1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement cfg80211 ("iw") support. 4 * 5 * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany 6 * Holger Schurig <hs4233@mail.mn-solutions.de> 7 * 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/hardirq.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/slab.h> 16 #include <linux/ieee80211.h> 17 #include <net/cfg80211.h> 18 #include <linux/unaligned.h> 19 20 #include "decl.h" 21 #include "cfg.h" 22 #include "cmd.h" 23 #include "mesh.h" 24 25 26 #define CHAN2G(_channel, _freq, _flags) { \ 27 .band = NL80211_BAND_2GHZ, \ 28 .center_freq = (_freq), \ 29 .hw_value = (_channel), \ 30 .flags = (_flags), \ 31 .max_antenna_gain = 0, \ 32 .max_power = 30, \ 33 } 34 35 static struct ieee80211_channel lbs_2ghz_channels[] = { 36 CHAN2G(1, 2412, 0), 37 CHAN2G(2, 2417, 0), 38 CHAN2G(3, 2422, 0), 39 CHAN2G(4, 2427, 0), 40 CHAN2G(5, 2432, 0), 41 CHAN2G(6, 2437, 0), 42 CHAN2G(7, 2442, 0), 43 CHAN2G(8, 2447, 0), 44 CHAN2G(9, 2452, 0), 45 CHAN2G(10, 2457, 0), 46 CHAN2G(11, 2462, 0), 47 CHAN2G(12, 2467, 0), 48 CHAN2G(13, 2472, 0), 49 CHAN2G(14, 2484, 0), 50 }; 51 52 #define RATETAB_ENT(_rate, _hw_value, _flags) { \ 53 .bitrate = (_rate), \ 54 .hw_value = (_hw_value), \ 55 .flags = (_flags), \ 56 } 57 58 59 /* Table 6 in section 3.2.1.1 */ 60 static struct ieee80211_rate lbs_rates[] = { 61 RATETAB_ENT(10, 0, 0), 62 RATETAB_ENT(20, 1, 0), 63 RATETAB_ENT(55, 2, 0), 64 RATETAB_ENT(110, 3, 0), 65 RATETAB_ENT(60, 9, 0), 66 RATETAB_ENT(90, 6, 0), 67 RATETAB_ENT(120, 7, 0), 68 RATETAB_ENT(180, 8, 0), 69 RATETAB_ENT(240, 9, 0), 70 RATETAB_ENT(360, 10, 0), 71 RATETAB_ENT(480, 11, 0), 72 RATETAB_ENT(540, 12, 0), 73 }; 74 75 static struct ieee80211_supported_band lbs_band_2ghz = { 76 .channels = lbs_2ghz_channels, 77 .n_channels = ARRAY_SIZE(lbs_2ghz_channels), 78 .bitrates = lbs_rates, 79 .n_bitrates = ARRAY_SIZE(lbs_rates), 80 }; 81 82 83 static const u32 cipher_suites[] = { 84 WLAN_CIPHER_SUITE_WEP40, 85 WLAN_CIPHER_SUITE_WEP104, 86 WLAN_CIPHER_SUITE_TKIP, 87 WLAN_CIPHER_SUITE_CCMP, 88 }; 89 90 /* Time to stay on the channel */ 91 #define LBS_DWELL_PASSIVE 100 92 #define LBS_DWELL_ACTIVE 40 93 94 95 /*************************************************************************** 96 * Misc utility functions 97 * 98 * TLVs are Marvell specific. They are very similar to IEs, they have the 99 * same structure: type, length, data*. The only difference: for IEs, the 100 * type and length are u8, but for TLVs they're __le16. 101 */ 102 103 /* 104 * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1 105 * in the firmware spec 106 */ 107 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type) 108 { 109 int ret = -ENOTSUPP; 110 111 switch (auth_type) { 112 case NL80211_AUTHTYPE_OPEN_SYSTEM: 113 case NL80211_AUTHTYPE_SHARED_KEY: 114 ret = auth_type; 115 break; 116 case NL80211_AUTHTYPE_AUTOMATIC: 117 ret = NL80211_AUTHTYPE_OPEN_SYSTEM; 118 break; 119 case NL80211_AUTHTYPE_NETWORK_EAP: 120 ret = 0x80; 121 break; 122 default: 123 /* silence compiler */ 124 break; 125 } 126 return ret; 127 } 128 129 130 /* 131 * Various firmware commands need the list of supported rates, but with 132 * the hight-bit set for basic rates 133 */ 134 static int lbs_add_rates(u8 *rates) 135 { 136 size_t i; 137 138 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 139 u8 rate = lbs_rates[i].bitrate / 5; 140 if (rate == 0x02 || rate == 0x04 || 141 rate == 0x0b || rate == 0x16) 142 rate |= 0x80; 143 rates[i] = rate; 144 } 145 return ARRAY_SIZE(lbs_rates); 146 } 147 148 149 /*************************************************************************** 150 * TLV utility functions 151 * 152 * TLVs are Marvell specific. They are very similar to IEs, they have the 153 * same structure: type, length, data*. The only difference: for IEs, the 154 * type and length are u8, but for TLVs they're __le16. 155 */ 156 157 158 /* 159 * Add ssid TLV 160 */ 161 #define LBS_MAX_SSID_TLV_SIZE \ 162 (sizeof(struct mrvl_ie_header) \ 163 + IEEE80211_MAX_SSID_LEN) 164 165 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len) 166 { 167 struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv; 168 169 /* 170 * TLV-ID SSID 00 00 171 * length 06 00 172 * ssid 4d 4e 54 45 53 54 173 */ 174 ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID); 175 ssid_tlv->header.len = cpu_to_le16(ssid_len); 176 memcpy(ssid_tlv->ssid, ssid, ssid_len); 177 return sizeof(ssid_tlv->header) + ssid_len; 178 } 179 180 181 /* 182 * Add channel list TLV (section 8.4.2) 183 * 184 * Actual channel data comes from priv->wdev->wiphy->channels. 185 */ 186 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 187 (sizeof(struct mrvl_ie_header) \ 188 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset))) 189 190 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv, 191 int last_channel, int active_scan) 192 { 193 int chanscanparamsize = sizeof(struct chanscanparamset) * 194 (last_channel - priv->scan_channel); 195 196 struct mrvl_ie_header *header = (void *) tlv; 197 198 /* 199 * TLV-ID CHANLIST 01 01 200 * length 0e 00 201 * channel 00 01 00 00 00 64 00 202 * radio type 00 203 * channel 01 204 * scan type 00 205 * min scan time 00 00 206 * max scan time 64 00 207 * channel 2 00 02 00 00 00 64 00 208 * 209 */ 210 211 header->type = cpu_to_le16(TLV_TYPE_CHANLIST); 212 header->len = cpu_to_le16(chanscanparamsize); 213 tlv += sizeof(struct mrvl_ie_header); 214 215 /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel, 216 last_channel); */ 217 memset(tlv, 0, chanscanparamsize); 218 219 while (priv->scan_channel < last_channel) { 220 struct chanscanparamset *param = (void *) tlv; 221 222 param->radiotype = CMD_SCAN_RADIO_TYPE_BG; 223 param->channumber = 224 priv->scan_req->channels[priv->scan_channel]->hw_value; 225 if (active_scan) { 226 param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE); 227 } else { 228 param->chanscanmode.passivescan = 1; 229 param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE); 230 } 231 tlv += sizeof(struct chanscanparamset); 232 priv->scan_channel++; 233 } 234 return sizeof(struct mrvl_ie_header) + chanscanparamsize; 235 } 236 237 238 /* 239 * Add rates TLV 240 * 241 * The rates are in lbs_bg_rates[], but for the 802.11b 242 * rates the high bit is set. We add this TLV only because 243 * there's a firmware which otherwise doesn't report all 244 * APs in range. 245 */ 246 #define LBS_MAX_RATES_TLV_SIZE \ 247 (sizeof(struct mrvl_ie_header) \ 248 + (ARRAY_SIZE(lbs_rates))) 249 250 /* Adds a TLV with all rates the hardware supports */ 251 static int lbs_add_supported_rates_tlv(u8 *tlv) 252 { 253 size_t i; 254 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 255 256 /* 257 * TLV-ID RATES 01 00 258 * length 0e 00 259 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 260 */ 261 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 262 tlv += sizeof(rate_tlv->header); 263 i = lbs_add_rates(tlv); 264 tlv += i; 265 rate_tlv->header.len = cpu_to_le16(i); 266 return sizeof(rate_tlv->header) + i; 267 } 268 269 /* Add common rates from a TLV and return the new end of the TLV */ 270 static u8 * 271 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates) 272 { 273 int hw, ap, ap_max = ie[1]; 274 u8 hw_rate; 275 276 if (ap_max > MAX_RATES) { 277 lbs_deb_assoc("invalid rates\n"); 278 return tlv; 279 } 280 /* Advance past IE header */ 281 ie += 2; 282 283 lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max); 284 285 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 286 hw_rate = lbs_rates[hw].bitrate / 5; 287 for (ap = 0; ap < ap_max; ap++) { 288 if (hw_rate == (ie[ap] & 0x7f)) { 289 *tlv++ = ie[ap]; 290 *nrates = *nrates + 1; 291 } 292 } 293 } 294 return tlv; 295 } 296 297 /* 298 * Adds a TLV with all rates the hardware *and* BSS supports. 299 */ 300 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss) 301 { 302 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 303 const u8 *rates_eid, *ext_rates_eid; 304 int n = 0; 305 306 rcu_read_lock(); 307 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 308 ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES); 309 310 /* 311 * 01 00 TLV_TYPE_RATES 312 * 04 00 len 313 * 82 84 8b 96 rates 314 */ 315 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 316 tlv += sizeof(rate_tlv->header); 317 318 /* Add basic rates */ 319 if (rates_eid) { 320 tlv = add_ie_rates(tlv, rates_eid, &n); 321 322 /* Add extended rates, if any */ 323 if (ext_rates_eid) 324 tlv = add_ie_rates(tlv, ext_rates_eid, &n); 325 } else { 326 lbs_deb_assoc("assoc: bss had no basic rate IE\n"); 327 /* Fallback: add basic 802.11b rates */ 328 *tlv++ = 0x82; 329 *tlv++ = 0x84; 330 *tlv++ = 0x8b; 331 *tlv++ = 0x96; 332 n = 4; 333 } 334 rcu_read_unlock(); 335 336 rate_tlv->header.len = cpu_to_le16(n); 337 return sizeof(rate_tlv->header) + n; 338 } 339 340 341 /* 342 * Add auth type TLV. 343 * 344 * This is only needed for newer firmware (V9 and up). 345 */ 346 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \ 347 sizeof(struct mrvl_ie_auth_type) 348 349 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type) 350 { 351 struct mrvl_ie_auth_type *auth = (void *) tlv; 352 353 /* 354 * 1f 01 TLV_TYPE_AUTH_TYPE 355 * 01 00 len 356 * 01 auth type 357 */ 358 auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE); 359 auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header)); 360 auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type)); 361 return sizeof(*auth); 362 } 363 364 365 /* 366 * Add channel (phy ds) TLV 367 */ 368 #define LBS_MAX_CHANNEL_TLV_SIZE \ 369 sizeof(struct mrvl_ie_header) 370 371 static int lbs_add_channel_tlv(u8 *tlv, u8 channel) 372 { 373 struct mrvl_ie_ds_param_set *ds = (void *) tlv; 374 375 /* 376 * 03 00 TLV_TYPE_PHY_DS 377 * 01 00 len 378 * 06 channel 379 */ 380 ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS); 381 ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header)); 382 ds->channel = channel; 383 return sizeof(*ds); 384 } 385 386 387 /* 388 * Add (empty) CF param TLV of the form: 389 */ 390 #define LBS_MAX_CF_PARAM_TLV_SIZE \ 391 sizeof(struct mrvl_ie_header) 392 393 static int lbs_add_cf_param_tlv(u8 *tlv) 394 { 395 struct mrvl_ie_cf_param_set *cf = (void *)tlv; 396 397 /* 398 * 04 00 TLV_TYPE_CF 399 * 06 00 len 400 * 00 cfpcnt 401 * 00 cfpperiod 402 * 00 00 cfpmaxduration 403 * 00 00 cfpdurationremaining 404 */ 405 cf->header.type = cpu_to_le16(TLV_TYPE_CF); 406 cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header)); 407 return sizeof(*cf); 408 } 409 410 /* 411 * Add WPA TLV 412 */ 413 #define LBS_MAX_WPA_TLV_SIZE \ 414 (sizeof(struct mrvl_ie_header) \ 415 + 128 /* TODO: I guessed the size */) 416 417 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len) 418 { 419 struct mrvl_ie_data *wpatlv = (struct mrvl_ie_data *)tlv; 420 const struct element *wpaie; 421 422 /* Find the first RSN or WPA IE to use */ 423 wpaie = cfg80211_find_elem(WLAN_EID_RSN, ie, ie_len); 424 if (!wpaie) 425 wpaie = cfg80211_find_vendor_elem(WLAN_OUI_MICROSOFT, 426 WLAN_OUI_TYPE_MICROSOFT_WPA, 427 ie, ie_len); 428 if (!wpaie || wpaie->datalen > 128) 429 return 0; 430 431 /* 432 * Convert the found IE to a TLV. IEs use u8 for the header, 433 * u8 type 434 * u8 len 435 * u8[] data 436 * but TLVs use __le16 instead: 437 * __le16 type 438 * __le16 len 439 * u8[] data 440 */ 441 wpatlv->header.type = cpu_to_le16(wpaie->id); 442 wpatlv->header.len = cpu_to_le16(wpaie->datalen); 443 memcpy(wpatlv->data, wpaie->data, wpaie->datalen); 444 445 /* Return the total number of bytes added to the TLV buffer */ 446 return sizeof(struct mrvl_ie_header) + wpaie->datalen; 447 } 448 449 /* Add WPS enrollee TLV 450 */ 451 #define LBS_MAX_WPS_ENROLLEE_TLV_SIZE \ 452 (sizeof(struct mrvl_ie_header) \ 453 + 256) 454 455 static int lbs_add_wps_enrollee_tlv(u8 *tlv, const u8 *ie, size_t ie_len) 456 { 457 struct mrvl_ie_data *wpstlv = (struct mrvl_ie_data *)tlv; 458 const struct element *wpsie; 459 460 /* Look for a WPS IE and add it to the probe request */ 461 wpsie = cfg80211_find_vendor_elem(WLAN_OUI_MICROSOFT, 462 WLAN_OUI_TYPE_MICROSOFT_WPS, 463 ie, ie_len); 464 if (!wpsie) 465 return 0; 466 467 /* Convert the WPS IE to a TLV. The IE looks like this: 468 * u8 type (WLAN_EID_VENDOR_SPECIFIC) 469 * u8 len 470 * u8[] data 471 * but the TLV will look like this instead: 472 * __le16 type (TLV_TYPE_WPS_ENROLLEE) 473 * __le16 len 474 * u8[] data 475 */ 476 wpstlv->header.type = cpu_to_le16(TLV_TYPE_WPS_ENROLLEE); 477 wpstlv->header.len = cpu_to_le16(wpsie->datalen); 478 memcpy(wpstlv->data, wpsie->data, wpsie->datalen); 479 480 /* Return the total number of bytes added to the TLV buffer */ 481 return sizeof(struct mrvl_ie_header) + wpsie->datalen; 482 } 483 484 /* 485 * Set Channel 486 */ 487 488 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy, 489 struct cfg80211_chan_def *chandef) 490 { 491 struct lbs_private *priv = wiphy_priv(wiphy); 492 int ret = -ENOTSUPP; 493 494 if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT) 495 goto out; 496 497 ret = lbs_set_channel(priv, chandef->chan->hw_value); 498 499 out: 500 return ret; 501 } 502 503 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy, 504 struct net_device *netdev, 505 struct ieee80211_channel *channel) 506 { 507 struct lbs_private *priv = wiphy_priv(wiphy); 508 int ret = -ENOTSUPP; 509 510 if (netdev != priv->mesh_dev) 511 goto out; 512 513 ret = lbs_mesh_set_channel(priv, channel->hw_value); 514 515 out: 516 return ret; 517 } 518 519 520 521 /* 522 * Scanning 523 */ 524 525 /* 526 * When scanning, the firmware doesn't send a nul packet with the power-safe 527 * bit to the AP. So we cannot stay away from our current channel too long, 528 * otherwise we loose data. So take a "nap" while scanning every other 529 * while. 530 */ 531 #define LBS_SCAN_BEFORE_NAP 4 532 533 534 /* 535 * When the firmware reports back a scan-result, it gives us an "u8 rssi", 536 * which isn't really an RSSI, as it becomes larger when moving away from 537 * the AP. Anyway, we need to convert that into mBm. 538 */ 539 #define LBS_SCAN_RSSI_TO_MBM(rssi) \ 540 ((-(int)rssi + 3)*100) 541 542 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy, 543 struct cmd_header *resp) 544 { 545 struct cfg80211_bss *bss; 546 struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp; 547 int bsssize; 548 const u8 *pos; 549 const u8 *tsfdesc; 550 int tsfsize; 551 int i; 552 int ret = -EILSEQ; 553 554 bsssize = get_unaligned_le16(&scanresp->bssdescriptsize); 555 556 lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n", 557 scanresp->nr_sets, bsssize, le16_to_cpu(resp->size)); 558 559 if (scanresp->nr_sets == 0) { 560 ret = 0; 561 goto done; 562 } 563 564 /* 565 * The general layout of the scan response is described in chapter 566 * 5.7.1. Basically we have a common part, then any number of BSS 567 * descriptor sections. Finally we have section with the same number 568 * of TSFs. 569 * 570 * cmd_ds_802_11_scan_rsp 571 * cmd_header 572 * pos_size 573 * nr_sets 574 * bssdesc 1 575 * bssid 576 * rssi 577 * timestamp 578 * intvl 579 * capa 580 * IEs 581 * bssdesc 2 582 * bssdesc n 583 * MrvlIEtypes_TsfFimestamp_t 584 * TSF for BSS 1 585 * TSF for BSS 2 586 * TSF for BSS n 587 */ 588 589 pos = scanresp->bssdesc_and_tlvbuffer; 590 591 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer, 592 bsssize); 593 594 tsfdesc = pos + bsssize; 595 tsfsize = 4 + 8 * scanresp->nr_sets; 596 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize); 597 598 /* Validity check: we expect a Marvell-Local TLV */ 599 i = get_unaligned_le16(tsfdesc); 600 tsfdesc += 2; 601 if (i != TLV_TYPE_TSFTIMESTAMP) { 602 lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i); 603 goto done; 604 } 605 606 /* 607 * Validity check: the TLV holds TSF values with 8 bytes each, so 608 * the size in the TLV must match the nr_sets value 609 */ 610 i = get_unaligned_le16(tsfdesc); 611 tsfdesc += 2; 612 if (i / 8 != scanresp->nr_sets) { 613 lbs_deb_scan("scan response: invalid number of TSF timestamp " 614 "sets (expected %d got %d)\n", scanresp->nr_sets, 615 i / 8); 616 goto done; 617 } 618 619 for (i = 0; i < scanresp->nr_sets; i++) { 620 const u8 *bssid; 621 const u8 *ie; 622 int left; 623 int ielen; 624 int rssi; 625 u16 intvl; 626 u16 capa; 627 int chan_no = -1; 628 const u8 *ssid = NULL; 629 u8 ssid_len = 0; 630 631 int len = get_unaligned_le16(pos); 632 pos += 2; 633 634 /* BSSID */ 635 bssid = pos; 636 pos += ETH_ALEN; 637 /* RSSI */ 638 rssi = *pos++; 639 /* Packet time stamp */ 640 pos += 8; 641 /* Beacon interval */ 642 intvl = get_unaligned_le16(pos); 643 pos += 2; 644 /* Capabilities */ 645 capa = get_unaligned_le16(pos); 646 pos += 2; 647 648 /* To find out the channel, we must parse the IEs */ 649 ie = pos; 650 /* 651 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon 652 * interval, capabilities 653 */ 654 ielen = left = len - (6 + 1 + 8 + 2 + 2); 655 while (left >= 2) { 656 u8 id, elen; 657 id = *pos++; 658 elen = *pos++; 659 left -= 2; 660 if (elen > left) { 661 lbs_deb_scan("scan response: invalid IE fmt\n"); 662 goto done; 663 } 664 665 if (id == WLAN_EID_DS_PARAMS) 666 chan_no = *pos; 667 if (id == WLAN_EID_SSID) { 668 ssid = pos; 669 ssid_len = elen; 670 } 671 left -= elen; 672 pos += elen; 673 } 674 675 /* No channel, no luck */ 676 if (chan_no != -1) { 677 struct wiphy *wiphy = priv->wdev->wiphy; 678 int freq = ieee80211_channel_to_frequency(chan_no, 679 NL80211_BAND_2GHZ); 680 struct ieee80211_channel *channel = 681 ieee80211_get_channel(wiphy, freq); 682 683 lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n", 684 bssid, capa, chan_no, ssid_len, ssid, 685 LBS_SCAN_RSSI_TO_MBM(rssi)/100); 686 687 if (channel && 688 !(channel->flags & IEEE80211_CHAN_DISABLED)) { 689 bss = cfg80211_inform_bss(wiphy, channel, 690 CFG80211_BSS_FTYPE_UNKNOWN, 691 bssid, get_unaligned_le64(tsfdesc), 692 capa, intvl, ie, ielen, 693 LBS_SCAN_RSSI_TO_MBM(rssi), 694 GFP_KERNEL); 695 cfg80211_put_bss(wiphy, bss); 696 } 697 } else 698 lbs_deb_scan("scan response: missing BSS channel IE\n"); 699 700 tsfdesc += 8; 701 } 702 ret = 0; 703 704 done: 705 return ret; 706 } 707 708 709 /* 710 * Our scan command contains a TLV, consisting of a SSID TLV, a channel list 711 * TLV, a rates TLV, and an optional WPS IE. Determine the maximum size of them: 712 */ 713 #define LBS_SCAN_MAX_CMD_SIZE \ 714 (sizeof(struct cmd_ds_802_11_scan) \ 715 + LBS_MAX_SSID_TLV_SIZE \ 716 + LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 717 + LBS_MAX_RATES_TLV_SIZE \ 718 + LBS_MAX_WPS_ENROLLEE_TLV_SIZE) 719 720 /* 721 * Assumes priv->scan_req is initialized and valid 722 * Assumes priv->scan_channel is initialized 723 */ 724 static void lbs_scan_worker(struct work_struct *work) 725 { 726 struct lbs_private *priv = 727 container_of(work, struct lbs_private, scan_work.work); 728 struct cmd_ds_802_11_scan *scan_cmd; 729 u8 *tlv; /* pointer into our current, growing TLV storage area */ 730 int last_channel; 731 int running, carrier; 732 733 scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL); 734 if (scan_cmd == NULL) 735 return; 736 737 /* prepare fixed part of scan command */ 738 scan_cmd->bsstype = CMD_BSS_TYPE_ANY; 739 740 /* stop network while we're away from our main channel */ 741 running = !netif_queue_stopped(priv->dev); 742 carrier = netif_carrier_ok(priv->dev); 743 if (running) 744 netif_stop_queue(priv->dev); 745 if (carrier) 746 netif_carrier_off(priv->dev); 747 748 /* prepare fixed part of scan command */ 749 tlv = scan_cmd->tlvbuffer; 750 751 /* add SSID TLV */ 752 if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0) 753 tlv += lbs_add_ssid_tlv(tlv, 754 priv->scan_req->ssids[0].ssid, 755 priv->scan_req->ssids[0].ssid_len); 756 757 /* add channel TLVs */ 758 last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP; 759 if (last_channel > priv->scan_req->n_channels) 760 last_channel = priv->scan_req->n_channels; 761 tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel, 762 priv->scan_req->n_ssids); 763 764 /* add rates TLV */ 765 tlv += lbs_add_supported_rates_tlv(tlv); 766 767 /* add optional WPS enrollee TLV */ 768 if (priv->scan_req->ie && priv->scan_req->ie_len) 769 tlv += lbs_add_wps_enrollee_tlv(tlv, priv->scan_req->ie, 770 priv->scan_req->ie_len); 771 772 if (priv->scan_channel < priv->scan_req->n_channels) { 773 cancel_delayed_work(&priv->scan_work); 774 if (netif_running(priv->dev)) 775 queue_delayed_work(priv->work_thread, &priv->scan_work, 776 msecs_to_jiffies(300)); 777 } 778 779 /* This is the final data we are about to send */ 780 scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd); 781 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd, 782 sizeof(*scan_cmd)); 783 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer, 784 tlv - scan_cmd->tlvbuffer); 785 786 __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr, 787 le16_to_cpu(scan_cmd->hdr.size), 788 lbs_ret_scan, 0); 789 790 if (priv->scan_channel >= priv->scan_req->n_channels) { 791 /* Mark scan done */ 792 cancel_delayed_work(&priv->scan_work); 793 lbs_scan_done(priv); 794 } 795 796 /* Restart network */ 797 if (carrier) 798 netif_carrier_on(priv->dev); 799 if (running && !priv->tx_pending_len) 800 netif_wake_queue(priv->dev); 801 802 kfree(scan_cmd); 803 804 /* Wake up anything waiting on scan completion */ 805 if (priv->scan_req == NULL) { 806 lbs_deb_scan("scan: waking up waiters\n"); 807 wake_up_all(&priv->scan_q); 808 } 809 } 810 811 static void _internal_start_scan(struct lbs_private *priv, bool internal, 812 struct cfg80211_scan_request *request) 813 { 814 lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n", 815 request->n_ssids, request->n_channels, request->ie_len); 816 817 priv->scan_channel = 0; 818 priv->scan_req = request; 819 priv->internal_scan = internal; 820 821 queue_delayed_work(priv->work_thread, &priv->scan_work, 822 msecs_to_jiffies(50)); 823 } 824 825 /* 826 * Clean up priv->scan_req. Should be used to handle the allocation details. 827 */ 828 void lbs_scan_done(struct lbs_private *priv) 829 { 830 WARN_ON(!priv->scan_req); 831 832 if (priv->internal_scan) { 833 kfree(priv->scan_req); 834 } else { 835 struct cfg80211_scan_info info = { 836 .aborted = false, 837 }; 838 839 cfg80211_scan_done(priv->scan_req, &info); 840 } 841 842 priv->scan_req = NULL; 843 } 844 845 static int lbs_cfg_scan(struct wiphy *wiphy, 846 struct cfg80211_scan_request *request) 847 { 848 struct lbs_private *priv = wiphy_priv(wiphy); 849 int ret = 0; 850 851 if (priv->scan_req || delayed_work_pending(&priv->scan_work)) { 852 /* old scan request not yet processed */ 853 ret = -EAGAIN; 854 goto out; 855 } 856 857 _internal_start_scan(priv, false, request); 858 859 if (priv->surpriseremoved) 860 ret = -EIO; 861 862 out: 863 return ret; 864 } 865 866 867 868 869 /* 870 * Events 871 */ 872 873 void lbs_send_disconnect_notification(struct lbs_private *priv, 874 bool locally_generated) 875 { 876 cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated, 877 GFP_KERNEL); 878 } 879 880 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event) 881 { 882 cfg80211_michael_mic_failure(priv->dev, 883 priv->assoc_bss, 884 event == MACREG_INT_CODE_MIC_ERR_MULTICAST ? 885 NL80211_KEYTYPE_GROUP : 886 NL80211_KEYTYPE_PAIRWISE, 887 -1, 888 NULL, 889 GFP_KERNEL); 890 } 891 892 893 894 895 /* 896 * Connect/disconnect 897 */ 898 899 900 /* 901 * This removes all WEP keys 902 */ 903 static int lbs_remove_wep_keys(struct lbs_private *priv) 904 { 905 struct cmd_ds_802_11_set_wep cmd; 906 int ret; 907 908 memset(&cmd, 0, sizeof(cmd)); 909 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 910 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 911 cmd.action = cpu_to_le16(CMD_ACT_REMOVE); 912 913 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 914 915 return ret; 916 } 917 918 /* 919 * Set WEP keys 920 */ 921 static int lbs_set_wep_keys(struct lbs_private *priv) 922 { 923 struct cmd_ds_802_11_set_wep cmd; 924 int i; 925 int ret; 926 927 /* 928 * command 13 00 929 * size 50 00 930 * sequence xx xx 931 * result 00 00 932 * action 02 00 ACT_ADD 933 * transmit key 00 00 934 * type for key 1 01 WEP40 935 * type for key 2 00 936 * type for key 3 00 937 * type for key 4 00 938 * key 1 39 39 39 39 39 00 00 00 939 * 00 00 00 00 00 00 00 00 940 * key 2 00 00 00 00 00 00 00 00 941 * 00 00 00 00 00 00 00 00 942 * key 3 00 00 00 00 00 00 00 00 943 * 00 00 00 00 00 00 00 00 944 * key 4 00 00 00 00 00 00 00 00 945 */ 946 if (priv->wep_key_len[0] || priv->wep_key_len[1] || 947 priv->wep_key_len[2] || priv->wep_key_len[3]) { 948 /* Only set wep keys if we have at least one of them */ 949 memset(&cmd, 0, sizeof(cmd)); 950 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 951 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 952 cmd.action = cpu_to_le16(CMD_ACT_ADD); 953 954 for (i = 0; i < 4; i++) { 955 switch (priv->wep_key_len[i]) { 956 case WLAN_KEY_LEN_WEP40: 957 cmd.keytype[i] = CMD_TYPE_WEP_40_BIT; 958 break; 959 case WLAN_KEY_LEN_WEP104: 960 cmd.keytype[i] = CMD_TYPE_WEP_104_BIT; 961 break; 962 default: 963 cmd.keytype[i] = 0; 964 break; 965 } 966 memcpy(cmd.keymaterial[i], priv->wep_key[i], 967 priv->wep_key_len[i]); 968 } 969 970 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 971 } else { 972 /* Otherwise remove all wep keys */ 973 ret = lbs_remove_wep_keys(priv); 974 } 975 976 return ret; 977 } 978 979 980 /* 981 * Enable/Disable RSN status 982 */ 983 static int lbs_enable_rsn(struct lbs_private *priv, int enable) 984 { 985 struct cmd_ds_802_11_enable_rsn cmd; 986 int ret; 987 988 /* 989 * cmd 2f 00 990 * size 0c 00 991 * sequence xx xx 992 * result 00 00 993 * action 01 00 ACT_SET 994 * enable 01 00 995 */ 996 memset(&cmd, 0, sizeof(cmd)); 997 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 998 cmd.action = cpu_to_le16(CMD_ACT_SET); 999 cmd.enable = cpu_to_le16(enable); 1000 1001 ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd); 1002 1003 return ret; 1004 } 1005 1006 1007 /* 1008 * Set WPA/WPA key material 1009 */ 1010 1011 /* 1012 * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we 1013 * get rid of WEXT, this should go into host.h 1014 */ 1015 1016 struct cmd_key_material { 1017 struct cmd_header hdr; 1018 1019 __le16 action; 1020 struct MrvlIEtype_keyParamSet param; 1021 } __packed; 1022 1023 static int lbs_set_key_material(struct lbs_private *priv, 1024 int key_type, int key_info, 1025 const u8 *key, u16 key_len) 1026 { 1027 struct cmd_key_material cmd; 1028 int ret; 1029 1030 /* 1031 * Example for WPA (TKIP): 1032 * 1033 * cmd 5e 00 1034 * size 34 00 1035 * sequence xx xx 1036 * result 00 00 1037 * action 01 00 1038 * TLV type 00 01 key param 1039 * length 00 26 1040 * key type 01 00 TKIP 1041 * key info 06 00 UNICAST | ENABLED 1042 * key len 20 00 1043 * key 32 bytes 1044 */ 1045 memset(&cmd, 0, sizeof(cmd)); 1046 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1047 cmd.action = cpu_to_le16(CMD_ACT_SET); 1048 cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL); 1049 cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4); 1050 cmd.param.keytypeid = cpu_to_le16(key_type); 1051 cmd.param.keyinfo = cpu_to_le16(key_info); 1052 cmd.param.keylen = cpu_to_le16(key_len); 1053 if (key && key_len) 1054 memcpy(cmd.param.key, key, key_len); 1055 1056 ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd); 1057 1058 return ret; 1059 } 1060 1061 1062 /* 1063 * Sets the auth type (open, shared, etc) in the firmware. That 1064 * we use CMD_802_11_AUTHENTICATE is misleading, this firmware 1065 * command doesn't send an authentication frame at all, it just 1066 * stores the auth_type. 1067 */ 1068 static int lbs_set_authtype(struct lbs_private *priv, 1069 struct cfg80211_connect_params *sme) 1070 { 1071 struct cmd_ds_802_11_authenticate cmd; 1072 int ret; 1073 1074 /* 1075 * cmd 11 00 1076 * size 19 00 1077 * sequence xx xx 1078 * result 00 00 1079 * BSS id 00 13 19 80 da 30 1080 * auth type 00 1081 * reserved 00 00 00 00 00 00 00 00 00 00 1082 */ 1083 memset(&cmd, 0, sizeof(cmd)); 1084 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1085 if (sme->bssid) 1086 memcpy(cmd.bssid, sme->bssid, ETH_ALEN); 1087 /* convert auth_type */ 1088 ret = lbs_auth_to_authtype(sme->auth_type); 1089 if (ret < 0) 1090 goto done; 1091 1092 cmd.authtype = ret; 1093 ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd); 1094 1095 done: 1096 return ret; 1097 } 1098 1099 1100 /* 1101 * Create association request 1102 */ 1103 #define LBS_ASSOC_MAX_CMD_SIZE \ 1104 (sizeof(struct cmd_ds_802_11_associate) \ 1105 + LBS_MAX_SSID_TLV_SIZE \ 1106 + LBS_MAX_CHANNEL_TLV_SIZE \ 1107 + LBS_MAX_CF_PARAM_TLV_SIZE \ 1108 + LBS_MAX_AUTH_TYPE_TLV_SIZE \ 1109 + LBS_MAX_WPA_TLV_SIZE) 1110 1111 static int lbs_associate(struct lbs_private *priv, 1112 struct cfg80211_bss *bss, 1113 struct cfg80211_connect_params *sme) 1114 { 1115 struct cmd_ds_802_11_associate_response *resp; 1116 struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE, 1117 GFP_KERNEL); 1118 const u8 *ssid_eid; 1119 size_t len, resp_ie_len; 1120 int status; 1121 int ret; 1122 u8 *pos; 1123 u8 *tmp; 1124 1125 if (!cmd) { 1126 ret = -ENOMEM; 1127 goto done; 1128 } 1129 pos = &cmd->iebuf[0]; 1130 1131 /* 1132 * cmd 50 00 1133 * length 34 00 1134 * sequence xx xx 1135 * result 00 00 1136 * BSS id 00 13 19 80 da 30 1137 * capabilities 11 00 1138 * listen interval 0a 00 1139 * beacon interval 00 00 1140 * DTIM period 00 1141 * TLVs xx (up to 512 bytes) 1142 */ 1143 cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE); 1144 1145 /* Fill in static fields */ 1146 memcpy(cmd->bssid, bss->bssid, ETH_ALEN); 1147 cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL); 1148 cmd->capability = cpu_to_le16(bss->capability); 1149 1150 /* add SSID TLV */ 1151 rcu_read_lock(); 1152 ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); 1153 if (ssid_eid) 1154 pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_eid[1]); 1155 else 1156 lbs_deb_assoc("no SSID\n"); 1157 rcu_read_unlock(); 1158 1159 /* add DS param TLV */ 1160 if (bss->channel) 1161 pos += lbs_add_channel_tlv(pos, bss->channel->hw_value); 1162 else 1163 lbs_deb_assoc("no channel\n"); 1164 1165 /* add (empty) CF param TLV */ 1166 pos += lbs_add_cf_param_tlv(pos); 1167 1168 /* add rates TLV */ 1169 tmp = pos + 4; /* skip Marvell IE header */ 1170 pos += lbs_add_common_rates_tlv(pos, bss); 1171 lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp); 1172 1173 /* add auth type TLV */ 1174 if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9) 1175 pos += lbs_add_auth_type_tlv(pos, sme->auth_type); 1176 1177 /* add WPA/WPA2 TLV */ 1178 if (sme->ie && sme->ie_len) 1179 pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len); 1180 1181 len = sizeof(*cmd) + (u16)(pos - (u8 *) &cmd->iebuf); 1182 cmd->hdr.size = cpu_to_le16(len); 1183 1184 lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd, 1185 le16_to_cpu(cmd->hdr.size)); 1186 1187 /* store for later use */ 1188 memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN); 1189 1190 ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd); 1191 if (ret) 1192 goto done; 1193 1194 /* generate connect message to cfg80211 */ 1195 1196 resp = (void *) cmd; /* recast for easier field access */ 1197 status = le16_to_cpu(resp->statuscode); 1198 1199 /* Older FW versions map the IEEE 802.11 Status Code in the association 1200 * response to the following values returned in resp->statuscode: 1201 * 1202 * IEEE Status Code Marvell Status Code 1203 * 0 -> 0x0000 ASSOC_RESULT_SUCCESS 1204 * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1205 * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1206 * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1207 * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1208 * others -> 0x0003 ASSOC_RESULT_REFUSED 1209 * 1210 * Other response codes: 1211 * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused) 1212 * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for 1213 * association response from the AP) 1214 */ 1215 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1216 switch (status) { 1217 case 0: 1218 break; 1219 case 1: 1220 lbs_deb_assoc("invalid association parameters\n"); 1221 status = WLAN_STATUS_CAPS_UNSUPPORTED; 1222 break; 1223 case 2: 1224 lbs_deb_assoc("timer expired while waiting for AP\n"); 1225 status = WLAN_STATUS_AUTH_TIMEOUT; 1226 break; 1227 case 3: 1228 lbs_deb_assoc("association refused by AP\n"); 1229 status = WLAN_STATUS_ASSOC_DENIED_UNSPEC; 1230 break; 1231 case 4: 1232 lbs_deb_assoc("authentication refused by AP\n"); 1233 status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION; 1234 break; 1235 default: 1236 lbs_deb_assoc("association failure %d\n", status); 1237 /* v5 OLPC firmware does return the AP status code if 1238 * it's not one of the values above. Let that through. 1239 */ 1240 break; 1241 } 1242 } 1243 1244 lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, " 1245 "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode), 1246 le16_to_cpu(resp->capability), le16_to_cpu(resp->aid)); 1247 1248 resp_ie_len = le16_to_cpu(resp->hdr.size) 1249 - sizeof(resp->hdr) 1250 - 6; 1251 cfg80211_connect_result(priv->dev, 1252 priv->assoc_bss, 1253 sme->ie, sme->ie_len, 1254 resp->iebuf, resp_ie_len, 1255 status, 1256 GFP_KERNEL); 1257 1258 if (status == 0) { 1259 /* TODO: get rid of priv->connect_status */ 1260 priv->connect_status = LBS_CONNECTED; 1261 netif_carrier_on(priv->dev); 1262 if (!priv->tx_pending_len) 1263 netif_tx_wake_all_queues(priv->dev); 1264 } 1265 1266 kfree(cmd); 1267 done: 1268 return ret; 1269 } 1270 1271 static struct cfg80211_scan_request * 1272 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme) 1273 { 1274 struct cfg80211_scan_request *creq = NULL; 1275 int i, n_channels = ieee80211_get_num_supported_channels(wiphy); 1276 enum nl80211_band band; 1277 1278 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1279 n_channels * sizeof(void *), 1280 GFP_ATOMIC); 1281 if (!creq) 1282 return NULL; 1283 1284 /* SSIDs come after channels */ 1285 creq->ssids = (void *)&creq->channels[n_channels]; 1286 creq->n_channels = n_channels; 1287 creq->n_ssids = 1; 1288 1289 /* Scan all available channels */ 1290 i = 0; 1291 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1292 int j; 1293 1294 if (!wiphy->bands[band]) 1295 continue; 1296 1297 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1298 /* ignore disabled channels */ 1299 if (wiphy->bands[band]->channels[j].flags & 1300 IEEE80211_CHAN_DISABLED) 1301 continue; 1302 1303 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1304 i++; 1305 } 1306 } 1307 if (i) { 1308 /* Set real number of channels specified in creq->channels[] */ 1309 creq->n_channels = i; 1310 1311 /* Scan for the SSID we're going to connect to */ 1312 memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len); 1313 creq->ssids[0].ssid_len = sme->ssid_len; 1314 } else { 1315 /* No channels found... */ 1316 kfree(creq); 1317 creq = NULL; 1318 } 1319 1320 return creq; 1321 } 1322 1323 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev, 1324 struct cfg80211_connect_params *sme) 1325 { 1326 struct lbs_private *priv = wiphy_priv(wiphy); 1327 struct cfg80211_bss *bss = NULL; 1328 int ret = 0; 1329 u8 preamble = RADIO_PREAMBLE_SHORT; 1330 1331 if (dev == priv->mesh_dev) 1332 return -EOPNOTSUPP; 1333 1334 if (!sme->bssid) { 1335 struct cfg80211_scan_request *creq; 1336 1337 /* 1338 * Scan for the requested network after waiting for existing 1339 * scans to finish. 1340 */ 1341 lbs_deb_assoc("assoc: waiting for existing scans\n"); 1342 wait_event_interruptible_timeout(priv->scan_q, 1343 (priv->scan_req == NULL), 1344 (15 * HZ)); 1345 1346 creq = _new_connect_scan_req(wiphy, sme); 1347 if (!creq) { 1348 ret = -EINVAL; 1349 goto done; 1350 } 1351 1352 lbs_deb_assoc("assoc: scanning for compatible AP\n"); 1353 _internal_start_scan(priv, true, creq); 1354 1355 lbs_deb_assoc("assoc: waiting for scan to complete\n"); 1356 wait_event_interruptible_timeout(priv->scan_q, 1357 (priv->scan_req == NULL), 1358 (15 * HZ)); 1359 lbs_deb_assoc("assoc: scanning completed\n"); 1360 } 1361 1362 /* Find the BSS we want using available scan results */ 1363 bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, 1364 sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS, 1365 IEEE80211_PRIVACY_ANY); 1366 if (!bss) { 1367 wiphy_err(wiphy, "assoc: bss %pM not in scan results\n", 1368 sme->bssid); 1369 ret = -ENOENT; 1370 goto done; 1371 } 1372 lbs_deb_assoc("trying %pM\n", bss->bssid); 1373 lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n", 1374 sme->crypto.cipher_group, 1375 sme->key_idx, sme->key_len); 1376 1377 /* As this is a new connection, clear locally stored WEP keys */ 1378 priv->wep_tx_key = 0; 1379 memset(priv->wep_key, 0, sizeof(priv->wep_key)); 1380 memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len)); 1381 1382 /* set/remove WEP keys */ 1383 switch (sme->crypto.cipher_group) { 1384 case WLAN_CIPHER_SUITE_WEP40: 1385 case WLAN_CIPHER_SUITE_WEP104: 1386 /* Store provided WEP keys in priv-> */ 1387 priv->wep_tx_key = sme->key_idx; 1388 priv->wep_key_len[sme->key_idx] = sme->key_len; 1389 memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len); 1390 /* Set WEP keys and WEP mode */ 1391 lbs_set_wep_keys(priv); 1392 priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE; 1393 lbs_set_mac_control(priv); 1394 /* No RSN mode for WEP */ 1395 lbs_enable_rsn(priv, 0); 1396 break; 1397 case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */ 1398 /* 1399 * If we don't have no WEP, no WPA and no WPA2, 1400 * we remove all keys like in the WPA/WPA2 setup, 1401 * we just don't set RSN. 1402 * 1403 * Therefore: fall-through 1404 */ 1405 case WLAN_CIPHER_SUITE_TKIP: 1406 case WLAN_CIPHER_SUITE_CCMP: 1407 /* Remove WEP keys and WEP mode */ 1408 lbs_remove_wep_keys(priv); 1409 priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE; 1410 lbs_set_mac_control(priv); 1411 1412 /* clear the WPA/WPA2 keys */ 1413 lbs_set_key_material(priv, 1414 KEY_TYPE_ID_WEP, /* doesn't matter */ 1415 KEY_INFO_WPA_UNICAST, 1416 NULL, 0); 1417 lbs_set_key_material(priv, 1418 KEY_TYPE_ID_WEP, /* doesn't matter */ 1419 KEY_INFO_WPA_MCAST, 1420 NULL, 0); 1421 /* RSN mode for WPA/WPA2 */ 1422 lbs_enable_rsn(priv, sme->crypto.cipher_group != 0); 1423 break; 1424 default: 1425 wiphy_err(wiphy, "unsupported cipher group 0x%x\n", 1426 sme->crypto.cipher_group); 1427 ret = -ENOTSUPP; 1428 goto done; 1429 } 1430 1431 ret = lbs_set_authtype(priv, sme); 1432 if (ret == -ENOTSUPP) { 1433 wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type); 1434 goto done; 1435 } 1436 1437 lbs_set_radio(priv, preamble, 1); 1438 1439 /* Do the actual association */ 1440 ret = lbs_associate(priv, bss, sme); 1441 1442 done: 1443 if (bss) 1444 cfg80211_put_bss(wiphy, bss); 1445 return ret; 1446 } 1447 1448 int lbs_disconnect(struct lbs_private *priv, u16 reason) 1449 { 1450 struct cmd_ds_802_11_deauthenticate cmd; 1451 int ret; 1452 1453 memset(&cmd, 0, sizeof(cmd)); 1454 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1455 /* Mildly ugly to use a locally store my own BSSID ... */ 1456 memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN); 1457 cmd.reasoncode = cpu_to_le16(reason); 1458 1459 ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd); 1460 if (ret) 1461 return ret; 1462 1463 cfg80211_disconnected(priv->dev, 1464 reason, 1465 NULL, 0, true, 1466 GFP_KERNEL); 1467 priv->connect_status = LBS_DISCONNECTED; 1468 1469 return 0; 1470 } 1471 1472 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev, 1473 u16 reason_code) 1474 { 1475 struct lbs_private *priv = wiphy_priv(wiphy); 1476 1477 if (dev == priv->mesh_dev) 1478 return -EOPNOTSUPP; 1479 1480 /* store for lbs_cfg_ret_disconnect() */ 1481 priv->disassoc_reason = reason_code; 1482 1483 return lbs_disconnect(priv, reason_code); 1484 } 1485 1486 static int lbs_cfg_set_default_key(struct wiphy *wiphy, 1487 struct net_device *netdev, int link_id, 1488 u8 key_index, bool unicast, 1489 bool multicast) 1490 { 1491 struct lbs_private *priv = wiphy_priv(wiphy); 1492 1493 if (netdev == priv->mesh_dev) 1494 return -EOPNOTSUPP; 1495 1496 if (key_index != priv->wep_tx_key) { 1497 lbs_deb_assoc("set_default_key: to %d\n", key_index); 1498 priv->wep_tx_key = key_index; 1499 lbs_set_wep_keys(priv); 1500 } 1501 1502 return 0; 1503 } 1504 1505 1506 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev, 1507 int link_id, u8 idx, bool pairwise, 1508 const u8 *mac_addr, struct key_params *params) 1509 { 1510 struct lbs_private *priv = wiphy_priv(wiphy); 1511 u16 key_info; 1512 u16 key_type; 1513 int ret = 0; 1514 1515 if (netdev == priv->mesh_dev) 1516 return -EOPNOTSUPP; 1517 1518 lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n", 1519 params->cipher, mac_addr); 1520 lbs_deb_assoc("add_key: key index %d, key len %d\n", 1521 idx, params->key_len); 1522 if (params->key_len) 1523 lbs_deb_hex(LBS_DEB_CFG80211, "KEY", 1524 params->key, params->key_len); 1525 1526 lbs_deb_assoc("add_key: seq len %d\n", params->seq_len); 1527 if (params->seq_len) 1528 lbs_deb_hex(LBS_DEB_CFG80211, "SEQ", 1529 params->seq, params->seq_len); 1530 1531 switch (params->cipher) { 1532 case WLAN_CIPHER_SUITE_WEP40: 1533 case WLAN_CIPHER_SUITE_WEP104: 1534 /* actually compare if something has changed ... */ 1535 if ((priv->wep_key_len[idx] != params->key_len) || 1536 memcmp(priv->wep_key[idx], 1537 params->key, params->key_len) != 0) { 1538 priv->wep_key_len[idx] = params->key_len; 1539 memcpy(priv->wep_key[idx], 1540 params->key, params->key_len); 1541 lbs_set_wep_keys(priv); 1542 } 1543 break; 1544 case WLAN_CIPHER_SUITE_TKIP: 1545 case WLAN_CIPHER_SUITE_CCMP: 1546 key_info = KEY_INFO_WPA_ENABLED | ((idx == 0) 1547 ? KEY_INFO_WPA_UNICAST 1548 : KEY_INFO_WPA_MCAST); 1549 key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP) 1550 ? KEY_TYPE_ID_TKIP 1551 : KEY_TYPE_ID_AES; 1552 lbs_set_key_material(priv, 1553 key_type, 1554 key_info, 1555 params->key, params->key_len); 1556 break; 1557 default: 1558 wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher); 1559 ret = -ENOTSUPP; 1560 break; 1561 } 1562 1563 return ret; 1564 } 1565 1566 1567 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev, 1568 int link_id, u8 key_index, bool pairwise, 1569 const u8 *mac_addr) 1570 { 1571 1572 lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n", 1573 key_index, mac_addr); 1574 1575 #ifdef TODO 1576 struct lbs_private *priv = wiphy_priv(wiphy); 1577 /* 1578 * I think can keep this a NO-OP, because: 1579 1580 * - we clear all keys whenever we do lbs_cfg_connect() anyway 1581 * - neither "iw" nor "wpa_supplicant" won't call this during 1582 * an ongoing connection 1583 * - TODO: but I have to check if this is still true when 1584 * I set the AP to periodic re-keying 1585 * - we've not kzallec() something when we've added a key at 1586 * lbs_cfg_connect() or lbs_cfg_add_key(). 1587 * 1588 * This causes lbs_cfg_del_key() only called at disconnect time, 1589 * where we'd just waste time deleting a key that is not going 1590 * to be used anyway. 1591 */ 1592 if (key_index < 3 && priv->wep_key_len[key_index]) { 1593 priv->wep_key_len[key_index] = 0; 1594 lbs_set_wep_keys(priv); 1595 } 1596 #endif 1597 1598 return 0; 1599 } 1600 1601 1602 /* 1603 * Get station 1604 */ 1605 1606 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev, 1607 const u8 *mac, struct station_info *sinfo) 1608 { 1609 struct lbs_private *priv = wiphy_priv(wiphy); 1610 s8 signal, noise; 1611 int ret; 1612 size_t i; 1613 1614 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) | 1615 BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | 1616 BIT_ULL(NL80211_STA_INFO_RX_BYTES) | 1617 BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 1618 sinfo->tx_bytes = priv->dev->stats.tx_bytes; 1619 sinfo->tx_packets = priv->dev->stats.tx_packets; 1620 sinfo->rx_bytes = priv->dev->stats.rx_bytes; 1621 sinfo->rx_packets = priv->dev->stats.rx_packets; 1622 1623 /* Get current RSSI */ 1624 ret = lbs_get_rssi(priv, &signal, &noise); 1625 if (ret == 0) { 1626 sinfo->signal = signal; 1627 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 1628 } 1629 1630 /* Convert priv->cur_rate from hw_value to NL80211 value */ 1631 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 1632 if (priv->cur_rate == lbs_rates[i].hw_value) { 1633 sinfo->txrate.legacy = lbs_rates[i].bitrate; 1634 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 1635 break; 1636 } 1637 } 1638 1639 return 0; 1640 } 1641 1642 1643 1644 1645 /* 1646 * Change interface 1647 */ 1648 1649 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev, 1650 enum nl80211_iftype type, 1651 struct vif_params *params) 1652 { 1653 struct lbs_private *priv = wiphy_priv(wiphy); 1654 int ret = 0; 1655 1656 if (dev == priv->mesh_dev) 1657 return -EOPNOTSUPP; 1658 1659 switch (type) { 1660 case NL80211_IFTYPE_MONITOR: 1661 case NL80211_IFTYPE_STATION: 1662 case NL80211_IFTYPE_ADHOC: 1663 break; 1664 default: 1665 return -EOPNOTSUPP; 1666 } 1667 1668 if (priv->iface_running) 1669 ret = lbs_set_iface_type(priv, type); 1670 1671 if (!ret) 1672 priv->wdev->iftype = type; 1673 1674 return ret; 1675 } 1676 1677 1678 1679 /* 1680 * IBSS (Ad-Hoc) 1681 */ 1682 1683 /* 1684 * The firmware needs the following bits masked out of the beacon-derived 1685 * capability field when associating/joining to a BSS: 1686 * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused) 1687 */ 1688 #define CAPINFO_MASK (~(0xda00)) 1689 1690 1691 static void lbs_join_post(struct lbs_private *priv, 1692 struct cfg80211_ibss_params *params, 1693 u8 *bssid, u16 capability) 1694 { 1695 u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */ 1696 2 + 4 + /* basic rates */ 1697 2 + 1 + /* DS parameter */ 1698 2 + 2 + /* atim */ 1699 2 + 8]; /* extended rates */ 1700 u8 *fake = fake_ie; 1701 struct cfg80211_bss *bss; 1702 1703 /* 1704 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get 1705 * the real IE from the firmware. So we fabricate a fake IE based on 1706 * what the firmware actually sends (sniffed with wireshark). 1707 */ 1708 /* Fake SSID IE */ 1709 *fake++ = WLAN_EID_SSID; 1710 *fake++ = params->ssid_len; 1711 memcpy(fake, params->ssid, params->ssid_len); 1712 fake += params->ssid_len; 1713 /* Fake supported basic rates IE */ 1714 *fake++ = WLAN_EID_SUPP_RATES; 1715 *fake++ = 4; 1716 *fake++ = 0x82; 1717 *fake++ = 0x84; 1718 *fake++ = 0x8b; 1719 *fake++ = 0x96; 1720 /* Fake DS channel IE */ 1721 *fake++ = WLAN_EID_DS_PARAMS; 1722 *fake++ = 1; 1723 *fake++ = params->chandef.chan->hw_value; 1724 /* Fake IBSS params IE */ 1725 *fake++ = WLAN_EID_IBSS_PARAMS; 1726 *fake++ = 2; 1727 *fake++ = 0; /* ATIM=0 */ 1728 *fake++ = 0; 1729 /* Fake extended rates IE, TODO: don't add this for 802.11b only, 1730 * but I don't know how this could be checked */ 1731 *fake++ = WLAN_EID_EXT_SUPP_RATES; 1732 *fake++ = 8; 1733 *fake++ = 0x0c; 1734 *fake++ = 0x12; 1735 *fake++ = 0x18; 1736 *fake++ = 0x24; 1737 *fake++ = 0x30; 1738 *fake++ = 0x48; 1739 *fake++ = 0x60; 1740 *fake++ = 0x6c; 1741 lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie); 1742 1743 bss = cfg80211_inform_bss(priv->wdev->wiphy, 1744 params->chandef.chan, 1745 CFG80211_BSS_FTYPE_UNKNOWN, 1746 bssid, 1747 0, 1748 capability, 1749 params->beacon_interval, 1750 fake_ie, fake - fake_ie, 1751 0, GFP_KERNEL); 1752 cfg80211_put_bss(priv->wdev->wiphy, bss); 1753 1754 cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan, 1755 GFP_KERNEL); 1756 1757 /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */ 1758 priv->connect_status = LBS_CONNECTED; 1759 netif_carrier_on(priv->dev); 1760 if (!priv->tx_pending_len) 1761 netif_wake_queue(priv->dev); 1762 } 1763 1764 static int lbs_ibss_join_existing(struct lbs_private *priv, 1765 struct cfg80211_ibss_params *params, 1766 struct cfg80211_bss *bss) 1767 { 1768 const u8 *rates_eid; 1769 struct cmd_ds_802_11_ad_hoc_join cmd; 1770 u8 preamble = RADIO_PREAMBLE_SHORT; 1771 int ret = 0; 1772 int hw, i; 1773 u8 rates_max; 1774 u8 *rates; 1775 1776 /* TODO: set preamble based on scan result */ 1777 ret = lbs_set_radio(priv, preamble, 1); 1778 if (ret) 1779 goto out; 1780 1781 /* 1782 * Example CMD_802_11_AD_HOC_JOIN command: 1783 * 1784 * command 2c 00 CMD_802_11_AD_HOC_JOIN 1785 * size 65 00 1786 * sequence xx xx 1787 * result 00 00 1788 * bssid 02 27 27 97 2f 96 1789 * ssid 49 42 53 53 00 00 00 00 1790 * 00 00 00 00 00 00 00 00 1791 * 00 00 00 00 00 00 00 00 1792 * 00 00 00 00 00 00 00 00 1793 * type 02 CMD_BSS_TYPE_IBSS 1794 * beacon period 64 00 1795 * dtim period 00 1796 * timestamp 00 00 00 00 00 00 00 00 1797 * localtime 00 00 00 00 00 00 00 00 1798 * IE DS 03 1799 * IE DS len 01 1800 * IE DS channel 01 1801 * reserveed 00 00 00 00 1802 * IE IBSS 06 1803 * IE IBSS len 02 1804 * IE IBSS atim 00 00 1805 * reserved 00 00 00 00 1806 * capability 02 00 1807 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00 1808 * fail timeout ff 00 1809 * probe delay 00 00 1810 */ 1811 memset(&cmd, 0, sizeof(cmd)); 1812 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1813 1814 memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN); 1815 memcpy(cmd.bss.ssid, params->ssid, params->ssid_len); 1816 cmd.bss.type = CMD_BSS_TYPE_IBSS; 1817 cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval); 1818 cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS; 1819 cmd.bss.ds.header.len = 1; 1820 cmd.bss.ds.channel = params->chandef.chan->hw_value; 1821 cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1822 cmd.bss.ibss.header.len = 2; 1823 cmd.bss.ibss.atimwindow = 0; 1824 cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK); 1825 1826 /* set rates to the intersection of our rates and the rates in the 1827 bss */ 1828 rcu_read_lock(); 1829 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 1830 if (!rates_eid) { 1831 lbs_add_rates(cmd.bss.rates); 1832 } else { 1833 rates_max = rates_eid[1]; 1834 if (rates_max > MAX_RATES) { 1835 lbs_deb_join("invalid rates"); 1836 rcu_read_unlock(); 1837 ret = -EINVAL; 1838 goto out; 1839 } 1840 rates = cmd.bss.rates; 1841 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 1842 u8 hw_rate = lbs_rates[hw].bitrate / 5; 1843 for (i = 0; i < rates_max; i++) { 1844 if (hw_rate == (rates_eid[i+2] & 0x7f)) { 1845 u8 rate = rates_eid[i+2]; 1846 if (rate == 0x02 || rate == 0x04 || 1847 rate == 0x0b || rate == 0x16) 1848 rate |= 0x80; 1849 *rates++ = rate; 1850 } 1851 } 1852 } 1853 } 1854 rcu_read_unlock(); 1855 1856 /* Only v8 and below support setting this */ 1857 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1858 cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT); 1859 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1860 } 1861 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd); 1862 if (ret) 1863 goto out; 1864 1865 /* 1866 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1867 * 1868 * response 2c 80 1869 * size 09 00 1870 * sequence xx xx 1871 * result 00 00 1872 * reserved 00 1873 */ 1874 lbs_join_post(priv, params, bss->bssid, bss->capability); 1875 1876 out: 1877 return ret; 1878 } 1879 1880 1881 1882 static int lbs_ibss_start_new(struct lbs_private *priv, 1883 struct cfg80211_ibss_params *params) 1884 { 1885 struct cmd_ds_802_11_ad_hoc_start cmd; 1886 struct cmd_ds_802_11_ad_hoc_result *resp = 1887 (struct cmd_ds_802_11_ad_hoc_result *) &cmd; 1888 u8 preamble = RADIO_PREAMBLE_SHORT; 1889 int ret = 0; 1890 u16 capability; 1891 1892 ret = lbs_set_radio(priv, preamble, 1); 1893 if (ret) 1894 goto out; 1895 1896 /* 1897 * Example CMD_802_11_AD_HOC_START command: 1898 * 1899 * command 2b 00 CMD_802_11_AD_HOC_START 1900 * size b1 00 1901 * sequence xx xx 1902 * result 00 00 1903 * ssid 54 45 53 54 00 00 00 00 1904 * 00 00 00 00 00 00 00 00 1905 * 00 00 00 00 00 00 00 00 1906 * 00 00 00 00 00 00 00 00 1907 * bss type 02 1908 * beacon period 64 00 1909 * dtim period 00 1910 * IE IBSS 06 1911 * IE IBSS len 02 1912 * IE IBSS atim 00 00 1913 * reserved 00 00 00 00 1914 * IE DS 03 1915 * IE DS len 01 1916 * IE DS channel 01 1917 * reserved 00 00 00 00 1918 * probe delay 00 00 1919 * capability 02 00 1920 * rates 82 84 8b 96 (basic rates with have bit 7 set) 1921 * 0c 12 18 24 30 48 60 6c 1922 * padding 100 bytes 1923 */ 1924 memset(&cmd, 0, sizeof(cmd)); 1925 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1926 memcpy(cmd.ssid, params->ssid, params->ssid_len); 1927 cmd.bsstype = CMD_BSS_TYPE_IBSS; 1928 cmd.beaconperiod = cpu_to_le16(params->beacon_interval); 1929 cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1930 cmd.ibss.header.len = 2; 1931 cmd.ibss.atimwindow = 0; 1932 cmd.ds.header.id = WLAN_EID_DS_PARAMS; 1933 cmd.ds.header.len = 1; 1934 cmd.ds.channel = params->chandef.chan->hw_value; 1935 /* Only v8 and below support setting probe delay */ 1936 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) 1937 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1938 /* TODO: mix in WLAN_CAPABILITY_PRIVACY */ 1939 capability = WLAN_CAPABILITY_IBSS; 1940 cmd.capability = cpu_to_le16(capability); 1941 lbs_add_rates(cmd.rates); 1942 1943 1944 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd); 1945 if (ret) 1946 goto out; 1947 1948 /* 1949 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1950 * 1951 * response 2b 80 1952 * size 14 00 1953 * sequence xx xx 1954 * result 00 00 1955 * reserved 00 1956 * bssid 02 2b 7b 0f 86 0e 1957 */ 1958 lbs_join_post(priv, params, resp->bssid, capability); 1959 1960 out: 1961 return ret; 1962 } 1963 1964 1965 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev, 1966 struct cfg80211_ibss_params *params) 1967 { 1968 struct lbs_private *priv = wiphy_priv(wiphy); 1969 int ret = 0; 1970 struct cfg80211_bss *bss; 1971 1972 if (dev == priv->mesh_dev) 1973 return -EOPNOTSUPP; 1974 1975 if (!params->chandef.chan) { 1976 ret = -ENOTSUPP; 1977 goto out; 1978 } 1979 1980 ret = lbs_set_channel(priv, params->chandef.chan->hw_value); 1981 if (ret) 1982 goto out; 1983 1984 /* Search if someone is beaconing. This assumes that the 1985 * bss list is populated already */ 1986 bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid, 1987 params->ssid, params->ssid_len, 1988 IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY); 1989 1990 if (bss) { 1991 ret = lbs_ibss_join_existing(priv, params, bss); 1992 cfg80211_put_bss(wiphy, bss); 1993 } else 1994 ret = lbs_ibss_start_new(priv, params); 1995 1996 1997 out: 1998 return ret; 1999 } 2000 2001 2002 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev) 2003 { 2004 struct lbs_private *priv = wiphy_priv(wiphy); 2005 struct cmd_ds_802_11_ad_hoc_stop cmd; 2006 int ret = 0; 2007 2008 if (dev == priv->mesh_dev) 2009 return -EOPNOTSUPP; 2010 2011 memset(&cmd, 0, sizeof(cmd)); 2012 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 2013 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd); 2014 2015 /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */ 2016 lbs_mac_event_disconnected(priv, true); 2017 2018 return ret; 2019 } 2020 2021 2022 2023 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, 2024 bool enabled, int timeout) 2025 { 2026 struct lbs_private *priv = wiphy_priv(wiphy); 2027 2028 if (!(priv->fwcapinfo & FW_CAPINFO_PS)) { 2029 if (!enabled) 2030 return 0; 2031 else 2032 return -EINVAL; 2033 } 2034 /* firmware does not work well with too long latency with power saving 2035 * enabled, so do not enable it if there is only polling, no 2036 * interrupts (like in some sdio hosts which can only 2037 * poll for sdio irqs) 2038 */ 2039 if (priv->is_polling) { 2040 if (!enabled) 2041 return 0; 2042 else 2043 return -EINVAL; 2044 } 2045 if (!enabled) { 2046 priv->psmode = LBS802_11POWERMODECAM; 2047 if (priv->psstate != PS_STATE_FULL_POWER) 2048 lbs_set_ps_mode(priv, 2049 PS_MODE_ACTION_EXIT_PS, 2050 true); 2051 return 0; 2052 } 2053 if (priv->psmode != LBS802_11POWERMODECAM) 2054 return 0; 2055 priv->psmode = LBS802_11POWERMODEMAX_PSP; 2056 if (priv->connect_status == LBS_CONNECTED) 2057 lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true); 2058 return 0; 2059 } 2060 2061 /* 2062 * Initialization 2063 */ 2064 2065 static const struct cfg80211_ops lbs_cfg80211_ops = { 2066 .set_monitor_channel = lbs_cfg_set_monitor_channel, 2067 .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel, 2068 .scan = lbs_cfg_scan, 2069 .connect = lbs_cfg_connect, 2070 .disconnect = lbs_cfg_disconnect, 2071 .add_key = lbs_cfg_add_key, 2072 .del_key = lbs_cfg_del_key, 2073 .set_default_key = lbs_cfg_set_default_key, 2074 .get_station = lbs_cfg_get_station, 2075 .change_virtual_intf = lbs_change_intf, 2076 .join_ibss = lbs_join_ibss, 2077 .leave_ibss = lbs_leave_ibss, 2078 .set_power_mgmt = lbs_set_power_mgmt, 2079 }; 2080 2081 2082 /* 2083 * At this time lbs_private *priv doesn't even exist, so we just allocate 2084 * memory and don't initialize the wiphy further. This is postponed until we 2085 * can talk to the firmware and happens at registration time in 2086 * lbs_cfg_wiphy_register(). 2087 */ 2088 struct wireless_dev *lbs_cfg_alloc(struct device *dev) 2089 { 2090 int ret = 0; 2091 struct wireless_dev *wdev; 2092 2093 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); 2094 if (!wdev) 2095 return ERR_PTR(-ENOMEM); 2096 2097 wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private)); 2098 if (!wdev->wiphy) { 2099 dev_err(dev, "cannot allocate wiphy\n"); 2100 ret = -ENOMEM; 2101 goto err_wiphy_new; 2102 } 2103 2104 return wdev; 2105 2106 err_wiphy_new: 2107 kfree(wdev); 2108 return ERR_PTR(ret); 2109 } 2110 2111 2112 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv) 2113 { 2114 struct region_code_mapping { 2115 const char *cn; 2116 int code; 2117 }; 2118 2119 /* Section 5.17.2 */ 2120 static const struct region_code_mapping regmap[] = { 2121 {"US ", 0x10}, /* US FCC */ 2122 {"CA ", 0x20}, /* Canada */ 2123 {"EU ", 0x30}, /* ETSI */ 2124 {"ES ", 0x31}, /* Spain */ 2125 {"FR ", 0x32}, /* France */ 2126 {"JP ", 0x40}, /* Japan */ 2127 }; 2128 size_t i; 2129 2130 for (i = 0; i < ARRAY_SIZE(regmap); i++) 2131 if (regmap[i].code == priv->regioncode) { 2132 regulatory_hint(priv->wdev->wiphy, regmap[i].cn); 2133 break; 2134 } 2135 } 2136 2137 static void lbs_reg_notifier(struct wiphy *wiphy, 2138 struct regulatory_request *request) 2139 { 2140 struct lbs_private *priv = wiphy_priv(wiphy); 2141 2142 memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2)); 2143 if (lbs_iface_active(priv)) 2144 lbs_set_11d_domain_info(priv); 2145 } 2146 2147 /* 2148 * This function get's called after lbs_setup_firmware() determined the 2149 * firmware capabities. So we can setup the wiphy according to our 2150 * hardware/firmware. 2151 */ 2152 int lbs_cfg_register(struct lbs_private *priv) 2153 { 2154 struct wireless_dev *wdev = priv->wdev; 2155 int ret; 2156 2157 wdev->wiphy->max_scan_ssids = 1; 2158 wdev->wiphy->max_scan_ie_len = 256; 2159 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 2160 2161 wdev->wiphy->interface_modes = 2162 BIT(NL80211_IFTYPE_STATION) | 2163 BIT(NL80211_IFTYPE_ADHOC); 2164 if (lbs_rtap_supported(priv)) 2165 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); 2166 if (lbs_mesh_activated(priv)) 2167 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT); 2168 2169 wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz; 2170 2171 /* 2172 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have 2173 * never seen a firmware without WPA 2174 */ 2175 wdev->wiphy->cipher_suites = cipher_suites; 2176 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 2177 wdev->wiphy->reg_notifier = lbs_reg_notifier; 2178 2179 ret = wiphy_register(wdev->wiphy); 2180 if (ret < 0) 2181 pr_err("cannot register wiphy device\n"); 2182 2183 priv->wiphy_registered = true; 2184 2185 ret = register_netdev(priv->dev); 2186 if (ret) 2187 pr_err("cannot register network device\n"); 2188 2189 INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker); 2190 2191 lbs_cfg_set_regulatory_hint(priv); 2192 2193 return ret; 2194 } 2195 2196 void lbs_scan_deinit(struct lbs_private *priv) 2197 { 2198 cancel_delayed_work_sync(&priv->scan_work); 2199 } 2200 2201 2202 void lbs_cfg_free(struct lbs_private *priv) 2203 { 2204 struct wireless_dev *wdev = priv->wdev; 2205 2206 if (!wdev) 2207 return; 2208 2209 if (priv->wiphy_registered) 2210 wiphy_unregister(wdev->wiphy); 2211 2212 if (wdev->wiphy) 2213 wiphy_free(wdev->wiphy); 2214 2215 kfree(wdev); 2216 } 2217