1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Implement cfg80211 ("iw") support. 4 * 5 * Copyright (C) 2009 M&N Solutions GmbH, 61191 Rosbach, Germany 6 * Holger Schurig <hs4233@mail.mn-solutions.de> 7 * 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/hardirq.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/slab.h> 16 #include <linux/ieee80211.h> 17 #include <net/cfg80211.h> 18 #include <linux/unaligned.h> 19 20 #include "decl.h" 21 #include "cfg.h" 22 #include "cmd.h" 23 #include "mesh.h" 24 25 26 #define CHAN2G(_channel, _freq, _flags) { \ 27 .band = NL80211_BAND_2GHZ, \ 28 .center_freq = (_freq), \ 29 .hw_value = (_channel), \ 30 .flags = (_flags), \ 31 .max_antenna_gain = 0, \ 32 .max_power = 30, \ 33 } 34 35 static struct ieee80211_channel lbs_2ghz_channels[] = { 36 CHAN2G(1, 2412, 0), 37 CHAN2G(2, 2417, 0), 38 CHAN2G(3, 2422, 0), 39 CHAN2G(4, 2427, 0), 40 CHAN2G(5, 2432, 0), 41 CHAN2G(6, 2437, 0), 42 CHAN2G(7, 2442, 0), 43 CHAN2G(8, 2447, 0), 44 CHAN2G(9, 2452, 0), 45 CHAN2G(10, 2457, 0), 46 CHAN2G(11, 2462, 0), 47 CHAN2G(12, 2467, 0), 48 CHAN2G(13, 2472, 0), 49 CHAN2G(14, 2484, 0), 50 }; 51 52 #define RATETAB_ENT(_rate, _hw_value, _flags) { \ 53 .bitrate = (_rate), \ 54 .hw_value = (_hw_value), \ 55 .flags = (_flags), \ 56 } 57 58 59 /* Table 6 in section 3.2.1.1 */ 60 static struct ieee80211_rate lbs_rates[] = { 61 RATETAB_ENT(10, 0, 0), 62 RATETAB_ENT(20, 1, 0), 63 RATETAB_ENT(55, 2, 0), 64 RATETAB_ENT(110, 3, 0), 65 RATETAB_ENT(60, 9, 0), 66 RATETAB_ENT(90, 6, 0), 67 RATETAB_ENT(120, 7, 0), 68 RATETAB_ENT(180, 8, 0), 69 RATETAB_ENT(240, 9, 0), 70 RATETAB_ENT(360, 10, 0), 71 RATETAB_ENT(480, 11, 0), 72 RATETAB_ENT(540, 12, 0), 73 }; 74 75 static struct ieee80211_supported_band lbs_band_2ghz = { 76 .channels = lbs_2ghz_channels, 77 .n_channels = ARRAY_SIZE(lbs_2ghz_channels), 78 .bitrates = lbs_rates, 79 .n_bitrates = ARRAY_SIZE(lbs_rates), 80 }; 81 82 83 static const u32 cipher_suites[] = { 84 WLAN_CIPHER_SUITE_WEP40, 85 WLAN_CIPHER_SUITE_WEP104, 86 WLAN_CIPHER_SUITE_TKIP, 87 WLAN_CIPHER_SUITE_CCMP, 88 }; 89 90 /* Time to stay on the channel */ 91 #define LBS_DWELL_PASSIVE 100 92 #define LBS_DWELL_ACTIVE 40 93 94 95 /*************************************************************************** 96 * Misc utility functions 97 * 98 * TLVs are Marvell specific. They are very similar to IEs, they have the 99 * same structure: type, length, data*. The only difference: for IEs, the 100 * type and length are u8, but for TLVs they're __le16. 101 */ 102 103 /* 104 * Convert NL80211's auth_type to the one from Libertas, see chapter 5.9.1 105 * in the firmware spec 106 */ 107 static int lbs_auth_to_authtype(enum nl80211_auth_type auth_type) 108 { 109 int ret = -ENOTSUPP; 110 111 switch (auth_type) { 112 case NL80211_AUTHTYPE_OPEN_SYSTEM: 113 case NL80211_AUTHTYPE_SHARED_KEY: 114 ret = auth_type; 115 break; 116 case NL80211_AUTHTYPE_AUTOMATIC: 117 ret = NL80211_AUTHTYPE_OPEN_SYSTEM; 118 break; 119 case NL80211_AUTHTYPE_NETWORK_EAP: 120 ret = 0x80; 121 break; 122 default: 123 /* silence compiler */ 124 break; 125 } 126 return ret; 127 } 128 129 130 /* 131 * Various firmware commands need the list of supported rates, but with 132 * the hight-bit set for basic rates 133 */ 134 static int lbs_add_rates(u8 *rates) 135 { 136 size_t i; 137 138 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 139 u8 rate = lbs_rates[i].bitrate / 5; 140 if (rate == 0x02 || rate == 0x04 || 141 rate == 0x0b || rate == 0x16) 142 rate |= 0x80; 143 rates[i] = rate; 144 } 145 return ARRAY_SIZE(lbs_rates); 146 } 147 148 149 /*************************************************************************** 150 * TLV utility functions 151 * 152 * TLVs are Marvell specific. They are very similar to IEs, they have the 153 * same structure: type, length, data*. The only difference: for IEs, the 154 * type and length are u8, but for TLVs they're __le16. 155 */ 156 157 158 /* 159 * Add ssid TLV 160 */ 161 #define LBS_MAX_SSID_TLV_SIZE \ 162 (sizeof(struct mrvl_ie_header) \ 163 + IEEE80211_MAX_SSID_LEN) 164 165 static int lbs_add_ssid_tlv(u8 *tlv, const u8 *ssid, int ssid_len) 166 { 167 struct mrvl_ie_ssid_param_set *ssid_tlv = (void *)tlv; 168 169 /* 170 * TLV-ID SSID 00 00 171 * length 06 00 172 * ssid 4d 4e 54 45 53 54 173 */ 174 ssid_tlv->header.type = cpu_to_le16(TLV_TYPE_SSID); 175 ssid_tlv->header.len = cpu_to_le16(ssid_len); 176 memcpy(ssid_tlv->ssid, ssid, ssid_len); 177 return sizeof(ssid_tlv->header) + ssid_len; 178 } 179 180 181 /* 182 * Add channel list TLV (section 8.4.2) 183 * 184 * Actual channel data comes from priv->wdev->wiphy->channels. 185 */ 186 #define LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 187 (sizeof(struct mrvl_ie_header) \ 188 + (LBS_SCAN_BEFORE_NAP * sizeof(struct chanscanparamset))) 189 190 static int lbs_add_channel_list_tlv(struct lbs_private *priv, u8 *tlv, 191 int last_channel, int active_scan) 192 { 193 int chanscanparamsize = sizeof(struct chanscanparamset) * 194 (last_channel - priv->scan_channel); 195 196 struct mrvl_ie_header *header = (void *) tlv; 197 198 /* 199 * TLV-ID CHANLIST 01 01 200 * length 0e 00 201 * channel 00 01 00 00 00 64 00 202 * radio type 00 203 * channel 01 204 * scan type 00 205 * min scan time 00 00 206 * max scan time 64 00 207 * channel 2 00 02 00 00 00 64 00 208 * 209 */ 210 211 header->type = cpu_to_le16(TLV_TYPE_CHANLIST); 212 header->len = cpu_to_le16(chanscanparamsize); 213 tlv += sizeof(struct mrvl_ie_header); 214 215 /* lbs_deb_scan("scan: channels %d to %d\n", priv->scan_channel, 216 last_channel); */ 217 memset(tlv, 0, chanscanparamsize); 218 219 while (priv->scan_channel < last_channel) { 220 struct chanscanparamset *param = (void *) tlv; 221 222 param->radiotype = CMD_SCAN_RADIO_TYPE_BG; 223 param->channumber = 224 priv->scan_req->channels[priv->scan_channel]->hw_value; 225 if (active_scan) { 226 param->maxscantime = cpu_to_le16(LBS_DWELL_ACTIVE); 227 } else { 228 param->chanscanmode.passivescan = 1; 229 param->maxscantime = cpu_to_le16(LBS_DWELL_PASSIVE); 230 } 231 tlv += sizeof(struct chanscanparamset); 232 priv->scan_channel++; 233 } 234 return sizeof(struct mrvl_ie_header) + chanscanparamsize; 235 } 236 237 238 /* 239 * Add rates TLV 240 * 241 * The rates are in lbs_bg_rates[], but for the 802.11b 242 * rates the high bit is set. We add this TLV only because 243 * there's a firmware which otherwise doesn't report all 244 * APs in range. 245 */ 246 #define LBS_MAX_RATES_TLV_SIZE \ 247 (sizeof(struct mrvl_ie_header) \ 248 + (ARRAY_SIZE(lbs_rates))) 249 250 /* Adds a TLV with all rates the hardware supports */ 251 static int lbs_add_supported_rates_tlv(u8 *tlv) 252 { 253 size_t i; 254 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 255 256 /* 257 * TLV-ID RATES 01 00 258 * length 0e 00 259 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 260 */ 261 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 262 tlv += sizeof(rate_tlv->header); 263 i = lbs_add_rates(tlv); 264 tlv += i; 265 rate_tlv->header.len = cpu_to_le16(i); 266 return sizeof(rate_tlv->header) + i; 267 } 268 269 /* Add common rates from a TLV and return the new end of the TLV */ 270 static u8 * 271 add_ie_rates(u8 *tlv, const u8 *ie, int *nrates) 272 { 273 int hw, ap, ap_max = ie[1]; 274 u8 hw_rate; 275 276 if (ap_max > MAX_RATES) { 277 lbs_deb_assoc("invalid rates\n"); 278 return tlv; 279 } 280 /* Advance past IE header */ 281 ie += 2; 282 283 lbs_deb_hex(LBS_DEB_ASSOC, "AP IE Rates", (u8 *) ie, ap_max); 284 285 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 286 hw_rate = lbs_rates[hw].bitrate / 5; 287 for (ap = 0; ap < ap_max; ap++) { 288 if (hw_rate == (ie[ap] & 0x7f)) { 289 *tlv++ = ie[ap]; 290 *nrates = *nrates + 1; 291 } 292 } 293 } 294 return tlv; 295 } 296 297 /* 298 * Adds a TLV with all rates the hardware *and* BSS supports. 299 */ 300 static int lbs_add_common_rates_tlv(u8 *tlv, struct cfg80211_bss *bss) 301 { 302 struct mrvl_ie_rates_param_set *rate_tlv = (void *)tlv; 303 const u8 *rates_eid, *ext_rates_eid; 304 int n = 0; 305 306 rcu_read_lock(); 307 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 308 ext_rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_EXT_SUPP_RATES); 309 310 /* 311 * 01 00 TLV_TYPE_RATES 312 * 04 00 len 313 * 82 84 8b 96 rates 314 */ 315 rate_tlv->header.type = cpu_to_le16(TLV_TYPE_RATES); 316 tlv += sizeof(rate_tlv->header); 317 318 /* Add basic rates */ 319 if (rates_eid) { 320 tlv = add_ie_rates(tlv, rates_eid, &n); 321 322 /* Add extended rates, if any */ 323 if (ext_rates_eid) 324 tlv = add_ie_rates(tlv, ext_rates_eid, &n); 325 } else { 326 lbs_deb_assoc("assoc: bss had no basic rate IE\n"); 327 /* Fallback: add basic 802.11b rates */ 328 *tlv++ = 0x82; 329 *tlv++ = 0x84; 330 *tlv++ = 0x8b; 331 *tlv++ = 0x96; 332 n = 4; 333 } 334 rcu_read_unlock(); 335 336 rate_tlv->header.len = cpu_to_le16(n); 337 return sizeof(rate_tlv->header) + n; 338 } 339 340 341 /* 342 * Add auth type TLV. 343 * 344 * This is only needed for newer firmware (V9 and up). 345 */ 346 #define LBS_MAX_AUTH_TYPE_TLV_SIZE \ 347 sizeof(struct mrvl_ie_auth_type) 348 349 static int lbs_add_auth_type_tlv(u8 *tlv, enum nl80211_auth_type auth_type) 350 { 351 struct mrvl_ie_auth_type *auth = (void *) tlv; 352 353 /* 354 * 1f 01 TLV_TYPE_AUTH_TYPE 355 * 01 00 len 356 * 01 auth type 357 */ 358 auth->header.type = cpu_to_le16(TLV_TYPE_AUTH_TYPE); 359 auth->header.len = cpu_to_le16(sizeof(*auth)-sizeof(auth->header)); 360 auth->auth = cpu_to_le16(lbs_auth_to_authtype(auth_type)); 361 return sizeof(*auth); 362 } 363 364 365 /* 366 * Add channel (phy ds) TLV 367 */ 368 #define LBS_MAX_CHANNEL_TLV_SIZE \ 369 sizeof(struct mrvl_ie_header) 370 371 static int lbs_add_channel_tlv(u8 *tlv, u8 channel) 372 { 373 struct mrvl_ie_ds_param_set *ds = (void *) tlv; 374 375 /* 376 * 03 00 TLV_TYPE_PHY_DS 377 * 01 00 len 378 * 06 channel 379 */ 380 ds->header.type = cpu_to_le16(TLV_TYPE_PHY_DS); 381 ds->header.len = cpu_to_le16(sizeof(*ds)-sizeof(ds->header)); 382 ds->channel = channel; 383 return sizeof(*ds); 384 } 385 386 387 /* 388 * Add (empty) CF param TLV of the form: 389 */ 390 #define LBS_MAX_CF_PARAM_TLV_SIZE \ 391 sizeof(struct mrvl_ie_header) 392 393 static int lbs_add_cf_param_tlv(u8 *tlv) 394 { 395 struct mrvl_ie_cf_param_set *cf = (void *)tlv; 396 397 /* 398 * 04 00 TLV_TYPE_CF 399 * 06 00 len 400 * 00 cfpcnt 401 * 00 cfpperiod 402 * 00 00 cfpmaxduration 403 * 00 00 cfpdurationremaining 404 */ 405 cf->header.type = cpu_to_le16(TLV_TYPE_CF); 406 cf->header.len = cpu_to_le16(sizeof(*cf)-sizeof(cf->header)); 407 return sizeof(*cf); 408 } 409 410 /* 411 * Add WPA TLV 412 */ 413 #define LBS_MAX_WPA_TLV_SIZE \ 414 (sizeof(struct mrvl_ie_header) \ 415 + 128 /* TODO: I guessed the size */) 416 417 static int lbs_add_wpa_tlv(u8 *tlv, const u8 *ie, u8 ie_len) 418 { 419 struct mrvl_ie_data *wpatlv = (struct mrvl_ie_data *)tlv; 420 const struct element *wpaie; 421 422 /* Find the first RSN or WPA IE to use */ 423 wpaie = cfg80211_find_elem(WLAN_EID_RSN, ie, ie_len); 424 if (!wpaie) 425 wpaie = cfg80211_find_vendor_elem(WLAN_OUI_MICROSOFT, 426 WLAN_OUI_TYPE_MICROSOFT_WPA, 427 ie, ie_len); 428 if (!wpaie || wpaie->datalen > 128) 429 return 0; 430 431 /* 432 * Convert the found IE to a TLV. IEs use u8 for the header, 433 * u8 type 434 * u8 len 435 * u8[] data 436 * but TLVs use __le16 instead: 437 * __le16 type 438 * __le16 len 439 * u8[] data 440 */ 441 wpatlv->header.type = cpu_to_le16(wpaie->id); 442 wpatlv->header.len = cpu_to_le16(wpaie->datalen); 443 memcpy(wpatlv->data, wpaie->data, wpaie->datalen); 444 445 /* Return the total number of bytes added to the TLV buffer */ 446 return sizeof(struct mrvl_ie_header) + wpaie->datalen; 447 } 448 449 /* Add WPS enrollee TLV 450 */ 451 #define LBS_MAX_WPS_ENROLLEE_TLV_SIZE \ 452 (sizeof(struct mrvl_ie_header) \ 453 + 256) 454 455 static int lbs_add_wps_enrollee_tlv(u8 *tlv, const u8 *ie, size_t ie_len) 456 { 457 struct mrvl_ie_data *wpstlv = (struct mrvl_ie_data *)tlv; 458 const struct element *wpsie; 459 460 /* Look for a WPS IE and add it to the probe request */ 461 wpsie = cfg80211_find_vendor_elem(WLAN_OUI_MICROSOFT, 462 WLAN_OUI_TYPE_MICROSOFT_WPS, 463 ie, ie_len); 464 if (!wpsie) 465 return 0; 466 467 /* Convert the WPS IE to a TLV. The IE looks like this: 468 * u8 type (WLAN_EID_VENDOR_SPECIFIC) 469 * u8 len 470 * u8[] data 471 * but the TLV will look like this instead: 472 * __le16 type (TLV_TYPE_WPS_ENROLLEE) 473 * __le16 len 474 * u8[] data 475 */ 476 wpstlv->header.type = cpu_to_le16(TLV_TYPE_WPS_ENROLLEE); 477 wpstlv->header.len = cpu_to_le16(wpsie->datalen); 478 memcpy(wpstlv->data, wpsie->data, wpsie->datalen); 479 480 /* Return the total number of bytes added to the TLV buffer */ 481 return sizeof(struct mrvl_ie_header) + wpsie->datalen; 482 } 483 484 /* 485 * Set Channel 486 */ 487 488 static int lbs_cfg_set_monitor_channel(struct wiphy *wiphy, 489 struct net_device *dev, 490 struct cfg80211_chan_def *chandef) 491 { 492 struct lbs_private *priv = wiphy_priv(wiphy); 493 int ret = -ENOTSUPP; 494 495 if (cfg80211_get_chandef_type(chandef) != NL80211_CHAN_NO_HT) 496 goto out; 497 498 ret = lbs_set_channel(priv, chandef->chan->hw_value); 499 500 out: 501 return ret; 502 } 503 504 static int lbs_cfg_set_mesh_channel(struct wiphy *wiphy, 505 struct net_device *netdev, 506 struct ieee80211_channel *channel) 507 { 508 struct lbs_private *priv = wiphy_priv(wiphy); 509 int ret = -ENOTSUPP; 510 511 if (netdev != priv->mesh_dev) 512 goto out; 513 514 ret = lbs_mesh_set_channel(priv, channel->hw_value); 515 516 out: 517 return ret; 518 } 519 520 521 522 /* 523 * Scanning 524 */ 525 526 /* 527 * When scanning, the firmware doesn't send a nul packet with the power-safe 528 * bit to the AP. So we cannot stay away from our current channel too long, 529 * otherwise we loose data. So take a "nap" while scanning every other 530 * while. 531 */ 532 #define LBS_SCAN_BEFORE_NAP 4 533 534 535 /* 536 * When the firmware reports back a scan-result, it gives us an "u8 rssi", 537 * which isn't really an RSSI, as it becomes larger when moving away from 538 * the AP. Anyway, we need to convert that into mBm. 539 */ 540 #define LBS_SCAN_RSSI_TO_MBM(rssi) \ 541 ((-(int)rssi + 3)*100) 542 543 static int lbs_ret_scan(struct lbs_private *priv, unsigned long dummy, 544 struct cmd_header *resp) 545 { 546 struct cfg80211_bss *bss; 547 struct cmd_ds_802_11_scan_rsp *scanresp = (void *)resp; 548 int bsssize; 549 const u8 *pos; 550 const u8 *tsfdesc; 551 int tsfsize; 552 int i; 553 int ret = -EILSEQ; 554 555 bsssize = get_unaligned_le16(&scanresp->bssdescriptsize); 556 557 lbs_deb_scan("scan response: %d BSSs (%d bytes); resp size %d bytes\n", 558 scanresp->nr_sets, bsssize, le16_to_cpu(resp->size)); 559 560 if (scanresp->nr_sets == 0) { 561 ret = 0; 562 goto done; 563 } 564 565 /* 566 * The general layout of the scan response is described in chapter 567 * 5.7.1. Basically we have a common part, then any number of BSS 568 * descriptor sections. Finally we have section with the same number 569 * of TSFs. 570 * 571 * cmd_ds_802_11_scan_rsp 572 * cmd_header 573 * pos_size 574 * nr_sets 575 * bssdesc 1 576 * bssid 577 * rssi 578 * timestamp 579 * intvl 580 * capa 581 * IEs 582 * bssdesc 2 583 * bssdesc n 584 * MrvlIEtypes_TsfFimestamp_t 585 * TSF for BSS 1 586 * TSF for BSS 2 587 * TSF for BSS n 588 */ 589 590 pos = scanresp->bssdesc_and_tlvbuffer; 591 592 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_RSP", scanresp->bssdesc_and_tlvbuffer, 593 bsssize); 594 595 tsfdesc = pos + bsssize; 596 tsfsize = 4 + 8 * scanresp->nr_sets; 597 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TSF", (u8 *) tsfdesc, tsfsize); 598 599 /* Validity check: we expect a Marvell-Local TLV */ 600 i = get_unaligned_le16(tsfdesc); 601 tsfdesc += 2; 602 if (i != TLV_TYPE_TSFTIMESTAMP) { 603 lbs_deb_scan("scan response: invalid TSF Timestamp %d\n", i); 604 goto done; 605 } 606 607 /* 608 * Validity check: the TLV holds TSF values with 8 bytes each, so 609 * the size in the TLV must match the nr_sets value 610 */ 611 i = get_unaligned_le16(tsfdesc); 612 tsfdesc += 2; 613 if (i / 8 != scanresp->nr_sets) { 614 lbs_deb_scan("scan response: invalid number of TSF timestamp " 615 "sets (expected %d got %d)\n", scanresp->nr_sets, 616 i / 8); 617 goto done; 618 } 619 620 for (i = 0; i < scanresp->nr_sets; i++) { 621 const u8 *bssid; 622 const u8 *ie; 623 int left; 624 int ielen; 625 int rssi; 626 u16 intvl; 627 u16 capa; 628 int chan_no = -1; 629 const u8 *ssid = NULL; 630 u8 ssid_len = 0; 631 632 int len = get_unaligned_le16(pos); 633 pos += 2; 634 635 /* BSSID */ 636 bssid = pos; 637 pos += ETH_ALEN; 638 /* RSSI */ 639 rssi = *pos++; 640 /* Packet time stamp */ 641 pos += 8; 642 /* Beacon interval */ 643 intvl = get_unaligned_le16(pos); 644 pos += 2; 645 /* Capabilities */ 646 capa = get_unaligned_le16(pos); 647 pos += 2; 648 649 /* To find out the channel, we must parse the IEs */ 650 ie = pos; 651 /* 652 * 6+1+8+2+2: size of BSSID, RSSI, time stamp, beacon 653 * interval, capabilities 654 */ 655 ielen = left = len - (6 + 1 + 8 + 2 + 2); 656 while (left >= 2) { 657 u8 id, elen; 658 id = *pos++; 659 elen = *pos++; 660 left -= 2; 661 if (elen > left) { 662 lbs_deb_scan("scan response: invalid IE fmt\n"); 663 goto done; 664 } 665 666 if (id == WLAN_EID_DS_PARAMS) 667 chan_no = *pos; 668 if (id == WLAN_EID_SSID) { 669 ssid = pos; 670 ssid_len = elen; 671 } 672 left -= elen; 673 pos += elen; 674 } 675 676 /* No channel, no luck */ 677 if (chan_no != -1) { 678 struct wiphy *wiphy = priv->wdev->wiphy; 679 int freq = ieee80211_channel_to_frequency(chan_no, 680 NL80211_BAND_2GHZ); 681 struct ieee80211_channel *channel = 682 ieee80211_get_channel(wiphy, freq); 683 684 lbs_deb_scan("scan: %pM, capa %04x, chan %2d, %*pE, %d dBm\n", 685 bssid, capa, chan_no, ssid_len, ssid, 686 LBS_SCAN_RSSI_TO_MBM(rssi)/100); 687 688 if (channel && 689 !(channel->flags & IEEE80211_CHAN_DISABLED)) { 690 bss = cfg80211_inform_bss(wiphy, channel, 691 CFG80211_BSS_FTYPE_UNKNOWN, 692 bssid, get_unaligned_le64(tsfdesc), 693 capa, intvl, ie, ielen, 694 LBS_SCAN_RSSI_TO_MBM(rssi), 695 GFP_KERNEL); 696 cfg80211_put_bss(wiphy, bss); 697 } 698 } else 699 lbs_deb_scan("scan response: missing BSS channel IE\n"); 700 701 tsfdesc += 8; 702 } 703 ret = 0; 704 705 done: 706 return ret; 707 } 708 709 710 /* 711 * Our scan command contains a TLV, consisting of a SSID TLV, a channel list 712 * TLV, a rates TLV, and an optional WPS IE. Determine the maximum size of them: 713 */ 714 #define LBS_SCAN_MAX_CMD_SIZE \ 715 (sizeof(struct cmd_ds_802_11_scan) \ 716 + LBS_MAX_SSID_TLV_SIZE \ 717 + LBS_MAX_CHANNEL_LIST_TLV_SIZE \ 718 + LBS_MAX_RATES_TLV_SIZE \ 719 + LBS_MAX_WPS_ENROLLEE_TLV_SIZE) 720 721 /* 722 * Assumes priv->scan_req is initialized and valid 723 * Assumes priv->scan_channel is initialized 724 */ 725 static void lbs_scan_worker(struct work_struct *work) 726 { 727 struct lbs_private *priv = 728 container_of(work, struct lbs_private, scan_work.work); 729 struct cmd_ds_802_11_scan *scan_cmd; 730 u8 *tlv; /* pointer into our current, growing TLV storage area */ 731 int last_channel; 732 int running, carrier; 733 734 scan_cmd = kzalloc(LBS_SCAN_MAX_CMD_SIZE, GFP_KERNEL); 735 if (scan_cmd == NULL) 736 return; 737 738 /* prepare fixed part of scan command */ 739 scan_cmd->bsstype = CMD_BSS_TYPE_ANY; 740 741 /* stop network while we're away from our main channel */ 742 running = !netif_queue_stopped(priv->dev); 743 carrier = netif_carrier_ok(priv->dev); 744 if (running) 745 netif_stop_queue(priv->dev); 746 if (carrier) 747 netif_carrier_off(priv->dev); 748 749 /* prepare fixed part of scan command */ 750 tlv = scan_cmd->tlvbuffer; 751 752 /* add SSID TLV */ 753 if (priv->scan_req->n_ssids && priv->scan_req->ssids[0].ssid_len > 0) 754 tlv += lbs_add_ssid_tlv(tlv, 755 priv->scan_req->ssids[0].ssid, 756 priv->scan_req->ssids[0].ssid_len); 757 758 /* add channel TLVs */ 759 last_channel = priv->scan_channel + LBS_SCAN_BEFORE_NAP; 760 if (last_channel > priv->scan_req->n_channels) 761 last_channel = priv->scan_req->n_channels; 762 tlv += lbs_add_channel_list_tlv(priv, tlv, last_channel, 763 priv->scan_req->n_ssids); 764 765 /* add rates TLV */ 766 tlv += lbs_add_supported_rates_tlv(tlv); 767 768 /* add optional WPS enrollee TLV */ 769 if (priv->scan_req->ie && priv->scan_req->ie_len) 770 tlv += lbs_add_wps_enrollee_tlv(tlv, priv->scan_req->ie, 771 priv->scan_req->ie_len); 772 773 if (priv->scan_channel < priv->scan_req->n_channels) { 774 cancel_delayed_work(&priv->scan_work); 775 if (netif_running(priv->dev)) 776 queue_delayed_work(priv->work_thread, &priv->scan_work, 777 msecs_to_jiffies(300)); 778 } 779 780 /* This is the final data we are about to send */ 781 scan_cmd->hdr.size = cpu_to_le16(tlv - (u8 *)scan_cmd); 782 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_CMD", (void *)scan_cmd, 783 sizeof(*scan_cmd)); 784 lbs_deb_hex(LBS_DEB_SCAN, "SCAN_TLV", scan_cmd->tlvbuffer, 785 tlv - scan_cmd->tlvbuffer); 786 787 __lbs_cmd(priv, CMD_802_11_SCAN, &scan_cmd->hdr, 788 le16_to_cpu(scan_cmd->hdr.size), 789 lbs_ret_scan, 0); 790 791 if (priv->scan_channel >= priv->scan_req->n_channels) { 792 /* Mark scan done */ 793 cancel_delayed_work(&priv->scan_work); 794 lbs_scan_done(priv); 795 } 796 797 /* Restart network */ 798 if (carrier) 799 netif_carrier_on(priv->dev); 800 if (running && !priv->tx_pending_len) 801 netif_wake_queue(priv->dev); 802 803 kfree(scan_cmd); 804 805 /* Wake up anything waiting on scan completion */ 806 if (priv->scan_req == NULL) { 807 lbs_deb_scan("scan: waking up waiters\n"); 808 wake_up_all(&priv->scan_q); 809 } 810 } 811 812 static void _internal_start_scan(struct lbs_private *priv, bool internal, 813 struct cfg80211_scan_request *request) 814 { 815 lbs_deb_scan("scan: ssids %d, channels %d, ie_len %zd\n", 816 request->n_ssids, request->n_channels, request->ie_len); 817 818 priv->scan_channel = 0; 819 priv->scan_req = request; 820 priv->internal_scan = internal; 821 822 queue_delayed_work(priv->work_thread, &priv->scan_work, 823 msecs_to_jiffies(50)); 824 } 825 826 /* 827 * Clean up priv->scan_req. Should be used to handle the allocation details. 828 */ 829 void lbs_scan_done(struct lbs_private *priv) 830 { 831 WARN_ON(!priv->scan_req); 832 833 if (priv->internal_scan) { 834 kfree(priv->scan_req); 835 } else { 836 struct cfg80211_scan_info info = { 837 .aborted = false, 838 }; 839 840 cfg80211_scan_done(priv->scan_req, &info); 841 } 842 843 priv->scan_req = NULL; 844 } 845 846 static int lbs_cfg_scan(struct wiphy *wiphy, 847 struct cfg80211_scan_request *request) 848 { 849 struct lbs_private *priv = wiphy_priv(wiphy); 850 int ret = 0; 851 852 if (priv->scan_req || delayed_work_pending(&priv->scan_work)) { 853 /* old scan request not yet processed */ 854 ret = -EAGAIN; 855 goto out; 856 } 857 858 _internal_start_scan(priv, false, request); 859 860 if (priv->surpriseremoved) 861 ret = -EIO; 862 863 out: 864 return ret; 865 } 866 867 868 869 870 /* 871 * Events 872 */ 873 874 void lbs_send_disconnect_notification(struct lbs_private *priv, 875 bool locally_generated) 876 { 877 cfg80211_disconnected(priv->dev, 0, NULL, 0, locally_generated, 878 GFP_KERNEL); 879 } 880 881 void lbs_send_mic_failureevent(struct lbs_private *priv, u32 event) 882 { 883 cfg80211_michael_mic_failure(priv->dev, 884 priv->assoc_bss, 885 event == MACREG_INT_CODE_MIC_ERR_MULTICAST ? 886 NL80211_KEYTYPE_GROUP : 887 NL80211_KEYTYPE_PAIRWISE, 888 -1, 889 NULL, 890 GFP_KERNEL); 891 } 892 893 894 895 896 /* 897 * Connect/disconnect 898 */ 899 900 901 /* 902 * This removes all WEP keys 903 */ 904 static int lbs_remove_wep_keys(struct lbs_private *priv) 905 { 906 struct cmd_ds_802_11_set_wep cmd; 907 int ret; 908 909 memset(&cmd, 0, sizeof(cmd)); 910 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 911 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 912 cmd.action = cpu_to_le16(CMD_ACT_REMOVE); 913 914 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 915 916 return ret; 917 } 918 919 /* 920 * Set WEP keys 921 */ 922 static int lbs_set_wep_keys(struct lbs_private *priv) 923 { 924 struct cmd_ds_802_11_set_wep cmd; 925 int i; 926 int ret; 927 928 /* 929 * command 13 00 930 * size 50 00 931 * sequence xx xx 932 * result 00 00 933 * action 02 00 ACT_ADD 934 * transmit key 00 00 935 * type for key 1 01 WEP40 936 * type for key 2 00 937 * type for key 3 00 938 * type for key 4 00 939 * key 1 39 39 39 39 39 00 00 00 940 * 00 00 00 00 00 00 00 00 941 * key 2 00 00 00 00 00 00 00 00 942 * 00 00 00 00 00 00 00 00 943 * key 3 00 00 00 00 00 00 00 00 944 * 00 00 00 00 00 00 00 00 945 * key 4 00 00 00 00 00 00 00 00 946 */ 947 if (priv->wep_key_len[0] || priv->wep_key_len[1] || 948 priv->wep_key_len[2] || priv->wep_key_len[3]) { 949 /* Only set wep keys if we have at least one of them */ 950 memset(&cmd, 0, sizeof(cmd)); 951 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 952 cmd.keyindex = cpu_to_le16(priv->wep_tx_key); 953 cmd.action = cpu_to_le16(CMD_ACT_ADD); 954 955 for (i = 0; i < 4; i++) { 956 switch (priv->wep_key_len[i]) { 957 case WLAN_KEY_LEN_WEP40: 958 cmd.keytype[i] = CMD_TYPE_WEP_40_BIT; 959 break; 960 case WLAN_KEY_LEN_WEP104: 961 cmd.keytype[i] = CMD_TYPE_WEP_104_BIT; 962 break; 963 default: 964 cmd.keytype[i] = 0; 965 break; 966 } 967 memcpy(cmd.keymaterial[i], priv->wep_key[i], 968 priv->wep_key_len[i]); 969 } 970 971 ret = lbs_cmd_with_response(priv, CMD_802_11_SET_WEP, &cmd); 972 } else { 973 /* Otherwise remove all wep keys */ 974 ret = lbs_remove_wep_keys(priv); 975 } 976 977 return ret; 978 } 979 980 981 /* 982 * Enable/Disable RSN status 983 */ 984 static int lbs_enable_rsn(struct lbs_private *priv, int enable) 985 { 986 struct cmd_ds_802_11_enable_rsn cmd; 987 int ret; 988 989 /* 990 * cmd 2f 00 991 * size 0c 00 992 * sequence xx xx 993 * result 00 00 994 * action 01 00 ACT_SET 995 * enable 01 00 996 */ 997 memset(&cmd, 0, sizeof(cmd)); 998 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 999 cmd.action = cpu_to_le16(CMD_ACT_SET); 1000 cmd.enable = cpu_to_le16(enable); 1001 1002 ret = lbs_cmd_with_response(priv, CMD_802_11_ENABLE_RSN, &cmd); 1003 1004 return ret; 1005 } 1006 1007 1008 /* 1009 * Set WPA/WPA key material 1010 */ 1011 1012 /* 1013 * like "struct cmd_ds_802_11_key_material", but with cmd_header. Once we 1014 * get rid of WEXT, this should go into host.h 1015 */ 1016 1017 struct cmd_key_material { 1018 struct cmd_header hdr; 1019 1020 __le16 action; 1021 struct MrvlIEtype_keyParamSet param; 1022 } __packed; 1023 1024 static int lbs_set_key_material(struct lbs_private *priv, 1025 int key_type, int key_info, 1026 const u8 *key, u16 key_len) 1027 { 1028 struct cmd_key_material cmd; 1029 int ret; 1030 1031 /* 1032 * Example for WPA (TKIP): 1033 * 1034 * cmd 5e 00 1035 * size 34 00 1036 * sequence xx xx 1037 * result 00 00 1038 * action 01 00 1039 * TLV type 00 01 key param 1040 * length 00 26 1041 * key type 01 00 TKIP 1042 * key info 06 00 UNICAST | ENABLED 1043 * key len 20 00 1044 * key 32 bytes 1045 */ 1046 memset(&cmd, 0, sizeof(cmd)); 1047 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1048 cmd.action = cpu_to_le16(CMD_ACT_SET); 1049 cmd.param.type = cpu_to_le16(TLV_TYPE_KEY_MATERIAL); 1050 cmd.param.length = cpu_to_le16(sizeof(cmd.param) - 4); 1051 cmd.param.keytypeid = cpu_to_le16(key_type); 1052 cmd.param.keyinfo = cpu_to_le16(key_info); 1053 cmd.param.keylen = cpu_to_le16(key_len); 1054 if (key && key_len) 1055 memcpy(cmd.param.key, key, key_len); 1056 1057 ret = lbs_cmd_with_response(priv, CMD_802_11_KEY_MATERIAL, &cmd); 1058 1059 return ret; 1060 } 1061 1062 1063 /* 1064 * Sets the auth type (open, shared, etc) in the firmware. That 1065 * we use CMD_802_11_AUTHENTICATE is misleading, this firmware 1066 * command doesn't send an authentication frame at all, it just 1067 * stores the auth_type. 1068 */ 1069 static int lbs_set_authtype(struct lbs_private *priv, 1070 struct cfg80211_connect_params *sme) 1071 { 1072 struct cmd_ds_802_11_authenticate cmd; 1073 int ret; 1074 1075 /* 1076 * cmd 11 00 1077 * size 19 00 1078 * sequence xx xx 1079 * result 00 00 1080 * BSS id 00 13 19 80 da 30 1081 * auth type 00 1082 * reserved 00 00 00 00 00 00 00 00 00 00 1083 */ 1084 memset(&cmd, 0, sizeof(cmd)); 1085 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1086 if (sme->bssid) 1087 memcpy(cmd.bssid, sme->bssid, ETH_ALEN); 1088 /* convert auth_type */ 1089 ret = lbs_auth_to_authtype(sme->auth_type); 1090 if (ret < 0) 1091 goto done; 1092 1093 cmd.authtype = ret; 1094 ret = lbs_cmd_with_response(priv, CMD_802_11_AUTHENTICATE, &cmd); 1095 1096 done: 1097 return ret; 1098 } 1099 1100 1101 /* 1102 * Create association request 1103 */ 1104 #define LBS_ASSOC_MAX_CMD_SIZE \ 1105 (sizeof(struct cmd_ds_802_11_associate) \ 1106 + LBS_MAX_SSID_TLV_SIZE \ 1107 + LBS_MAX_CHANNEL_TLV_SIZE \ 1108 + LBS_MAX_CF_PARAM_TLV_SIZE \ 1109 + LBS_MAX_AUTH_TYPE_TLV_SIZE \ 1110 + LBS_MAX_WPA_TLV_SIZE) 1111 1112 static int lbs_associate(struct lbs_private *priv, 1113 struct cfg80211_bss *bss, 1114 struct cfg80211_connect_params *sme) 1115 { 1116 struct cmd_ds_802_11_associate_response *resp; 1117 struct cmd_ds_802_11_associate *cmd = kzalloc(LBS_ASSOC_MAX_CMD_SIZE, 1118 GFP_KERNEL); 1119 const u8 *ssid_eid; 1120 size_t len, resp_ie_len; 1121 int status; 1122 int ret; 1123 u8 *pos; 1124 u8 *tmp; 1125 1126 if (!cmd) { 1127 ret = -ENOMEM; 1128 goto done; 1129 } 1130 pos = &cmd->iebuf[0]; 1131 1132 /* 1133 * cmd 50 00 1134 * length 34 00 1135 * sequence xx xx 1136 * result 00 00 1137 * BSS id 00 13 19 80 da 30 1138 * capabilities 11 00 1139 * listen interval 0a 00 1140 * beacon interval 00 00 1141 * DTIM period 00 1142 * TLVs xx (up to 512 bytes) 1143 */ 1144 cmd->hdr.command = cpu_to_le16(CMD_802_11_ASSOCIATE); 1145 1146 /* Fill in static fields */ 1147 memcpy(cmd->bssid, bss->bssid, ETH_ALEN); 1148 cmd->listeninterval = cpu_to_le16(MRVDRV_DEFAULT_LISTEN_INTERVAL); 1149 cmd->capability = cpu_to_le16(bss->capability); 1150 1151 /* add SSID TLV */ 1152 rcu_read_lock(); 1153 ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); 1154 if (ssid_eid) { 1155 u32 ssid_len = min(ssid_eid[1], IEEE80211_MAX_SSID_LEN); 1156 1157 pos += lbs_add_ssid_tlv(pos, ssid_eid + 2, ssid_len); 1158 } else { 1159 lbs_deb_assoc("no SSID\n"); 1160 } 1161 rcu_read_unlock(); 1162 1163 /* add DS param TLV */ 1164 if (bss->channel) 1165 pos += lbs_add_channel_tlv(pos, bss->channel->hw_value); 1166 else 1167 lbs_deb_assoc("no channel\n"); 1168 1169 /* add (empty) CF param TLV */ 1170 pos += lbs_add_cf_param_tlv(pos); 1171 1172 /* add rates TLV */ 1173 tmp = pos + 4; /* skip Marvell IE header */ 1174 pos += lbs_add_common_rates_tlv(pos, bss); 1175 lbs_deb_hex(LBS_DEB_ASSOC, "Common Rates", tmp, pos - tmp); 1176 1177 /* add auth type TLV */ 1178 if (MRVL_FW_MAJOR_REV(priv->fwrelease) >= 9) 1179 pos += lbs_add_auth_type_tlv(pos, sme->auth_type); 1180 1181 /* add WPA/WPA2 TLV */ 1182 if (sme->ie && sme->ie_len) 1183 pos += lbs_add_wpa_tlv(pos, sme->ie, sme->ie_len); 1184 1185 len = sizeof(*cmd) + (u16)(pos - (u8 *) &cmd->iebuf); 1186 cmd->hdr.size = cpu_to_le16(len); 1187 1188 lbs_deb_hex(LBS_DEB_ASSOC, "ASSOC_CMD", (u8 *) cmd, 1189 le16_to_cpu(cmd->hdr.size)); 1190 1191 /* store for later use */ 1192 memcpy(priv->assoc_bss, bss->bssid, ETH_ALEN); 1193 1194 ret = lbs_cmd_with_response(priv, CMD_802_11_ASSOCIATE, cmd); 1195 if (ret) 1196 goto done; 1197 1198 /* generate connect message to cfg80211 */ 1199 1200 resp = (void *) cmd; /* recast for easier field access */ 1201 status = le16_to_cpu(resp->statuscode); 1202 1203 /* Older FW versions map the IEEE 802.11 Status Code in the association 1204 * response to the following values returned in resp->statuscode: 1205 * 1206 * IEEE Status Code Marvell Status Code 1207 * 0 -> 0x0000 ASSOC_RESULT_SUCCESS 1208 * 13 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1209 * 14 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1210 * 15 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1211 * 16 -> 0x0004 ASSOC_RESULT_AUTH_REFUSED 1212 * others -> 0x0003 ASSOC_RESULT_REFUSED 1213 * 1214 * Other response codes: 1215 * 0x0001 -> ASSOC_RESULT_INVALID_PARAMETERS (unused) 1216 * 0x0002 -> ASSOC_RESULT_TIMEOUT (internal timer expired waiting for 1217 * association response from the AP) 1218 */ 1219 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1220 switch (status) { 1221 case 0: 1222 break; 1223 case 1: 1224 lbs_deb_assoc("invalid association parameters\n"); 1225 status = WLAN_STATUS_CAPS_UNSUPPORTED; 1226 break; 1227 case 2: 1228 lbs_deb_assoc("timer expired while waiting for AP\n"); 1229 status = WLAN_STATUS_AUTH_TIMEOUT; 1230 break; 1231 case 3: 1232 lbs_deb_assoc("association refused by AP\n"); 1233 status = WLAN_STATUS_ASSOC_DENIED_UNSPEC; 1234 break; 1235 case 4: 1236 lbs_deb_assoc("authentication refused by AP\n"); 1237 status = WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION; 1238 break; 1239 default: 1240 lbs_deb_assoc("association failure %d\n", status); 1241 /* v5 OLPC firmware does return the AP status code if 1242 * it's not one of the values above. Let that through. 1243 */ 1244 break; 1245 } 1246 } 1247 1248 lbs_deb_assoc("status %d, statuscode 0x%04x, capability 0x%04x, " 1249 "aid 0x%04x\n", status, le16_to_cpu(resp->statuscode), 1250 le16_to_cpu(resp->capability), le16_to_cpu(resp->aid)); 1251 1252 resp_ie_len = le16_to_cpu(resp->hdr.size) 1253 - sizeof(resp->hdr) 1254 - 6; 1255 cfg80211_connect_result(priv->dev, 1256 priv->assoc_bss, 1257 sme->ie, sme->ie_len, 1258 resp->iebuf, resp_ie_len, 1259 status, 1260 GFP_KERNEL); 1261 1262 if (status == 0) { 1263 /* TODO: get rid of priv->connect_status */ 1264 priv->connect_status = LBS_CONNECTED; 1265 netif_carrier_on(priv->dev); 1266 if (!priv->tx_pending_len) 1267 netif_tx_wake_all_queues(priv->dev); 1268 } 1269 1270 kfree(cmd); 1271 done: 1272 return ret; 1273 } 1274 1275 static struct cfg80211_scan_request * 1276 _new_connect_scan_req(struct wiphy *wiphy, struct cfg80211_connect_params *sme) 1277 { 1278 struct cfg80211_scan_request *creq = NULL; 1279 int i, n_channels = ieee80211_get_num_supported_channels(wiphy); 1280 enum nl80211_band band; 1281 1282 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1283 n_channels * sizeof(void *), 1284 GFP_ATOMIC); 1285 if (!creq) 1286 return NULL; 1287 1288 /* SSIDs come after channels */ 1289 creq->ssids = (void *)&creq->channels[n_channels]; 1290 creq->n_channels = n_channels; 1291 creq->n_ssids = 1; 1292 1293 /* Scan all available channels */ 1294 i = 0; 1295 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1296 int j; 1297 1298 if (!wiphy->bands[band]) 1299 continue; 1300 1301 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1302 /* ignore disabled channels */ 1303 if (wiphy->bands[band]->channels[j].flags & 1304 IEEE80211_CHAN_DISABLED) 1305 continue; 1306 1307 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1308 i++; 1309 } 1310 } 1311 if (i) { 1312 /* Set real number of channels specified in creq->channels[] */ 1313 creq->n_channels = i; 1314 1315 /* Scan for the SSID we're going to connect to */ 1316 memcpy(creq->ssids[0].ssid, sme->ssid, sme->ssid_len); 1317 creq->ssids[0].ssid_len = sme->ssid_len; 1318 } else { 1319 /* No channels found... */ 1320 kfree(creq); 1321 creq = NULL; 1322 } 1323 1324 return creq; 1325 } 1326 1327 static int lbs_cfg_connect(struct wiphy *wiphy, struct net_device *dev, 1328 struct cfg80211_connect_params *sme) 1329 { 1330 struct lbs_private *priv = wiphy_priv(wiphy); 1331 struct cfg80211_bss *bss = NULL; 1332 int ret = 0; 1333 u8 preamble = RADIO_PREAMBLE_SHORT; 1334 1335 if (dev == priv->mesh_dev) 1336 return -EOPNOTSUPP; 1337 1338 if (!sme->bssid) { 1339 struct cfg80211_scan_request *creq; 1340 1341 /* 1342 * Scan for the requested network after waiting for existing 1343 * scans to finish. 1344 */ 1345 lbs_deb_assoc("assoc: waiting for existing scans\n"); 1346 wait_event_interruptible_timeout(priv->scan_q, 1347 (priv->scan_req == NULL), 1348 (15 * HZ)); 1349 1350 creq = _new_connect_scan_req(wiphy, sme); 1351 if (!creq) { 1352 ret = -EINVAL; 1353 goto done; 1354 } 1355 1356 lbs_deb_assoc("assoc: scanning for compatible AP\n"); 1357 _internal_start_scan(priv, true, creq); 1358 1359 lbs_deb_assoc("assoc: waiting for scan to complete\n"); 1360 wait_event_interruptible_timeout(priv->scan_q, 1361 (priv->scan_req == NULL), 1362 (15 * HZ)); 1363 lbs_deb_assoc("assoc: scanning completed\n"); 1364 } 1365 1366 /* Find the BSS we want using available scan results */ 1367 bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, 1368 sme->ssid, sme->ssid_len, IEEE80211_BSS_TYPE_ESS, 1369 IEEE80211_PRIVACY_ANY); 1370 if (!bss) { 1371 wiphy_err(wiphy, "assoc: bss %pM not in scan results\n", 1372 sme->bssid); 1373 ret = -ENOENT; 1374 goto done; 1375 } 1376 lbs_deb_assoc("trying %pM\n", bss->bssid); 1377 lbs_deb_assoc("cipher 0x%x, key index %d, key len %d\n", 1378 sme->crypto.cipher_group, 1379 sme->key_idx, sme->key_len); 1380 1381 /* As this is a new connection, clear locally stored WEP keys */ 1382 priv->wep_tx_key = 0; 1383 memset(priv->wep_key, 0, sizeof(priv->wep_key)); 1384 memset(priv->wep_key_len, 0, sizeof(priv->wep_key_len)); 1385 1386 /* set/remove WEP keys */ 1387 switch (sme->crypto.cipher_group) { 1388 case WLAN_CIPHER_SUITE_WEP40: 1389 case WLAN_CIPHER_SUITE_WEP104: 1390 /* Store provided WEP keys in priv-> */ 1391 priv->wep_tx_key = sme->key_idx; 1392 priv->wep_key_len[sme->key_idx] = sme->key_len; 1393 memcpy(priv->wep_key[sme->key_idx], sme->key, sme->key_len); 1394 /* Set WEP keys and WEP mode */ 1395 lbs_set_wep_keys(priv); 1396 priv->mac_control |= CMD_ACT_MAC_WEP_ENABLE; 1397 lbs_set_mac_control(priv); 1398 /* No RSN mode for WEP */ 1399 lbs_enable_rsn(priv, 0); 1400 break; 1401 case 0: /* there's no WLAN_CIPHER_SUITE_NONE definition */ 1402 /* 1403 * If we don't have no WEP, no WPA and no WPA2, 1404 * we remove all keys like in the WPA/WPA2 setup, 1405 * we just don't set RSN. 1406 * 1407 * Therefore: fall-through 1408 */ 1409 case WLAN_CIPHER_SUITE_TKIP: 1410 case WLAN_CIPHER_SUITE_CCMP: 1411 /* Remove WEP keys and WEP mode */ 1412 lbs_remove_wep_keys(priv); 1413 priv->mac_control &= ~CMD_ACT_MAC_WEP_ENABLE; 1414 lbs_set_mac_control(priv); 1415 1416 /* clear the WPA/WPA2 keys */ 1417 lbs_set_key_material(priv, 1418 KEY_TYPE_ID_WEP, /* doesn't matter */ 1419 KEY_INFO_WPA_UNICAST, 1420 NULL, 0); 1421 lbs_set_key_material(priv, 1422 KEY_TYPE_ID_WEP, /* doesn't matter */ 1423 KEY_INFO_WPA_MCAST, 1424 NULL, 0); 1425 /* RSN mode for WPA/WPA2 */ 1426 lbs_enable_rsn(priv, sme->crypto.cipher_group != 0); 1427 break; 1428 default: 1429 wiphy_err(wiphy, "unsupported cipher group 0x%x\n", 1430 sme->crypto.cipher_group); 1431 ret = -ENOTSUPP; 1432 goto done; 1433 } 1434 1435 ret = lbs_set_authtype(priv, sme); 1436 if (ret == -ENOTSUPP) { 1437 wiphy_err(wiphy, "unsupported authtype 0x%x\n", sme->auth_type); 1438 goto done; 1439 } 1440 1441 lbs_set_radio(priv, preamble, 1); 1442 1443 /* Do the actual association */ 1444 ret = lbs_associate(priv, bss, sme); 1445 1446 done: 1447 if (bss) 1448 cfg80211_put_bss(wiphy, bss); 1449 return ret; 1450 } 1451 1452 int lbs_disconnect(struct lbs_private *priv, u16 reason) 1453 { 1454 struct cmd_ds_802_11_deauthenticate cmd; 1455 int ret; 1456 1457 memset(&cmd, 0, sizeof(cmd)); 1458 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1459 /* Mildly ugly to use a locally store my own BSSID ... */ 1460 memcpy(cmd.macaddr, &priv->assoc_bss, ETH_ALEN); 1461 cmd.reasoncode = cpu_to_le16(reason); 1462 1463 ret = lbs_cmd_with_response(priv, CMD_802_11_DEAUTHENTICATE, &cmd); 1464 if (ret) 1465 return ret; 1466 1467 cfg80211_disconnected(priv->dev, 1468 reason, 1469 NULL, 0, true, 1470 GFP_KERNEL); 1471 priv->connect_status = LBS_DISCONNECTED; 1472 1473 return 0; 1474 } 1475 1476 static int lbs_cfg_disconnect(struct wiphy *wiphy, struct net_device *dev, 1477 u16 reason_code) 1478 { 1479 struct lbs_private *priv = wiphy_priv(wiphy); 1480 1481 if (dev == priv->mesh_dev) 1482 return -EOPNOTSUPP; 1483 1484 /* store for lbs_cfg_ret_disconnect() */ 1485 priv->disassoc_reason = reason_code; 1486 1487 return lbs_disconnect(priv, reason_code); 1488 } 1489 1490 static int lbs_cfg_set_default_key(struct wiphy *wiphy, 1491 struct net_device *netdev, int link_id, 1492 u8 key_index, bool unicast, 1493 bool multicast) 1494 { 1495 struct lbs_private *priv = wiphy_priv(wiphy); 1496 1497 if (netdev == priv->mesh_dev) 1498 return -EOPNOTSUPP; 1499 1500 if (key_index != priv->wep_tx_key) { 1501 lbs_deb_assoc("set_default_key: to %d\n", key_index); 1502 priv->wep_tx_key = key_index; 1503 lbs_set_wep_keys(priv); 1504 } 1505 1506 return 0; 1507 } 1508 1509 1510 static int lbs_cfg_add_key(struct wiphy *wiphy, struct net_device *netdev, 1511 int link_id, u8 idx, bool pairwise, 1512 const u8 *mac_addr, struct key_params *params) 1513 { 1514 struct lbs_private *priv = wiphy_priv(wiphy); 1515 u16 key_info; 1516 u16 key_type; 1517 int ret = 0; 1518 1519 if (netdev == priv->mesh_dev) 1520 return -EOPNOTSUPP; 1521 1522 lbs_deb_assoc("add_key: cipher 0x%x, mac_addr %pM\n", 1523 params->cipher, mac_addr); 1524 lbs_deb_assoc("add_key: key index %d, key len %d\n", 1525 idx, params->key_len); 1526 if (params->key_len) 1527 lbs_deb_hex(LBS_DEB_CFG80211, "KEY", 1528 params->key, params->key_len); 1529 1530 lbs_deb_assoc("add_key: seq len %d\n", params->seq_len); 1531 if (params->seq_len) 1532 lbs_deb_hex(LBS_DEB_CFG80211, "SEQ", 1533 params->seq, params->seq_len); 1534 1535 switch (params->cipher) { 1536 case WLAN_CIPHER_SUITE_WEP40: 1537 case WLAN_CIPHER_SUITE_WEP104: 1538 /* actually compare if something has changed ... */ 1539 if ((priv->wep_key_len[idx] != params->key_len) || 1540 memcmp(priv->wep_key[idx], 1541 params->key, params->key_len) != 0) { 1542 priv->wep_key_len[idx] = params->key_len; 1543 memcpy(priv->wep_key[idx], 1544 params->key, params->key_len); 1545 lbs_set_wep_keys(priv); 1546 } 1547 break; 1548 case WLAN_CIPHER_SUITE_TKIP: 1549 case WLAN_CIPHER_SUITE_CCMP: 1550 key_info = KEY_INFO_WPA_ENABLED | ((idx == 0) 1551 ? KEY_INFO_WPA_UNICAST 1552 : KEY_INFO_WPA_MCAST); 1553 key_type = (params->cipher == WLAN_CIPHER_SUITE_TKIP) 1554 ? KEY_TYPE_ID_TKIP 1555 : KEY_TYPE_ID_AES; 1556 lbs_set_key_material(priv, 1557 key_type, 1558 key_info, 1559 params->key, params->key_len); 1560 break; 1561 default: 1562 wiphy_err(wiphy, "unhandled cipher 0x%x\n", params->cipher); 1563 ret = -ENOTSUPP; 1564 break; 1565 } 1566 1567 return ret; 1568 } 1569 1570 1571 static int lbs_cfg_del_key(struct wiphy *wiphy, struct net_device *netdev, 1572 int link_id, u8 key_index, bool pairwise, 1573 const u8 *mac_addr) 1574 { 1575 1576 lbs_deb_assoc("del_key: key_idx %d, mac_addr %pM\n", 1577 key_index, mac_addr); 1578 1579 #ifdef TODO 1580 struct lbs_private *priv = wiphy_priv(wiphy); 1581 /* 1582 * I think can keep this a NO-OP, because: 1583 1584 * - we clear all keys whenever we do lbs_cfg_connect() anyway 1585 * - neither "iw" nor "wpa_supplicant" won't call this during 1586 * an ongoing connection 1587 * - TODO: but I have to check if this is still true when 1588 * I set the AP to periodic re-keying 1589 * - we've not kzallec() something when we've added a key at 1590 * lbs_cfg_connect() or lbs_cfg_add_key(). 1591 * 1592 * This causes lbs_cfg_del_key() only called at disconnect time, 1593 * where we'd just waste time deleting a key that is not going 1594 * to be used anyway. 1595 */ 1596 if (key_index < 3 && priv->wep_key_len[key_index]) { 1597 priv->wep_key_len[key_index] = 0; 1598 lbs_set_wep_keys(priv); 1599 } 1600 #endif 1601 1602 return 0; 1603 } 1604 1605 1606 /* 1607 * Get station 1608 */ 1609 1610 static int lbs_cfg_get_station(struct wiphy *wiphy, struct net_device *dev, 1611 const u8 *mac, struct station_info *sinfo) 1612 { 1613 struct lbs_private *priv = wiphy_priv(wiphy); 1614 s8 signal, noise; 1615 int ret; 1616 size_t i; 1617 1618 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES) | 1619 BIT_ULL(NL80211_STA_INFO_TX_PACKETS) | 1620 BIT_ULL(NL80211_STA_INFO_RX_BYTES) | 1621 BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 1622 sinfo->tx_bytes = priv->dev->stats.tx_bytes; 1623 sinfo->tx_packets = priv->dev->stats.tx_packets; 1624 sinfo->rx_bytes = priv->dev->stats.rx_bytes; 1625 sinfo->rx_packets = priv->dev->stats.rx_packets; 1626 1627 /* Get current RSSI */ 1628 ret = lbs_get_rssi(priv, &signal, &noise); 1629 if (ret == 0) { 1630 sinfo->signal = signal; 1631 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 1632 } 1633 1634 /* Convert priv->cur_rate from hw_value to NL80211 value */ 1635 for (i = 0; i < ARRAY_SIZE(lbs_rates); i++) { 1636 if (priv->cur_rate == lbs_rates[i].hw_value) { 1637 sinfo->txrate.legacy = lbs_rates[i].bitrate; 1638 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 1639 break; 1640 } 1641 } 1642 1643 return 0; 1644 } 1645 1646 1647 1648 1649 /* 1650 * Change interface 1651 */ 1652 1653 static int lbs_change_intf(struct wiphy *wiphy, struct net_device *dev, 1654 enum nl80211_iftype type, 1655 struct vif_params *params) 1656 { 1657 struct lbs_private *priv = wiphy_priv(wiphy); 1658 int ret = 0; 1659 1660 if (dev == priv->mesh_dev) 1661 return -EOPNOTSUPP; 1662 1663 switch (type) { 1664 case NL80211_IFTYPE_MONITOR: 1665 case NL80211_IFTYPE_STATION: 1666 case NL80211_IFTYPE_ADHOC: 1667 break; 1668 default: 1669 return -EOPNOTSUPP; 1670 } 1671 1672 if (priv->iface_running) 1673 ret = lbs_set_iface_type(priv, type); 1674 1675 if (!ret) 1676 priv->wdev->iftype = type; 1677 1678 return ret; 1679 } 1680 1681 1682 1683 /* 1684 * IBSS (Ad-Hoc) 1685 */ 1686 1687 /* 1688 * The firmware needs the following bits masked out of the beacon-derived 1689 * capability field when associating/joining to a BSS: 1690 * 9 (QoS), 11 (APSD), 12 (unused), 14 (unused), 15 (unused) 1691 */ 1692 #define CAPINFO_MASK (~(0xda00)) 1693 1694 1695 static void lbs_join_post(struct lbs_private *priv, 1696 struct cfg80211_ibss_params *params, 1697 u8 *bssid, u16 capability) 1698 { 1699 u8 fake_ie[2 + IEEE80211_MAX_SSID_LEN + /* ssid */ 1700 2 + 4 + /* basic rates */ 1701 2 + 1 + /* DS parameter */ 1702 2 + 2 + /* atim */ 1703 2 + 8]; /* extended rates */ 1704 u8 *fake = fake_ie; 1705 struct cfg80211_bss *bss; 1706 1707 /* 1708 * For cfg80211_inform_bss, we'll need a fake IE, as we can't get 1709 * the real IE from the firmware. So we fabricate a fake IE based on 1710 * what the firmware actually sends (sniffed with wireshark). 1711 */ 1712 /* Fake SSID IE */ 1713 *fake++ = WLAN_EID_SSID; 1714 *fake++ = params->ssid_len; 1715 memcpy(fake, params->ssid, params->ssid_len); 1716 fake += params->ssid_len; 1717 /* Fake supported basic rates IE */ 1718 *fake++ = WLAN_EID_SUPP_RATES; 1719 *fake++ = 4; 1720 *fake++ = 0x82; 1721 *fake++ = 0x84; 1722 *fake++ = 0x8b; 1723 *fake++ = 0x96; 1724 /* Fake DS channel IE */ 1725 *fake++ = WLAN_EID_DS_PARAMS; 1726 *fake++ = 1; 1727 *fake++ = params->chandef.chan->hw_value; 1728 /* Fake IBSS params IE */ 1729 *fake++ = WLAN_EID_IBSS_PARAMS; 1730 *fake++ = 2; 1731 *fake++ = 0; /* ATIM=0 */ 1732 *fake++ = 0; 1733 /* Fake extended rates IE, TODO: don't add this for 802.11b only, 1734 * but I don't know how this could be checked */ 1735 *fake++ = WLAN_EID_EXT_SUPP_RATES; 1736 *fake++ = 8; 1737 *fake++ = 0x0c; 1738 *fake++ = 0x12; 1739 *fake++ = 0x18; 1740 *fake++ = 0x24; 1741 *fake++ = 0x30; 1742 *fake++ = 0x48; 1743 *fake++ = 0x60; 1744 *fake++ = 0x6c; 1745 lbs_deb_hex(LBS_DEB_CFG80211, "IE", fake_ie, fake - fake_ie); 1746 1747 bss = cfg80211_inform_bss(priv->wdev->wiphy, 1748 params->chandef.chan, 1749 CFG80211_BSS_FTYPE_UNKNOWN, 1750 bssid, 1751 0, 1752 capability, 1753 params->beacon_interval, 1754 fake_ie, fake - fake_ie, 1755 0, GFP_KERNEL); 1756 cfg80211_put_bss(priv->wdev->wiphy, bss); 1757 1758 cfg80211_ibss_joined(priv->dev, bssid, params->chandef.chan, 1759 GFP_KERNEL); 1760 1761 /* TODO: consider doing this at MACREG_INT_CODE_LINK_SENSED time */ 1762 priv->connect_status = LBS_CONNECTED; 1763 netif_carrier_on(priv->dev); 1764 if (!priv->tx_pending_len) 1765 netif_wake_queue(priv->dev); 1766 } 1767 1768 static int lbs_ibss_join_existing(struct lbs_private *priv, 1769 struct cfg80211_ibss_params *params, 1770 struct cfg80211_bss *bss) 1771 { 1772 const u8 *rates_eid; 1773 struct cmd_ds_802_11_ad_hoc_join cmd; 1774 u8 preamble = RADIO_PREAMBLE_SHORT; 1775 int ret = 0; 1776 int hw, i; 1777 u8 rates_max; 1778 u8 *rates; 1779 1780 /* TODO: set preamble based on scan result */ 1781 ret = lbs_set_radio(priv, preamble, 1); 1782 if (ret) 1783 goto out; 1784 1785 /* 1786 * Example CMD_802_11_AD_HOC_JOIN command: 1787 * 1788 * command 2c 00 CMD_802_11_AD_HOC_JOIN 1789 * size 65 00 1790 * sequence xx xx 1791 * result 00 00 1792 * bssid 02 27 27 97 2f 96 1793 * ssid 49 42 53 53 00 00 00 00 1794 * 00 00 00 00 00 00 00 00 1795 * 00 00 00 00 00 00 00 00 1796 * 00 00 00 00 00 00 00 00 1797 * type 02 CMD_BSS_TYPE_IBSS 1798 * beacon period 64 00 1799 * dtim period 00 1800 * timestamp 00 00 00 00 00 00 00 00 1801 * localtime 00 00 00 00 00 00 00 00 1802 * IE DS 03 1803 * IE DS len 01 1804 * IE DS channel 01 1805 * reserveed 00 00 00 00 1806 * IE IBSS 06 1807 * IE IBSS len 02 1808 * IE IBSS atim 00 00 1809 * reserved 00 00 00 00 1810 * capability 02 00 1811 * rates 82 84 8b 96 0c 12 18 24 30 48 60 6c 00 1812 * fail timeout ff 00 1813 * probe delay 00 00 1814 */ 1815 memset(&cmd, 0, sizeof(cmd)); 1816 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1817 1818 memcpy(cmd.bss.bssid, bss->bssid, ETH_ALEN); 1819 memcpy(cmd.bss.ssid, params->ssid, params->ssid_len); 1820 cmd.bss.type = CMD_BSS_TYPE_IBSS; 1821 cmd.bss.beaconperiod = cpu_to_le16(params->beacon_interval); 1822 cmd.bss.ds.header.id = WLAN_EID_DS_PARAMS; 1823 cmd.bss.ds.header.len = 1; 1824 cmd.bss.ds.channel = params->chandef.chan->hw_value; 1825 cmd.bss.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1826 cmd.bss.ibss.header.len = 2; 1827 cmd.bss.ibss.atimwindow = 0; 1828 cmd.bss.capability = cpu_to_le16(bss->capability & CAPINFO_MASK); 1829 1830 /* set rates to the intersection of our rates and the rates in the 1831 bss */ 1832 rcu_read_lock(); 1833 rates_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SUPP_RATES); 1834 if (!rates_eid) { 1835 lbs_add_rates(cmd.bss.rates); 1836 } else { 1837 rates_max = rates_eid[1]; 1838 if (rates_max > MAX_RATES) { 1839 lbs_deb_join("invalid rates"); 1840 rcu_read_unlock(); 1841 ret = -EINVAL; 1842 goto out; 1843 } 1844 rates = cmd.bss.rates; 1845 for (hw = 0; hw < ARRAY_SIZE(lbs_rates); hw++) { 1846 u8 hw_rate = lbs_rates[hw].bitrate / 5; 1847 for (i = 0; i < rates_max; i++) { 1848 if (hw_rate == (rates_eid[i+2] & 0x7f)) { 1849 u8 rate = rates_eid[i+2]; 1850 if (rate == 0x02 || rate == 0x04 || 1851 rate == 0x0b || rate == 0x16) 1852 rate |= 0x80; 1853 *rates++ = rate; 1854 } 1855 } 1856 } 1857 } 1858 rcu_read_unlock(); 1859 1860 /* Only v8 and below support setting this */ 1861 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) { 1862 cmd.failtimeout = cpu_to_le16(MRVDRV_ASSOCIATION_TIME_OUT); 1863 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1864 } 1865 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_JOIN, &cmd); 1866 if (ret) 1867 goto out; 1868 1869 /* 1870 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1871 * 1872 * response 2c 80 1873 * size 09 00 1874 * sequence xx xx 1875 * result 00 00 1876 * reserved 00 1877 */ 1878 lbs_join_post(priv, params, bss->bssid, bss->capability); 1879 1880 out: 1881 return ret; 1882 } 1883 1884 1885 1886 static int lbs_ibss_start_new(struct lbs_private *priv, 1887 struct cfg80211_ibss_params *params) 1888 { 1889 struct cmd_ds_802_11_ad_hoc_start cmd; 1890 struct cmd_ds_802_11_ad_hoc_result *resp = 1891 (struct cmd_ds_802_11_ad_hoc_result *) &cmd; 1892 u8 preamble = RADIO_PREAMBLE_SHORT; 1893 int ret = 0; 1894 u16 capability; 1895 1896 ret = lbs_set_radio(priv, preamble, 1); 1897 if (ret) 1898 goto out; 1899 1900 /* 1901 * Example CMD_802_11_AD_HOC_START command: 1902 * 1903 * command 2b 00 CMD_802_11_AD_HOC_START 1904 * size b1 00 1905 * sequence xx xx 1906 * result 00 00 1907 * ssid 54 45 53 54 00 00 00 00 1908 * 00 00 00 00 00 00 00 00 1909 * 00 00 00 00 00 00 00 00 1910 * 00 00 00 00 00 00 00 00 1911 * bss type 02 1912 * beacon period 64 00 1913 * dtim period 00 1914 * IE IBSS 06 1915 * IE IBSS len 02 1916 * IE IBSS atim 00 00 1917 * reserved 00 00 00 00 1918 * IE DS 03 1919 * IE DS len 01 1920 * IE DS channel 01 1921 * reserved 00 00 00 00 1922 * probe delay 00 00 1923 * capability 02 00 1924 * rates 82 84 8b 96 (basic rates with have bit 7 set) 1925 * 0c 12 18 24 30 48 60 6c 1926 * padding 100 bytes 1927 */ 1928 memset(&cmd, 0, sizeof(cmd)); 1929 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 1930 memcpy(cmd.ssid, params->ssid, params->ssid_len); 1931 cmd.bsstype = CMD_BSS_TYPE_IBSS; 1932 cmd.beaconperiod = cpu_to_le16(params->beacon_interval); 1933 cmd.ibss.header.id = WLAN_EID_IBSS_PARAMS; 1934 cmd.ibss.header.len = 2; 1935 cmd.ibss.atimwindow = 0; 1936 cmd.ds.header.id = WLAN_EID_DS_PARAMS; 1937 cmd.ds.header.len = 1; 1938 cmd.ds.channel = params->chandef.chan->hw_value; 1939 /* Only v8 and below support setting probe delay */ 1940 if (MRVL_FW_MAJOR_REV(priv->fwrelease) <= 8) 1941 cmd.probedelay = cpu_to_le16(CMD_SCAN_PROBE_DELAY_TIME); 1942 /* TODO: mix in WLAN_CAPABILITY_PRIVACY */ 1943 capability = WLAN_CAPABILITY_IBSS; 1944 cmd.capability = cpu_to_le16(capability); 1945 lbs_add_rates(cmd.rates); 1946 1947 1948 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_START, &cmd); 1949 if (ret) 1950 goto out; 1951 1952 /* 1953 * This is a sample response to CMD_802_11_AD_HOC_JOIN: 1954 * 1955 * response 2b 80 1956 * size 14 00 1957 * sequence xx xx 1958 * result 00 00 1959 * reserved 00 1960 * bssid 02 2b 7b 0f 86 0e 1961 */ 1962 lbs_join_post(priv, params, resp->bssid, capability); 1963 1964 out: 1965 return ret; 1966 } 1967 1968 1969 static int lbs_join_ibss(struct wiphy *wiphy, struct net_device *dev, 1970 struct cfg80211_ibss_params *params) 1971 { 1972 struct lbs_private *priv = wiphy_priv(wiphy); 1973 int ret = 0; 1974 struct cfg80211_bss *bss; 1975 1976 if (dev == priv->mesh_dev) 1977 return -EOPNOTSUPP; 1978 1979 if (!params->chandef.chan) { 1980 ret = -ENOTSUPP; 1981 goto out; 1982 } 1983 1984 ret = lbs_set_channel(priv, params->chandef.chan->hw_value); 1985 if (ret) 1986 goto out; 1987 1988 /* Search if someone is beaconing. This assumes that the 1989 * bss list is populated already */ 1990 bss = cfg80211_get_bss(wiphy, params->chandef.chan, params->bssid, 1991 params->ssid, params->ssid_len, 1992 IEEE80211_BSS_TYPE_IBSS, IEEE80211_PRIVACY_ANY); 1993 1994 if (bss) { 1995 ret = lbs_ibss_join_existing(priv, params, bss); 1996 cfg80211_put_bss(wiphy, bss); 1997 } else 1998 ret = lbs_ibss_start_new(priv, params); 1999 2000 2001 out: 2002 return ret; 2003 } 2004 2005 2006 static int lbs_leave_ibss(struct wiphy *wiphy, struct net_device *dev) 2007 { 2008 struct lbs_private *priv = wiphy_priv(wiphy); 2009 struct cmd_ds_802_11_ad_hoc_stop cmd; 2010 int ret = 0; 2011 2012 if (dev == priv->mesh_dev) 2013 return -EOPNOTSUPP; 2014 2015 memset(&cmd, 0, sizeof(cmd)); 2016 cmd.hdr.size = cpu_to_le16(sizeof(cmd)); 2017 ret = lbs_cmd_with_response(priv, CMD_802_11_AD_HOC_STOP, &cmd); 2018 2019 /* TODO: consider doing this at MACREG_INT_CODE_ADHOC_BCN_LOST time */ 2020 lbs_mac_event_disconnected(priv, true); 2021 2022 return ret; 2023 } 2024 2025 2026 2027 static int lbs_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, 2028 bool enabled, int timeout) 2029 { 2030 struct lbs_private *priv = wiphy_priv(wiphy); 2031 2032 if (!(priv->fwcapinfo & FW_CAPINFO_PS)) { 2033 if (!enabled) 2034 return 0; 2035 else 2036 return -EINVAL; 2037 } 2038 /* firmware does not work well with too long latency with power saving 2039 * enabled, so do not enable it if there is only polling, no 2040 * interrupts (like in some sdio hosts which can only 2041 * poll for sdio irqs) 2042 */ 2043 if (priv->is_polling) { 2044 if (!enabled) 2045 return 0; 2046 else 2047 return -EINVAL; 2048 } 2049 if (!enabled) { 2050 priv->psmode = LBS802_11POWERMODECAM; 2051 if (priv->psstate != PS_STATE_FULL_POWER) 2052 lbs_set_ps_mode(priv, 2053 PS_MODE_ACTION_EXIT_PS, 2054 true); 2055 return 0; 2056 } 2057 if (priv->psmode != LBS802_11POWERMODECAM) 2058 return 0; 2059 priv->psmode = LBS802_11POWERMODEMAX_PSP; 2060 if (priv->connect_status == LBS_CONNECTED) 2061 lbs_set_ps_mode(priv, PS_MODE_ACTION_ENTER_PS, true); 2062 return 0; 2063 } 2064 2065 /* 2066 * Initialization 2067 */ 2068 2069 static const struct cfg80211_ops lbs_cfg80211_ops = { 2070 .set_monitor_channel = lbs_cfg_set_monitor_channel, 2071 .libertas_set_mesh_channel = lbs_cfg_set_mesh_channel, 2072 .scan = lbs_cfg_scan, 2073 .connect = lbs_cfg_connect, 2074 .disconnect = lbs_cfg_disconnect, 2075 .add_key = lbs_cfg_add_key, 2076 .del_key = lbs_cfg_del_key, 2077 .set_default_key = lbs_cfg_set_default_key, 2078 .get_station = lbs_cfg_get_station, 2079 .change_virtual_intf = lbs_change_intf, 2080 .join_ibss = lbs_join_ibss, 2081 .leave_ibss = lbs_leave_ibss, 2082 .set_power_mgmt = lbs_set_power_mgmt, 2083 }; 2084 2085 2086 /* 2087 * At this time lbs_private *priv doesn't even exist, so we just allocate 2088 * memory and don't initialize the wiphy further. This is postponed until we 2089 * can talk to the firmware and happens at registration time in 2090 * lbs_cfg_wiphy_register(). 2091 */ 2092 struct wireless_dev *lbs_cfg_alloc(struct device *dev) 2093 { 2094 int ret = 0; 2095 struct wireless_dev *wdev; 2096 2097 wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL); 2098 if (!wdev) 2099 return ERR_PTR(-ENOMEM); 2100 2101 wdev->wiphy = wiphy_new(&lbs_cfg80211_ops, sizeof(struct lbs_private)); 2102 if (!wdev->wiphy) { 2103 dev_err(dev, "cannot allocate wiphy\n"); 2104 ret = -ENOMEM; 2105 goto err_wiphy_new; 2106 } 2107 2108 return wdev; 2109 2110 err_wiphy_new: 2111 kfree(wdev); 2112 return ERR_PTR(ret); 2113 } 2114 2115 2116 static void lbs_cfg_set_regulatory_hint(struct lbs_private *priv) 2117 { 2118 struct region_code_mapping { 2119 const char *cn; 2120 int code; 2121 }; 2122 2123 /* Section 5.17.2 */ 2124 static const struct region_code_mapping regmap[] = { 2125 {"US ", 0x10}, /* US FCC */ 2126 {"CA ", 0x20}, /* Canada */ 2127 {"EU ", 0x30}, /* ETSI */ 2128 {"ES ", 0x31}, /* Spain */ 2129 {"FR ", 0x32}, /* France */ 2130 {"JP ", 0x40}, /* Japan */ 2131 }; 2132 size_t i; 2133 2134 for (i = 0; i < ARRAY_SIZE(regmap); i++) 2135 if (regmap[i].code == priv->regioncode) { 2136 regulatory_hint(priv->wdev->wiphy, regmap[i].cn); 2137 break; 2138 } 2139 } 2140 2141 static void lbs_reg_notifier(struct wiphy *wiphy, 2142 struct regulatory_request *request) 2143 { 2144 struct lbs_private *priv = wiphy_priv(wiphy); 2145 2146 memcpy(priv->country_code, request->alpha2, sizeof(request->alpha2)); 2147 if (lbs_iface_active(priv)) 2148 lbs_set_11d_domain_info(priv); 2149 } 2150 2151 /* 2152 * This function gets called after lbs_setup_firmware() determined the 2153 * firmware capabilities. So we can setup the wiphy according to our 2154 * hardware/firmware. 2155 */ 2156 int lbs_cfg_register(struct lbs_private *priv) 2157 { 2158 struct wireless_dev *wdev = priv->wdev; 2159 int ret; 2160 2161 wdev->wiphy->max_scan_ssids = 1; 2162 wdev->wiphy->max_scan_ie_len = 256; 2163 wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; 2164 2165 wdev->wiphy->interface_modes = 2166 BIT(NL80211_IFTYPE_STATION) | 2167 BIT(NL80211_IFTYPE_ADHOC); 2168 if (lbs_rtap_supported(priv)) 2169 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MONITOR); 2170 if (lbs_mesh_activated(priv)) 2171 wdev->wiphy->interface_modes |= BIT(NL80211_IFTYPE_MESH_POINT); 2172 2173 wdev->wiphy->bands[NL80211_BAND_2GHZ] = &lbs_band_2ghz; 2174 2175 /* 2176 * We could check priv->fwcapinfo && FW_CAPINFO_WPA, but I have 2177 * never seen a firmware without WPA 2178 */ 2179 wdev->wiphy->cipher_suites = cipher_suites; 2180 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 2181 wdev->wiphy->reg_notifier = lbs_reg_notifier; 2182 2183 ret = wiphy_register(wdev->wiphy); 2184 if (ret < 0) 2185 pr_err("cannot register wiphy device\n"); 2186 2187 priv->wiphy_registered = true; 2188 2189 ret = register_netdev(priv->dev); 2190 if (ret) 2191 pr_err("cannot register network device\n"); 2192 2193 INIT_DELAYED_WORK(&priv->scan_work, lbs_scan_worker); 2194 2195 lbs_cfg_set_regulatory_hint(priv); 2196 2197 return ret; 2198 } 2199 2200 void lbs_scan_deinit(struct lbs_private *priv) 2201 { 2202 cancel_delayed_work_sync(&priv->scan_work); 2203 } 2204 2205 2206 void lbs_cfg_free(struct lbs_private *priv) 2207 { 2208 struct wireless_dev *wdev = priv->wdev; 2209 2210 if (!wdev) 2211 return; 2212 2213 if (priv->wiphy_registered) 2214 wiphy_unregister(wdev->wiphy); 2215 2216 if (wdev->wiphy) 2217 wiphy_free(wdev->wiphy); 2218 2219 kfree(wdev); 2220 } 2221