xref: /linux/drivers/net/wireless/intel/iwlwifi/pcie/rx.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67 
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73 
74 /******************************************************************************
75  *
76  * RX path functions
77  *
78  ******************************************************************************/
79 
80 /*
81  * Rx theory of operation
82  *
83  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84  * each of which point to Receive Buffers to be filled by the NIC.  These get
85  * used not only for Rx frames, but for any command response or notification
86  * from the NIC.  The driver and NIC manage the Rx buffers by means
87  * of indexes into the circular buffer.
88  *
89  * Rx Queue Indexes
90  * The host/firmware share two index registers for managing the Rx buffers.
91  *
92  * The READ index maps to the first position that the firmware may be writing
93  * to -- the driver can read up to (but not including) this position and get
94  * good data.
95  * The READ index is managed by the firmware once the card is enabled.
96  *
97  * The WRITE index maps to the last position the driver has read from -- the
98  * position preceding WRITE is the last slot the firmware can place a packet.
99  *
100  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101  * WRITE = READ.
102  *
103  * During initialization, the host sets up the READ queue position to the first
104  * INDEX position, and WRITE to the last (READ - 1 wrapped)
105  *
106  * When the firmware places a packet in a buffer, it will advance the READ index
107  * and fire the RX interrupt.  The driver can then query the READ index and
108  * process as many packets as possible, moving the WRITE index forward as it
109  * resets the Rx queue buffers with new memory.
110  *
111  * The management in the driver is as follows:
112  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113  *   When the interrupt handler is called, the request is processed.
114  *   The page is either stolen - transferred to the upper layer
115  *   or reused - added immediately to the iwl->rxq->rx_free list.
116  * + When the page is stolen - the driver updates the matching queue's used
117  *   count, detaches the RBD and transfers it to the queue used list.
118  *   When there are two used RBDs - they are transferred to the allocator empty
119  *   list. Work is then scheduled for the allocator to start allocating
120  *   eight buffers.
121  *   When there are another 6 used RBDs - they are transferred to the allocator
122  *   empty list and the driver tries to claim the pre-allocated buffers and
123  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124  *   until ready.
125  *   When there are 8+ buffers in the free list - either from allocation or from
126  *   8 reused unstolen pages - restock is called to update the FW and indexes.
127  * + In order to make sure the allocator always has RBDs to use for allocation
128  *   the allocator has initial pool in the size of num_queues*(8-2) - the
129  *   maximum missing RBDs per allocation request (request posted with 2
130  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131  *   The queues supplies the recycle of the rest of the RBDs.
132  * + A received packet is processed and handed to the kernel network stack,
133  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
134  * + If there are no allocated buffers in iwl->rxq->rx_free,
135  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136  *   If there were enough free buffers and RX_STALLED is set it is cleared.
137  *
138  *
139  * Driver sequence:
140  *
141  * iwl_rxq_alloc()            Allocates rx_free
142  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
143  *                            iwl_pcie_rxq_restock.
144  *                            Used only during initialization.
145  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
146  *                            queue, updates firmware pointers, and updates
147  *                            the WRITE index.
148  * iwl_pcie_rx_allocator()     Background work for allocating pages.
149  *
150  * -- enable interrupts --
151  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
152  *                            READ INDEX, detaching the SKB from the pool.
153  *                            Moves the packet buffer from queue to rx_used.
154  *                            Posts and claims requests to the allocator.
155  *                            Calls iwl_pcie_rxq_restock to refill any empty
156  *                            slots.
157  *
158  * RBD life-cycle:
159  *
160  * Init:
161  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162  *
163  * Regular Receive interrupt:
164  * Page Stolen:
165  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167  * Page not Stolen:
168  * rxq.queue -> rxq.rx_free -> rxq.queue
169  * ...
170  *
171  */
172 
173 /*
174  * iwl_rxq_space - Return number of free slots available in queue.
175  */
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 	/* Make sure rx queue size is a power of 2 */
179 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180 
181 	/*
182 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 	 * between empty and completely full queues.
184 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 	 * defined for negative dividends.
186 	 */
187 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189 
190 /*
191  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192  */
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 	return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197 
198 /*
199  * iwl_pcie_rx_stop - stops the Rx DMA
200  */
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
204 		/* TODO: remove this for 22560 once fw does it */
205 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 	} else if (trans->cfg->mq_rx_supported) {
209 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 	} else {
213 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 					   1000);
217 	}
218 }
219 
220 /*
221  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222  */
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 				    struct iwl_rxq *rxq)
225 {
226 	u32 reg;
227 
228 	lockdep_assert_held(&rxq->lock);
229 
230 	/*
231 	 * explicitly wake up the NIC if:
232 	 * 1. shadow registers aren't enabled
233 	 * 2. there is a chance that the NIC is asleep
234 	 */
235 	if (!trans->cfg->base_params->shadow_reg_enable &&
236 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238 
239 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 				       reg);
242 			iwl_set_bit(trans, CSR_GP_CNTRL,
243 				    BIT(trans->cfg->csr->flag_mac_access_req));
244 			rxq->need_update = true;
245 			return;
246 		}
247 	}
248 
249 	rxq->write_actual = round_down(rxq->write, 8);
250 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_22560)
251 		iwl_write32(trans, HBUS_TARG_WRPTR,
252 			    (rxq->write_actual |
253 			     ((FIRST_RX_QUEUE + rxq->id) << 16)));
254 	else if (trans->cfg->mq_rx_supported)
255 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
256 			    rxq->write_actual);
257 	else
258 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
259 }
260 
261 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
262 {
263 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
264 	int i;
265 
266 	for (i = 0; i < trans->num_rx_queues; i++) {
267 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
268 
269 		if (!rxq->need_update)
270 			continue;
271 		spin_lock(&rxq->lock);
272 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
273 		rxq->need_update = false;
274 		spin_unlock(&rxq->lock);
275 	}
276 }
277 
278 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
279 				struct iwl_rxq *rxq,
280 				struct iwl_rx_mem_buffer *rxb)
281 {
282 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
283 		struct iwl_rx_transfer_desc *bd = rxq->bd;
284 
285 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
286 
287 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
288 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
289 	} else {
290 		__le64 *bd = rxq->bd;
291 
292 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
293 	}
294 
295 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
296 		     (u32)rxb->vid, rxq->id, rxq->write);
297 }
298 
299 /*
300  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
301  */
302 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
303 				  struct iwl_rxq *rxq)
304 {
305 	struct iwl_rx_mem_buffer *rxb;
306 
307 	/*
308 	 * If the device isn't enabled - no need to try to add buffers...
309 	 * This can happen when we stop the device and still have an interrupt
310 	 * pending. We stop the APM before we sync the interrupts because we
311 	 * have to (see comment there). On the other hand, since the APM is
312 	 * stopped, we cannot access the HW (in particular not prph).
313 	 * So don't try to restock if the APM has been already stopped.
314 	 */
315 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
316 		return;
317 
318 	spin_lock(&rxq->lock);
319 	while (rxq->free_count) {
320 		/* Get next free Rx buffer, remove from free list */
321 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
322 				       list);
323 		list_del(&rxb->list);
324 		rxb->invalid = false;
325 		/* 12 first bits are expected to be empty */
326 		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
327 		/* Point to Rx buffer via next RBD in circular buffer */
328 		iwl_pcie_restock_bd(trans, rxq, rxb);
329 		rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
330 		rxq->free_count--;
331 	}
332 	spin_unlock(&rxq->lock);
333 
334 	/*
335 	 * If we've added more space for the firmware to place data, tell it.
336 	 * Increment device's write pointer in multiples of 8.
337 	 */
338 	if (rxq->write_actual != (rxq->write & ~0x7)) {
339 		spin_lock(&rxq->lock);
340 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
341 		spin_unlock(&rxq->lock);
342 	}
343 }
344 
345 /*
346  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
347  */
348 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
349 				  struct iwl_rxq *rxq)
350 {
351 	struct iwl_rx_mem_buffer *rxb;
352 
353 	/*
354 	 * If the device isn't enabled - not need to try to add buffers...
355 	 * This can happen when we stop the device and still have an interrupt
356 	 * pending. We stop the APM before we sync the interrupts because we
357 	 * have to (see comment there). On the other hand, since the APM is
358 	 * stopped, we cannot access the HW (in particular not prph).
359 	 * So don't try to restock if the APM has been already stopped.
360 	 */
361 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
362 		return;
363 
364 	spin_lock(&rxq->lock);
365 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
366 		__le32 *bd = (__le32 *)rxq->bd;
367 		/* The overwritten rxb must be a used one */
368 		rxb = rxq->queue[rxq->write];
369 		BUG_ON(rxb && rxb->page);
370 
371 		/* Get next free Rx buffer, remove from free list */
372 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
373 				       list);
374 		list_del(&rxb->list);
375 		rxb->invalid = false;
376 
377 		/* Point to Rx buffer via next RBD in circular buffer */
378 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
379 		rxq->queue[rxq->write] = rxb;
380 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
381 		rxq->free_count--;
382 	}
383 	spin_unlock(&rxq->lock);
384 
385 	/* If we've added more space for the firmware to place data, tell it.
386 	 * Increment device's write pointer in multiples of 8. */
387 	if (rxq->write_actual != (rxq->write & ~0x7)) {
388 		spin_lock(&rxq->lock);
389 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
390 		spin_unlock(&rxq->lock);
391 	}
392 }
393 
394 /*
395  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
396  *
397  * If there are slots in the RX queue that need to be restocked,
398  * and we have free pre-allocated buffers, fill the ranks as much
399  * as we can, pulling from rx_free.
400  *
401  * This moves the 'write' index forward to catch up with 'processed', and
402  * also updates the memory address in the firmware to reference the new
403  * target buffer.
404  */
405 static
406 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
407 {
408 	if (trans->cfg->mq_rx_supported)
409 		iwl_pcie_rxmq_restock(trans, rxq);
410 	else
411 		iwl_pcie_rxsq_restock(trans, rxq);
412 }
413 
414 /*
415  * iwl_pcie_rx_alloc_page - allocates and returns a page.
416  *
417  */
418 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
419 					   gfp_t priority)
420 {
421 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
422 	struct page *page;
423 	gfp_t gfp_mask = priority;
424 
425 	if (trans_pcie->rx_page_order > 0)
426 		gfp_mask |= __GFP_COMP;
427 
428 	/* Alloc a new receive buffer */
429 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
430 	if (!page) {
431 		if (net_ratelimit())
432 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
433 				       trans_pcie->rx_page_order);
434 		/*
435 		 * Issue an error if we don't have enough pre-allocated
436 		  * buffers.
437 		 */
438 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
439 			IWL_CRIT(trans,
440 				 "Failed to alloc_pages\n");
441 		return NULL;
442 	}
443 	return page;
444 }
445 
446 /*
447  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
448  *
449  * A used RBD is an Rx buffer that has been given to the stack. To use it again
450  * a page must be allocated and the RBD must point to the page. This function
451  * doesn't change the HW pointer but handles the list of pages that is used by
452  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
453  * allocated buffers.
454  */
455 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
456 			    struct iwl_rxq *rxq)
457 {
458 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
459 	struct iwl_rx_mem_buffer *rxb;
460 	struct page *page;
461 
462 	while (1) {
463 		spin_lock(&rxq->lock);
464 		if (list_empty(&rxq->rx_used)) {
465 			spin_unlock(&rxq->lock);
466 			return;
467 		}
468 		spin_unlock(&rxq->lock);
469 
470 		/* Alloc a new receive buffer */
471 		page = iwl_pcie_rx_alloc_page(trans, priority);
472 		if (!page)
473 			return;
474 
475 		spin_lock(&rxq->lock);
476 
477 		if (list_empty(&rxq->rx_used)) {
478 			spin_unlock(&rxq->lock);
479 			__free_pages(page, trans_pcie->rx_page_order);
480 			return;
481 		}
482 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
483 				       list);
484 		list_del(&rxb->list);
485 		spin_unlock(&rxq->lock);
486 
487 		BUG_ON(rxb->page);
488 		rxb->page = page;
489 		/* Get physical address of the RB */
490 		rxb->page_dma =
491 			dma_map_page(trans->dev, page, 0,
492 				     PAGE_SIZE << trans_pcie->rx_page_order,
493 				     DMA_FROM_DEVICE);
494 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
495 			rxb->page = NULL;
496 			spin_lock(&rxq->lock);
497 			list_add(&rxb->list, &rxq->rx_used);
498 			spin_unlock(&rxq->lock);
499 			__free_pages(page, trans_pcie->rx_page_order);
500 			return;
501 		}
502 
503 		spin_lock(&rxq->lock);
504 
505 		list_add_tail(&rxb->list, &rxq->rx_free);
506 		rxq->free_count++;
507 
508 		spin_unlock(&rxq->lock);
509 	}
510 }
511 
512 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
513 {
514 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
515 	int i;
516 
517 	for (i = 0; i < RX_POOL_SIZE; i++) {
518 		if (!trans_pcie->rx_pool[i].page)
519 			continue;
520 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
521 			       PAGE_SIZE << trans_pcie->rx_page_order,
522 			       DMA_FROM_DEVICE);
523 		__free_pages(trans_pcie->rx_pool[i].page,
524 			     trans_pcie->rx_page_order);
525 		trans_pcie->rx_pool[i].page = NULL;
526 	}
527 }
528 
529 /*
530  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
531  *
532  * Allocates for each received request 8 pages
533  * Called as a scheduled work item.
534  */
535 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
536 {
537 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
538 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
539 	struct list_head local_empty;
540 	int pending = atomic_read(&rba->req_pending);
541 
542 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
543 
544 	/* If we were scheduled - there is at least one request */
545 	spin_lock(&rba->lock);
546 	/* swap out the rba->rbd_empty to a local list */
547 	list_replace_init(&rba->rbd_empty, &local_empty);
548 	spin_unlock(&rba->lock);
549 
550 	while (pending) {
551 		int i;
552 		LIST_HEAD(local_allocated);
553 		gfp_t gfp_mask = GFP_KERNEL;
554 
555 		/* Do not post a warning if there are only a few requests */
556 		if (pending < RX_PENDING_WATERMARK)
557 			gfp_mask |= __GFP_NOWARN;
558 
559 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
560 			struct iwl_rx_mem_buffer *rxb;
561 			struct page *page;
562 
563 			/* List should never be empty - each reused RBD is
564 			 * returned to the list, and initial pool covers any
565 			 * possible gap between the time the page is allocated
566 			 * to the time the RBD is added.
567 			 */
568 			BUG_ON(list_empty(&local_empty));
569 			/* Get the first rxb from the rbd list */
570 			rxb = list_first_entry(&local_empty,
571 					       struct iwl_rx_mem_buffer, list);
572 			BUG_ON(rxb->page);
573 
574 			/* Alloc a new receive buffer */
575 			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
576 			if (!page)
577 				continue;
578 			rxb->page = page;
579 
580 			/* Get physical address of the RB */
581 			rxb->page_dma = dma_map_page(trans->dev, page, 0,
582 					PAGE_SIZE << trans_pcie->rx_page_order,
583 					DMA_FROM_DEVICE);
584 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
585 				rxb->page = NULL;
586 				__free_pages(page, trans_pcie->rx_page_order);
587 				continue;
588 			}
589 
590 			/* move the allocated entry to the out list */
591 			list_move(&rxb->list, &local_allocated);
592 			i++;
593 		}
594 
595 		atomic_dec(&rba->req_pending);
596 		pending--;
597 
598 		if (!pending) {
599 			pending = atomic_read(&rba->req_pending);
600 			if (pending)
601 				IWL_DEBUG_TPT(trans,
602 					      "Got more pending allocation requests = %d\n",
603 					      pending);
604 		}
605 
606 		spin_lock(&rba->lock);
607 		/* add the allocated rbds to the allocator allocated list */
608 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
609 		/* get more empty RBDs for current pending requests */
610 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
611 		spin_unlock(&rba->lock);
612 
613 		atomic_inc(&rba->req_ready);
614 
615 	}
616 
617 	spin_lock(&rba->lock);
618 	/* return unused rbds to the allocator empty list */
619 	list_splice_tail(&local_empty, &rba->rbd_empty);
620 	spin_unlock(&rba->lock);
621 
622 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
623 }
624 
625 /*
626  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
627 .*
628 .* Called by queue when the queue posted allocation request and
629  * has freed 8 RBDs in order to restock itself.
630  * This function directly moves the allocated RBs to the queue's ownership
631  * and updates the relevant counters.
632  */
633 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
634 				      struct iwl_rxq *rxq)
635 {
636 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
637 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
638 	int i;
639 
640 	lockdep_assert_held(&rxq->lock);
641 
642 	/*
643 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
644 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
645 	 * function will return early, as there are no ready requests.
646 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
647 	 * req_ready > 0, i.e. - there are ready requests and the function
648 	 * hands one request to the caller.
649 	 */
650 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
651 		return;
652 
653 	spin_lock(&rba->lock);
654 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
655 		/* Get next free Rx buffer, remove it from free list */
656 		struct iwl_rx_mem_buffer *rxb =
657 			list_first_entry(&rba->rbd_allocated,
658 					 struct iwl_rx_mem_buffer, list);
659 
660 		list_move(&rxb->list, &rxq->rx_free);
661 	}
662 	spin_unlock(&rba->lock);
663 
664 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
665 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
666 }
667 
668 void iwl_pcie_rx_allocator_work(struct work_struct *data)
669 {
670 	struct iwl_rb_allocator *rba_p =
671 		container_of(data, struct iwl_rb_allocator, rx_alloc);
672 	struct iwl_trans_pcie *trans_pcie =
673 		container_of(rba_p, struct iwl_trans_pcie, rba);
674 
675 	iwl_pcie_rx_allocator(trans_pcie->trans);
676 }
677 
678 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
679 {
680 	struct iwl_rx_transfer_desc *rx_td;
681 
682 	if (use_rx_td)
683 		return sizeof(*rx_td);
684 	else
685 		return trans->cfg->mq_rx_supported ? sizeof(__le64) :
686 			sizeof(__le32);
687 }
688 
689 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
690 				  struct iwl_rxq *rxq)
691 {
692 	struct device *dev = trans->dev;
693 	bool use_rx_td = (trans->cfg->device_family >=
694 			  IWL_DEVICE_FAMILY_22560);
695 	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
696 
697 	if (rxq->bd)
698 		dma_free_coherent(trans->dev,
699 				  free_size * rxq->queue_size,
700 				  rxq->bd, rxq->bd_dma);
701 	rxq->bd_dma = 0;
702 	rxq->bd = NULL;
703 
704 	rxq->rb_stts_dma = 0;
705 	rxq->rb_stts = NULL;
706 
707 	if (rxq->used_bd)
708 		dma_free_coherent(trans->dev,
709 				  (use_rx_td ? sizeof(*rxq->cd) :
710 				   sizeof(__le32)) * rxq->queue_size,
711 				  rxq->used_bd, rxq->used_bd_dma);
712 	rxq->used_bd_dma = 0;
713 	rxq->used_bd = NULL;
714 
715 	if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
716 		return;
717 
718 	if (rxq->tr_tail)
719 		dma_free_coherent(dev, sizeof(__le16),
720 				  rxq->tr_tail, rxq->tr_tail_dma);
721 	rxq->tr_tail_dma = 0;
722 	rxq->tr_tail = NULL;
723 
724 	if (rxq->cr_tail)
725 		dma_free_coherent(dev, sizeof(__le16),
726 				  rxq->cr_tail, rxq->cr_tail_dma);
727 	rxq->cr_tail_dma = 0;
728 	rxq->cr_tail = NULL;
729 }
730 
731 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
732 				  struct iwl_rxq *rxq)
733 {
734 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
735 	struct device *dev = trans->dev;
736 	int i;
737 	int free_size;
738 	bool use_rx_td = (trans->cfg->device_family >=
739 			  IWL_DEVICE_FAMILY_22560);
740 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
741 			      sizeof(struct iwl_rb_status);
742 
743 	spin_lock_init(&rxq->lock);
744 	if (trans->cfg->mq_rx_supported)
745 		rxq->queue_size = MQ_RX_TABLE_SIZE;
746 	else
747 		rxq->queue_size = RX_QUEUE_SIZE;
748 
749 	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
750 
751 	/*
752 	 * Allocate the circular buffer of Read Buffer Descriptors
753 	 * (RBDs)
754 	 */
755 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
756 				     &rxq->bd_dma, GFP_KERNEL);
757 	if (!rxq->bd)
758 		goto err;
759 
760 	if (trans->cfg->mq_rx_supported) {
761 		rxq->used_bd = dma_alloc_coherent(dev,
762 						  (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
763 						  &rxq->used_bd_dma,
764 						  GFP_KERNEL);
765 		if (!rxq->used_bd)
766 			goto err;
767 	}
768 
769 	rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
770 	rxq->rb_stts_dma =
771 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
772 
773 	if (!use_rx_td)
774 		return 0;
775 
776 	/* Allocate the driver's pointer to TR tail */
777 	rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
778 					  &rxq->tr_tail_dma, GFP_KERNEL);
779 	if (!rxq->tr_tail)
780 		goto err;
781 
782 	/* Allocate the driver's pointer to CR tail */
783 	rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
784 					  &rxq->cr_tail_dma, GFP_KERNEL);
785 	if (!rxq->cr_tail)
786 		goto err;
787 	/*
788 	 * W/A 22560 device step Z0 must be non zero bug
789 	 * TODO: remove this when stop supporting Z0
790 	 */
791 	*rxq->cr_tail = cpu_to_le16(500);
792 
793 	return 0;
794 
795 err:
796 	for (i = 0; i < trans->num_rx_queues; i++) {
797 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
798 
799 		iwl_pcie_free_rxq_dma(trans, rxq);
800 	}
801 
802 	return -ENOMEM;
803 }
804 
805 int iwl_pcie_rx_alloc(struct iwl_trans *trans)
806 {
807 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
808 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
809 	int i, ret;
810 	size_t rb_stts_size = trans->cfg->device_family >=
811 			      IWL_DEVICE_FAMILY_22560 ?
812 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
813 
814 	if (WARN_ON(trans_pcie->rxq))
815 		return -EINVAL;
816 
817 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
818 				  GFP_KERNEL);
819 	if (!trans_pcie->rxq)
820 		return -ENOMEM;
821 
822 	spin_lock_init(&rba->lock);
823 
824 	/*
825 	 * Allocate the driver's pointer to receive buffer status.
826 	 * Allocate for all queues continuously (HW requirement).
827 	 */
828 	trans_pcie->base_rb_stts =
829 			dma_alloc_coherent(trans->dev,
830 					   rb_stts_size * trans->num_rx_queues,
831 					   &trans_pcie->base_rb_stts_dma,
832 					   GFP_KERNEL);
833 	if (!trans_pcie->base_rb_stts) {
834 		ret = -ENOMEM;
835 		goto err;
836 	}
837 
838 	for (i = 0; i < trans->num_rx_queues; i++) {
839 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
840 
841 		rxq->id = i;
842 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
843 		if (ret)
844 			goto err;
845 	}
846 	return 0;
847 
848 err:
849 	if (trans_pcie->base_rb_stts) {
850 		dma_free_coherent(trans->dev,
851 				  rb_stts_size * trans->num_rx_queues,
852 				  trans_pcie->base_rb_stts,
853 				  trans_pcie->base_rb_stts_dma);
854 		trans_pcie->base_rb_stts = NULL;
855 		trans_pcie->base_rb_stts_dma = 0;
856 	}
857 	kfree(trans_pcie->rxq);
858 
859 	return ret;
860 }
861 
862 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
863 {
864 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
865 	u32 rb_size;
866 	unsigned long flags;
867 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
868 
869 	switch (trans_pcie->rx_buf_size) {
870 	case IWL_AMSDU_4K:
871 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
872 		break;
873 	case IWL_AMSDU_8K:
874 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
875 		break;
876 	case IWL_AMSDU_12K:
877 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
878 		break;
879 	default:
880 		WARN_ON(1);
881 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
882 	}
883 
884 	if (!iwl_trans_grab_nic_access(trans, &flags))
885 		return;
886 
887 	/* Stop Rx DMA */
888 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
889 	/* reset and flush pointers */
890 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
891 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
892 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
893 
894 	/* Reset driver's Rx queue write index */
895 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
896 
897 	/* Tell device where to find RBD circular buffer in DRAM */
898 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
899 		    (u32)(rxq->bd_dma >> 8));
900 
901 	/* Tell device where in DRAM to update its Rx status */
902 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
903 		    rxq->rb_stts_dma >> 4);
904 
905 	/* Enable Rx DMA
906 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
907 	 *      the credit mechanism in 5000 HW RX FIFO
908 	 * Direct rx interrupts to hosts
909 	 * Rx buffer size 4 or 8k or 12k
910 	 * RB timeout 0x10
911 	 * 256 RBDs
912 	 */
913 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
914 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
915 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
916 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
917 		    rb_size |
918 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
919 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
920 
921 	iwl_trans_release_nic_access(trans, &flags);
922 
923 	/* Set interrupt coalescing timer to default (2048 usecs) */
924 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
925 
926 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
927 	if (trans->cfg->host_interrupt_operation_mode)
928 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
929 }
930 
931 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
932 {
933 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
934 	u32 rb_size, enabled = 0;
935 	unsigned long flags;
936 	int i;
937 
938 	switch (trans_pcie->rx_buf_size) {
939 	case IWL_AMSDU_2K:
940 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
941 		break;
942 	case IWL_AMSDU_4K:
943 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
944 		break;
945 	case IWL_AMSDU_8K:
946 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
947 		break;
948 	case IWL_AMSDU_12K:
949 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
950 		break;
951 	default:
952 		WARN_ON(1);
953 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
954 	}
955 
956 	if (!iwl_trans_grab_nic_access(trans, &flags))
957 		return;
958 
959 	/* Stop Rx DMA */
960 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
961 	/* disable free amd used rx queue operation */
962 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
963 
964 	for (i = 0; i < trans->num_rx_queues; i++) {
965 		/* Tell device where to find RBD free table in DRAM */
966 		iwl_write_prph64_no_grab(trans,
967 					 RFH_Q_FRBDCB_BA_LSB(i),
968 					 trans_pcie->rxq[i].bd_dma);
969 		/* Tell device where to find RBD used table in DRAM */
970 		iwl_write_prph64_no_grab(trans,
971 					 RFH_Q_URBDCB_BA_LSB(i),
972 					 trans_pcie->rxq[i].used_bd_dma);
973 		/* Tell device where in DRAM to update its Rx status */
974 		iwl_write_prph64_no_grab(trans,
975 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
976 					 trans_pcie->rxq[i].rb_stts_dma);
977 		/* Reset device indice tables */
978 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
979 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
980 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
981 
982 		enabled |= BIT(i) | BIT(i + 16);
983 	}
984 
985 	/*
986 	 * Enable Rx DMA
987 	 * Rx buffer size 4 or 8k or 12k
988 	 * Min RB size 4 or 8
989 	 * Drop frames that exceed RB size
990 	 * 512 RBDs
991 	 */
992 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
993 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
994 			       RFH_RXF_DMA_MIN_RB_4_8 |
995 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
996 			       RFH_RXF_DMA_RBDCB_SIZE_512);
997 
998 	/*
999 	 * Activate DMA snooping.
1000 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
1001 	 * Default queue is 0
1002 	 */
1003 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
1004 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
1005 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
1006 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
1007 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
1008 					       trans->cfg->integrated ?
1009 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1010 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1011 	/* Enable the relevant rx queues */
1012 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1013 
1014 	iwl_trans_release_nic_access(trans, &flags);
1015 
1016 	/* Set interrupt coalescing timer to default (2048 usecs) */
1017 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1018 }
1019 
1020 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1021 {
1022 	lockdep_assert_held(&rxq->lock);
1023 
1024 	INIT_LIST_HEAD(&rxq->rx_free);
1025 	INIT_LIST_HEAD(&rxq->rx_used);
1026 	rxq->free_count = 0;
1027 	rxq->used_count = 0;
1028 }
1029 
1030 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1031 {
1032 	WARN_ON(1);
1033 	return 0;
1034 }
1035 
1036 int _iwl_pcie_rx_init(struct iwl_trans *trans)
1037 {
1038 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1039 	struct iwl_rxq *def_rxq;
1040 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1041 	int i, err, queue_size, allocator_pool_size, num_alloc;
1042 
1043 	if (!trans_pcie->rxq) {
1044 		err = iwl_pcie_rx_alloc(trans);
1045 		if (err)
1046 			return err;
1047 	}
1048 	def_rxq = trans_pcie->rxq;
1049 
1050 	cancel_work_sync(&rba->rx_alloc);
1051 
1052 	spin_lock(&rba->lock);
1053 	atomic_set(&rba->req_pending, 0);
1054 	atomic_set(&rba->req_ready, 0);
1055 	INIT_LIST_HEAD(&rba->rbd_allocated);
1056 	INIT_LIST_HEAD(&rba->rbd_empty);
1057 	spin_unlock(&rba->lock);
1058 
1059 	/* free all first - we might be reconfigured for a different size */
1060 	iwl_pcie_free_rbs_pool(trans);
1061 
1062 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1063 		def_rxq->queue[i] = NULL;
1064 
1065 	for (i = 0; i < trans->num_rx_queues; i++) {
1066 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1067 
1068 		spin_lock(&rxq->lock);
1069 		/*
1070 		 * Set read write pointer to reflect that we have processed
1071 		 * and used all buffers, but have not restocked the Rx queue
1072 		 * with fresh buffers
1073 		 */
1074 		rxq->read = 0;
1075 		rxq->write = 0;
1076 		rxq->write_actual = 0;
1077 		memset(rxq->rb_stts, 0,
1078 		       (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ?
1079 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1080 
1081 		iwl_pcie_rx_init_rxb_lists(rxq);
1082 
1083 		if (!rxq->napi.poll)
1084 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1085 				       iwl_pcie_dummy_napi_poll, 64);
1086 
1087 		spin_unlock(&rxq->lock);
1088 	}
1089 
1090 	/* move the pool to the default queue and allocator ownerships */
1091 	queue_size = trans->cfg->mq_rx_supported ?
1092 		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1093 	allocator_pool_size = trans->num_rx_queues *
1094 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1095 	num_alloc = queue_size + allocator_pool_size;
1096 	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1097 		     ARRAY_SIZE(trans_pcie->rx_pool));
1098 	for (i = 0; i < num_alloc; i++) {
1099 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1100 
1101 		if (i < allocator_pool_size)
1102 			list_add(&rxb->list, &rba->rbd_empty);
1103 		else
1104 			list_add(&rxb->list, &def_rxq->rx_used);
1105 		trans_pcie->global_table[i] = rxb;
1106 		rxb->vid = (u16)(i + 1);
1107 		rxb->invalid = true;
1108 	}
1109 
1110 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1111 
1112 	return 0;
1113 }
1114 
1115 int iwl_pcie_rx_init(struct iwl_trans *trans)
1116 {
1117 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1118 	int ret = _iwl_pcie_rx_init(trans);
1119 
1120 	if (ret)
1121 		return ret;
1122 
1123 	if (trans->cfg->mq_rx_supported)
1124 		iwl_pcie_rx_mq_hw_init(trans);
1125 	else
1126 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1127 
1128 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1129 
1130 	spin_lock(&trans_pcie->rxq->lock);
1131 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1132 	spin_unlock(&trans_pcie->rxq->lock);
1133 
1134 	return 0;
1135 }
1136 
1137 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1138 {
1139 	/* Set interrupt coalescing timer to default (2048 usecs) */
1140 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1141 
1142 	/*
1143 	 * We don't configure the RFH.
1144 	 * Restock will be done at alive, after firmware configured the RFH.
1145 	 */
1146 	return _iwl_pcie_rx_init(trans);
1147 }
1148 
1149 void iwl_pcie_rx_free(struct iwl_trans *trans)
1150 {
1151 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1152 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1153 	int i;
1154 	size_t rb_stts_size = trans->cfg->device_family >=
1155 			      IWL_DEVICE_FAMILY_22560 ?
1156 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1157 
1158 	/*
1159 	 * if rxq is NULL, it means that nothing has been allocated,
1160 	 * exit now
1161 	 */
1162 	if (!trans_pcie->rxq) {
1163 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1164 		return;
1165 	}
1166 
1167 	cancel_work_sync(&rba->rx_alloc);
1168 
1169 	iwl_pcie_free_rbs_pool(trans);
1170 
1171 	if (trans_pcie->base_rb_stts) {
1172 		dma_free_coherent(trans->dev,
1173 				  rb_stts_size * trans->num_rx_queues,
1174 				  trans_pcie->base_rb_stts,
1175 				  trans_pcie->base_rb_stts_dma);
1176 		trans_pcie->base_rb_stts = NULL;
1177 		trans_pcie->base_rb_stts_dma = 0;
1178 	}
1179 
1180 	for (i = 0; i < trans->num_rx_queues; i++) {
1181 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1182 
1183 		iwl_pcie_free_rxq_dma(trans, rxq);
1184 
1185 		if (rxq->napi.poll)
1186 			netif_napi_del(&rxq->napi);
1187 	}
1188 	kfree(trans_pcie->rxq);
1189 }
1190 
1191 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1192 					  struct iwl_rb_allocator *rba)
1193 {
1194 	spin_lock(&rba->lock);
1195 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1196 	spin_unlock(&rba->lock);
1197 }
1198 
1199 /*
1200  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1201  *
1202  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1203  * When there are 2 empty RBDs - a request for allocation is posted
1204  */
1205 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1206 				  struct iwl_rx_mem_buffer *rxb,
1207 				  struct iwl_rxq *rxq, bool emergency)
1208 {
1209 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1210 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1211 
1212 	/* Move the RBD to the used list, will be moved to allocator in batches
1213 	 * before claiming or posting a request*/
1214 	list_add_tail(&rxb->list, &rxq->rx_used);
1215 
1216 	if (unlikely(emergency))
1217 		return;
1218 
1219 	/* Count the allocator owned RBDs */
1220 	rxq->used_count++;
1221 
1222 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1223 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1224 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1225 	 * after but we still need to post another request.
1226 	 */
1227 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1228 		/* Move the 2 RBDs to the allocator ownership.
1229 		 Allocator has another 6 from pool for the request completion*/
1230 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1231 
1232 		atomic_inc(&rba->req_pending);
1233 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1234 	}
1235 }
1236 
1237 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1238 				struct iwl_rxq *rxq,
1239 				struct iwl_rx_mem_buffer *rxb,
1240 				bool emergency,
1241 				int i)
1242 {
1243 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1244 	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1245 	bool page_stolen = false;
1246 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1247 	u32 offset = 0;
1248 
1249 	if (WARN_ON(!rxb))
1250 		return;
1251 
1252 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1253 
1254 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1255 		struct iwl_rx_packet *pkt;
1256 		u16 sequence;
1257 		bool reclaim;
1258 		int index, cmd_index, len;
1259 		struct iwl_rx_cmd_buffer rxcb = {
1260 			._offset = offset,
1261 			._rx_page_order = trans_pcie->rx_page_order,
1262 			._page = rxb->page,
1263 			._page_stolen = false,
1264 			.truesize = max_len,
1265 		};
1266 
1267 		pkt = rxb_addr(&rxcb);
1268 
1269 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1270 			IWL_DEBUG_RX(trans,
1271 				     "Q %d: RB end marker at offset %d\n",
1272 				     rxq->id, offset);
1273 			break;
1274 		}
1275 
1276 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1277 			FH_RSCSR_RXQ_POS != rxq->id,
1278 		     "frame on invalid queue - is on %d and indicates %d\n",
1279 		     rxq->id,
1280 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1281 			FH_RSCSR_RXQ_POS);
1282 
1283 		IWL_DEBUG_RX(trans,
1284 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1285 			     rxq->id, offset,
1286 			     iwl_get_cmd_string(trans,
1287 						iwl_cmd_id(pkt->hdr.cmd,
1288 							   pkt->hdr.group_id,
1289 							   0)),
1290 			     pkt->hdr.group_id, pkt->hdr.cmd,
1291 			     le16_to_cpu(pkt->hdr.sequence));
1292 
1293 		len = iwl_rx_packet_len(pkt);
1294 		len += sizeof(u32); /* account for status word */
1295 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1296 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1297 
1298 		/* Reclaim a command buffer only if this packet is a response
1299 		 *   to a (driver-originated) command.
1300 		 * If the packet (e.g. Rx frame) originated from uCode,
1301 		 *   there is no command buffer to reclaim.
1302 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1303 		 *   but apparently a few don't get set; catch them here. */
1304 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1305 		if (reclaim && !pkt->hdr.group_id) {
1306 			int i;
1307 
1308 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1309 				if (trans_pcie->no_reclaim_cmds[i] ==
1310 							pkt->hdr.cmd) {
1311 					reclaim = false;
1312 					break;
1313 				}
1314 			}
1315 		}
1316 
1317 		sequence = le16_to_cpu(pkt->hdr.sequence);
1318 		index = SEQ_TO_INDEX(sequence);
1319 		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1320 
1321 		if (rxq->id == trans_pcie->def_rx_queue)
1322 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1323 				       &rxcb);
1324 		else
1325 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1326 					   &rxcb, rxq->id);
1327 
1328 		if (reclaim) {
1329 			kzfree(txq->entries[cmd_index].free_buf);
1330 			txq->entries[cmd_index].free_buf = NULL;
1331 		}
1332 
1333 		/*
1334 		 * After here, we should always check rxcb._page_stolen,
1335 		 * if it is true then one of the handlers took the page.
1336 		 */
1337 
1338 		if (reclaim) {
1339 			/* Invoke any callbacks, transfer the buffer to caller,
1340 			 * and fire off the (possibly) blocking
1341 			 * iwl_trans_send_cmd()
1342 			 * as we reclaim the driver command queue */
1343 			if (!rxcb._page_stolen)
1344 				iwl_pcie_hcmd_complete(trans, &rxcb);
1345 			else
1346 				IWL_WARN(trans, "Claim null rxb?\n");
1347 		}
1348 
1349 		page_stolen |= rxcb._page_stolen;
1350 		if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1351 			break;
1352 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1353 	}
1354 
1355 	/* page was stolen from us -- free our reference */
1356 	if (page_stolen) {
1357 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1358 		rxb->page = NULL;
1359 	}
1360 
1361 	/* Reuse the page if possible. For notification packets and
1362 	 * SKBs that fail to Rx correctly, add them back into the
1363 	 * rx_free list for reuse later. */
1364 	if (rxb->page != NULL) {
1365 		rxb->page_dma =
1366 			dma_map_page(trans->dev, rxb->page, 0,
1367 				     PAGE_SIZE << trans_pcie->rx_page_order,
1368 				     DMA_FROM_DEVICE);
1369 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1370 			/*
1371 			 * free the page(s) as well to not break
1372 			 * the invariant that the items on the used
1373 			 * list have no page(s)
1374 			 */
1375 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1376 			rxb->page = NULL;
1377 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1378 		} else {
1379 			list_add_tail(&rxb->list, &rxq->rx_free);
1380 			rxq->free_count++;
1381 		}
1382 	} else
1383 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1384 }
1385 
1386 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1387 						  struct iwl_rxq *rxq, int i)
1388 {
1389 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1390 	struct iwl_rx_mem_buffer *rxb;
1391 	u16 vid;
1392 
1393 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1394 
1395 	if (!trans->cfg->mq_rx_supported) {
1396 		rxb = rxq->queue[i];
1397 		rxq->queue[i] = NULL;
1398 		return rxb;
1399 	}
1400 
1401 	/* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1402 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1403 		vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1404 	else
1405 		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1406 
1407 	if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1408 		goto out_err;
1409 
1410 	rxb = trans_pcie->global_table[vid - 1];
1411 	if (rxb->invalid)
1412 		goto out_err;
1413 
1414 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1415 
1416 	rxb->invalid = true;
1417 
1418 	return rxb;
1419 
1420 out_err:
1421 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1422 	iwl_force_nmi(trans);
1423 	return NULL;
1424 }
1425 
1426 /*
1427  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1428  */
1429 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1430 {
1431 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1432 	struct iwl_rxq *rxq;
1433 	u32 r, i, count = 0;
1434 	bool emergency = false;
1435 
1436 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1437 		return;
1438 
1439 	rxq = &trans_pcie->rxq[queue];
1440 
1441 restart:
1442 	spin_lock(&rxq->lock);
1443 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1444 	 * buffer that the driver may process (last buffer filled by ucode). */
1445 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1446 	i = rxq->read;
1447 
1448 	/* W/A 9000 device step A0 wrap-around bug */
1449 	r &= (rxq->queue_size - 1);
1450 
1451 	/* Rx interrupt, but nothing sent from uCode */
1452 	if (i == r)
1453 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1454 
1455 	while (i != r) {
1456 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1457 		struct iwl_rx_mem_buffer *rxb;
1458 		/* number of RBDs still waiting for page allocation */
1459 		u32 rb_pending_alloc =
1460 			atomic_read(&trans_pcie->rba.req_pending) *
1461 			RX_CLAIM_REQ_ALLOC;
1462 
1463 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1464 			     !emergency)) {
1465 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1466 			emergency = true;
1467 			IWL_DEBUG_TPT(trans,
1468 				      "RX path is in emergency. Pending allocations %d\n",
1469 				      rb_pending_alloc);
1470 		}
1471 
1472 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1473 
1474 		rxb = iwl_pcie_get_rxb(trans, rxq, i);
1475 		if (!rxb)
1476 			goto out;
1477 
1478 		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1479 
1480 		i = (i + 1) & (rxq->queue_size - 1);
1481 
1482 		/*
1483 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1484 		 * try to claim the pre-allocated buffers from the allocator.
1485 		 * If not ready - will try to reclaim next time.
1486 		 * There is no need to reschedule work - allocator exits only
1487 		 * on success
1488 		 */
1489 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1490 			iwl_pcie_rx_allocator_get(trans, rxq);
1491 
1492 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1493 			/* Add the remaining empty RBDs for allocator use */
1494 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1495 		} else if (emergency) {
1496 			count++;
1497 			if (count == 8) {
1498 				count = 0;
1499 				if (rb_pending_alloc < rxq->queue_size / 3) {
1500 					IWL_DEBUG_TPT(trans,
1501 						      "RX path exited emergency. Pending allocations %d\n",
1502 						      rb_pending_alloc);
1503 					emergency = false;
1504 				}
1505 
1506 				rxq->read = i;
1507 				spin_unlock(&rxq->lock);
1508 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1509 				iwl_pcie_rxq_restock(trans, rxq);
1510 				goto restart;
1511 			}
1512 		}
1513 	}
1514 out:
1515 	/* Backtrack one entry */
1516 	rxq->read = i;
1517 	/* update cr tail with the rxq read pointer */
1518 	if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1519 		*rxq->cr_tail = cpu_to_le16(r);
1520 	spin_unlock(&rxq->lock);
1521 
1522 	/*
1523 	 * handle a case where in emergency there are some unallocated RBDs.
1524 	 * those RBDs are in the used list, but are not tracked by the queue's
1525 	 * used_count which counts allocator owned RBDs.
1526 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1527 	 * when called again the function may not be in emergency mode and
1528 	 * they will be handed to the allocator with no tracking in the RBD
1529 	 * allocator counters, which will lead to them never being claimed back
1530 	 * by the queue.
1531 	 * by allocating them here, they are now in the queue free list, and
1532 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1533 	 */
1534 	if (unlikely(emergency && count))
1535 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1536 
1537 	if (rxq->napi.poll)
1538 		napi_gro_flush(&rxq->napi, false);
1539 
1540 	iwl_pcie_rxq_restock(trans, rxq);
1541 }
1542 
1543 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1544 {
1545 	u8 queue = entry->entry;
1546 	struct msix_entry *entries = entry - queue;
1547 
1548 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1549 }
1550 
1551 /*
1552  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1553  * This interrupt handler should be used with RSS queue only.
1554  */
1555 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1556 {
1557 	struct msix_entry *entry = dev_id;
1558 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1559 	struct iwl_trans *trans = trans_pcie->trans;
1560 
1561 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1562 
1563 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1564 		return IRQ_NONE;
1565 
1566 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1567 
1568 	local_bh_disable();
1569 	iwl_pcie_rx_handle(trans, entry->entry);
1570 	local_bh_enable();
1571 
1572 	iwl_pcie_clear_irq(trans, entry);
1573 
1574 	lock_map_release(&trans->sync_cmd_lockdep_map);
1575 
1576 	return IRQ_HANDLED;
1577 }
1578 
1579 /*
1580  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1581  */
1582 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1583 {
1584 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1585 	int i;
1586 
1587 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1588 	if (trans->cfg->internal_wimax_coex &&
1589 	    !trans->cfg->apmg_not_supported &&
1590 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1591 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1592 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1593 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1594 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1595 		iwl_op_mode_wimax_active(trans->op_mode);
1596 		wake_up(&trans_pcie->wait_command_queue);
1597 		return;
1598 	}
1599 
1600 	for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1601 		if (!trans_pcie->txq[i])
1602 			continue;
1603 		del_timer(&trans_pcie->txq[i]->stuck_timer);
1604 	}
1605 
1606 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1607 	 * before we wake up the command caller, to ensure a proper cleanup. */
1608 	iwl_trans_fw_error(trans);
1609 
1610 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1611 	wake_up(&trans_pcie->wait_command_queue);
1612 }
1613 
1614 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1615 {
1616 	u32 inta;
1617 
1618 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1619 
1620 	trace_iwlwifi_dev_irq(trans->dev);
1621 
1622 	/* Discover which interrupts are active/pending */
1623 	inta = iwl_read32(trans, CSR_INT);
1624 
1625 	/* the thread will service interrupts and re-enable them */
1626 	return inta;
1627 }
1628 
1629 /* a device (PCI-E) page is 4096 bytes long */
1630 #define ICT_SHIFT	12
1631 #define ICT_SIZE	(1 << ICT_SHIFT)
1632 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1633 
1634 /* interrupt handler using ict table, with this interrupt driver will
1635  * stop using INTA register to get device's interrupt, reading this register
1636  * is expensive, device will write interrupts in ICT dram table, increment
1637  * index then will fire interrupt to driver, driver will OR all ICT table
1638  * entries from current index up to table entry with 0 value. the result is
1639  * the interrupt we need to service, driver will set the entries back to 0 and
1640  * set index.
1641  */
1642 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1643 {
1644 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1645 	u32 inta;
1646 	u32 val = 0;
1647 	u32 read;
1648 
1649 	trace_iwlwifi_dev_irq(trans->dev);
1650 
1651 	/* Ignore interrupt if there's nothing in NIC to service.
1652 	 * This may be due to IRQ shared with another device,
1653 	 * or due to sporadic interrupts thrown from our NIC. */
1654 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1655 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1656 	if (!read)
1657 		return 0;
1658 
1659 	/*
1660 	 * Collect all entries up to the first 0, starting from ict_index;
1661 	 * note we already read at ict_index.
1662 	 */
1663 	do {
1664 		val |= read;
1665 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1666 				trans_pcie->ict_index, read);
1667 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1668 		trans_pcie->ict_index =
1669 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1670 
1671 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1672 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1673 					   read);
1674 	} while (read);
1675 
1676 	/* We should not get this value, just ignore it. */
1677 	if (val == 0xffffffff)
1678 		val = 0;
1679 
1680 	/*
1681 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1682 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1683 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1684 	 * so we use them to decide on the real state of the Rx bit.
1685 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1686 	 */
1687 	if (val & 0xC0000)
1688 		val |= 0x8000;
1689 
1690 	inta = (0xff & val) | ((0xff00 & val) << 16);
1691 	return inta;
1692 }
1693 
1694 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1695 {
1696 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1697 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1698 	bool hw_rfkill, prev, report;
1699 
1700 	mutex_lock(&trans_pcie->mutex);
1701 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1702 	hw_rfkill = iwl_is_rfkill_set(trans);
1703 	if (hw_rfkill) {
1704 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1705 		set_bit(STATUS_RFKILL_HW, &trans->status);
1706 	}
1707 	if (trans_pcie->opmode_down)
1708 		report = hw_rfkill;
1709 	else
1710 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1711 
1712 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1713 		 hw_rfkill ? "disable radio" : "enable radio");
1714 
1715 	isr_stats->rfkill++;
1716 
1717 	if (prev != report)
1718 		iwl_trans_pcie_rf_kill(trans, report);
1719 	mutex_unlock(&trans_pcie->mutex);
1720 
1721 	if (hw_rfkill) {
1722 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1723 				       &trans->status))
1724 			IWL_DEBUG_RF_KILL(trans,
1725 					  "Rfkill while SYNC HCMD in flight\n");
1726 		wake_up(&trans_pcie->wait_command_queue);
1727 	} else {
1728 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1729 		if (trans_pcie->opmode_down)
1730 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1731 	}
1732 }
1733 
1734 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1735 {
1736 	struct iwl_trans *trans = dev_id;
1737 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1738 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1739 	u32 inta = 0;
1740 	u32 handled = 0;
1741 
1742 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1743 
1744 	spin_lock(&trans_pcie->irq_lock);
1745 
1746 	/* dram interrupt table not set yet,
1747 	 * use legacy interrupt.
1748 	 */
1749 	if (likely(trans_pcie->use_ict))
1750 		inta = iwl_pcie_int_cause_ict(trans);
1751 	else
1752 		inta = iwl_pcie_int_cause_non_ict(trans);
1753 
1754 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1755 		IWL_DEBUG_ISR(trans,
1756 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1757 			      inta, trans_pcie->inta_mask,
1758 			      iwl_read32(trans, CSR_INT_MASK),
1759 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1760 		if (inta & (~trans_pcie->inta_mask))
1761 			IWL_DEBUG_ISR(trans,
1762 				      "We got a masked interrupt (0x%08x)\n",
1763 				      inta & (~trans_pcie->inta_mask));
1764 	}
1765 
1766 	inta &= trans_pcie->inta_mask;
1767 
1768 	/*
1769 	 * Ignore interrupt if there's nothing in NIC to service.
1770 	 * This may be due to IRQ shared with another device,
1771 	 * or due to sporadic interrupts thrown from our NIC.
1772 	 */
1773 	if (unlikely(!inta)) {
1774 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1775 		/*
1776 		 * Re-enable interrupts here since we don't
1777 		 * have anything to service
1778 		 */
1779 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1780 			_iwl_enable_interrupts(trans);
1781 		spin_unlock(&trans_pcie->irq_lock);
1782 		lock_map_release(&trans->sync_cmd_lockdep_map);
1783 		return IRQ_NONE;
1784 	}
1785 
1786 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1787 		/*
1788 		 * Hardware disappeared. It might have
1789 		 * already raised an interrupt.
1790 		 */
1791 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1792 		spin_unlock(&trans_pcie->irq_lock);
1793 		goto out;
1794 	}
1795 
1796 	/* Ack/clear/reset pending uCode interrupts.
1797 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1798 	 */
1799 	/* There is a hardware bug in the interrupt mask function that some
1800 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1801 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1802 	 * ICT interrupt handling mechanism has another bug that might cause
1803 	 * these unmasked interrupts fail to be detected. We workaround the
1804 	 * hardware bugs here by ACKing all the possible interrupts so that
1805 	 * interrupt coalescing can still be achieved.
1806 	 */
1807 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1808 
1809 	if (iwl_have_debug_level(IWL_DL_ISR))
1810 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1811 			      inta, iwl_read32(trans, CSR_INT_MASK));
1812 
1813 	spin_unlock(&trans_pcie->irq_lock);
1814 
1815 	/* Now service all interrupt bits discovered above. */
1816 	if (inta & CSR_INT_BIT_HW_ERR) {
1817 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1818 
1819 		/* Tell the device to stop sending interrupts */
1820 		iwl_disable_interrupts(trans);
1821 
1822 		isr_stats->hw++;
1823 		iwl_pcie_irq_handle_error(trans);
1824 
1825 		handled |= CSR_INT_BIT_HW_ERR;
1826 
1827 		goto out;
1828 	}
1829 
1830 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1831 		/* NIC fires this, but we don't use it, redundant with WAKEUP */
1832 		if (inta & CSR_INT_BIT_SCD) {
1833 			IWL_DEBUG_ISR(trans,
1834 				      "Scheduler finished to transmit the frame/frames.\n");
1835 			isr_stats->sch++;
1836 		}
1837 
1838 		/* Alive notification via Rx interrupt will do the real work */
1839 		if (inta & CSR_INT_BIT_ALIVE) {
1840 			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1841 			isr_stats->alive++;
1842 			if (trans->cfg->gen2) {
1843 				/*
1844 				 * We can restock, since firmware configured
1845 				 * the RFH
1846 				 */
1847 				iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1848 			}
1849 		}
1850 	}
1851 
1852 	/* Safely ignore these bits for debug checks below */
1853 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1854 
1855 	/* HW RF KILL switch toggled */
1856 	if (inta & CSR_INT_BIT_RF_KILL) {
1857 		iwl_pcie_handle_rfkill_irq(trans);
1858 		handled |= CSR_INT_BIT_RF_KILL;
1859 	}
1860 
1861 	/* Chip got too hot and stopped itself */
1862 	if (inta & CSR_INT_BIT_CT_KILL) {
1863 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1864 		isr_stats->ctkill++;
1865 		handled |= CSR_INT_BIT_CT_KILL;
1866 	}
1867 
1868 	/* Error detected by uCode */
1869 	if (inta & CSR_INT_BIT_SW_ERR) {
1870 		IWL_ERR(trans, "Microcode SW error detected. "
1871 			" Restarting 0x%X.\n", inta);
1872 		isr_stats->sw++;
1873 		iwl_pcie_irq_handle_error(trans);
1874 		handled |= CSR_INT_BIT_SW_ERR;
1875 	}
1876 
1877 	/* uCode wakes up after power-down sleep */
1878 	if (inta & CSR_INT_BIT_WAKEUP) {
1879 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1880 		iwl_pcie_rxq_check_wrptr(trans);
1881 		iwl_pcie_txq_check_wrptrs(trans);
1882 
1883 		isr_stats->wakeup++;
1884 
1885 		handled |= CSR_INT_BIT_WAKEUP;
1886 	}
1887 
1888 	/* All uCode command responses, including Tx command responses,
1889 	 * Rx "responses" (frame-received notification), and other
1890 	 * notifications from uCode come through here*/
1891 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1892 		    CSR_INT_BIT_RX_PERIODIC)) {
1893 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1894 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1895 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1896 			iwl_write32(trans, CSR_FH_INT_STATUS,
1897 					CSR_FH_INT_RX_MASK);
1898 		}
1899 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1900 			handled |= CSR_INT_BIT_RX_PERIODIC;
1901 			iwl_write32(trans,
1902 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1903 		}
1904 		/* Sending RX interrupt require many steps to be done in the
1905 		 * the device:
1906 		 * 1- write interrupt to current index in ICT table.
1907 		 * 2- dma RX frame.
1908 		 * 3- update RX shared data to indicate last write index.
1909 		 * 4- send interrupt.
1910 		 * This could lead to RX race, driver could receive RX interrupt
1911 		 * but the shared data changes does not reflect this;
1912 		 * periodic interrupt will detect any dangling Rx activity.
1913 		 */
1914 
1915 		/* Disable periodic interrupt; we use it as just a one-shot. */
1916 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1917 			    CSR_INT_PERIODIC_DIS);
1918 
1919 		/*
1920 		 * Enable periodic interrupt in 8 msec only if we received
1921 		 * real RX interrupt (instead of just periodic int), to catch
1922 		 * any dangling Rx interrupt.  If it was just the periodic
1923 		 * interrupt, there was no dangling Rx activity, and no need
1924 		 * to extend the periodic interrupt; one-shot is enough.
1925 		 */
1926 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1927 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1928 				   CSR_INT_PERIODIC_ENA);
1929 
1930 		isr_stats->rx++;
1931 
1932 		local_bh_disable();
1933 		iwl_pcie_rx_handle(trans, 0);
1934 		local_bh_enable();
1935 	}
1936 
1937 	/* This "Tx" DMA channel is used only for loading uCode */
1938 	if (inta & CSR_INT_BIT_FH_TX) {
1939 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1940 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1941 		isr_stats->tx++;
1942 		handled |= CSR_INT_BIT_FH_TX;
1943 		/* Wake up uCode load routine, now that load is complete */
1944 		trans_pcie->ucode_write_complete = true;
1945 		wake_up(&trans_pcie->ucode_write_waitq);
1946 	}
1947 
1948 	if (inta & ~handled) {
1949 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1950 		isr_stats->unhandled++;
1951 	}
1952 
1953 	if (inta & ~(trans_pcie->inta_mask)) {
1954 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1955 			 inta & ~trans_pcie->inta_mask);
1956 	}
1957 
1958 	spin_lock(&trans_pcie->irq_lock);
1959 	/* only Re-enable all interrupt if disabled by irq */
1960 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1961 		_iwl_enable_interrupts(trans);
1962 	/* we are loading the firmware, enable FH_TX interrupt only */
1963 	else if (handled & CSR_INT_BIT_FH_TX)
1964 		iwl_enable_fw_load_int(trans);
1965 	/* Re-enable RF_KILL if it occurred */
1966 	else if (handled & CSR_INT_BIT_RF_KILL)
1967 		iwl_enable_rfkill_int(trans);
1968 	spin_unlock(&trans_pcie->irq_lock);
1969 
1970 out:
1971 	lock_map_release(&trans->sync_cmd_lockdep_map);
1972 	return IRQ_HANDLED;
1973 }
1974 
1975 /******************************************************************************
1976  *
1977  * ICT functions
1978  *
1979  ******************************************************************************/
1980 
1981 /* Free dram table */
1982 void iwl_pcie_free_ict(struct iwl_trans *trans)
1983 {
1984 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1985 
1986 	if (trans_pcie->ict_tbl) {
1987 		dma_free_coherent(trans->dev, ICT_SIZE,
1988 				  trans_pcie->ict_tbl,
1989 				  trans_pcie->ict_tbl_dma);
1990 		trans_pcie->ict_tbl = NULL;
1991 		trans_pcie->ict_tbl_dma = 0;
1992 	}
1993 }
1994 
1995 /*
1996  * allocate dram shared table, it is an aligned memory
1997  * block of ICT_SIZE.
1998  * also reset all data related to ICT table interrupt.
1999  */
2000 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2001 {
2002 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2003 
2004 	trans_pcie->ict_tbl =
2005 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2006 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2007 	if (!trans_pcie->ict_tbl)
2008 		return -ENOMEM;
2009 
2010 	/* just an API sanity check ... it is guaranteed to be aligned */
2011 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2012 		iwl_pcie_free_ict(trans);
2013 		return -EINVAL;
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 /* Device is going up inform it about using ICT interrupt table,
2020  * also we need to tell the driver to start using ICT interrupt.
2021  */
2022 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2023 {
2024 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2025 	u32 val;
2026 
2027 	if (!trans_pcie->ict_tbl)
2028 		return;
2029 
2030 	spin_lock(&trans_pcie->irq_lock);
2031 	_iwl_disable_interrupts(trans);
2032 
2033 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2034 
2035 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2036 
2037 	val |= CSR_DRAM_INT_TBL_ENABLE |
2038 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2039 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2040 
2041 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2042 
2043 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2044 	trans_pcie->use_ict = true;
2045 	trans_pcie->ict_index = 0;
2046 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2047 	_iwl_enable_interrupts(trans);
2048 	spin_unlock(&trans_pcie->irq_lock);
2049 }
2050 
2051 /* Device is going down disable ict interrupt usage */
2052 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2053 {
2054 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2055 
2056 	spin_lock(&trans_pcie->irq_lock);
2057 	trans_pcie->use_ict = false;
2058 	spin_unlock(&trans_pcie->irq_lock);
2059 }
2060 
2061 irqreturn_t iwl_pcie_isr(int irq, void *data)
2062 {
2063 	struct iwl_trans *trans = data;
2064 
2065 	if (!trans)
2066 		return IRQ_NONE;
2067 
2068 	/* Disable (but don't clear!) interrupts here to avoid
2069 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2070 	 * If we have something to service, the tasklet will re-enable ints.
2071 	 * If we *don't* have something, we'll re-enable before leaving here.
2072 	 */
2073 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2074 
2075 	return IRQ_WAKE_THREAD;
2076 }
2077 
2078 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2079 {
2080 	return IRQ_WAKE_THREAD;
2081 }
2082 
2083 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2084 {
2085 	struct msix_entry *entry = dev_id;
2086 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2087 	struct iwl_trans *trans = trans_pcie->trans;
2088 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2089 	u32 inta_fh, inta_hw;
2090 
2091 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2092 
2093 	spin_lock(&trans_pcie->irq_lock);
2094 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2095 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2096 	/*
2097 	 * Clear causes registers to avoid being handling the same cause.
2098 	 */
2099 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2100 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2101 	spin_unlock(&trans_pcie->irq_lock);
2102 
2103 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2104 
2105 	if (unlikely(!(inta_fh | inta_hw))) {
2106 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2107 		lock_map_release(&trans->sync_cmd_lockdep_map);
2108 		return IRQ_NONE;
2109 	}
2110 
2111 	if (iwl_have_debug_level(IWL_DL_ISR))
2112 		IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
2113 			      inta_fh,
2114 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2115 
2116 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2117 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2118 		local_bh_disable();
2119 		iwl_pcie_rx_handle(trans, 0);
2120 		local_bh_enable();
2121 	}
2122 
2123 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2124 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2125 		local_bh_disable();
2126 		iwl_pcie_rx_handle(trans, 1);
2127 		local_bh_enable();
2128 	}
2129 
2130 	/* This "Tx" DMA channel is used only for loading uCode */
2131 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2132 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2133 		isr_stats->tx++;
2134 		/*
2135 		 * Wake up uCode load routine,
2136 		 * now that load is complete
2137 		 */
2138 		trans_pcie->ucode_write_complete = true;
2139 		wake_up(&trans_pcie->ucode_write_waitq);
2140 	}
2141 
2142 	/* Error detected by uCode */
2143 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2144 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2145 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2146 		IWL_ERR(trans,
2147 			"Microcode SW error detected. Restarting 0x%X.\n",
2148 			inta_fh);
2149 		isr_stats->sw++;
2150 		iwl_pcie_irq_handle_error(trans);
2151 	}
2152 
2153 	/* After checking FH register check HW register */
2154 	if (iwl_have_debug_level(IWL_DL_ISR))
2155 		IWL_DEBUG_ISR(trans,
2156 			      "ISR inta_hw 0x%08x, enabled 0x%08x\n",
2157 			      inta_hw,
2158 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2159 
2160 	/* Alive notification via Rx interrupt will do the real work */
2161 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2162 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2163 		isr_stats->alive++;
2164 		if (trans->cfg->gen2) {
2165 			/* We can restock, since firmware configured the RFH */
2166 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2167 		}
2168 	}
2169 
2170 	if (trans->cfg->device_family == IWL_DEVICE_FAMILY_22560 &&
2171 	    inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2172 		/* Reflect IML transfer status */
2173 		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2174 
2175 		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2176 		if (res == IWL_IMAGE_RESP_FAIL) {
2177 			isr_stats->sw++;
2178 			iwl_pcie_irq_handle_error(trans);
2179 		}
2180 	} else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2181 		/* uCode wakes up after power-down sleep */
2182 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2183 		iwl_pcie_rxq_check_wrptr(trans);
2184 		iwl_pcie_txq_check_wrptrs(trans);
2185 
2186 		isr_stats->wakeup++;
2187 	}
2188 
2189 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2190 		/* Reflect IML transfer status */
2191 		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2192 
2193 		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2194 		if (res == IWL_IMAGE_RESP_FAIL) {
2195 			isr_stats->sw++;
2196 			iwl_pcie_irq_handle_error(trans);
2197 		}
2198 	}
2199 
2200 	/* Chip got too hot and stopped itself */
2201 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2202 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2203 		isr_stats->ctkill++;
2204 	}
2205 
2206 	/* HW RF KILL switch toggled */
2207 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2208 		iwl_pcie_handle_rfkill_irq(trans);
2209 
2210 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2211 		IWL_ERR(trans,
2212 			"Hardware error detected. Restarting.\n");
2213 
2214 		isr_stats->hw++;
2215 		trans->hw_error = true;
2216 		iwl_pcie_irq_handle_error(trans);
2217 	}
2218 
2219 	iwl_pcie_clear_irq(trans, entry);
2220 
2221 	lock_map_release(&trans->sync_cmd_lockdep_map);
2222 
2223 	return IRQ_HANDLED;
2224 }
2225