1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NXP Wireless LAN device driver: WMM 4 * 5 * Copyright 2011-2020 NXP 6 */ 7 8 #include "decl.h" 9 #include "ioctl.h" 10 #include "util.h" 11 #include "fw.h" 12 #include "main.h" 13 #include "wmm.h" 14 #include "11n.h" 15 16 17 /* Maximum value FW can accept for driver delay in packet transmission */ 18 #define DRV_PKT_DELAY_TO_FW_MAX 512 19 20 21 #define WMM_QUEUED_PACKET_LOWER_LIMIT 180 22 23 #define WMM_QUEUED_PACKET_UPPER_LIMIT 200 24 25 /* Offset for TOS field in the IP header */ 26 #define IPTOS_OFFSET 5 27 28 static bool disable_tx_amsdu; 29 module_param(disable_tx_amsdu, bool, 0644); 30 31 /* This table inverses the tos_to_tid operation to get a priority 32 * which is in sequential order, and can be compared. 33 * Use this to compare the priority of two different TIDs. 34 */ 35 const u8 tos_to_tid_inv[] = { 36 0x02, /* from tos_to_tid[2] = 0 */ 37 0x00, /* from tos_to_tid[0] = 1 */ 38 0x01, /* from tos_to_tid[1] = 2 */ 39 0x03, 40 0x04, 41 0x05, 42 0x06, 43 0x07 44 }; 45 46 /* WMM information IE */ 47 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07, 48 0x00, 0x50, 0xf2, 0x02, 49 0x00, 0x01, 0x00 50 }; 51 52 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE, 53 WMM_AC_BK, 54 WMM_AC_VI, 55 WMM_AC_VO 56 }; 57 58 static u8 tos_to_tid[] = { 59 /* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */ 60 0x01, /* 0 1 0 AC_BK */ 61 0x02, /* 0 0 0 AC_BK */ 62 0x00, /* 0 0 1 AC_BE */ 63 0x03, /* 0 1 1 AC_BE */ 64 0x04, /* 1 0 0 AC_VI */ 65 0x05, /* 1 0 1 AC_VI */ 66 0x06, /* 1 1 0 AC_VO */ 67 0x07 /* 1 1 1 AC_VO */ 68 }; 69 70 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} }; 71 72 /* 73 * This function debug prints the priority parameters for a WMM AC. 74 */ 75 static void 76 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param) 77 { 78 const char *ac_str[] = { "BK", "BE", "VI", "VO" }; 79 80 pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, " 81 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n", 82 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap 83 & MWIFIEX_ACI) >> 5]], 84 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5, 85 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4, 86 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN, 87 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN, 88 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4, 89 le16_to_cpu(ac_param->tx_op_limit)); 90 } 91 92 /* 93 * This function allocates a route address list. 94 * 95 * The function also initializes the list with the provided RA. 96 */ 97 static struct mwifiex_ra_list_tbl * 98 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, const u8 *ra) 99 { 100 struct mwifiex_ra_list_tbl *ra_list; 101 102 ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC); 103 if (!ra_list) 104 return NULL; 105 106 INIT_LIST_HEAD(&ra_list->list); 107 skb_queue_head_init(&ra_list->skb_head); 108 109 memcpy(ra_list->ra, ra, ETH_ALEN); 110 111 ra_list->total_pkt_count = 0; 112 113 mwifiex_dbg(adapter, INFO, "info: allocated ra_list %p\n", ra_list); 114 115 return ra_list; 116 } 117 118 /* This function returns random no between 16 and 32 to be used as threshold 119 * for no of packets after which BA setup is initiated. 120 */ 121 static u8 mwifiex_get_random_ba_threshold(void) 122 { 123 u64 ns; 124 /* setup ba_packet_threshold here random number between 125 * [BA_SETUP_PACKET_OFFSET, 126 * BA_SETUP_PACKET_OFFSET+BA_SETUP_MAX_PACKET_THRESHOLD-1] 127 */ 128 ns = ktime_get_ns(); 129 ns += (ns >> 32) + (ns >> 16); 130 131 return ((u8)ns % BA_SETUP_MAX_PACKET_THRESHOLD) + BA_SETUP_PACKET_OFFSET; 132 } 133 134 /* 135 * This function allocates and adds a RA list for all TIDs 136 * with the given RA. 137 */ 138 void mwifiex_ralist_add(struct mwifiex_private *priv, const u8 *ra) 139 { 140 int i; 141 struct mwifiex_ra_list_tbl *ra_list; 142 struct mwifiex_adapter *adapter = priv->adapter; 143 struct mwifiex_sta_node *node; 144 145 146 for (i = 0; i < MAX_NUM_TID; ++i) { 147 ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra); 148 mwifiex_dbg(adapter, INFO, 149 "info: created ra_list %p\n", ra_list); 150 151 if (!ra_list) 152 break; 153 154 ra_list->is_11n_enabled = 0; 155 ra_list->tdls_link = false; 156 ra_list->ba_status = BA_SETUP_NONE; 157 ra_list->amsdu_in_ampdu = false; 158 if (!mwifiex_queuing_ra_based(priv)) { 159 if (mwifiex_is_tdls_link_setup 160 (mwifiex_get_tdls_link_status(priv, ra))) { 161 ra_list->tdls_link = true; 162 ra_list->is_11n_enabled = 163 mwifiex_tdls_peer_11n_enabled(priv, ra); 164 } else { 165 ra_list->is_11n_enabled = IS_11N_ENABLED(priv); 166 } 167 } else { 168 spin_lock_bh(&priv->sta_list_spinlock); 169 node = mwifiex_get_sta_entry(priv, ra); 170 if (node) 171 ra_list->tx_paused = node->tx_pause; 172 ra_list->is_11n_enabled = 173 mwifiex_is_sta_11n_enabled(priv, node); 174 if (ra_list->is_11n_enabled) 175 ra_list->max_amsdu = node->max_amsdu; 176 spin_unlock_bh(&priv->sta_list_spinlock); 177 } 178 179 mwifiex_dbg(adapter, DATA, "data: ralist %p: is_11n_enabled=%d\n", 180 ra_list, ra_list->is_11n_enabled); 181 182 if (ra_list->is_11n_enabled) { 183 ra_list->ba_pkt_count = 0; 184 ra_list->ba_packet_thr = 185 mwifiex_get_random_ba_threshold(); 186 } 187 list_add_tail(&ra_list->list, 188 &priv->wmm.tid_tbl_ptr[i].ra_list); 189 } 190 } 191 192 /* 193 * This function sets the WMM queue priorities to their default values. 194 */ 195 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv) 196 { 197 /* Default queue priorities: VO->VI->BE->BK */ 198 priv->wmm.queue_priority[0] = WMM_AC_VO; 199 priv->wmm.queue_priority[1] = WMM_AC_VI; 200 priv->wmm.queue_priority[2] = WMM_AC_BE; 201 priv->wmm.queue_priority[3] = WMM_AC_BK; 202 } 203 204 /* 205 * This function map ACs to TIDs. 206 */ 207 static void 208 mwifiex_wmm_queue_priorities_tid(struct mwifiex_private *priv) 209 { 210 struct mwifiex_wmm_desc *wmm = &priv->wmm; 211 u8 *queue_priority = wmm->queue_priority; 212 int i; 213 214 for (i = 0; i < 4; ++i) { 215 tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1]; 216 tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0]; 217 } 218 219 for (i = 0; i < MAX_NUM_TID; ++i) 220 priv->tos_to_tid_inv[tos_to_tid[i]] = (u8)i; 221 222 atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID); 223 } 224 225 /* 226 * This function initializes WMM priority queues. 227 */ 228 void 229 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv, 230 struct ieee_types_wmm_parameter *wmm_ie) 231 { 232 u16 cw_min, avg_back_off, tmp[4]; 233 u32 i, j, num_ac; 234 u8 ac_idx; 235 236 if (!wmm_ie || !priv->wmm_enabled) { 237 /* WMM is not enabled, just set the defaults and return */ 238 mwifiex_wmm_default_queue_priorities(priv); 239 return; 240 } 241 242 mwifiex_dbg(priv->adapter, INFO, 243 "info: WMM Parameter IE: version=%d,\t" 244 "qos_info Parameter Set Count=%d, Reserved=%#x\n", 245 wmm_ie->version, wmm_ie->qos_info_bitmap & 246 IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK, 247 wmm_ie->reserved); 248 249 for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) { 250 u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap; 251 u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap; 252 cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1; 253 avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN); 254 255 ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5]; 256 priv->wmm.queue_priority[ac_idx] = ac_idx; 257 tmp[ac_idx] = avg_back_off; 258 259 mwifiex_dbg(priv->adapter, INFO, 260 "info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n", 261 (1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1, 262 cw_min, avg_back_off); 263 mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]); 264 } 265 266 /* Bubble sort */ 267 for (i = 0; i < num_ac; i++) { 268 for (j = 1; j < num_ac - i; j++) { 269 if (tmp[j - 1] > tmp[j]) { 270 swap(tmp[j - 1], tmp[j]); 271 swap(priv->wmm.queue_priority[j - 1], 272 priv->wmm.queue_priority[j]); 273 } else if (tmp[j - 1] == tmp[j]) { 274 if (priv->wmm.queue_priority[j - 1] 275 < priv->wmm.queue_priority[j]) 276 swap(priv->wmm.queue_priority[j - 1], 277 priv->wmm.queue_priority[j]); 278 } 279 } 280 } 281 282 mwifiex_wmm_queue_priorities_tid(priv); 283 } 284 285 /* 286 * This function evaluates whether or not an AC is to be downgraded. 287 * 288 * In case the AC is not enabled, the highest AC is returned that is 289 * enabled and does not require admission control. 290 */ 291 static enum mwifiex_wmm_ac_e 292 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv, 293 enum mwifiex_wmm_ac_e eval_ac) 294 { 295 int down_ac; 296 enum mwifiex_wmm_ac_e ret_ac; 297 struct mwifiex_wmm_ac_status *ac_status; 298 299 ac_status = &priv->wmm.ac_status[eval_ac]; 300 301 if (!ac_status->disabled) 302 /* Okay to use this AC, its enabled */ 303 return eval_ac; 304 305 /* Setup a default return value of the lowest priority */ 306 ret_ac = WMM_AC_BK; 307 308 /* 309 * Find the highest AC that is enabled and does not require 310 * admission control. The spec disallows downgrading to an AC, 311 * which is enabled due to a completed admission control. 312 * Unadmitted traffic is not to be sent on an AC with admitted 313 * traffic. 314 */ 315 for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) { 316 ac_status = &priv->wmm.ac_status[down_ac]; 317 318 if (!ac_status->disabled && !ac_status->flow_required) 319 /* AC is enabled and does not require admission 320 control */ 321 ret_ac = (enum mwifiex_wmm_ac_e) down_ac; 322 } 323 324 return ret_ac; 325 } 326 327 /* 328 * This function downgrades WMM priority queue. 329 */ 330 void 331 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv) 332 { 333 int ac_val; 334 335 mwifiex_dbg(priv->adapter, INFO, "info: WMM: AC Priorities:\t" 336 "BK(0), BE(1), VI(2), VO(3)\n"); 337 338 if (!priv->wmm_enabled) { 339 /* WMM is not enabled, default priorities */ 340 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) 341 priv->wmm.ac_down_graded_vals[ac_val] = 342 (enum mwifiex_wmm_ac_e) ac_val; 343 } else { 344 for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) { 345 priv->wmm.ac_down_graded_vals[ac_val] 346 = mwifiex_wmm_eval_downgrade_ac(priv, 347 (enum mwifiex_wmm_ac_e) ac_val); 348 mwifiex_dbg(priv->adapter, INFO, 349 "info: WMM: AC PRIO %d maps to %d\n", 350 ac_val, 351 priv->wmm.ac_down_graded_vals[ac_val]); 352 } 353 } 354 } 355 356 /* 357 * This function converts the IP TOS field to an WMM AC 358 * Queue assignment. 359 */ 360 static enum mwifiex_wmm_ac_e 361 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos) 362 { 363 /* Map of TOS UP values to WMM AC */ 364 static const enum mwifiex_wmm_ac_e tos_to_ac[] = { 365 WMM_AC_BE, 366 WMM_AC_BK, 367 WMM_AC_BK, 368 WMM_AC_BE, 369 WMM_AC_VI, 370 WMM_AC_VI, 371 WMM_AC_VO, 372 WMM_AC_VO 373 }; 374 375 if (tos >= ARRAY_SIZE(tos_to_ac)) 376 return WMM_AC_BE; 377 378 return tos_to_ac[tos]; 379 } 380 381 /* 382 * This function evaluates a given TID and downgrades it to a lower 383 * TID if the WMM Parameter IE received from the AP indicates that the 384 * AP is disabled (due to call admission control (ACM bit). Mapping 385 * of TID to AC is taken care of internally. 386 */ 387 u8 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid) 388 { 389 enum mwifiex_wmm_ac_e ac, ac_down; 390 u8 new_tid; 391 392 ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid); 393 ac_down = priv->wmm.ac_down_graded_vals[ac]; 394 395 /* Send the index to tid array, picking from the array will be 396 * taken care by dequeuing function 397 */ 398 new_tid = ac_to_tid[ac_down][tid % 2]; 399 400 return new_tid; 401 } 402 403 /* 404 * This function initializes the WMM state information and the 405 * WMM data path queues. 406 */ 407 void 408 mwifiex_wmm_init(struct mwifiex_adapter *adapter) 409 { 410 int i, j; 411 struct mwifiex_private *priv; 412 413 for (j = 0; j < adapter->priv_num; ++j) { 414 priv = adapter->priv[j]; 415 if (!priv) 416 continue; 417 418 for (i = 0; i < MAX_NUM_TID; ++i) { 419 if (!disable_tx_amsdu && 420 adapter->tx_buf_size > MWIFIEX_TX_DATA_BUF_SIZE_2K) 421 priv->aggr_prio_tbl[i].amsdu = 422 priv->tos_to_tid_inv[i]; 423 else 424 priv->aggr_prio_tbl[i].amsdu = 425 BA_STREAM_NOT_ALLOWED; 426 priv->aggr_prio_tbl[i].ampdu_ap = 427 priv->tos_to_tid_inv[i]; 428 priv->aggr_prio_tbl[i].ampdu_user = 429 priv->tos_to_tid_inv[i]; 430 } 431 432 priv->aggr_prio_tbl[6].amsdu 433 = priv->aggr_prio_tbl[6].ampdu_ap 434 = priv->aggr_prio_tbl[6].ampdu_user 435 = BA_STREAM_NOT_ALLOWED; 436 437 priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap 438 = priv->aggr_prio_tbl[7].ampdu_user 439 = BA_STREAM_NOT_ALLOWED; 440 441 mwifiex_set_ba_params(priv); 442 mwifiex_reset_11n_rx_seq_num(priv); 443 444 priv->wmm.drv_pkt_delay_max = MWIFIEX_WMM_DRV_DELAY_MAX; 445 atomic_set(&priv->wmm.tx_pkts_queued, 0); 446 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 447 } 448 } 449 450 int mwifiex_bypass_txlist_empty(struct mwifiex_adapter *adapter) 451 { 452 struct mwifiex_private *priv; 453 int i; 454 455 for (i = 0; i < adapter->priv_num; i++) { 456 priv = adapter->priv[i]; 457 if (adapter->if_ops.is_port_ready && 458 !adapter->if_ops.is_port_ready(priv)) 459 continue; 460 if (!skb_queue_empty(&priv->bypass_txq)) 461 return false; 462 } 463 464 return true; 465 } 466 467 /* 468 * This function checks if WMM Tx queue is empty. 469 */ 470 int 471 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter) 472 { 473 int i; 474 struct mwifiex_private *priv; 475 476 for (i = 0; i < adapter->priv_num; ++i) { 477 priv = adapter->priv[i]; 478 if (!priv->port_open && 479 (priv->bss_mode != NL80211_IFTYPE_ADHOC)) 480 continue; 481 if (adapter->if_ops.is_port_ready && 482 !adapter->if_ops.is_port_ready(priv)) 483 continue; 484 if (atomic_read(&priv->wmm.tx_pkts_queued)) 485 return false; 486 } 487 488 return true; 489 } 490 491 /* 492 * This function deletes all packets in an RA list node. 493 * 494 * The packet sent completion callback handler are called with 495 * status failure, after they are dequeued to ensure proper 496 * cleanup. The RA list node itself is freed at the end. 497 */ 498 static void 499 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv, 500 struct mwifiex_ra_list_tbl *ra_list) 501 { 502 struct mwifiex_adapter *adapter = priv->adapter; 503 struct sk_buff *skb, *tmp; 504 505 skb_queue_walk_safe(&ra_list->skb_head, skb, tmp) { 506 skb_unlink(skb, &ra_list->skb_head); 507 mwifiex_write_data_complete(adapter, skb, 0, -1); 508 } 509 } 510 511 /* 512 * This function deletes all packets in an RA list. 513 * 514 * Each nodes in the RA list are freed individually first, and then 515 * the RA list itself is freed. 516 */ 517 static void 518 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv, 519 struct list_head *ra_list_head) 520 { 521 struct mwifiex_ra_list_tbl *ra_list; 522 523 list_for_each_entry(ra_list, ra_list_head, list) 524 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); 525 } 526 527 /* 528 * This function deletes all packets in all RA lists. 529 */ 530 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv) 531 { 532 int i; 533 534 for (i = 0; i < MAX_NUM_TID; i++) 535 mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i]. 536 ra_list); 537 538 atomic_set(&priv->wmm.tx_pkts_queued, 0); 539 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 540 } 541 542 /* 543 * This function deletes all route addresses from all RA lists. 544 */ 545 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv) 546 { 547 struct mwifiex_ra_list_tbl *ra_list, *tmp_node; 548 int i; 549 550 for (i = 0; i < MAX_NUM_TID; ++i) { 551 mwifiex_dbg(priv->adapter, INFO, 552 "info: ra_list: freeing buf for tid %d\n", i); 553 list_for_each_entry_safe(ra_list, tmp_node, 554 &priv->wmm.tid_tbl_ptr[i].ra_list, 555 list) { 556 list_del(&ra_list->list); 557 kfree(ra_list); 558 } 559 560 INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list); 561 } 562 } 563 564 static int mwifiex_free_ack_frame(int id, void *p, void *data) 565 { 566 pr_warn("Have pending ack frames!\n"); 567 kfree_skb(p); 568 return 0; 569 } 570 571 /* 572 * This function cleans up the Tx and Rx queues. 573 * 574 * Cleanup includes - 575 * - All packets in RA lists 576 * - All entries in Rx reorder table 577 * - All entries in Tx BA stream table 578 * - MPA buffer (if required) 579 * - All RA lists 580 */ 581 void 582 mwifiex_clean_txrx(struct mwifiex_private *priv) 583 { 584 struct sk_buff *skb, *tmp; 585 586 mwifiex_11n_cleanup_reorder_tbl(priv); 587 spin_lock_bh(&priv->wmm.ra_list_spinlock); 588 589 mwifiex_wmm_cleanup_queues(priv); 590 mwifiex_11n_delete_all_tx_ba_stream_tbl(priv); 591 592 if (priv->adapter->if_ops.cleanup_mpa_buf) 593 priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter); 594 595 mwifiex_wmm_delete_all_ralist(priv); 596 memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid)); 597 598 if (priv->adapter->if_ops.clean_pcie_ring && 599 !test_bit(MWIFIEX_SURPRISE_REMOVED, &priv->adapter->work_flags)) 600 priv->adapter->if_ops.clean_pcie_ring(priv->adapter); 601 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 602 603 skb_queue_walk_safe(&priv->tdls_txq, skb, tmp) { 604 skb_unlink(skb, &priv->tdls_txq); 605 mwifiex_write_data_complete(priv->adapter, skb, 0, -1); 606 } 607 608 skb_queue_walk_safe(&priv->bypass_txq, skb, tmp) { 609 skb_unlink(skb, &priv->bypass_txq); 610 mwifiex_write_data_complete(priv->adapter, skb, 0, -1); 611 } 612 atomic_set(&priv->adapter->bypass_tx_pending, 0); 613 614 idr_for_each(&priv->ack_status_frames, mwifiex_free_ack_frame, NULL); 615 idr_destroy(&priv->ack_status_frames); 616 } 617 618 /* 619 * This function retrieves a particular RA list node, matching with the 620 * given TID and RA address. 621 */ 622 struct mwifiex_ra_list_tbl * 623 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid, 624 const u8 *ra_addr) 625 { 626 struct mwifiex_ra_list_tbl *ra_list; 627 628 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list, 629 list) { 630 if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN)) 631 return ra_list; 632 } 633 634 return NULL; 635 } 636 637 void mwifiex_update_ralist_tx_pause(struct mwifiex_private *priv, u8 *mac, 638 u8 tx_pause) 639 { 640 struct mwifiex_ra_list_tbl *ra_list; 641 u32 pkt_cnt = 0, tx_pkts_queued; 642 int i; 643 644 spin_lock_bh(&priv->wmm.ra_list_spinlock); 645 646 for (i = 0; i < MAX_NUM_TID; ++i) { 647 ra_list = mwifiex_wmm_get_ralist_node(priv, i, mac); 648 if (ra_list && ra_list->tx_paused != tx_pause) { 649 pkt_cnt += ra_list->total_pkt_count; 650 ra_list->tx_paused = tx_pause; 651 if (tx_pause) 652 priv->wmm.pkts_paused[i] += 653 ra_list->total_pkt_count; 654 else 655 priv->wmm.pkts_paused[i] -= 656 ra_list->total_pkt_count; 657 } 658 } 659 660 if (pkt_cnt) { 661 tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); 662 if (tx_pause) 663 tx_pkts_queued -= pkt_cnt; 664 else 665 tx_pkts_queued += pkt_cnt; 666 667 atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); 668 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 669 } 670 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 671 } 672 673 /* This function updates non-tdls peer ralist tx_pause while 674 * tdls channel switching 675 */ 676 void mwifiex_update_ralist_tx_pause_in_tdls_cs(struct mwifiex_private *priv, 677 u8 *mac, u8 tx_pause) 678 { 679 struct mwifiex_ra_list_tbl *ra_list; 680 u32 pkt_cnt = 0, tx_pkts_queued; 681 int i; 682 683 spin_lock_bh(&priv->wmm.ra_list_spinlock); 684 685 for (i = 0; i < MAX_NUM_TID; ++i) { 686 list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[i].ra_list, 687 list) { 688 if (!memcmp(ra_list->ra, mac, ETH_ALEN)) 689 continue; 690 691 if (ra_list->tx_paused != tx_pause) { 692 pkt_cnt += ra_list->total_pkt_count; 693 ra_list->tx_paused = tx_pause; 694 if (tx_pause) 695 priv->wmm.pkts_paused[i] += 696 ra_list->total_pkt_count; 697 else 698 priv->wmm.pkts_paused[i] -= 699 ra_list->total_pkt_count; 700 } 701 } 702 } 703 704 if (pkt_cnt) { 705 tx_pkts_queued = atomic_read(&priv->wmm.tx_pkts_queued); 706 if (tx_pause) 707 tx_pkts_queued -= pkt_cnt; 708 else 709 tx_pkts_queued += pkt_cnt; 710 711 atomic_set(&priv->wmm.tx_pkts_queued, tx_pkts_queued); 712 atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID); 713 } 714 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 715 } 716 717 /* 718 * This function retrieves an RA list node for a given TID and 719 * RA address pair. 720 * 721 * If no such node is found, a new node is added first and then 722 * retrieved. 723 */ 724 struct mwifiex_ra_list_tbl * 725 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, 726 const u8 *ra_addr) 727 { 728 struct mwifiex_ra_list_tbl *ra_list; 729 730 ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); 731 if (ra_list) 732 return ra_list; 733 mwifiex_ralist_add(priv, ra_addr); 734 735 return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr); 736 } 737 738 /* 739 * This function deletes RA list nodes for given mac for all TIDs. 740 * Function also decrements TX pending count accordingly. 741 */ 742 void 743 mwifiex_wmm_del_peer_ra_list(struct mwifiex_private *priv, const u8 *ra_addr) 744 { 745 struct mwifiex_ra_list_tbl *ra_list; 746 int i; 747 748 spin_lock_bh(&priv->wmm.ra_list_spinlock); 749 750 for (i = 0; i < MAX_NUM_TID; ++i) { 751 ra_list = mwifiex_wmm_get_ralist_node(priv, i, ra_addr); 752 753 if (!ra_list) 754 continue; 755 mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list); 756 if (ra_list->tx_paused) 757 priv->wmm.pkts_paused[i] -= ra_list->total_pkt_count; 758 else 759 atomic_sub(ra_list->total_pkt_count, 760 &priv->wmm.tx_pkts_queued); 761 list_del(&ra_list->list); 762 kfree(ra_list); 763 } 764 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 765 } 766 767 /* 768 * This function checks if a particular RA list node exists in a given TID 769 * table index. 770 */ 771 int 772 mwifiex_is_ralist_valid(struct mwifiex_private *priv, 773 struct mwifiex_ra_list_tbl *ra_list, int ptr_index) 774 { 775 struct mwifiex_ra_list_tbl *rlist; 776 777 list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list, 778 list) { 779 if (rlist == ra_list) 780 return true; 781 } 782 783 return false; 784 } 785 786 /* 787 * This function adds a packet to bypass TX queue. 788 * This is special TX queue for packets which can be sent even when port_open 789 * is false. 790 */ 791 void 792 mwifiex_wmm_add_buf_bypass_txqueue(struct mwifiex_private *priv, 793 struct sk_buff *skb) 794 { 795 skb_queue_tail(&priv->bypass_txq, skb); 796 } 797 798 /* 799 * This function adds a packet to WMM queue. 800 * 801 * In disconnected state the packet is immediately dropped and the 802 * packet send completion callback is called with status failure. 803 * 804 * Otherwise, the correct RA list node is located and the packet 805 * is queued at the list tail. 806 */ 807 void 808 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv, 809 struct sk_buff *skb) 810 { 811 struct mwifiex_adapter *adapter = priv->adapter; 812 u32 tid; 813 struct mwifiex_ra_list_tbl *ra_list; 814 u8 ra[ETH_ALEN], tid_down; 815 struct list_head list_head; 816 int tdls_status = TDLS_NOT_SETUP; 817 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 818 struct mwifiex_txinfo *tx_info = MWIFIEX_SKB_TXCB(skb); 819 820 memcpy(ra, eth_hdr->h_dest, ETH_ALEN); 821 822 if (GET_BSS_ROLE(priv) == MWIFIEX_BSS_ROLE_STA && 823 ISSUPP_TDLS_ENABLED(adapter->fw_cap_info)) { 824 if (ntohs(eth_hdr->h_proto) == ETH_P_TDLS) 825 mwifiex_dbg(adapter, DATA, 826 "TDLS setup packet for %pM.\t" 827 "Don't block\n", ra); 828 else if (memcmp(priv->cfg_bssid, ra, ETH_ALEN)) 829 tdls_status = mwifiex_get_tdls_link_status(priv, ra); 830 } 831 832 if (!priv->media_connected && !mwifiex_is_skb_mgmt_frame(skb)) { 833 mwifiex_dbg(adapter, DATA, "data: drop packet in disconnect\n"); 834 mwifiex_write_data_complete(adapter, skb, 0, -1); 835 return; 836 } 837 838 tid = skb->priority; 839 840 spin_lock_bh(&priv->wmm.ra_list_spinlock); 841 842 tid_down = mwifiex_wmm_downgrade_tid(priv, tid); 843 844 /* In case of infra as we have already created the list during 845 association we just don't have to call get_queue_raptr, we will 846 have only 1 raptr for a tid in case of infra */ 847 if (!mwifiex_queuing_ra_based(priv) && 848 !mwifiex_is_skb_mgmt_frame(skb)) { 849 switch (tdls_status) { 850 case TDLS_SETUP_COMPLETE: 851 case TDLS_CHAN_SWITCHING: 852 case TDLS_IN_BASE_CHAN: 853 case TDLS_IN_OFF_CHAN: 854 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, 855 ra); 856 tx_info->flags |= MWIFIEX_BUF_FLAG_TDLS_PKT; 857 break; 858 case TDLS_SETUP_INPROGRESS: 859 skb_queue_tail(&priv->tdls_txq, skb); 860 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 861 return; 862 default: 863 list_head = priv->wmm.tid_tbl_ptr[tid_down].ra_list; 864 ra_list = list_first_entry_or_null(&list_head, 865 struct mwifiex_ra_list_tbl, list); 866 break; 867 } 868 } else { 869 memcpy(ra, skb->data, ETH_ALEN); 870 if (is_multicast_ether_addr(ra) || mwifiex_is_skb_mgmt_frame(skb)) 871 eth_broadcast_addr(ra); 872 ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra); 873 } 874 875 if (!ra_list) { 876 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 877 mwifiex_write_data_complete(adapter, skb, 0, -1); 878 return; 879 } 880 881 skb_queue_tail(&ra_list->skb_head, skb); 882 883 ra_list->ba_pkt_count++; 884 ra_list->total_pkt_count++; 885 886 if (atomic_read(&priv->wmm.highest_queued_prio) < 887 priv->tos_to_tid_inv[tid_down]) 888 atomic_set(&priv->wmm.highest_queued_prio, 889 priv->tos_to_tid_inv[tid_down]); 890 891 if (ra_list->tx_paused) 892 priv->wmm.pkts_paused[tid_down]++; 893 else 894 atomic_inc(&priv->wmm.tx_pkts_queued); 895 896 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 897 } 898 899 /* 900 * This function processes the get WMM status command response from firmware. 901 * 902 * The response may contain multiple TLVs - 903 * - AC Queue status TLVs 904 * - Current WMM Parameter IE TLV 905 * - Admission Control action frame TLVs 906 * 907 * This function parses the TLVs and then calls further specific functions 908 * to process any changes in the queue prioritize or state. 909 */ 910 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv, 911 const struct host_cmd_ds_command *resp) 912 { 913 u8 *curr = (u8 *) &resp->params.get_wmm_status; 914 uint16_t resp_len = le16_to_cpu(resp->size), tlv_len; 915 int mask = IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK; 916 bool valid = true; 917 918 struct mwifiex_ie_types_data *tlv_hdr; 919 struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus; 920 struct ieee_types_wmm_parameter *wmm_param_ie = NULL; 921 struct mwifiex_wmm_ac_status *ac_status; 922 923 mwifiex_dbg(priv->adapter, INFO, 924 "info: WMM: WMM_GET_STATUS cmdresp received: %d\n", 925 resp_len); 926 927 while ((resp_len >= sizeof(tlv_hdr->header)) && valid) { 928 tlv_hdr = (struct mwifiex_ie_types_data *) curr; 929 tlv_len = le16_to_cpu(tlv_hdr->header.len); 930 931 if (resp_len < tlv_len + sizeof(tlv_hdr->header)) 932 break; 933 934 switch (le16_to_cpu(tlv_hdr->header.type)) { 935 case TLV_TYPE_WMMQSTATUS: 936 tlv_wmm_qstatus = 937 (struct mwifiex_ie_types_wmm_queue_status *) 938 tlv_hdr; 939 mwifiex_dbg(priv->adapter, CMD, 940 "info: CMD_RESP: WMM_GET_STATUS:\t" 941 "QSTATUS TLV: %d, %d, %d\n", 942 tlv_wmm_qstatus->queue_index, 943 tlv_wmm_qstatus->flow_required, 944 tlv_wmm_qstatus->disabled); 945 946 ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus-> 947 queue_index]; 948 ac_status->disabled = tlv_wmm_qstatus->disabled; 949 ac_status->flow_required = 950 tlv_wmm_qstatus->flow_required; 951 ac_status->flow_created = tlv_wmm_qstatus->flow_created; 952 break; 953 954 case WLAN_EID_VENDOR_SPECIFIC: 955 /* 956 * Point the regular IEEE IE 2 bytes into the Marvell IE 957 * and setup the IEEE IE type and length byte fields 958 */ 959 960 wmm_param_ie = 961 (struct ieee_types_wmm_parameter *) (curr + 962 2); 963 wmm_param_ie->vend_hdr.len = (u8) tlv_len; 964 wmm_param_ie->vend_hdr.element_id = 965 WLAN_EID_VENDOR_SPECIFIC; 966 967 mwifiex_dbg(priv->adapter, CMD, 968 "info: CMD_RESP: WMM_GET_STATUS:\t" 969 "WMM Parameter Set Count: %d\n", 970 wmm_param_ie->qos_info_bitmap & mask); 971 972 if (wmm_param_ie->vend_hdr.len + 2 > 973 sizeof(struct ieee_types_wmm_parameter)) 974 break; 975 976 memcpy((u8 *) &priv->curr_bss_params.bss_descriptor. 977 wmm_ie, wmm_param_ie, 978 wmm_param_ie->vend_hdr.len + 2); 979 980 break; 981 982 default: 983 valid = false; 984 break; 985 } 986 987 curr += (tlv_len + sizeof(tlv_hdr->header)); 988 resp_len -= (tlv_len + sizeof(tlv_hdr->header)); 989 } 990 991 mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie); 992 mwifiex_wmm_setup_ac_downgrade(priv); 993 994 return 0; 995 } 996 997 /* 998 * Callback handler from the command module to allow insertion of a WMM TLV. 999 * 1000 * If the BSS we are associating to supports WMM, this function adds the 1001 * required WMM Information IE to the association request command buffer in 1002 * the form of a Marvell extended IEEE IE. 1003 */ 1004 u32 1005 mwifiex_wmm_process_association_req(struct mwifiex_private *priv, 1006 u8 **assoc_buf, 1007 struct ieee_types_wmm_parameter *wmm_ie, 1008 struct ieee80211_ht_cap *ht_cap) 1009 { 1010 struct mwifiex_ie_types_wmm_param_set *wmm_tlv; 1011 u32 ret_len = 0; 1012 1013 /* Null checks */ 1014 if (!assoc_buf) 1015 return 0; 1016 if (!(*assoc_buf)) 1017 return 0; 1018 1019 if (!wmm_ie) 1020 return 0; 1021 1022 mwifiex_dbg(priv->adapter, INFO, 1023 "info: WMM: process assoc req: bss->wmm_ie=%#x\n", 1024 wmm_ie->vend_hdr.element_id); 1025 1026 if ((priv->wmm_required || 1027 (ht_cap && (priv->adapter->config_bands & BAND_GN || 1028 priv->adapter->config_bands & BAND_AN))) && 1029 wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) { 1030 wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf; 1031 wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]); 1032 wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]); 1033 memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2], 1034 le16_to_cpu(wmm_tlv->header.len)); 1035 if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD) 1036 memcpy((u8 *) (wmm_tlv->wmm_ie 1037 + le16_to_cpu(wmm_tlv->header.len) 1038 - sizeof(priv->wmm_qosinfo)), 1039 &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo)); 1040 1041 ret_len = sizeof(wmm_tlv->header) 1042 + le16_to_cpu(wmm_tlv->header.len); 1043 1044 *assoc_buf += ret_len; 1045 } 1046 1047 return ret_len; 1048 } 1049 1050 /* 1051 * This function computes the time delay in the driver queues for a 1052 * given packet. 1053 * 1054 * When the packet is received at the OS/Driver interface, the current 1055 * time is set in the packet structure. The difference between the present 1056 * time and that received time is computed in this function and limited 1057 * based on pre-compiled limits in the driver. 1058 */ 1059 u8 1060 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv, 1061 const struct sk_buff *skb) 1062 { 1063 u32 queue_delay = ktime_to_ms(net_timedelta(skb->tstamp)); 1064 u8 ret_val; 1065 1066 /* 1067 * Queue delay is passed as a uint8 in units of 2ms (ms shifted 1068 * by 1). Min value (other than 0) is therefore 2ms, max is 510ms. 1069 * 1070 * Pass max value if queue_delay is beyond the uint8 range 1071 */ 1072 ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1); 1073 1074 mwifiex_dbg(priv->adapter, DATA, "data: WMM: Pkt Delay: %d ms,\t" 1075 "%d ms sent to FW\n", queue_delay, ret_val); 1076 1077 return ret_val; 1078 } 1079 1080 /* 1081 * This function retrieves the highest priority RA list table pointer. 1082 */ 1083 static struct mwifiex_ra_list_tbl * 1084 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter, 1085 struct mwifiex_private **priv, int *tid) 1086 { 1087 struct mwifiex_private *priv_tmp; 1088 struct mwifiex_ra_list_tbl *ptr; 1089 struct mwifiex_tid_tbl *tid_ptr; 1090 atomic_t *hqp; 1091 int i, j; 1092 1093 /* check the BSS with highest priority first */ 1094 for (j = adapter->priv_num - 1; j >= 0; --j) { 1095 /* iterate over BSS with the equal priority */ 1096 list_for_each_entry(adapter->bss_prio_tbl[j].bss_prio_cur, 1097 &adapter->bss_prio_tbl[j].bss_prio_head, 1098 list) { 1099 1100 try_again: 1101 priv_tmp = adapter->bss_prio_tbl[j].bss_prio_cur->priv; 1102 1103 if (((priv_tmp->bss_mode != NL80211_IFTYPE_ADHOC) && 1104 !priv_tmp->port_open) || 1105 (atomic_read(&priv_tmp->wmm.tx_pkts_queued) == 0)) 1106 continue; 1107 1108 if (adapter->if_ops.is_port_ready && 1109 !adapter->if_ops.is_port_ready(priv_tmp)) 1110 continue; 1111 1112 /* iterate over the WMM queues of the BSS */ 1113 hqp = &priv_tmp->wmm.highest_queued_prio; 1114 for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) { 1115 1116 spin_lock_bh(&priv_tmp->wmm.ra_list_spinlock); 1117 1118 tid_ptr = &(priv_tmp)->wmm. 1119 tid_tbl_ptr[tos_to_tid[i]]; 1120 1121 /* iterate over receiver addresses */ 1122 list_for_each_entry(ptr, &tid_ptr->ra_list, 1123 list) { 1124 1125 if (!ptr->tx_paused && 1126 !skb_queue_empty(&ptr->skb_head)) 1127 /* holds both locks */ 1128 goto found; 1129 } 1130 1131 spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); 1132 } 1133 1134 if (atomic_read(&priv_tmp->wmm.tx_pkts_queued) != 0) { 1135 atomic_set(&priv_tmp->wmm.highest_queued_prio, 1136 HIGH_PRIO_TID); 1137 /* Iterate current private once more, since 1138 * there still exist packets in data queue 1139 */ 1140 goto try_again; 1141 } else 1142 atomic_set(&priv_tmp->wmm.highest_queued_prio, 1143 NO_PKT_PRIO_TID); 1144 } 1145 } 1146 1147 return NULL; 1148 1149 found: 1150 /* holds ra_list_spinlock */ 1151 if (atomic_read(hqp) > i) 1152 atomic_set(hqp, i); 1153 spin_unlock_bh(&priv_tmp->wmm.ra_list_spinlock); 1154 1155 *priv = priv_tmp; 1156 *tid = tos_to_tid[i]; 1157 1158 return ptr; 1159 } 1160 1161 /* This functions rotates ra and bss lists so packets are picked round robin. 1162 * 1163 * After a packet is successfully transmitted, rotate the ra list, so the ra 1164 * next to the one transmitted, will come first in the list. This way we pick 1165 * the ra' in a round robin fashion. Same applies to bss nodes of equal 1166 * priority. 1167 * 1168 * Function also increments wmm.packets_out counter. 1169 */ 1170 void mwifiex_rotate_priolists(struct mwifiex_private *priv, 1171 struct mwifiex_ra_list_tbl *ra, 1172 int tid) 1173 { 1174 struct mwifiex_adapter *adapter = priv->adapter; 1175 struct mwifiex_bss_prio_tbl *tbl = adapter->bss_prio_tbl; 1176 struct mwifiex_tid_tbl *tid_ptr = &priv->wmm.tid_tbl_ptr[tid]; 1177 1178 spin_lock_bh(&tbl[priv->bss_priority].bss_prio_lock); 1179 /* 1180 * dirty trick: we remove 'head' temporarily and reinsert it after 1181 * curr bss node. imagine list to stay fixed while head is moved 1182 */ 1183 list_move(&tbl[priv->bss_priority].bss_prio_head, 1184 &tbl[priv->bss_priority].bss_prio_cur->list); 1185 spin_unlock_bh(&tbl[priv->bss_priority].bss_prio_lock); 1186 1187 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1188 if (mwifiex_is_ralist_valid(priv, ra, tid)) { 1189 priv->wmm.packets_out[tid]++; 1190 /* same as above */ 1191 list_move(&tid_ptr->ra_list, &ra->list); 1192 } 1193 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1194 } 1195 1196 /* 1197 * This function checks if 11n aggregation is possible. 1198 */ 1199 static int 1200 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv, 1201 struct mwifiex_ra_list_tbl *ptr, 1202 int max_buf_size) 1203 { 1204 int count = 0, total_size = 0; 1205 struct sk_buff *skb, *tmp; 1206 int max_amsdu_size; 1207 1208 if (priv->bss_role == MWIFIEX_BSS_ROLE_UAP && priv->ap_11n_enabled && 1209 ptr->is_11n_enabled) 1210 max_amsdu_size = min_t(int, ptr->max_amsdu, max_buf_size); 1211 else 1212 max_amsdu_size = max_buf_size; 1213 1214 skb_queue_walk_safe(&ptr->skb_head, skb, tmp) { 1215 total_size += skb->len; 1216 if (total_size >= max_amsdu_size) 1217 break; 1218 if (++count >= MIN_NUM_AMSDU) 1219 return true; 1220 } 1221 1222 return false; 1223 } 1224 1225 /* 1226 * This function sends a single packet to firmware for transmission. 1227 */ 1228 static void 1229 mwifiex_send_single_packet(struct mwifiex_private *priv, 1230 struct mwifiex_ra_list_tbl *ptr, int ptr_index) 1231 __releases(&priv->wmm.ra_list_spinlock) 1232 { 1233 struct sk_buff *skb, *skb_next; 1234 struct mwifiex_tx_param tx_param; 1235 struct mwifiex_adapter *adapter = priv->adapter; 1236 struct mwifiex_txinfo *tx_info; 1237 1238 if (skb_queue_empty(&ptr->skb_head)) { 1239 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1240 mwifiex_dbg(adapter, DATA, "data: nothing to send\n"); 1241 return; 1242 } 1243 1244 skb = skb_dequeue(&ptr->skb_head); 1245 1246 tx_info = MWIFIEX_SKB_TXCB(skb); 1247 mwifiex_dbg(adapter, DATA, 1248 "data: dequeuing the packet %p %p\n", ptr, skb); 1249 1250 ptr->total_pkt_count--; 1251 1252 if (!skb_queue_empty(&ptr->skb_head)) 1253 skb_next = skb_peek(&ptr->skb_head); 1254 else 1255 skb_next = NULL; 1256 1257 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1258 1259 tx_param.next_pkt_len = ((skb_next) ? skb_next->len + 1260 sizeof(struct txpd) : 0); 1261 1262 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { 1263 /* Queue the packet back at the head */ 1264 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1265 1266 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1267 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1268 mwifiex_write_data_complete(adapter, skb, 0, -1); 1269 return; 1270 } 1271 1272 skb_queue_tail(&ptr->skb_head, skb); 1273 1274 ptr->total_pkt_count++; 1275 ptr->ba_pkt_count++; 1276 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1277 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1278 } else { 1279 mwifiex_rotate_priolists(priv, ptr, ptr_index); 1280 atomic_dec(&priv->wmm.tx_pkts_queued); 1281 } 1282 } 1283 1284 /* 1285 * This function checks if the first packet in the given RA list 1286 * is already processed or not. 1287 */ 1288 static int 1289 mwifiex_is_ptr_processed(struct mwifiex_private *priv, 1290 struct mwifiex_ra_list_tbl *ptr) 1291 { 1292 struct sk_buff *skb; 1293 struct mwifiex_txinfo *tx_info; 1294 1295 if (skb_queue_empty(&ptr->skb_head)) 1296 return false; 1297 1298 skb = skb_peek(&ptr->skb_head); 1299 1300 tx_info = MWIFIEX_SKB_TXCB(skb); 1301 if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT) 1302 return true; 1303 1304 return false; 1305 } 1306 1307 /* 1308 * This function sends a single processed packet to firmware for 1309 * transmission. 1310 */ 1311 static void 1312 mwifiex_send_processed_packet(struct mwifiex_private *priv, 1313 struct mwifiex_ra_list_tbl *ptr, int ptr_index) 1314 __releases(&priv->wmm.ra_list_spinlock) 1315 { 1316 struct mwifiex_tx_param tx_param; 1317 struct mwifiex_adapter *adapter = priv->adapter; 1318 int ret = -1; 1319 struct sk_buff *skb, *skb_next; 1320 struct mwifiex_txinfo *tx_info; 1321 1322 if (skb_queue_empty(&ptr->skb_head)) { 1323 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1324 return; 1325 } 1326 1327 skb = skb_dequeue(&ptr->skb_head); 1328 1329 if (adapter->data_sent || adapter->tx_lock_flag) { 1330 ptr->total_pkt_count--; 1331 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1332 skb_queue_tail(&adapter->tx_data_q, skb); 1333 atomic_dec(&priv->wmm.tx_pkts_queued); 1334 atomic_inc(&adapter->tx_queued); 1335 return; 1336 } 1337 1338 if (!skb_queue_empty(&ptr->skb_head)) 1339 skb_next = skb_peek(&ptr->skb_head); 1340 else 1341 skb_next = NULL; 1342 1343 tx_info = MWIFIEX_SKB_TXCB(skb); 1344 1345 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1346 1347 tx_param.next_pkt_len = 1348 ((skb_next) ? skb_next->len + 1349 sizeof(struct txpd) : 0); 1350 if (adapter->iface_type == MWIFIEX_USB) { 1351 ret = adapter->if_ops.host_to_card(adapter, priv->usb_port, 1352 skb, &tx_param); 1353 } else { 1354 ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA, 1355 skb, &tx_param); 1356 } 1357 1358 switch (ret) { 1359 case -EBUSY: 1360 mwifiex_dbg(adapter, ERROR, "data: -EBUSY is returned\n"); 1361 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1362 1363 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1364 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1365 mwifiex_write_data_complete(adapter, skb, 0, -1); 1366 return; 1367 } 1368 1369 skb_queue_tail(&ptr->skb_head, skb); 1370 1371 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1372 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1373 break; 1374 case -1: 1375 mwifiex_dbg(adapter, ERROR, "host_to_card failed: %#x\n", ret); 1376 adapter->dbg.num_tx_host_to_card_failure++; 1377 mwifiex_write_data_complete(adapter, skb, 0, ret); 1378 break; 1379 case -EINPROGRESS: 1380 break; 1381 case 0: 1382 mwifiex_write_data_complete(adapter, skb, 0, ret); 1383 break; 1384 default: 1385 break; 1386 } 1387 if (ret != -EBUSY) { 1388 mwifiex_rotate_priolists(priv, ptr, ptr_index); 1389 atomic_dec(&priv->wmm.tx_pkts_queued); 1390 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1391 ptr->total_pkt_count--; 1392 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1393 } 1394 } 1395 1396 /* 1397 * This function dequeues a packet from the highest priority list 1398 * and transmits it. 1399 */ 1400 static int 1401 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter) 1402 { 1403 struct mwifiex_ra_list_tbl *ptr; 1404 struct mwifiex_private *priv = NULL; 1405 int ptr_index = 0; 1406 u8 ra[ETH_ALEN]; 1407 int tid_del = 0, tid = 0; 1408 1409 ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index); 1410 if (!ptr) 1411 return -1; 1412 1413 tid = mwifiex_get_tid(ptr); 1414 1415 mwifiex_dbg(adapter, DATA, "data: tid=%d\n", tid); 1416 1417 spin_lock_bh(&priv->wmm.ra_list_spinlock); 1418 if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) { 1419 spin_unlock_bh(&priv->wmm.ra_list_spinlock); 1420 return -1; 1421 } 1422 1423 if (mwifiex_is_ptr_processed(priv, ptr)) { 1424 mwifiex_send_processed_packet(priv, ptr, ptr_index); 1425 /* ra_list_spinlock has been freed in 1426 mwifiex_send_processed_packet() */ 1427 return 0; 1428 } 1429 1430 if (!ptr->is_11n_enabled || 1431 ptr->ba_status || 1432 priv->wps.session_enable) { 1433 if (ptr->is_11n_enabled && 1434 ptr->ba_status && 1435 ptr->amsdu_in_ampdu && 1436 mwifiex_is_amsdu_allowed(priv, tid) && 1437 mwifiex_is_11n_aggragation_possible(priv, ptr, 1438 adapter->tx_buf_size)) 1439 mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); 1440 /* ra_list_spinlock has been freed in 1441 * mwifiex_11n_aggregate_pkt() 1442 */ 1443 else 1444 mwifiex_send_single_packet(priv, ptr, ptr_index); 1445 /* ra_list_spinlock has been freed in 1446 * mwifiex_send_single_packet() 1447 */ 1448 } else { 1449 if (mwifiex_is_ampdu_allowed(priv, ptr, tid) && 1450 ptr->ba_pkt_count > ptr->ba_packet_thr) { 1451 if (mwifiex_space_avail_for_new_ba_stream(adapter)) { 1452 mwifiex_create_ba_tbl(priv, ptr->ra, tid, 1453 BA_SETUP_INPROGRESS); 1454 mwifiex_send_addba(priv, tid, ptr->ra); 1455 } else if (mwifiex_find_stream_to_delete 1456 (priv, tid, &tid_del, ra)) { 1457 mwifiex_create_ba_tbl(priv, ptr->ra, tid, 1458 BA_SETUP_INPROGRESS); 1459 mwifiex_send_delba(priv, tid_del, ra, 1); 1460 } 1461 } 1462 if (mwifiex_is_amsdu_allowed(priv, tid) && 1463 mwifiex_is_11n_aggragation_possible(priv, ptr, 1464 adapter->tx_buf_size)) 1465 mwifiex_11n_aggregate_pkt(priv, ptr, ptr_index); 1466 /* ra_list_spinlock has been freed in 1467 mwifiex_11n_aggregate_pkt() */ 1468 else 1469 mwifiex_send_single_packet(priv, ptr, ptr_index); 1470 /* ra_list_spinlock has been freed in 1471 mwifiex_send_single_packet() */ 1472 } 1473 return 0; 1474 } 1475 1476 void mwifiex_process_bypass_tx(struct mwifiex_adapter *adapter) 1477 { 1478 struct mwifiex_tx_param tx_param; 1479 struct sk_buff *skb; 1480 struct mwifiex_txinfo *tx_info; 1481 struct mwifiex_private *priv; 1482 int i; 1483 1484 if (adapter->data_sent || adapter->tx_lock_flag) 1485 return; 1486 1487 for (i = 0; i < adapter->priv_num; ++i) { 1488 priv = adapter->priv[i]; 1489 1490 if (adapter->if_ops.is_port_ready && 1491 !adapter->if_ops.is_port_ready(priv)) 1492 continue; 1493 1494 if (skb_queue_empty(&priv->bypass_txq)) 1495 continue; 1496 1497 skb = skb_dequeue(&priv->bypass_txq); 1498 tx_info = MWIFIEX_SKB_TXCB(skb); 1499 1500 /* no aggregation for bypass packets */ 1501 tx_param.next_pkt_len = 0; 1502 1503 if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) { 1504 skb_queue_head(&priv->bypass_txq, skb); 1505 tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT; 1506 } else { 1507 atomic_dec(&adapter->bypass_tx_pending); 1508 } 1509 } 1510 } 1511 1512 /* 1513 * This function transmits the highest priority packet awaiting in the 1514 * WMM Queues. 1515 */ 1516 void 1517 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter) 1518 { 1519 do { 1520 if (mwifiex_dequeue_tx_packet(adapter)) 1521 break; 1522 if (adapter->iface_type != MWIFIEX_SDIO) { 1523 if (adapter->data_sent || 1524 adapter->tx_lock_flag) 1525 break; 1526 } else { 1527 if (atomic_read(&adapter->tx_queued) >= 1528 MWIFIEX_MAX_PKTS_TXQ) 1529 break; 1530 } 1531 } while (!mwifiex_wmm_lists_empty(adapter)); 1532 } 1533