q->entry);
31 	q->entry = devm_kzalloc(dev->dev, size, GFP_KERNEL);
32 	if (!q->entry)
33 		return -ENOMEM;
34 
35 	/* clear descriptors */
36 	for (i = 0; i < q->ndesc; i++)
37 		q->desc[i].ctrl = cpu_to_le32(MT_DMA_CTL_DMA_DONE);
38 
39 	writel(q->desc_dma, &q->regs->desc_base);
40 	writel(0, &q->regs->cpu_idx);
41 	writel(0, &q->regs->dma_idx);
42 	writel(q->ndesc, &q->regs->ring_size);
43 
44 	return 0;
45 }
46 
47 static int
48 mt76_dma_add_buf(struct mt76_dev *dev, struct mt76_queue *q,
49 		 struct mt76_queue_buf *buf, int nbufs, u32 info,
50 		 struct sk_buff *skb, void *txwi)
51 {
52 	struct mt76_desc *desc;
53 	u32 ctrl;
54 	int i, idx = -1;
55 
56 	if (txwi)
57 		q->entry[q->head].txwi = DMA_DUMMY_DATA;
58 
59 	for (i = 0; i < nbufs; i += 2, buf += 2) {
60 		u32 buf0 = buf[0].addr, buf1 = 0;
61 
62 		ctrl = FIELD_PREP(MT_DMA_CTL_SD_LEN0, buf[0].len);
63 		if (i < nbufs - 1) {
64 			buf1 = buf[1].addr;
65 			ctrl |= FIELD_PREP(MT_DMA_CTL_SD_LEN1, buf[1].len);
66 		}
67 
68 		if (i == nbufs - 1)
69 			ctrl |= MT_DMA_CTL_LAST_SEC0;
70 		else if (i == nbufs - 2)
71 			ctrl |= MT_DMA_CTL_LAST_SEC1;
72 
73 		idx = q->head;
74 		q->head = (q->head + 1) % q->ndesc;
75 
76 		desc = &q->desc[idx];
77 
78 		WRITE_ONCE(desc->buf0, cpu_to_le32(buf0));
79 		WRITE_ONCE(desc->buf1, cpu_to_le32(buf1));
80 		WRITE_ONCE(desc->info, cpu_to_le32(info));
81 		WRITE_ONCE(desc->ctrl, cpu_to_le32(ctrl));
82 
83 		q->queued++;
84 	}
85 
86 	q->entry[idx].txwi = txwi;
87 	q->entry[idx].skb = skb;
88 
89 	return idx;
90 }
91 
92 static void
93 mt76_dma_tx_cleanup_idx(struct mt76_dev *dev, struct mt76_queue *q, int idx,
94 			struct mt76_queue_entry *prev_e)
95 {
96 	struct mt76_queue_entry *e = &q->entry[idx];
97 	__le32 __ctrl = READ_ONCE(q->desc[idx].ctrl);
98 	u32 ctrl = le32_to_cpu(__ctrl);
99 
100 	if (!e->txwi || !e->skb) {
101 		__le32 addr = READ_ONCE(q->desc[idx].buf0);
102 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctrl);
103 
104 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
105 				 DMA_TO_DEVICE);
106 	}
107 
108 	if (!(ctrl & MT_DMA_CTL_LAST_SEC0)) {
109 		__le32 addr = READ_ONCE(q->desc[idx].buf1);
110 		u32 len = FIELD_GET(MT_DMA_CTL_SD_LEN1, ctrl);
111 
112 		dma_unmap_single(dev->dev, le32_to_cpu(addr), len,
113 				 DMA_TO_DEVICE);
114 	}
115 
116 	if (e->txwi == DMA_DUMMY_DATA)
117 		e->txwi = NULL;
118 
119 	if (e->skb == DMA_DUMMY_DATA)
120 		e->skb = NULL;
121 
122 	*prev_e = *e;
123 	memset(e, 0, sizeof(*e));
124 }
125 
126 static void
127 mt76_dma_sync_idx(struct mt76_dev *dev, struct mt76_queue *q)
128 {
129 	writel(q->desc_dma, &q->regs->desc_base);
130 	writel(q->ndesc, &q->regs->ring_size);
131 	q->head = readl(&q->regs->dma_idx);
132 	q->tail = q->head;
133 	writel(q->head, &q->regs->cpu_idx);
134 }
135 
136 static void
137 mt76_dma_tx_cleanup(struct mt76_dev *dev, enum mt76_txq_id qid, bool flush)
138 {
139 	struct mt76_sw_queue *sq = &dev->q_tx[qid];
140 	struct mt76_queue *q = sq->q;
141 	struct mt76_queue_entry entry;
142 	unsigned int n_swq_queued[4] = {};
143 	unsigned int n_queued = 0;
144 	bool wake = false;
145 	int i, last;
146 
147 	if (!q)
148 		return;
149 
150 	if (flush)
151 		last = -1;
152 	else
153 		last = readl(&q->regs->dma_idx);
154 
155 	while ((q->queued > n_queued) && q->tail != last) {
156 		mt76_dma_tx_cleanup_idx(dev, q, q->tail, &entry);
157 		if (entry.schedule)
158 			n_swq_queued[entry.qid]++;
159 
160 		q->tail = (q->tail + 1) % q->ndesc;
161 		n_queued++;
162 
163 		if (entry.skb)
164 			dev->drv->tx_complete_skb(dev, qid, &entry);
165 
166 		if (entry.txwi) {
167 			if (!(dev->drv->txwi_flags & MT_TXWI_NO_FREE))
168 				mt76_put_txwi(dev, entry.txwi);
169 			wake = !flush;
170 		}
171 
172 		if (!flush && q->tail == last)
173 			last = readl(&q->regs->dma_idx);
174 	}
175 
176 	spin_lock_bh(&q->lock);
177 
178 	q->queued -= n_queued;
179 	for (i = 0; i < ARRAY_SIZE(n_swq_queued); i++) {
180 		if (!n_swq_queued[i])
181 			continue;
182 
183 		dev->q_tx[i].swq_queued -= n_swq_queued[i];
184 	}
185 
186 	if (flush)
187 		mt76_dma_sync_idx(dev, q);
188 
189 	wake = wake && q->stopped &&
190 	       qid < IEEE80211_NUM_ACS && q->queued < q->ndesc - 8;
191 	if (wake)
192 		q->stopped = false;
193 
194 	if (!q->queued)
195 		wake_up(&dev->tx_wait);
196 
197 	spin_unlock_bh(&q->lock);
198 
199 	if (wake)
200 		ieee80211_wake_queue(dev->hw, qid);
201 }
202 
203 static void *
204 mt76_dma_get_buf(struct mt76_dev *dev, struct mt76_queue *q, int idx,
205 		 int *len, u32 *info, bool *more)
206 {
207 	struct mt76_queue_entry *e = &q->entry[idx];
208 	struct mt76_desc *desc = &q->desc[idx];
209 	dma_addr_t buf_addr;
210 	void *buf = e->buf;
211 	int buf_len = SKB_WITH_OVERHEAD(q->buf_size);
212 
213 	buf_addr = le32_to_cpu(READ_ONCE(desc->buf0));
214 	if (len) {
215 		u32 ctl = le32_to_cpu(READ_ONCE(desc->ctrl));
216 		*len = FIELD_GET(MT_DMA_CTL_SD_LEN0, ctl);
217 		*more = !(ctl & MT_DMA_CTL_LAST_SEC0);
218 	}
219 
220 	if (info)
221 		*info = le32_to_cpu(desc->info);
222 
223 	dma_unmap_single(dev->dev, buf_addr, buf_len, DMA_FROM_DEVICE);
224 	e->buf = NULL;
225 
226 	return buf;
227 }
228 
229 static void *
230 mt76_dma_dequeue(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
231 		 int *len, u32 *info, bool *more)
232 {
233 	int idx = q->tail;
234 
235 	*more = false;
236 	if (!q->queued)
237 		return NULL;
238 
239 	if (!flush && !(q->desc[idx].ctrl & cpu_to_le32(MT_DMA_CTL_DMA_DONE)))
240 		return NULL;
241 
242 	q->tail = (q->tail + 1) % q->ndesc;
243 	q->queued--;
244 
245 	return mt76_dma_get_buf(dev, q, idx, len, info, more);
246 }
247 
248 static void
249 mt76_dma_kick_queue(struct mt76_dev *dev, struct mt76_queue *q)
250 {
251 	writel(q->head, &q->regs->cpu_idx);
252 }
253 
254 static int
255 mt76_dma_tx_queue_skb_raw(struct mt76_dev *dev, enum mt76_txq_id qid,
256 			  struct sk_buff *skb, u32 tx_info)
257 {
258 	struct mt76_queue *q = dev->q_tx[qid].q;
259 	struct mt76_queue_buf buf;
260 	dma_addr_t addr;
261 
262 	addr = dma_map_single(dev->dev, skb->data, skb->len,
263 			      DMA_TO_DEVICE);
264 	if (unlikely(dma_mapping_error(dev->dev, addr)))
265 		return -ENOMEM;
266 
267 	buf.addr = addr;
268 	buf.len = skb->len;
269 
270 	spin_lock_bh(&q->lock);
271 	mt76_dma_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
272 	mt76_dma_kick_queue(dev, q);
273 	spin_unlock_bh(&q->lock);
274 
275 	return 0;
276 }
277 
278 static int
279 mt76_dma_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
280 		      struct sk_buff *skb, struct mt76_wcid *wcid,
281 		      struct ieee80211_sta *sta)
282 {
283 	struct mt76_queue *q = dev->q_tx[qid].q;
284 	struct mt76_tx_info tx_info = {
285 		.skb = skb,
286 	};
287 	int len, n = 0, ret = -ENOMEM;
288 	struct mt76_queue_entry e;
289 	struct mt76_txwi_cache *t;
290 	struct sk_buff *iter;
291 	dma_addr_t addr;
292 	u8 *txwi;
293 
294 	t = mt76_get_txwi(dev);
295 	if (!t) {
296 		ieee80211_free_txskb(dev->hw, skb);
297 		return -ENOMEM;
298 	}
299 	txwi = mt76_get_txwi_ptr(dev, t);
300 
301 	skb->prev = skb->next = NULL;
302 	if (dev->drv->tx_aligned4_skbs)
303 		mt76_insert_hdr_pad(skb);
304 
305 	len = skb_headlen(skb);
306 	addr = dma_map_single(dev->dev, skb->data, len, DMA_TO_DEVICE);
307 	if (unlikely(dma_mapping_error(dev->dev, addr)))
308 		goto free;
309 
310 	tx_info.buf[n].addr = t->dma_addr;
311 	tx_info.buf[n++].len = dev->drv->txwi_size;
312 	tx_info.buf[n].addr = addr;
313 	tx_info.buf[n++].len = len;
314 
315 	skb_walk_frags(skb, iter) {
316 		if (n == ARRAY_SIZE(tx_info.buf))
317 			goto unmap;
318 
319 		addr = dma_map_single(dev->dev, iter->data, iter->len,
320 				      DMA_TO_DEVICE);
321 		if (unlikely(dma_mapping_error(dev->dev, addr)))
322 			goto unmap;
323 
324 		tx_info.buf[n].addr = addr;
325 		tx_info.buf[n++].len = iter->len;
326 	}
327 	tx_info.nbuf = n;
328 
329 	dma_sync_single_for_cpu(dev->dev, t->dma_addr, dev->drv->txwi_size,
330 				DMA_TO_DEVICE);
331 	ret = dev->drv->tx_prepare_skb(dev, txwi, qid, wcid, sta, &tx_info);
332 	dma_sync_single_for_device(dev->dev, t->dma_addr, dev->drv->txwi_size,
333 				   DMA_TO_DEVICE);
334 	if (ret < 0)
335 		goto unmap;
336 
337 	if (q->queued + (tx_info.nbuf + 1) / 2 >= q->ndesc - 1) {
338 		ret = -ENOMEM;
339 		goto unmap;
340 	}
341 
342 	return mt76_dma_add_buf(dev, q, tx_info.buf, tx_info.nbuf,
343 				tx_info.info, tx_info.skb, t);
344 
345 unmap:
346 	for (n--; n > 0; n--)
347 		dma_unmap_single(dev->dev, tx_info.buf[n].addr,
348 				 tx_info.buf[n].len, DMA_TO_DEVICE);
349 
350 free:
351 	e.skb = tx_info.skb;
352 	e.txwi = t;
353 	dev->drv->tx_complete_skb(dev, qid, &e);
354 	mt76_put_txwi(dev, t);
355 	return ret;
356 }
357 
358 static int
359 mt76_dma_rx_fill(struct mt76_dev *dev, struct mt76_queue *q)
360 {
361 	dma_addr_t addr;
362 	void *buf;
363 	int frames = 0;
364 	int len = SKB_WITH_OVERHEAD(q->buf_size);
365 	int offset = q->buf_offset;
366 	int idx;
367 
368 	spin_lock_bh(&q->lock);
369 
370 	while (q->queued < q->ndesc - 1) {
371 		struct mt76_queue_buf qbuf;
372 
373 		buf = page_frag_alloc(&q->rx_page, q->buf_size, GFP_ATOMIC);
374 		if (!buf)
375 			break;
376 
377 		addr = dma_map_single(dev->dev, buf, len, DMA_FROM_DEVICE);
378 		if (unlikely(dma_mapping_error(dev->dev, addr))) {
379 			skb_free_frag(buf);
380 			break;
381 		}
382 
383 		qbuf.addr = addr + offset;
384 		qbuf.len = len - offset;
385 		idx = mt76_dma_add_buf(dev, q, &qbuf, 1, 0, buf, NULL);
386 		frames++;
387 	}
388 
389 	if (frames)
390 		mt76_dma_kick_queue(dev, q);
391 
392 	spin_unlock_bh(&q->lock);
393 
394 	return frames;
395 }
396 
397 static void
398 mt76_dma_rx_cleanup(struct mt76_dev *dev, struct mt76_queue *q)
399 {
400 	struct page *page;
401 	void *buf;
402 	bool more;
403 
404 	spin_lock_bh(&q->lock);
405 	do {
406 		buf = mt76_dma_dequeue(dev, q, true, NULL, NULL, &more);
407 		if (!buf)
408 			break;
409 
410 		skb_free_frag(buf);
411 	} while (1);
412 	spin_unlock_bh(&q->lock);
413 
414 	if (!q->rx_page.va)
415 		return;
416 
417 	page = virt_to_page(q->rx_page.va);
418 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
419 	memset(&q->rx_page, 0, sizeof(q->rx_page));
420 }
421 
422 static void
423 mt76_dma_rx_reset(struct mt76_dev *dev, enum mt76_rxq_id qid)
424 {
425 	struct mt76_queue *q = &dev->q_rx[qid];
426 	int i;
427 
428 	for (i = 0; i < q->ndesc; i++)
429 		q->desc[i].ctrl &= ~cpu_to_le32(MT_DMA_CTL_DMA_DONE);
430 
431 	mt76_dma_rx_cleanup(dev, q);
432 	mt76_dma_sync_idx(dev, q);
433 	mt76_dma_rx_fill(dev, q);
434 
435 	if (!q->rx_head)
436 		return;
437 
438 	dev_kfree_skb(q->rx_head);
439 	q->rx_head = NULL;
440 }
441 
442 static void
443 mt76_add_fragment(struct mt76_dev *dev, struct mt76_queue *q, void *data,
444 		  int len, bool more)
445 {
446 	struct page *page = virt_to_head_page(data);
447 	int offset = data - page_address(page);
448 	struct sk_buff *skb = q->rx_head;
449 
450 	offset += q->buf_offset;
451 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset, len,
452 			q->buf_size);
453 
454 	if (more)
455 		return;
456 
457 	q->rx_head = NULL;
458 	dev->drv->rx_skb(dev, q - dev->q_rx, skb);
459 }
460 
461 static int
462 mt76_dma_rx_process(struct mt76_dev *dev, struct mt76_queue *q, int budget)
463 {
464 	int len, data_len, done = 0;
465 	struct sk_buff *skb;
466 	unsigned char *data;
467 	bool more;
468 
469 	while (done < budget) {
470 		u32 info;
471 
472 		data = mt76_dma_dequeue(dev, q, false, &len, &info, &more);
473 		if (!data)
474 			break;
475 
476 		if (q->rx_head)
477 			data_len = q->buf_size;
478 		else
479 			data_len = SKB_WITH_OVERHEAD(q->buf_size);
480 
481 		if (data_len < len + q->buf_offset) {
482 			dev_kfree_skb(q->rx_head);
483 			q->rx_head = NULL;
484 
485 			skb_free_frag(data);
486 			continue;
487 		}
488 
489 		if (q->rx_head) {
490 			mt76_add_fragment(dev, q, data, len, more);
491 			continue;
492 		}
493 
494 		skb = build_skb(data, q->buf_size);
495 		if (!skb) {
496 			skb_free_frag(data);
497 			continue;
498 		}
499 		skb_reserve(skb, q->buf_offset);
500 
501 		if (q == &dev->q_rx[MT_RXQ_MCU]) {
502 			u32 *rxfce = (u32 *)skb->cb;
503 			*rxfce = info;
504 		}
505 
506 		__skb_put(skb, len);
507 		done++;
508 
509 		if (more) {
510 			q->rx_head = skb;
511 			continue;
512 		}
513 
514 		dev->drv->rx_skb(dev, q - dev->q_rx, skb);
515 	}
516 
517 	mt76_dma_rx_fill(dev, q);
518 	return done;
519 }
520 
521 static int
522 mt76_dma_rx_poll(struct napi_struct *napi, int budget)
523 {
524 	struct mt76_dev *dev;
525 	int qid, done = 0, cur;
526 
527 	dev = container_of(napi->dev, struct mt76_dev, napi_dev);
528 	qid = napi - dev->napi;
529 
530 	rcu_read_lock();
531 
532 	do {
533 		cur = mt76_dma_rx_process(dev, &dev->q_rx[qid], budget - done);
534 		mt76_rx_poll_complete(dev, qid, napi);
535 		done += cur;
536 	} while (cur && done < budget);
537 
538 	rcu_read_unlock();
539 
540 	if (done < budget) {
541 		napi_complete(napi);
542 		dev->drv->rx_poll_complete(dev, qid);
543 	}
544 
545 	return done;
546 }
547 
548 static int
549 mt76_dma_init(struct mt76_dev *dev)
550 {
551 	int i;
552 
553 	init_dummy_netdev(&dev->napi_dev);
554 
555 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
556 		netif_napi_add(&dev->napi_dev, &dev->napi[i], mt76_dma_rx_poll,
557 			       64);
558 		mt76_dma_rx_fill(dev, &dev->q_rx[i]);
559 		skb_queue_head_init(&dev->rx_skb[i]);
560 		napi_enable(&dev->napi[i]);
561 	}
562 
563 	return 0;
564 }
565 
566 static const struct mt76_queue_ops mt76_dma_ops = {
567 	.init = mt76_dma_init,
568 	.alloc = mt76_dma_alloc_queue,
569 	.tx_queue_skb_raw = mt76_dma_tx_queue_skb_raw,
570 	.tx_queue_skb = mt76_dma_tx_queue_skb,
571 	.tx_cleanup = mt76_dma_tx_cleanup,
572 	.rx_reset = mt76_dma_rx_reset,
573 	.kick = mt76_dma_kick_queue,
574 };
575 
576 void mt76_dma_attach(struct mt76_dev *dev)
577 {
578 	dev->queue_ops = &mt76_dma_ops;
579 }
580 EXPORT_SYMBOL_GPL(mt76_dma_attach);
581 
582 void mt76_dma_cleanup(struct mt76_dev *dev)
583 {
584 	int i;
585 
586 	netif_napi_del(&dev->tx_napi);
587 	for (i = 0; i < ARRAY_SIZE(dev->q_tx); i++)
588 		mt76_dma_tx_cleanup(dev, i, true);
589 
590 	for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
591 		netif_napi_del(&dev->napi[i]);
592 		mt76_dma_rx_cleanup(dev, &dev->q_rx[i]);
593 	}
594 }
595 EXPORT_SYMBOL_GPL(mt76_dma_cleanup);
596