xref: /linux/drivers/net/wireless/marvell/mwifiex/sta_cmdresp.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * NXP Wireless LAN device driver: station command response handling
4  *
5  * Copyright 2011-2020 NXP
6  */
7 
8 #include "decl.h"
9 #include "ioctl.h"
10 #include "util.h"
11 #include "fw.h"
12 #include "main.h"
13 #include "wmm.h"
14 #include "11n.h"
15 #include "11ac.h"
16 
17 
18 /*
19  * This function handles the command response error case.
20  *
21  * For scan response error, the function cancels all the pending
22  * scan commands and generates an event to inform the applications
23  * of the scan completion.
24  *
25  * For Power Save command failure, we do not retry enter PS
26  * command in case of Ad-hoc mode.
27  *
28  * For all other response errors, the current command buffer is freed
29  * and returned to the free command queue.
30  */
31 static void
32 mwifiex_process_cmdresp_error(struct mwifiex_private *priv,
33 			      struct host_cmd_ds_command *resp)
34 {
35 	struct mwifiex_adapter *adapter = priv->adapter;
36 	struct host_cmd_ds_802_11_ps_mode_enh *pm;
37 
38 	mwifiex_dbg(adapter, ERROR,
39 		    "CMD_RESP: cmd %#x error, result=%#x\n",
40 		    resp->command, resp->result);
41 
42 	if (adapter->curr_cmd->wait_q_enabled)
43 		adapter->cmd_wait_q.status = -1;
44 
45 	switch (le16_to_cpu(resp->command)) {
46 	case HostCmd_CMD_802_11_PS_MODE_ENH:
47 		pm = &resp->params.psmode_enh;
48 		mwifiex_dbg(adapter, ERROR,
49 			    "PS_MODE_ENH cmd failed: result=0x%x action=0x%X\n",
50 			    resp->result, le16_to_cpu(pm->action));
51 		/* We do not re-try enter-ps command in ad-hoc mode. */
52 		if (le16_to_cpu(pm->action) == EN_AUTO_PS &&
53 		    (le16_to_cpu(pm->params.ps_bitmap) & BITMAP_STA_PS) &&
54 		    priv->bss_mode == NL80211_IFTYPE_ADHOC)
55 			adapter->ps_mode = MWIFIEX_802_11_POWER_MODE_CAM;
56 
57 		break;
58 	case HostCmd_CMD_802_11_SCAN:
59 	case HostCmd_CMD_802_11_SCAN_EXT:
60 		mwifiex_cancel_scan(adapter);
61 		break;
62 
63 	case HostCmd_CMD_MAC_CONTROL:
64 		break;
65 
66 	case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
67 		mwifiex_dbg(adapter, MSG,
68 			    "SDIO RX single-port aggregation Not support\n");
69 		break;
70 
71 	default:
72 		break;
73 	}
74 	/* Handling errors here */
75 	mwifiex_recycle_cmd_node(adapter, adapter->curr_cmd);
76 
77 	spin_lock_bh(&adapter->mwifiex_cmd_lock);
78 	adapter->curr_cmd = NULL;
79 	spin_unlock_bh(&adapter->mwifiex_cmd_lock);
80 }
81 
82 /*
83  * This function handles the command response of get RSSI info.
84  *
85  * Handling includes changing the header fields into CPU format
86  * and saving the following parameters in driver -
87  *      - Last data and beacon RSSI value
88  *      - Average data and beacon RSSI value
89  *      - Last data and beacon NF value
90  *      - Average data and beacon NF value
91  *
92  * The parameters are send to the application as well, along with
93  * calculated SNR values.
94  */
95 static int mwifiex_ret_802_11_rssi_info(struct mwifiex_private *priv,
96 					struct host_cmd_ds_command *resp)
97 {
98 	struct host_cmd_ds_802_11_rssi_info_rsp *rssi_info_rsp =
99 						&resp->params.rssi_info_rsp;
100 	struct mwifiex_ds_misc_subsc_evt *subsc_evt =
101 						&priv->async_subsc_evt_storage;
102 
103 	priv->data_rssi_last = le16_to_cpu(rssi_info_rsp->data_rssi_last);
104 	priv->data_nf_last = le16_to_cpu(rssi_info_rsp->data_nf_last);
105 
106 	priv->data_rssi_avg = le16_to_cpu(rssi_info_rsp->data_rssi_avg);
107 	priv->data_nf_avg = le16_to_cpu(rssi_info_rsp->data_nf_avg);
108 
109 	priv->bcn_rssi_last = le16_to_cpu(rssi_info_rsp->bcn_rssi_last);
110 	priv->bcn_nf_last = le16_to_cpu(rssi_info_rsp->bcn_nf_last);
111 
112 	priv->bcn_rssi_avg = le16_to_cpu(rssi_info_rsp->bcn_rssi_avg);
113 	priv->bcn_nf_avg = le16_to_cpu(rssi_info_rsp->bcn_nf_avg);
114 
115 	if (priv->subsc_evt_rssi_state == EVENT_HANDLED)
116 		return 0;
117 
118 	memset(subsc_evt, 0x00, sizeof(struct mwifiex_ds_misc_subsc_evt));
119 
120 	/* Resubscribe low and high rssi events with new thresholds */
121 	subsc_evt->events = BITMASK_BCN_RSSI_LOW | BITMASK_BCN_RSSI_HIGH;
122 	subsc_evt->action = HostCmd_ACT_BITWISE_SET;
123 	if (priv->subsc_evt_rssi_state == RSSI_LOW_RECVD) {
124 		subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg -
125 				priv->cqm_rssi_hyst);
126 		subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
127 	} else if (priv->subsc_evt_rssi_state == RSSI_HIGH_RECVD) {
128 		subsc_evt->bcn_l_rssi_cfg.abs_value = abs(priv->cqm_rssi_thold);
129 		subsc_evt->bcn_h_rssi_cfg.abs_value = abs(priv->bcn_rssi_avg +
130 				priv->cqm_rssi_hyst);
131 	}
132 	subsc_evt->bcn_l_rssi_cfg.evt_freq = 1;
133 	subsc_evt->bcn_h_rssi_cfg.evt_freq = 1;
134 
135 	priv->subsc_evt_rssi_state = EVENT_HANDLED;
136 
137 	mwifiex_send_cmd(priv, HostCmd_CMD_802_11_SUBSCRIBE_EVENT,
138 			 0, 0, subsc_evt, false);
139 
140 	return 0;
141 }
142 
143 /*
144  * This function handles the command response of set/get SNMP
145  * MIB parameters.
146  *
147  * Handling includes changing the header fields into CPU format
148  * and saving the parameter in driver.
149  *
150  * The following parameters are supported -
151  *      - Fragmentation threshold
152  *      - RTS threshold
153  *      - Short retry limit
154  */
155 static int mwifiex_ret_802_11_snmp_mib(struct mwifiex_private *priv,
156 				       struct host_cmd_ds_command *resp,
157 				       u32 *data_buf)
158 {
159 	struct host_cmd_ds_802_11_snmp_mib *smib = &resp->params.smib;
160 	u16 oid = le16_to_cpu(smib->oid);
161 	u16 query_type = le16_to_cpu(smib->query_type);
162 	u32 ul_temp;
163 
164 	mwifiex_dbg(priv->adapter, INFO,
165 		    "info: SNMP_RESP: oid value = %#x,\t"
166 		    "query_type = %#x, buf size = %#x\n",
167 		    oid, query_type, le16_to_cpu(smib->buf_size));
168 	if (query_type == HostCmd_ACT_GEN_GET) {
169 		ul_temp = get_unaligned_le16(smib->value);
170 		if (data_buf)
171 			*data_buf = ul_temp;
172 		switch (oid) {
173 		case FRAG_THRESH_I:
174 			mwifiex_dbg(priv->adapter, INFO,
175 				    "info: SNMP_RESP: FragThsd =%u\n",
176 				    ul_temp);
177 			break;
178 		case RTS_THRESH_I:
179 			mwifiex_dbg(priv->adapter, INFO,
180 				    "info: SNMP_RESP: RTSThsd =%u\n",
181 				    ul_temp);
182 			break;
183 		case SHORT_RETRY_LIM_I:
184 			mwifiex_dbg(priv->adapter, INFO,
185 				    "info: SNMP_RESP: TxRetryCount=%u\n",
186 				    ul_temp);
187 			break;
188 		case DTIM_PERIOD_I:
189 			mwifiex_dbg(priv->adapter, INFO,
190 				    "info: SNMP_RESP: DTIM period=%u\n",
191 				    ul_temp);
192 			break;
193 		default:
194 			break;
195 		}
196 	}
197 
198 	return 0;
199 }
200 
201 /*
202  * This function handles the command response of get log request
203  *
204  * Handling includes changing the header fields into CPU format
205  * and sending the received parameters to application.
206  */
207 static int mwifiex_ret_get_log(struct mwifiex_private *priv,
208 			       struct host_cmd_ds_command *resp,
209 			       struct mwifiex_ds_get_stats *stats)
210 {
211 	struct host_cmd_ds_802_11_get_log *get_log =
212 		&resp->params.get_log;
213 
214 	if (stats) {
215 		stats->mcast_tx_frame = le32_to_cpu(get_log->mcast_tx_frame);
216 		stats->failed = le32_to_cpu(get_log->failed);
217 		stats->retry = le32_to_cpu(get_log->retry);
218 		stats->multi_retry = le32_to_cpu(get_log->multi_retry);
219 		stats->frame_dup = le32_to_cpu(get_log->frame_dup);
220 		stats->rts_success = le32_to_cpu(get_log->rts_success);
221 		stats->rts_failure = le32_to_cpu(get_log->rts_failure);
222 		stats->ack_failure = le32_to_cpu(get_log->ack_failure);
223 		stats->rx_frag = le32_to_cpu(get_log->rx_frag);
224 		stats->mcast_rx_frame = le32_to_cpu(get_log->mcast_rx_frame);
225 		stats->fcs_error = le32_to_cpu(get_log->fcs_error);
226 		stats->tx_frame = le32_to_cpu(get_log->tx_frame);
227 		stats->wep_icv_error[0] =
228 			le32_to_cpu(get_log->wep_icv_err_cnt[0]);
229 		stats->wep_icv_error[1] =
230 			le32_to_cpu(get_log->wep_icv_err_cnt[1]);
231 		stats->wep_icv_error[2] =
232 			le32_to_cpu(get_log->wep_icv_err_cnt[2]);
233 		stats->wep_icv_error[3] =
234 			le32_to_cpu(get_log->wep_icv_err_cnt[3]);
235 		stats->bcn_rcv_cnt = le32_to_cpu(get_log->bcn_rcv_cnt);
236 		stats->bcn_miss_cnt = le32_to_cpu(get_log->bcn_miss_cnt);
237 	}
238 
239 	return 0;
240 }
241 
242 /*
243  * This function handles the command response of set/get Tx rate
244  * configurations.
245  *
246  * Handling includes changing the header fields into CPU format
247  * and saving the following parameters in driver -
248  *      - DSSS rate bitmap
249  *      - OFDM rate bitmap
250  *      - HT MCS rate bitmaps
251  *
252  * Based on the new rate bitmaps, the function re-evaluates if
253  * auto data rate has been activated. If not, it sends another
254  * query to the firmware to get the current Tx data rate.
255  */
256 static int mwifiex_ret_tx_rate_cfg(struct mwifiex_private *priv,
257 				   struct host_cmd_ds_command *resp)
258 {
259 	struct host_cmd_ds_tx_rate_cfg *rate_cfg = &resp->params.tx_rate_cfg;
260 	struct mwifiex_rate_scope *rate_scope;
261 	struct mwifiex_ie_types_header *head;
262 	u16 tlv, tlv_buf_len, tlv_buf_left;
263 	u8 *tlv_buf;
264 	u32 i;
265 
266 	tlv_buf = ((u8 *)rate_cfg) + sizeof(struct host_cmd_ds_tx_rate_cfg);
267 	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*rate_cfg);
268 
269 	while (tlv_buf_left >= sizeof(*head)) {
270 		head = (struct mwifiex_ie_types_header *)tlv_buf;
271 		tlv = le16_to_cpu(head->type);
272 		tlv_buf_len = le16_to_cpu(head->len);
273 
274 		if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
275 			break;
276 
277 		switch (tlv) {
278 		case TLV_TYPE_RATE_SCOPE:
279 			rate_scope = (struct mwifiex_rate_scope *) tlv_buf;
280 			priv->bitmap_rates[0] =
281 				le16_to_cpu(rate_scope->hr_dsss_rate_bitmap);
282 			priv->bitmap_rates[1] =
283 				le16_to_cpu(rate_scope->ofdm_rate_bitmap);
284 			for (i = 0;
285 			     i < ARRAY_SIZE(rate_scope->ht_mcs_rate_bitmap);
286 			     i++)
287 				priv->bitmap_rates[2 + i] =
288 					le16_to_cpu(rate_scope->
289 						    ht_mcs_rate_bitmap[i]);
290 
291 			if (priv->adapter->fw_api_ver == MWIFIEX_FW_V15) {
292 				for (i = 0; i < ARRAY_SIZE(rate_scope->
293 							   vht_mcs_rate_bitmap);
294 				     i++)
295 					priv->bitmap_rates[10 + i] =
296 					    le16_to_cpu(rate_scope->
297 							vht_mcs_rate_bitmap[i]);
298 			}
299 			break;
300 			/* Add RATE_DROP tlv here */
301 		}
302 
303 		tlv_buf += (sizeof(*head) + tlv_buf_len);
304 		tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
305 	}
306 
307 	priv->is_data_rate_auto = mwifiex_is_rate_auto(priv);
308 
309 	if (priv->is_data_rate_auto)
310 		priv->data_rate = 0;
311 	else
312 		return mwifiex_send_cmd(priv, HostCmd_CMD_802_11_TX_RATE_QUERY,
313 					HostCmd_ACT_GEN_GET, 0, NULL, false);
314 
315 	return 0;
316 }
317 
318 /*
319  * This function handles the command response of get Tx power level.
320  *
321  * Handling includes saving the maximum and minimum Tx power levels
322  * in driver, as well as sending the values to user.
323  */
324 static int mwifiex_get_power_level(struct mwifiex_private *priv, void *data_buf)
325 {
326 	int length, max_power = -1, min_power = -1;
327 	struct mwifiex_types_power_group *pg_tlv_hdr;
328 	struct mwifiex_power_group *pg;
329 
330 	if (!data_buf)
331 		return -1;
332 
333 	pg_tlv_hdr = (struct mwifiex_types_power_group *)((u8 *)data_buf);
334 	pg = (struct mwifiex_power_group *)
335 		((u8 *) pg_tlv_hdr + sizeof(struct mwifiex_types_power_group));
336 	length = le16_to_cpu(pg_tlv_hdr->length);
337 
338 	/* At least one structure required to update power */
339 	if (length < sizeof(struct mwifiex_power_group))
340 		return 0;
341 
342 	max_power = pg->power_max;
343 	min_power = pg->power_min;
344 	length -= sizeof(struct mwifiex_power_group);
345 
346 	while (length >= sizeof(struct mwifiex_power_group)) {
347 		pg++;
348 		if (max_power < pg->power_max)
349 			max_power = pg->power_max;
350 
351 		if (min_power > pg->power_min)
352 			min_power = pg->power_min;
353 
354 		length -= sizeof(struct mwifiex_power_group);
355 	}
356 	priv->min_tx_power_level = (u8) min_power;
357 	priv->max_tx_power_level = (u8) max_power;
358 
359 	return 0;
360 }
361 
362 /*
363  * This function handles the command response of set/get Tx power
364  * configurations.
365  *
366  * Handling includes changing the header fields into CPU format
367  * and saving the current Tx power level in driver.
368  */
369 static int mwifiex_ret_tx_power_cfg(struct mwifiex_private *priv,
370 				    struct host_cmd_ds_command *resp)
371 {
372 	struct mwifiex_adapter *adapter = priv->adapter;
373 	struct host_cmd_ds_txpwr_cfg *txp_cfg = &resp->params.txp_cfg;
374 	struct mwifiex_types_power_group *pg_tlv_hdr;
375 	struct mwifiex_power_group *pg;
376 	u16 action = le16_to_cpu(txp_cfg->action);
377 	u16 tlv_buf_left;
378 
379 	pg_tlv_hdr = (struct mwifiex_types_power_group *)
380 		((u8 *)txp_cfg +
381 		 sizeof(struct host_cmd_ds_txpwr_cfg));
382 
383 	pg = (struct mwifiex_power_group *)
384 		((u8 *)pg_tlv_hdr +
385 		 sizeof(struct mwifiex_types_power_group));
386 
387 	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*txp_cfg);
388 	if (tlv_buf_left <
389 			le16_to_cpu(pg_tlv_hdr->length) + sizeof(*pg_tlv_hdr))
390 		return 0;
391 
392 	switch (action) {
393 	case HostCmd_ACT_GEN_GET:
394 		if (adapter->hw_status == MWIFIEX_HW_STATUS_INITIALIZING)
395 			mwifiex_get_power_level(priv, pg_tlv_hdr);
396 
397 		priv->tx_power_level = (u16) pg->power_min;
398 		break;
399 
400 	case HostCmd_ACT_GEN_SET:
401 		if (!le32_to_cpu(txp_cfg->mode))
402 			break;
403 
404 		if (pg->power_max == pg->power_min)
405 			priv->tx_power_level = (u16) pg->power_min;
406 		break;
407 	default:
408 		mwifiex_dbg(adapter, ERROR,
409 			    "CMD_RESP: unknown cmd action %d\n",
410 			    action);
411 		return 0;
412 	}
413 	mwifiex_dbg(adapter, INFO,
414 		    "info: Current TxPower Level = %d, Max Power=%d, Min Power=%d\n",
415 		    priv->tx_power_level, priv->max_tx_power_level,
416 		    priv->min_tx_power_level);
417 
418 	return 0;
419 }
420 
421 /*
422  * This function handles the command response of get RF Tx power.
423  */
424 static int mwifiex_ret_rf_tx_power(struct mwifiex_private *priv,
425 				   struct host_cmd_ds_command *resp)
426 {
427 	struct host_cmd_ds_rf_tx_pwr *txp = &resp->params.txp;
428 	u16 action = le16_to_cpu(txp->action);
429 
430 	priv->tx_power_level = le16_to_cpu(txp->cur_level);
431 
432 	if (action == HostCmd_ACT_GEN_GET) {
433 		priv->max_tx_power_level = txp->max_power;
434 		priv->min_tx_power_level = txp->min_power;
435 	}
436 
437 	mwifiex_dbg(priv->adapter, INFO,
438 		    "Current TxPower Level=%d, Max Power=%d, Min Power=%d\n",
439 		    priv->tx_power_level, priv->max_tx_power_level,
440 		    priv->min_tx_power_level);
441 
442 	return 0;
443 }
444 
445 /*
446  * This function handles the command response of set rf antenna
447  */
448 static int mwifiex_ret_rf_antenna(struct mwifiex_private *priv,
449 				  struct host_cmd_ds_command *resp)
450 {
451 	struct host_cmd_ds_rf_ant_mimo *ant_mimo = &resp->params.ant_mimo;
452 	struct host_cmd_ds_rf_ant_siso *ant_siso = &resp->params.ant_siso;
453 	struct mwifiex_adapter *adapter = priv->adapter;
454 
455 	if (adapter->hw_dev_mcs_support == HT_STREAM_2X2) {
456 		priv->tx_ant = le16_to_cpu(ant_mimo->tx_ant_mode);
457 		priv->rx_ant = le16_to_cpu(ant_mimo->rx_ant_mode);
458 		mwifiex_dbg(adapter, INFO,
459 			    "RF_ANT_RESP: Tx action = 0x%x, Tx Mode = 0x%04x\t"
460 			    "Rx action = 0x%x, Rx Mode = 0x%04x\n",
461 			    le16_to_cpu(ant_mimo->action_tx),
462 			    le16_to_cpu(ant_mimo->tx_ant_mode),
463 			    le16_to_cpu(ant_mimo->action_rx),
464 			    le16_to_cpu(ant_mimo->rx_ant_mode));
465 	} else {
466 		priv->tx_ant = le16_to_cpu(ant_siso->ant_mode);
467 		priv->rx_ant = le16_to_cpu(ant_siso->ant_mode);
468 		mwifiex_dbg(adapter, INFO,
469 			    "RF_ANT_RESP: action = 0x%x, Mode = 0x%04x\n",
470 			    le16_to_cpu(ant_siso->action),
471 			    le16_to_cpu(ant_siso->ant_mode));
472 	}
473 	return 0;
474 }
475 
476 /*
477  * This function handles the command response of set/get MAC address.
478  *
479  * Handling includes saving the MAC address in driver.
480  */
481 static int mwifiex_ret_802_11_mac_address(struct mwifiex_private *priv,
482 					  struct host_cmd_ds_command *resp)
483 {
484 	struct host_cmd_ds_802_11_mac_address *cmd_mac_addr =
485 							&resp->params.mac_addr;
486 
487 	memcpy(priv->curr_addr, cmd_mac_addr->mac_addr, ETH_ALEN);
488 
489 	mwifiex_dbg(priv->adapter, INFO,
490 		    "info: set mac address: %pM\n", priv->curr_addr);
491 
492 	return 0;
493 }
494 
495 /*
496  * This function handles the command response of set/get MAC multicast
497  * address.
498  */
499 static int mwifiex_ret_mac_multicast_adr(struct mwifiex_private *priv,
500 					 struct host_cmd_ds_command *resp)
501 {
502 	return 0;
503 }
504 
505 /*
506  * This function handles the command response of get Tx rate query.
507  *
508  * Handling includes changing the header fields into CPU format
509  * and saving the Tx rate and HT information parameters in driver.
510  *
511  * Both rate configuration and current data rate can be retrieved
512  * with this request.
513  */
514 static int mwifiex_ret_802_11_tx_rate_query(struct mwifiex_private *priv,
515 					    struct host_cmd_ds_command *resp)
516 {
517 	priv->tx_rate = resp->params.tx_rate.tx_rate;
518 	priv->tx_htinfo = resp->params.tx_rate.ht_info;
519 	if (!priv->is_data_rate_auto)
520 		priv->data_rate =
521 			mwifiex_index_to_data_rate(priv, priv->tx_rate,
522 						   priv->tx_htinfo);
523 
524 	return 0;
525 }
526 
527 /*
528  * This function handles the command response of a deauthenticate
529  * command.
530  *
531  * If the deauthenticated MAC matches the current BSS MAC, the connection
532  * state is reset.
533  */
534 static int mwifiex_ret_802_11_deauthenticate(struct mwifiex_private *priv,
535 					     struct host_cmd_ds_command *resp)
536 {
537 	struct mwifiex_adapter *adapter = priv->adapter;
538 
539 	adapter->dbg.num_cmd_deauth++;
540 	if (!memcmp(resp->params.deauth.mac_addr,
541 		    &priv->curr_bss_params.bss_descriptor.mac_address,
542 		    sizeof(resp->params.deauth.mac_addr)))
543 		mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING,
544 					    false);
545 
546 	return 0;
547 }
548 
549 /*
550  * This function handles the command response of ad-hoc stop.
551  *
552  * The function resets the connection state in driver.
553  */
554 static int mwifiex_ret_802_11_ad_hoc_stop(struct mwifiex_private *priv,
555 					  struct host_cmd_ds_command *resp)
556 {
557 	mwifiex_reset_connect_state(priv, WLAN_REASON_DEAUTH_LEAVING, false);
558 	return 0;
559 }
560 
561 /*
562  * This function handles the command response of set/get v1 key material.
563  *
564  * Handling includes updating the driver parameters to reflect the
565  * changes.
566  */
567 static int mwifiex_ret_802_11_key_material_v1(struct mwifiex_private *priv,
568 					      struct host_cmd_ds_command *resp)
569 {
570 	struct host_cmd_ds_802_11_key_material *key =
571 						&resp->params.key_material;
572 	int len;
573 
574 	len = le16_to_cpu(key->key_param_set.key_len);
575 	if (len > sizeof(key->key_param_set.key))
576 		return -EINVAL;
577 
578 	if (le16_to_cpu(key->action) == HostCmd_ACT_GEN_SET) {
579 		if ((le16_to_cpu(key->key_param_set.key_info) & KEY_MCAST)) {
580 			mwifiex_dbg(priv->adapter, INFO,
581 				    "info: key: GTK is set\n");
582 			priv->wpa_is_gtk_set = true;
583 			priv->scan_block = false;
584 			priv->port_open = true;
585 		}
586 	}
587 
588 	memset(priv->aes_key.key_param_set.key, 0,
589 	       sizeof(key->key_param_set.key));
590 	priv->aes_key.key_param_set.key_len = cpu_to_le16(len);
591 	memcpy(priv->aes_key.key_param_set.key, key->key_param_set.key, len);
592 
593 	return 0;
594 }
595 
596 /*
597  * This function handles the command response of set/get v2 key material.
598  *
599  * Handling includes updating the driver parameters to reflect the
600  * changes.
601  */
602 static int mwifiex_ret_802_11_key_material_v2(struct mwifiex_private *priv,
603 					      struct host_cmd_ds_command *resp)
604 {
605 	struct host_cmd_ds_802_11_key_material_v2 *key_v2;
606 	int len;
607 
608 	key_v2 = &resp->params.key_material_v2;
609 
610 	len = le16_to_cpu(key_v2->key_param_set.key_params.aes.key_len);
611 	if (len > sizeof(key_v2->key_param_set.key_params.aes.key))
612 		return -EINVAL;
613 
614 	if (le16_to_cpu(key_v2->action) == HostCmd_ACT_GEN_SET) {
615 		if ((le16_to_cpu(key_v2->key_param_set.key_info) & KEY_MCAST)) {
616 			mwifiex_dbg(priv->adapter, INFO, "info: key: GTK is set\n");
617 			priv->wpa_is_gtk_set = true;
618 			priv->scan_block = false;
619 			priv->port_open = true;
620 		}
621 	}
622 
623 	if (key_v2->key_param_set.key_type != KEY_TYPE_ID_AES)
624 		return 0;
625 
626 	memset(priv->aes_key_v2.key_param_set.key_params.aes.key, 0,
627 	       sizeof(key_v2->key_param_set.key_params.aes.key));
628 	priv->aes_key_v2.key_param_set.key_params.aes.key_len =
629 				cpu_to_le16(len);
630 	memcpy(priv->aes_key_v2.key_param_set.key_params.aes.key,
631 	       key_v2->key_param_set.key_params.aes.key, len);
632 
633 	return 0;
634 }
635 
636 /* Wrapper function for processing response of key material command */
637 static int mwifiex_ret_802_11_key_material(struct mwifiex_private *priv,
638 					   struct host_cmd_ds_command *resp)
639 {
640 	if (priv->adapter->key_api_major_ver == KEY_API_VER_MAJOR_V2)
641 		return mwifiex_ret_802_11_key_material_v2(priv, resp);
642 	else
643 		return mwifiex_ret_802_11_key_material_v1(priv, resp);
644 }
645 
646 /*
647  * This function handles the command response of get 11d domain information.
648  */
649 static int mwifiex_ret_802_11d_domain_info(struct mwifiex_private *priv,
650 					   struct host_cmd_ds_command *resp)
651 {
652 	struct host_cmd_ds_802_11d_domain_info_rsp *domain_info =
653 		&resp->params.domain_info_resp;
654 	struct mwifiex_ietypes_domain_param_set *domain = &domain_info->domain;
655 	u16 action = le16_to_cpu(domain_info->action);
656 	u8 no_of_triplet;
657 
658 	no_of_triplet = (u8) ((le16_to_cpu(domain->header.len)
659 				- IEEE80211_COUNTRY_STRING_LEN)
660 			      / sizeof(struct ieee80211_country_ie_triplet));
661 
662 	mwifiex_dbg(priv->adapter, INFO,
663 		    "info: 11D Domain Info Resp: no_of_triplet=%d\n",
664 		    no_of_triplet);
665 
666 	if (no_of_triplet > MWIFIEX_MAX_TRIPLET_802_11D) {
667 		mwifiex_dbg(priv->adapter, FATAL,
668 			    "11D: invalid number of triplets %d returned\n",
669 			    no_of_triplet);
670 		return -1;
671 	}
672 
673 	switch (action) {
674 	case HostCmd_ACT_GEN_SET:  /* Proc Set Action */
675 		break;
676 	case HostCmd_ACT_GEN_GET:
677 		break;
678 	default:
679 		mwifiex_dbg(priv->adapter, ERROR,
680 			    "11D: invalid action:%d\n", domain_info->action);
681 		return -1;
682 	}
683 
684 	return 0;
685 }
686 
687 /*
688  * This function handles the command response of get extended version.
689  *
690  * Handling includes forming the extended version string and sending it
691  * to application.
692  */
693 static int mwifiex_ret_ver_ext(struct mwifiex_private *priv,
694 			       struct host_cmd_ds_command *resp,
695 			       struct host_cmd_ds_version_ext *version_ext)
696 {
697 	struct host_cmd_ds_version_ext *ver_ext = &resp->params.verext;
698 
699 	if (test_and_clear_bit(MWIFIEX_IS_REQUESTING_FW_VEREXT, &priv->adapter->work_flags)) {
700 		if (strncmp(ver_ext->version_str, "ChipRev:20, BB:9b(10.00), RF:40(21)",
701 			    MWIFIEX_VERSION_STR_LENGTH) == 0) {
702 			struct mwifiex_ds_auto_ds auto_ds = {
703 				.auto_ds = DEEP_SLEEP_OFF,
704 			};
705 
706 			mwifiex_dbg(priv->adapter, MSG,
707 				    "Bad HW revision detected, disabling deep sleep\n");
708 
709 			if (mwifiex_send_cmd(priv, HostCmd_CMD_802_11_PS_MODE_ENH,
710 					     DIS_AUTO_PS, BITMAP_AUTO_DS, &auto_ds, false)) {
711 				mwifiex_dbg(priv->adapter, MSG,
712 					    "Disabling deep sleep failed.\n");
713 			}
714 		}
715 
716 		return 0;
717 	}
718 
719 	if (version_ext) {
720 		version_ext->version_str_sel = ver_ext->version_str_sel;
721 		memcpy(version_ext->version_str, ver_ext->version_str,
722 		       MWIFIEX_VERSION_STR_LENGTH);
723 		memcpy(priv->version_str, ver_ext->version_str,
724 		       MWIFIEX_VERSION_STR_LENGTH);
725 
726 		/* Ensure the version string from the firmware is 0-terminated */
727 		priv->version_str[MWIFIEX_VERSION_STR_LENGTH - 1] = '\0';
728 	}
729 	return 0;
730 }
731 
732 /*
733  * This function handles the command response of remain on channel.
734  */
735 static int
736 mwifiex_ret_remain_on_chan(struct mwifiex_private *priv,
737 			   struct host_cmd_ds_command *resp,
738 			   struct host_cmd_ds_remain_on_chan *roc_cfg)
739 {
740 	struct host_cmd_ds_remain_on_chan *resp_cfg = &resp->params.roc_cfg;
741 
742 	if (roc_cfg)
743 		memcpy(roc_cfg, resp_cfg, sizeof(*roc_cfg));
744 
745 	return 0;
746 }
747 
748 /*
749  * This function handles the command response of P2P mode cfg.
750  */
751 static int
752 mwifiex_ret_p2p_mode_cfg(struct mwifiex_private *priv,
753 			 struct host_cmd_ds_command *resp,
754 			 void *data_buf)
755 {
756 	struct host_cmd_ds_p2p_mode_cfg *mode_cfg = &resp->params.mode_cfg;
757 
758 	if (data_buf)
759 		put_unaligned_le16(le16_to_cpu(mode_cfg->mode), data_buf);
760 
761 	return 0;
762 }
763 
764 /* This function handles the command response of mem_access command
765  */
766 static int
767 mwifiex_ret_mem_access(struct mwifiex_private *priv,
768 		       struct host_cmd_ds_command *resp, void *pioctl_buf)
769 {
770 	struct host_cmd_ds_mem_access *mem = (void *)&resp->params.mem;
771 
772 	priv->mem_rw.addr = le32_to_cpu(mem->addr);
773 	priv->mem_rw.value = le32_to_cpu(mem->value);
774 
775 	return 0;
776 }
777 /*
778  * This function handles the command response of register access.
779  *
780  * The register value and offset are returned to the user. For EEPROM
781  * access, the byte count is also returned.
782  */
783 static int mwifiex_ret_reg_access(u16 type, struct host_cmd_ds_command *resp,
784 				  void *data_buf)
785 {
786 	struct mwifiex_ds_reg_rw *reg_rw;
787 	struct mwifiex_ds_read_eeprom *eeprom;
788 	union reg {
789 		struct host_cmd_ds_mac_reg_access *mac;
790 		struct host_cmd_ds_bbp_reg_access *bbp;
791 		struct host_cmd_ds_rf_reg_access *rf;
792 		struct host_cmd_ds_pmic_reg_access *pmic;
793 		struct host_cmd_ds_802_11_eeprom_access *eeprom;
794 	} r;
795 
796 	if (!data_buf)
797 		return 0;
798 
799 	reg_rw = data_buf;
800 	eeprom = data_buf;
801 	switch (type) {
802 	case HostCmd_CMD_MAC_REG_ACCESS:
803 		r.mac = &resp->params.mac_reg;
804 		reg_rw->offset = (u32) le16_to_cpu(r.mac->offset);
805 		reg_rw->value = le32_to_cpu(r.mac->value);
806 		break;
807 	case HostCmd_CMD_BBP_REG_ACCESS:
808 		r.bbp = &resp->params.bbp_reg;
809 		reg_rw->offset = (u32) le16_to_cpu(r.bbp->offset);
810 		reg_rw->value = (u32) r.bbp->value;
811 		break;
812 
813 	case HostCmd_CMD_RF_REG_ACCESS:
814 		r.rf = &resp->params.rf_reg;
815 		reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
816 		reg_rw->value = (u32) r.bbp->value;
817 		break;
818 	case HostCmd_CMD_PMIC_REG_ACCESS:
819 		r.pmic = &resp->params.pmic_reg;
820 		reg_rw->offset = (u32) le16_to_cpu(r.pmic->offset);
821 		reg_rw->value = (u32) r.pmic->value;
822 		break;
823 	case HostCmd_CMD_CAU_REG_ACCESS:
824 		r.rf = &resp->params.rf_reg;
825 		reg_rw->offset = (u32) le16_to_cpu(r.rf->offset);
826 		reg_rw->value = (u32) r.rf->value;
827 		break;
828 	case HostCmd_CMD_802_11_EEPROM_ACCESS:
829 		r.eeprom = &resp->params.eeprom;
830 		pr_debug("info: EEPROM read len=%x\n",
831 				le16_to_cpu(r.eeprom->byte_count));
832 		if (eeprom->byte_count < le16_to_cpu(r.eeprom->byte_count)) {
833 			eeprom->byte_count = 0;
834 			pr_debug("info: EEPROM read length is too big\n");
835 			return -1;
836 		}
837 		eeprom->offset = le16_to_cpu(r.eeprom->offset);
838 		eeprom->byte_count = le16_to_cpu(r.eeprom->byte_count);
839 		if (eeprom->byte_count > 0)
840 			memcpy(&eeprom->value, &r.eeprom->value,
841 			       min((u16)MAX_EEPROM_DATA, eeprom->byte_count));
842 		break;
843 	default:
844 		return -1;
845 	}
846 	return 0;
847 }
848 
849 /*
850  * This function handles the command response of get IBSS coalescing status.
851  *
852  * If the received BSSID is different than the current one, the current BSSID,
853  * beacon interval, ATIM window and ERP information are updated, along with
854  * changing the ad-hoc state accordingly.
855  */
856 static int mwifiex_ret_ibss_coalescing_status(struct mwifiex_private *priv,
857 					      struct host_cmd_ds_command *resp)
858 {
859 	struct host_cmd_ds_802_11_ibss_status *ibss_coal_resp =
860 					&(resp->params.ibss_coalescing);
861 
862 	if (le16_to_cpu(ibss_coal_resp->action) == HostCmd_ACT_GEN_SET)
863 		return 0;
864 
865 	mwifiex_dbg(priv->adapter, INFO,
866 		    "info: new BSSID %pM\n", ibss_coal_resp->bssid);
867 
868 	/* If rsp has NULL BSSID, Just return..... No Action */
869 	if (is_zero_ether_addr(ibss_coal_resp->bssid)) {
870 		mwifiex_dbg(priv->adapter, FATAL, "new BSSID is NULL\n");
871 		return 0;
872 	}
873 
874 	/* If BSSID is diff, modify current BSS parameters */
875 	if (!ether_addr_equal(priv->curr_bss_params.bss_descriptor.mac_address, ibss_coal_resp->bssid)) {
876 		/* BSSID */
877 		memcpy(priv->curr_bss_params.bss_descriptor.mac_address,
878 		       ibss_coal_resp->bssid, ETH_ALEN);
879 
880 		/* Beacon Interval */
881 		priv->curr_bss_params.bss_descriptor.beacon_period
882 			= le16_to_cpu(ibss_coal_resp->beacon_interval);
883 
884 		/* ERP Information */
885 		priv->curr_bss_params.bss_descriptor.erp_flags =
886 			(u8) le16_to_cpu(ibss_coal_resp->use_g_rate_protect);
887 
888 		priv->adhoc_state = ADHOC_COALESCED;
889 	}
890 
891 	return 0;
892 }
893 static int mwifiex_ret_tdls_oper(struct mwifiex_private *priv,
894 				 struct host_cmd_ds_command *resp)
895 {
896 	struct host_cmd_ds_tdls_oper *cmd_tdls_oper = &resp->params.tdls_oper;
897 	u16 reason = le16_to_cpu(cmd_tdls_oper->reason);
898 	u16 action = le16_to_cpu(cmd_tdls_oper->tdls_action);
899 	struct mwifiex_sta_node *node =
900 			   mwifiex_get_sta_entry(priv, cmd_tdls_oper->peer_mac);
901 
902 	switch (action) {
903 	case ACT_TDLS_DELETE:
904 		if (reason) {
905 			if (!node || reason == TDLS_ERR_LINK_NONEXISTENT)
906 				mwifiex_dbg(priv->adapter, MSG,
907 					    "TDLS link delete for %pM failed: reason %d\n",
908 					    cmd_tdls_oper->peer_mac, reason);
909 			else
910 				mwifiex_dbg(priv->adapter, ERROR,
911 					    "TDLS link delete for %pM failed: reason %d\n",
912 					    cmd_tdls_oper->peer_mac, reason);
913 		} else {
914 			mwifiex_dbg(priv->adapter, MSG,
915 				    "TDLS link delete for %pM successful\n",
916 				    cmd_tdls_oper->peer_mac);
917 		}
918 		break;
919 	case ACT_TDLS_CREATE:
920 		if (reason) {
921 			mwifiex_dbg(priv->adapter, ERROR,
922 				    "TDLS link creation for %pM failed: reason %d",
923 				    cmd_tdls_oper->peer_mac, reason);
924 			if (node && reason != TDLS_ERR_LINK_EXISTS)
925 				node->tdls_status = TDLS_SETUP_FAILURE;
926 		} else {
927 			mwifiex_dbg(priv->adapter, MSG,
928 				    "TDLS link creation for %pM successful",
929 				    cmd_tdls_oper->peer_mac);
930 		}
931 		break;
932 	case ACT_TDLS_CONFIG:
933 		if (reason) {
934 			mwifiex_dbg(priv->adapter, ERROR,
935 				    "TDLS link config for %pM failed, reason %d\n",
936 				    cmd_tdls_oper->peer_mac, reason);
937 			if (node)
938 				node->tdls_status = TDLS_SETUP_FAILURE;
939 		} else {
940 			mwifiex_dbg(priv->adapter, MSG,
941 				    "TDLS link config for %pM successful\n",
942 				    cmd_tdls_oper->peer_mac);
943 		}
944 		break;
945 	default:
946 		mwifiex_dbg(priv->adapter, ERROR,
947 			    "Unknown TDLS command action response %d", action);
948 		return -1;
949 	}
950 
951 	return 0;
952 }
953 /*
954  * This function handles the command response for subscribe event command.
955  */
956 static int mwifiex_ret_subsc_evt(struct mwifiex_private *priv,
957 				 struct host_cmd_ds_command *resp)
958 {
959 	struct host_cmd_ds_802_11_subsc_evt *cmd_sub_event =
960 		&resp->params.subsc_evt;
961 
962 	/* For every subscribe event command (Get/Set/Clear), FW reports the
963 	 * current set of subscribed events*/
964 	mwifiex_dbg(priv->adapter, EVENT,
965 		    "Bitmap of currently subscribed events: %16x\n",
966 		    le16_to_cpu(cmd_sub_event->events));
967 
968 	return 0;
969 }
970 
971 static int mwifiex_ret_uap_sta_list(struct mwifiex_private *priv,
972 				    struct host_cmd_ds_command *resp)
973 {
974 	struct host_cmd_ds_sta_list *sta_list =
975 		&resp->params.sta_list;
976 	struct mwifiex_ie_types_sta_info *sta_info = (void *)&sta_list->tlv;
977 	int i;
978 	struct mwifiex_sta_node *sta_node;
979 
980 	for (i = 0; i < (le16_to_cpu(sta_list->sta_count)); i++) {
981 		sta_node = mwifiex_get_sta_entry(priv, sta_info->mac);
982 		if (unlikely(!sta_node))
983 			continue;
984 
985 		sta_node->stats.rssi = sta_info->rssi;
986 		sta_info++;
987 	}
988 
989 	return 0;
990 }
991 
992 /* This function handles the command response of set_cfg_data */
993 static int mwifiex_ret_cfg_data(struct mwifiex_private *priv,
994 				struct host_cmd_ds_command *resp)
995 {
996 	if (resp->result != HostCmd_RESULT_OK) {
997 		mwifiex_dbg(priv->adapter, ERROR, "Cal data cmd resp failed\n");
998 		return -1;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /** This Function handles the command response of sdio rx aggr */
1005 static int mwifiex_ret_sdio_rx_aggr_cfg(struct mwifiex_private *priv,
1006 					struct host_cmd_ds_command *resp)
1007 {
1008 	struct mwifiex_adapter *adapter = priv->adapter;
1009 	struct host_cmd_sdio_sp_rx_aggr_cfg *cfg =
1010 				&resp->params.sdio_rx_aggr_cfg;
1011 
1012 	adapter->sdio_rx_aggr_enable = cfg->enable;
1013 	adapter->sdio_rx_block_size = le16_to_cpu(cfg->block_size);
1014 
1015 	return 0;
1016 }
1017 
1018 static int mwifiex_ret_robust_coex(struct mwifiex_private *priv,
1019 				   struct host_cmd_ds_command *resp,
1020 				   bool *is_timeshare)
1021 {
1022 	struct host_cmd_ds_robust_coex *coex = &resp->params.coex;
1023 	struct mwifiex_ie_types_robust_coex *coex_tlv;
1024 	u16 action = le16_to_cpu(coex->action);
1025 	u32 mode;
1026 
1027 	coex_tlv = (struct mwifiex_ie_types_robust_coex
1028 		    *)((u8 *)coex + sizeof(struct host_cmd_ds_robust_coex));
1029 	if (action == HostCmd_ACT_GEN_GET) {
1030 		mode = le32_to_cpu(coex_tlv->mode);
1031 		if (mode == MWIFIEX_COEX_MODE_TIMESHARE)
1032 			*is_timeshare = true;
1033 		else
1034 			*is_timeshare = false;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static struct ieee80211_regdomain *
1041 mwifiex_create_custom_regdomain(struct mwifiex_private *priv,
1042 				u8 *buf, u16 buf_len)
1043 {
1044 	u16 num_chan = buf_len / 2;
1045 	struct ieee80211_regdomain *regd;
1046 	struct ieee80211_reg_rule *rule;
1047 	bool new_rule;
1048 	int idx, freq, prev_freq = 0;
1049 	u32 bw, prev_bw = 0;
1050 	u8 chflags, prev_chflags = 0, valid_rules = 0;
1051 
1052 	if (WARN_ON_ONCE(num_chan > NL80211_MAX_SUPP_REG_RULES))
1053 		return ERR_PTR(-EINVAL);
1054 
1055 	regd = kzalloc(struct_size(regd, reg_rules, num_chan), GFP_KERNEL);
1056 	if (!regd)
1057 		return ERR_PTR(-ENOMEM);
1058 
1059 	for (idx = 0; idx < num_chan; idx++) {
1060 		u8 chan;
1061 		enum nl80211_band band;
1062 
1063 		chan = *buf++;
1064 		if (!chan) {
1065 			kfree(regd);
1066 			return NULL;
1067 		}
1068 		chflags = *buf++;
1069 		band = (chan <= 14) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
1070 		freq = ieee80211_channel_to_frequency(chan, band);
1071 		new_rule = false;
1072 
1073 		if (chflags & MWIFIEX_CHANNEL_DISABLED)
1074 			continue;
1075 
1076 		if (band == NL80211_BAND_5GHZ) {
1077 			if (!(chflags & MWIFIEX_CHANNEL_NOHT80))
1078 				bw = MHZ_TO_KHZ(80);
1079 			else if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1080 				bw = MHZ_TO_KHZ(40);
1081 			else
1082 				bw = MHZ_TO_KHZ(20);
1083 		} else {
1084 			if (!(chflags & MWIFIEX_CHANNEL_NOHT40))
1085 				bw = MHZ_TO_KHZ(40);
1086 			else
1087 				bw = MHZ_TO_KHZ(20);
1088 		}
1089 
1090 		if (idx == 0 || prev_chflags != chflags || prev_bw != bw ||
1091 		    freq - prev_freq > 20) {
1092 			valid_rules++;
1093 			new_rule = true;
1094 		}
1095 
1096 		rule = &regd->reg_rules[valid_rules - 1];
1097 
1098 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(freq + 10);
1099 
1100 		prev_chflags = chflags;
1101 		prev_freq = freq;
1102 		prev_bw = bw;
1103 
1104 		if (!new_rule)
1105 			continue;
1106 
1107 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(freq - 10);
1108 		rule->power_rule.max_eirp = DBM_TO_MBM(19);
1109 
1110 		if (chflags & MWIFIEX_CHANNEL_PASSIVE)
1111 			rule->flags = NL80211_RRF_NO_IR;
1112 
1113 		if (chflags & MWIFIEX_CHANNEL_DFS)
1114 			rule->flags = NL80211_RRF_DFS;
1115 
1116 		rule->freq_range.max_bandwidth_khz = bw;
1117 	}
1118 
1119 	regd->n_reg_rules = valid_rules;
1120 	regd->alpha2[0] = '9';
1121 	regd->alpha2[1] = '9';
1122 
1123 	return regd;
1124 }
1125 
1126 static int mwifiex_ret_chan_region_cfg(struct mwifiex_private *priv,
1127 				       struct host_cmd_ds_command *resp)
1128 {
1129 	struct host_cmd_ds_chan_region_cfg *reg = &resp->params.reg_cfg;
1130 	u16 action = le16_to_cpu(reg->action);
1131 	u16 tlv, tlv_buf_len, tlv_buf_left;
1132 	struct mwifiex_ie_types_header *head;
1133 	struct ieee80211_regdomain *regd;
1134 	u8 *tlv_buf;
1135 
1136 	if (action != HostCmd_ACT_GEN_GET)
1137 		return 0;
1138 
1139 	tlv_buf = (u8 *)reg + sizeof(*reg);
1140 	tlv_buf_left = le16_to_cpu(resp->size) - S_DS_GEN - sizeof(*reg);
1141 
1142 	while (tlv_buf_left >= sizeof(*head)) {
1143 		head = (struct mwifiex_ie_types_header *)tlv_buf;
1144 		tlv = le16_to_cpu(head->type);
1145 		tlv_buf_len = le16_to_cpu(head->len);
1146 
1147 		if (tlv_buf_left < (sizeof(*head) + tlv_buf_len))
1148 			break;
1149 
1150 		switch (tlv) {
1151 		case TLV_TYPE_CHAN_ATTR_CFG:
1152 			mwifiex_dbg_dump(priv->adapter, CMD_D, "CHAN:",
1153 					 (u8 *)head + sizeof(*head),
1154 					 tlv_buf_len);
1155 			regd = mwifiex_create_custom_regdomain(priv,
1156 				(u8 *)head + sizeof(*head), tlv_buf_len);
1157 			if (!IS_ERR(regd))
1158 				priv->adapter->regd = regd;
1159 			break;
1160 		}
1161 
1162 		tlv_buf += (sizeof(*head) + tlv_buf_len);
1163 		tlv_buf_left -= (sizeof(*head) + tlv_buf_len);
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int mwifiex_ret_pkt_aggr_ctrl(struct mwifiex_private *priv,
1170 				     struct host_cmd_ds_command *resp)
1171 {
1172 	struct host_cmd_ds_pkt_aggr_ctrl *pkt_aggr_ctrl =
1173 					&resp->params.pkt_aggr_ctrl;
1174 	struct mwifiex_adapter *adapter = priv->adapter;
1175 
1176 	adapter->bus_aggr.enable = le16_to_cpu(pkt_aggr_ctrl->enable);
1177 	if (adapter->bus_aggr.enable)
1178 		adapter->intf_hdr_len = INTF_HEADER_LEN;
1179 	adapter->bus_aggr.mode = MWIFIEX_BUS_AGGR_MODE_LEN_V2;
1180 	adapter->bus_aggr.tx_aggr_max_size =
1181 				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_max_size);
1182 	adapter->bus_aggr.tx_aggr_max_num =
1183 				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_max_num);
1184 	adapter->bus_aggr.tx_aggr_align =
1185 				le16_to_cpu(pkt_aggr_ctrl->tx_aggr_align);
1186 
1187 	return 0;
1188 }
1189 
1190 static int mwifiex_ret_get_chan_info(struct mwifiex_private *priv,
1191 				     struct host_cmd_ds_command *resp,
1192 				     struct mwifiex_channel_band *channel_band)
1193 {
1194 	struct host_cmd_ds_sta_configure *sta_cfg_cmd = &resp->params.sta_cfg;
1195 	struct host_cmd_tlv_channel_band *tlv_band_channel;
1196 
1197 	tlv_band_channel =
1198 	(struct host_cmd_tlv_channel_band *)sta_cfg_cmd->tlv_buffer;
1199 	memcpy(&channel_band->band_config, &tlv_band_channel->band_config,
1200 	       sizeof(struct mwifiex_band_config));
1201 	channel_band->channel = tlv_band_channel->channel;
1202 
1203 	return 0;
1204 }
1205 
1206 /*
1207  * This function handles the command responses.
1208  *
1209  * This is a generic function, which calls command specific
1210  * response handlers based on the command ID.
1211  */
1212 int mwifiex_process_sta_cmdresp(struct mwifiex_private *priv, u16 cmdresp_no,
1213 				struct host_cmd_ds_command *resp)
1214 {
1215 	int ret = 0;
1216 	struct mwifiex_adapter *adapter = priv->adapter;
1217 	void *data_buf = adapter->curr_cmd->data_buf;
1218 
1219 	/* If the command is not successful, cleanup and return failure */
1220 	if (resp->result != HostCmd_RESULT_OK) {
1221 		mwifiex_process_cmdresp_error(priv, resp);
1222 		return -1;
1223 	}
1224 	/* Command successful, handle response */
1225 	switch (cmdresp_no) {
1226 	case HostCmd_CMD_GET_HW_SPEC:
1227 		ret = mwifiex_ret_get_hw_spec(priv, resp);
1228 		break;
1229 	case HostCmd_CMD_CFG_DATA:
1230 		ret = mwifiex_ret_cfg_data(priv, resp);
1231 		break;
1232 	case HostCmd_CMD_MAC_CONTROL:
1233 		break;
1234 	case HostCmd_CMD_802_11_MAC_ADDRESS:
1235 		ret = mwifiex_ret_802_11_mac_address(priv, resp);
1236 		break;
1237 	case HostCmd_CMD_MAC_MULTICAST_ADR:
1238 		ret = mwifiex_ret_mac_multicast_adr(priv, resp);
1239 		break;
1240 	case HostCmd_CMD_TX_RATE_CFG:
1241 		ret = mwifiex_ret_tx_rate_cfg(priv, resp);
1242 		break;
1243 	case HostCmd_CMD_802_11_SCAN:
1244 		ret = mwifiex_ret_802_11_scan(priv, resp);
1245 		adapter->curr_cmd->wait_q_enabled = false;
1246 		break;
1247 	case HostCmd_CMD_802_11_SCAN_EXT:
1248 		ret = mwifiex_ret_802_11_scan_ext(priv, resp);
1249 		adapter->curr_cmd->wait_q_enabled = false;
1250 		break;
1251 	case HostCmd_CMD_802_11_BG_SCAN_QUERY:
1252 		ret = mwifiex_ret_802_11_scan(priv, resp);
1253 		cfg80211_sched_scan_results(priv->wdev.wiphy, 0);
1254 		mwifiex_dbg(adapter, CMD,
1255 			    "info: CMD_RESP: BG_SCAN result is ready!\n");
1256 		break;
1257 	case HostCmd_CMD_802_11_BG_SCAN_CONFIG:
1258 		break;
1259 	case HostCmd_CMD_TXPWR_CFG:
1260 		ret = mwifiex_ret_tx_power_cfg(priv, resp);
1261 		break;
1262 	case HostCmd_CMD_RF_TX_PWR:
1263 		ret = mwifiex_ret_rf_tx_power(priv, resp);
1264 		break;
1265 	case HostCmd_CMD_RF_ANTENNA:
1266 		ret = mwifiex_ret_rf_antenna(priv, resp);
1267 		break;
1268 	case HostCmd_CMD_802_11_PS_MODE_ENH:
1269 		ret = mwifiex_ret_enh_power_mode(priv, resp, data_buf);
1270 		break;
1271 	case HostCmd_CMD_802_11_HS_CFG_ENH:
1272 		ret = mwifiex_ret_802_11_hs_cfg(priv, resp);
1273 		break;
1274 	case HostCmd_CMD_802_11_ASSOCIATE:
1275 		ret = mwifiex_ret_802_11_associate(priv, resp);
1276 		break;
1277 	case HostCmd_CMD_802_11_DEAUTHENTICATE:
1278 		ret = mwifiex_ret_802_11_deauthenticate(priv, resp);
1279 		break;
1280 	case HostCmd_CMD_802_11_AD_HOC_START:
1281 	case HostCmd_CMD_802_11_AD_HOC_JOIN:
1282 		ret = mwifiex_ret_802_11_ad_hoc(priv, resp);
1283 		break;
1284 	case HostCmd_CMD_802_11_AD_HOC_STOP:
1285 		ret = mwifiex_ret_802_11_ad_hoc_stop(priv, resp);
1286 		break;
1287 	case HostCmd_CMD_802_11_GET_LOG:
1288 		ret = mwifiex_ret_get_log(priv, resp, data_buf);
1289 		break;
1290 	case HostCmd_CMD_RSSI_INFO:
1291 		ret = mwifiex_ret_802_11_rssi_info(priv, resp);
1292 		break;
1293 	case HostCmd_CMD_802_11_SNMP_MIB:
1294 		ret = mwifiex_ret_802_11_snmp_mib(priv, resp, data_buf);
1295 		break;
1296 	case HostCmd_CMD_802_11_TX_RATE_QUERY:
1297 		ret = mwifiex_ret_802_11_tx_rate_query(priv, resp);
1298 		break;
1299 	case HostCmd_CMD_VERSION_EXT:
1300 		ret = mwifiex_ret_ver_ext(priv, resp, data_buf);
1301 		break;
1302 	case HostCmd_CMD_REMAIN_ON_CHAN:
1303 		ret = mwifiex_ret_remain_on_chan(priv, resp, data_buf);
1304 		break;
1305 	case HostCmd_CMD_11AC_CFG:
1306 		break;
1307 	case HostCmd_CMD_PACKET_AGGR_CTRL:
1308 		ret = mwifiex_ret_pkt_aggr_ctrl(priv, resp);
1309 		break;
1310 	case HostCmd_CMD_P2P_MODE_CFG:
1311 		ret = mwifiex_ret_p2p_mode_cfg(priv, resp, data_buf);
1312 		break;
1313 	case HostCmd_CMD_MGMT_FRAME_REG:
1314 	case HostCmd_CMD_FUNC_INIT:
1315 	case HostCmd_CMD_FUNC_SHUTDOWN:
1316 		break;
1317 	case HostCmd_CMD_802_11_KEY_MATERIAL:
1318 		ret = mwifiex_ret_802_11_key_material(priv, resp);
1319 		break;
1320 	case HostCmd_CMD_802_11D_DOMAIN_INFO:
1321 		ret = mwifiex_ret_802_11d_domain_info(priv, resp);
1322 		break;
1323 	case HostCmd_CMD_11N_ADDBA_REQ:
1324 		ret = mwifiex_ret_11n_addba_req(priv, resp);
1325 		break;
1326 	case HostCmd_CMD_11N_DELBA:
1327 		ret = mwifiex_ret_11n_delba(priv, resp);
1328 		break;
1329 	case HostCmd_CMD_11N_ADDBA_RSP:
1330 		ret = mwifiex_ret_11n_addba_resp(priv, resp);
1331 		break;
1332 	case HostCmd_CMD_RECONFIGURE_TX_BUFF:
1333 		if (0xffff == (u16)le16_to_cpu(resp->params.tx_buf.buff_size)) {
1334 			if (adapter->iface_type == MWIFIEX_USB &&
1335 			    adapter->usb_mc_setup) {
1336 				if (adapter->if_ops.multi_port_resync)
1337 					adapter->if_ops.
1338 						multi_port_resync(adapter);
1339 				adapter->usb_mc_setup = false;
1340 				adapter->tx_lock_flag = false;
1341 			}
1342 			break;
1343 		}
1344 		adapter->tx_buf_size = (u16) le16_to_cpu(resp->params.
1345 							     tx_buf.buff_size);
1346 		adapter->tx_buf_size = (adapter->tx_buf_size
1347 					/ MWIFIEX_SDIO_BLOCK_SIZE)
1348 				       * MWIFIEX_SDIO_BLOCK_SIZE;
1349 		adapter->curr_tx_buf_size = adapter->tx_buf_size;
1350 		mwifiex_dbg(adapter, CMD, "cmd: curr_tx_buf_size=%d\n",
1351 			    adapter->curr_tx_buf_size);
1352 
1353 		if (adapter->if_ops.update_mp_end_port)
1354 			adapter->if_ops.update_mp_end_port(adapter,
1355 				le16_to_cpu(resp->params.tx_buf.mp_end_port));
1356 		break;
1357 	case HostCmd_CMD_AMSDU_AGGR_CTRL:
1358 		break;
1359 	case HostCmd_CMD_WMM_GET_STATUS:
1360 		ret = mwifiex_ret_wmm_get_status(priv, resp);
1361 		break;
1362 	case HostCmd_CMD_802_11_IBSS_COALESCING_STATUS:
1363 		ret = mwifiex_ret_ibss_coalescing_status(priv, resp);
1364 		break;
1365 	case HostCmd_CMD_MEM_ACCESS:
1366 		ret = mwifiex_ret_mem_access(priv, resp, data_buf);
1367 		break;
1368 	case HostCmd_CMD_MAC_REG_ACCESS:
1369 	case HostCmd_CMD_BBP_REG_ACCESS:
1370 	case HostCmd_CMD_RF_REG_ACCESS:
1371 	case HostCmd_CMD_PMIC_REG_ACCESS:
1372 	case HostCmd_CMD_CAU_REG_ACCESS:
1373 	case HostCmd_CMD_802_11_EEPROM_ACCESS:
1374 		ret = mwifiex_ret_reg_access(cmdresp_no, resp, data_buf);
1375 		break;
1376 	case HostCmd_CMD_SET_BSS_MODE:
1377 		break;
1378 	case HostCmd_CMD_11N_CFG:
1379 		break;
1380 	case HostCmd_CMD_PCIE_DESC_DETAILS:
1381 		break;
1382 	case HostCmd_CMD_802_11_SUBSCRIBE_EVENT:
1383 		ret = mwifiex_ret_subsc_evt(priv, resp);
1384 		break;
1385 	case HostCmd_CMD_UAP_SYS_CONFIG:
1386 		break;
1387 	case HOST_CMD_APCMD_STA_LIST:
1388 		ret = mwifiex_ret_uap_sta_list(priv, resp);
1389 		break;
1390 	case HostCmd_CMD_UAP_BSS_START:
1391 		adapter->tx_lock_flag = false;
1392 		adapter->pps_uapsd_mode = false;
1393 		adapter->delay_null_pkt = false;
1394 		priv->bss_started = 1;
1395 		break;
1396 	case HostCmd_CMD_UAP_BSS_STOP:
1397 		priv->bss_started = 0;
1398 		break;
1399 	case HostCmd_CMD_UAP_STA_DEAUTH:
1400 		break;
1401 	case HOST_CMD_APCMD_SYS_RESET:
1402 		break;
1403 	case HostCmd_CMD_MEF_CFG:
1404 		break;
1405 	case HostCmd_CMD_COALESCE_CFG:
1406 		break;
1407 	case HostCmd_CMD_TDLS_OPER:
1408 		ret = mwifiex_ret_tdls_oper(priv, resp);
1409 		break;
1410 	case HostCmd_CMD_MC_POLICY:
1411 		break;
1412 	case HostCmd_CMD_CHAN_REPORT_REQUEST:
1413 		break;
1414 	case HostCmd_CMD_SDIO_SP_RX_AGGR_CFG:
1415 		ret = mwifiex_ret_sdio_rx_aggr_cfg(priv, resp);
1416 		break;
1417 	case HostCmd_CMD_HS_WAKEUP_REASON:
1418 		ret = mwifiex_ret_wakeup_reason(priv, resp, data_buf);
1419 		break;
1420 	case HostCmd_CMD_TDLS_CONFIG:
1421 		break;
1422 	case HostCmd_CMD_ROBUST_COEX:
1423 		ret = mwifiex_ret_robust_coex(priv, resp, data_buf);
1424 		break;
1425 	case HostCmd_CMD_GTK_REKEY_OFFLOAD_CFG:
1426 		break;
1427 	case HostCmd_CMD_CHAN_REGION_CFG:
1428 		ret = mwifiex_ret_chan_region_cfg(priv, resp);
1429 		break;
1430 	case HostCmd_CMD_STA_CONFIGURE:
1431 		ret = mwifiex_ret_get_chan_info(priv, resp, data_buf);
1432 		break;
1433 	default:
1434 		mwifiex_dbg(adapter, ERROR,
1435 			    "CMD_RESP: unknown cmd response %#x\n",
1436 			    resp->command);
1437 		break;
1438 	}
1439 
1440 	return ret;
1441 }
1442