1 /****************************************************************************** 2 * 3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 4 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 5 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 6 * Copyright(c) 2018 Intel Corporation 7 * 8 * Portions of this file are derived from the ipw3945 project, as well 9 * as portions of the ieee80211 subsystem header files. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of version 2 of the GNU General Public License as 13 * published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 * 20 * The full GNU General Public License is included in this distribution in the 21 * file called LICENSE. 22 * 23 * Contact Information: 24 * Intel Linux Wireless <linuxwifi@intel.com> 25 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 * 27 *****************************************************************************/ 28 #include <linux/sched.h> 29 #include <linux/wait.h> 30 #include <linux/gfp.h> 31 32 #include "iwl-prph.h" 33 #include "iwl-io.h" 34 #include "internal.h" 35 #include "iwl-op-mode.h" 36 #include "iwl-context-info-gen3.h" 37 38 /****************************************************************************** 39 * 40 * RX path functions 41 * 42 ******************************************************************************/ 43 44 /* 45 * Rx theory of operation 46 * 47 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 48 * each of which point to Receive Buffers to be filled by the NIC. These get 49 * used not only for Rx frames, but for any command response or notification 50 * from the NIC. The driver and NIC manage the Rx buffers by means 51 * of indexes into the circular buffer. 52 * 53 * Rx Queue Indexes 54 * The host/firmware share two index registers for managing the Rx buffers. 55 * 56 * The READ index maps to the first position that the firmware may be writing 57 * to -- the driver can read up to (but not including) this position and get 58 * good data. 59 * The READ index is managed by the firmware once the card is enabled. 60 * 61 * The WRITE index maps to the last position the driver has read from -- the 62 * position preceding WRITE is the last slot the firmware can place a packet. 63 * 64 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 65 * WRITE = READ. 66 * 67 * During initialization, the host sets up the READ queue position to the first 68 * INDEX position, and WRITE to the last (READ - 1 wrapped) 69 * 70 * When the firmware places a packet in a buffer, it will advance the READ index 71 * and fire the RX interrupt. The driver can then query the READ index and 72 * process as many packets as possible, moving the WRITE index forward as it 73 * resets the Rx queue buffers with new memory. 74 * 75 * The management in the driver is as follows: 76 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 77 * When the interrupt handler is called, the request is processed. 78 * The page is either stolen - transferred to the upper layer 79 * or reused - added immediately to the iwl->rxq->rx_free list. 80 * + When the page is stolen - the driver updates the matching queue's used 81 * count, detaches the RBD and transfers it to the queue used list. 82 * When there are two used RBDs - they are transferred to the allocator empty 83 * list. Work is then scheduled for the allocator to start allocating 84 * eight buffers. 85 * When there are another 6 used RBDs - they are transferred to the allocator 86 * empty list and the driver tries to claim the pre-allocated buffers and 87 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 88 * until ready. 89 * When there are 8+ buffers in the free list - either from allocation or from 90 * 8 reused unstolen pages - restock is called to update the FW and indexes. 91 * + In order to make sure the allocator always has RBDs to use for allocation 92 * the allocator has initial pool in the size of num_queues*(8-2) - the 93 * maximum missing RBDs per allocation request (request posted with 2 94 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 95 * The queues supplies the recycle of the rest of the RBDs. 96 * + A received packet is processed and handed to the kernel network stack, 97 * detached from the iwl->rxq. The driver 'processed' index is updated. 98 * + If there are no allocated buffers in iwl->rxq->rx_free, 99 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 100 * If there were enough free buffers and RX_STALLED is set it is cleared. 101 * 102 * 103 * Driver sequence: 104 * 105 * iwl_rxq_alloc() Allocates rx_free 106 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 107 * iwl_pcie_rxq_restock. 108 * Used only during initialization. 109 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 110 * queue, updates firmware pointers, and updates 111 * the WRITE index. 112 * iwl_pcie_rx_allocator() Background work for allocating pages. 113 * 114 * -- enable interrupts -- 115 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 116 * READ INDEX, detaching the SKB from the pool. 117 * Moves the packet buffer from queue to rx_used. 118 * Posts and claims requests to the allocator. 119 * Calls iwl_pcie_rxq_restock to refill any empty 120 * slots. 121 * 122 * RBD life-cycle: 123 * 124 * Init: 125 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 126 * 127 * Regular Receive interrupt: 128 * Page Stolen: 129 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 130 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 131 * Page not Stolen: 132 * rxq.queue -> rxq.rx_free -> rxq.queue 133 * ... 134 * 135 */ 136 137 /* 138 * iwl_rxq_space - Return number of free slots available in queue. 139 */ 140 static int iwl_rxq_space(const struct iwl_rxq *rxq) 141 { 142 /* Make sure rx queue size is a power of 2 */ 143 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 144 145 /* 146 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 147 * between empty and completely full queues. 148 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 149 * defined for negative dividends. 150 */ 151 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 152 } 153 154 /* 155 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 156 */ 157 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 158 { 159 return cpu_to_le32((u32)(dma_addr >> 8)); 160 } 161 162 /* 163 * iwl_pcie_rx_stop - stops the Rx DMA 164 */ 165 int iwl_pcie_rx_stop(struct iwl_trans *trans) 166 { 167 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) { 168 /* TODO: remove this for 22560 once fw does it */ 169 iwl_write_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 170 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS_GEN3, 171 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 172 } else if (trans->cfg->mq_rx_supported) { 173 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 174 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 175 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 176 } else { 177 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 178 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 179 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 180 1000); 181 } 182 } 183 184 /* 185 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 186 */ 187 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 188 struct iwl_rxq *rxq) 189 { 190 u32 reg; 191 192 lockdep_assert_held(&rxq->lock); 193 194 /* 195 * explicitly wake up the NIC if: 196 * 1. shadow registers aren't enabled 197 * 2. there is a chance that the NIC is asleep 198 */ 199 if (!trans->cfg->base_params->shadow_reg_enable && 200 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 201 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 202 203 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 204 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 205 reg); 206 iwl_set_bit(trans, CSR_GP_CNTRL, 207 BIT(trans->cfg->csr->flag_mac_access_req)); 208 rxq->need_update = true; 209 return; 210 } 211 } 212 213 rxq->write_actual = round_down(rxq->write, 8); 214 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 215 iwl_write32(trans, HBUS_TARG_WRPTR, 216 (rxq->write_actual | 217 ((FIRST_RX_QUEUE + rxq->id) << 16))); 218 else if (trans->cfg->mq_rx_supported) 219 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 220 rxq->write_actual); 221 else 222 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 223 } 224 225 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 226 { 227 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 228 int i; 229 230 for (i = 0; i < trans->num_rx_queues; i++) { 231 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 232 233 if (!rxq->need_update) 234 continue; 235 spin_lock(&rxq->lock); 236 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 237 rxq->need_update = false; 238 spin_unlock(&rxq->lock); 239 } 240 } 241 242 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 243 struct iwl_rxq *rxq, 244 struct iwl_rx_mem_buffer *rxb) 245 { 246 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) { 247 struct iwl_rx_transfer_desc *bd = rxq->bd; 248 249 bd[rxq->write].type_n_size = 250 cpu_to_le32((IWL_RX_TD_TYPE & IWL_RX_TD_TYPE_MSK) | 251 ((IWL_RX_TD_SIZE_2K >> 8) & IWL_RX_TD_SIZE_MSK)); 252 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 253 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 254 } else { 255 __le64 *bd = rxq->bd; 256 257 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 258 } 259 } 260 261 /* 262 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 263 */ 264 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 265 struct iwl_rxq *rxq) 266 { 267 struct iwl_rx_mem_buffer *rxb; 268 269 /* 270 * If the device isn't enabled - no need to try to add buffers... 271 * This can happen when we stop the device and still have an interrupt 272 * pending. We stop the APM before we sync the interrupts because we 273 * have to (see comment there). On the other hand, since the APM is 274 * stopped, we cannot access the HW (in particular not prph). 275 * So don't try to restock if the APM has been already stopped. 276 */ 277 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 278 return; 279 280 spin_lock(&rxq->lock); 281 while (rxq->free_count) { 282 /* Get next free Rx buffer, remove from free list */ 283 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 284 list); 285 list_del(&rxb->list); 286 rxb->invalid = false; 287 /* 12 first bits are expected to be empty */ 288 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12)); 289 /* Point to Rx buffer via next RBD in circular buffer */ 290 iwl_pcie_restock_bd(trans, rxq, rxb); 291 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK; 292 rxq->free_count--; 293 } 294 spin_unlock(&rxq->lock); 295 296 /* 297 * If we've added more space for the firmware to place data, tell it. 298 * Increment device's write pointer in multiples of 8. 299 */ 300 if (rxq->write_actual != (rxq->write & ~0x7)) { 301 spin_lock(&rxq->lock); 302 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 303 spin_unlock(&rxq->lock); 304 } 305 } 306 307 /* 308 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 309 */ 310 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 311 struct iwl_rxq *rxq) 312 { 313 struct iwl_rx_mem_buffer *rxb; 314 315 /* 316 * If the device isn't enabled - not need to try to add buffers... 317 * This can happen when we stop the device and still have an interrupt 318 * pending. We stop the APM before we sync the interrupts because we 319 * have to (see comment there). On the other hand, since the APM is 320 * stopped, we cannot access the HW (in particular not prph). 321 * So don't try to restock if the APM has been already stopped. 322 */ 323 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 324 return; 325 326 spin_lock(&rxq->lock); 327 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 328 __le32 *bd = (__le32 *)rxq->bd; 329 /* The overwritten rxb must be a used one */ 330 rxb = rxq->queue[rxq->write]; 331 BUG_ON(rxb && rxb->page); 332 333 /* Get next free Rx buffer, remove from free list */ 334 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 335 list); 336 list_del(&rxb->list); 337 rxb->invalid = false; 338 339 /* Point to Rx buffer via next RBD in circular buffer */ 340 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 341 rxq->queue[rxq->write] = rxb; 342 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 343 rxq->free_count--; 344 } 345 spin_unlock(&rxq->lock); 346 347 /* If we've added more space for the firmware to place data, tell it. 348 * Increment device's write pointer in multiples of 8. */ 349 if (rxq->write_actual != (rxq->write & ~0x7)) { 350 spin_lock(&rxq->lock); 351 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 352 spin_unlock(&rxq->lock); 353 } 354 } 355 356 /* 357 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 358 * 359 * If there are slots in the RX queue that need to be restocked, 360 * and we have free pre-allocated buffers, fill the ranks as much 361 * as we can, pulling from rx_free. 362 * 363 * This moves the 'write' index forward to catch up with 'processed', and 364 * also updates the memory address in the firmware to reference the new 365 * target buffer. 366 */ 367 static 368 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 369 { 370 if (trans->cfg->mq_rx_supported) 371 iwl_pcie_rxmq_restock(trans, rxq); 372 else 373 iwl_pcie_rxsq_restock(trans, rxq); 374 } 375 376 /* 377 * iwl_pcie_rx_alloc_page - allocates and returns a page. 378 * 379 */ 380 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 381 gfp_t priority) 382 { 383 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 384 struct page *page; 385 gfp_t gfp_mask = priority; 386 387 if (trans_pcie->rx_page_order > 0) 388 gfp_mask |= __GFP_COMP; 389 390 /* Alloc a new receive buffer */ 391 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 392 if (!page) { 393 if (net_ratelimit()) 394 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 395 trans_pcie->rx_page_order); 396 /* 397 * Issue an error if we don't have enough pre-allocated 398 * buffers. 399 ` */ 400 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 401 IWL_CRIT(trans, 402 "Failed to alloc_pages\n"); 403 return NULL; 404 } 405 return page; 406 } 407 408 /* 409 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 410 * 411 * A used RBD is an Rx buffer that has been given to the stack. To use it again 412 * a page must be allocated and the RBD must point to the page. This function 413 * doesn't change the HW pointer but handles the list of pages that is used by 414 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 415 * allocated buffers. 416 */ 417 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 418 struct iwl_rxq *rxq) 419 { 420 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 421 struct iwl_rx_mem_buffer *rxb; 422 struct page *page; 423 424 while (1) { 425 spin_lock(&rxq->lock); 426 if (list_empty(&rxq->rx_used)) { 427 spin_unlock(&rxq->lock); 428 return; 429 } 430 spin_unlock(&rxq->lock); 431 432 /* Alloc a new receive buffer */ 433 page = iwl_pcie_rx_alloc_page(trans, priority); 434 if (!page) 435 return; 436 437 spin_lock(&rxq->lock); 438 439 if (list_empty(&rxq->rx_used)) { 440 spin_unlock(&rxq->lock); 441 __free_pages(page, trans_pcie->rx_page_order); 442 return; 443 } 444 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 445 list); 446 list_del(&rxb->list); 447 spin_unlock(&rxq->lock); 448 449 BUG_ON(rxb->page); 450 rxb->page = page; 451 /* Get physical address of the RB */ 452 rxb->page_dma = 453 dma_map_page(trans->dev, page, 0, 454 PAGE_SIZE << trans_pcie->rx_page_order, 455 DMA_FROM_DEVICE); 456 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 457 rxb->page = NULL; 458 spin_lock(&rxq->lock); 459 list_add(&rxb->list, &rxq->rx_used); 460 spin_unlock(&rxq->lock); 461 __free_pages(page, trans_pcie->rx_page_order); 462 return; 463 } 464 465 spin_lock(&rxq->lock); 466 467 list_add_tail(&rxb->list, &rxq->rx_free); 468 rxq->free_count++; 469 470 spin_unlock(&rxq->lock); 471 } 472 } 473 474 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 475 { 476 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 477 int i; 478 479 for (i = 0; i < RX_POOL_SIZE; i++) { 480 if (!trans_pcie->rx_pool[i].page) 481 continue; 482 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 483 PAGE_SIZE << trans_pcie->rx_page_order, 484 DMA_FROM_DEVICE); 485 __free_pages(trans_pcie->rx_pool[i].page, 486 trans_pcie->rx_page_order); 487 trans_pcie->rx_pool[i].page = NULL; 488 } 489 } 490 491 /* 492 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 493 * 494 * Allocates for each received request 8 pages 495 * Called as a scheduled work item. 496 */ 497 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 498 { 499 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 500 struct iwl_rb_allocator *rba = &trans_pcie->rba; 501 struct list_head local_empty; 502 int pending = atomic_xchg(&rba->req_pending, 0); 503 504 IWL_DEBUG_RX(trans, "Pending allocation requests = %d\n", pending); 505 506 /* If we were scheduled - there is at least one request */ 507 spin_lock(&rba->lock); 508 /* swap out the rba->rbd_empty to a local list */ 509 list_replace_init(&rba->rbd_empty, &local_empty); 510 spin_unlock(&rba->lock); 511 512 while (pending) { 513 int i; 514 LIST_HEAD(local_allocated); 515 gfp_t gfp_mask = GFP_KERNEL; 516 517 /* Do not post a warning if there are only a few requests */ 518 if (pending < RX_PENDING_WATERMARK) 519 gfp_mask |= __GFP_NOWARN; 520 521 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 522 struct iwl_rx_mem_buffer *rxb; 523 struct page *page; 524 525 /* List should never be empty - each reused RBD is 526 * returned to the list, and initial pool covers any 527 * possible gap between the time the page is allocated 528 * to the time the RBD is added. 529 */ 530 BUG_ON(list_empty(&local_empty)); 531 /* Get the first rxb from the rbd list */ 532 rxb = list_first_entry(&local_empty, 533 struct iwl_rx_mem_buffer, list); 534 BUG_ON(rxb->page); 535 536 /* Alloc a new receive buffer */ 537 page = iwl_pcie_rx_alloc_page(trans, gfp_mask); 538 if (!page) 539 continue; 540 rxb->page = page; 541 542 /* Get physical address of the RB */ 543 rxb->page_dma = dma_map_page(trans->dev, page, 0, 544 PAGE_SIZE << trans_pcie->rx_page_order, 545 DMA_FROM_DEVICE); 546 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 547 rxb->page = NULL; 548 __free_pages(page, trans_pcie->rx_page_order); 549 continue; 550 } 551 552 /* move the allocated entry to the out list */ 553 list_move(&rxb->list, &local_allocated); 554 i++; 555 } 556 557 pending--; 558 if (!pending) { 559 pending = atomic_xchg(&rba->req_pending, 0); 560 IWL_DEBUG_RX(trans, 561 "Pending allocation requests = %d\n", 562 pending); 563 } 564 565 spin_lock(&rba->lock); 566 /* add the allocated rbds to the allocator allocated list */ 567 list_splice_tail(&local_allocated, &rba->rbd_allocated); 568 /* get more empty RBDs for current pending requests */ 569 list_splice_tail_init(&rba->rbd_empty, &local_empty); 570 spin_unlock(&rba->lock); 571 572 atomic_inc(&rba->req_ready); 573 } 574 575 spin_lock(&rba->lock); 576 /* return unused rbds to the allocator empty list */ 577 list_splice_tail(&local_empty, &rba->rbd_empty); 578 spin_unlock(&rba->lock); 579 } 580 581 /* 582 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 583 .* 584 .* Called by queue when the queue posted allocation request and 585 * has freed 8 RBDs in order to restock itself. 586 * This function directly moves the allocated RBs to the queue's ownership 587 * and updates the relevant counters. 588 */ 589 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 590 struct iwl_rxq *rxq) 591 { 592 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 593 struct iwl_rb_allocator *rba = &trans_pcie->rba; 594 int i; 595 596 lockdep_assert_held(&rxq->lock); 597 598 /* 599 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 600 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 601 * function will return early, as there are no ready requests. 602 * atomic_dec_if_positive will perofrm the *actual* decrement only if 603 * req_ready > 0, i.e. - there are ready requests and the function 604 * hands one request to the caller. 605 */ 606 if (atomic_dec_if_positive(&rba->req_ready) < 0) 607 return; 608 609 spin_lock(&rba->lock); 610 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 611 /* Get next free Rx buffer, remove it from free list */ 612 struct iwl_rx_mem_buffer *rxb = 613 list_first_entry(&rba->rbd_allocated, 614 struct iwl_rx_mem_buffer, list); 615 616 list_move(&rxb->list, &rxq->rx_free); 617 } 618 spin_unlock(&rba->lock); 619 620 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 621 rxq->free_count += RX_CLAIM_REQ_ALLOC; 622 } 623 624 void iwl_pcie_rx_allocator_work(struct work_struct *data) 625 { 626 struct iwl_rb_allocator *rba_p = 627 container_of(data, struct iwl_rb_allocator, rx_alloc); 628 struct iwl_trans_pcie *trans_pcie = 629 container_of(rba_p, struct iwl_trans_pcie, rba); 630 631 iwl_pcie_rx_allocator(trans_pcie->trans); 632 } 633 634 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td) 635 { 636 struct iwl_rx_transfer_desc *rx_td; 637 638 if (use_rx_td) 639 return sizeof(*rx_td); 640 else 641 return trans->cfg->mq_rx_supported ? sizeof(__le64) : 642 sizeof(__le32); 643 } 644 645 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 646 struct iwl_rxq *rxq) 647 { 648 struct device *dev = trans->dev; 649 bool use_rx_td = (trans->cfg->device_family >= 650 IWL_DEVICE_FAMILY_22560); 651 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 652 653 if (rxq->bd) 654 dma_free_coherent(trans->dev, 655 free_size * rxq->queue_size, 656 rxq->bd, rxq->bd_dma); 657 rxq->bd_dma = 0; 658 rxq->bd = NULL; 659 660 if (rxq->rb_stts) 661 dma_free_coherent(trans->dev, 662 use_rx_td ? sizeof(__le16) : 663 sizeof(struct iwl_rb_status), 664 rxq->rb_stts, rxq->rb_stts_dma); 665 rxq->rb_stts_dma = 0; 666 rxq->rb_stts = NULL; 667 668 if (rxq->used_bd) 669 dma_free_coherent(trans->dev, 670 (use_rx_td ? sizeof(*rxq->cd) : 671 sizeof(__le32)) * rxq->queue_size, 672 rxq->used_bd, rxq->used_bd_dma); 673 rxq->used_bd_dma = 0; 674 rxq->used_bd = NULL; 675 676 if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560) 677 return; 678 679 if (rxq->tr_tail) 680 dma_free_coherent(dev, sizeof(__le16), 681 rxq->tr_tail, rxq->tr_tail_dma); 682 rxq->tr_tail_dma = 0; 683 rxq->tr_tail = NULL; 684 685 if (rxq->cr_tail) 686 dma_free_coherent(dev, sizeof(__le16), 687 rxq->cr_tail, rxq->cr_tail_dma); 688 rxq->cr_tail_dma = 0; 689 rxq->cr_tail = NULL; 690 } 691 692 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 693 struct iwl_rxq *rxq) 694 { 695 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 696 struct device *dev = trans->dev; 697 int i; 698 int free_size; 699 bool use_rx_td = (trans->cfg->device_family >= 700 IWL_DEVICE_FAMILY_22560); 701 702 spin_lock_init(&rxq->lock); 703 if (trans->cfg->mq_rx_supported) 704 rxq->queue_size = MQ_RX_TABLE_SIZE; 705 else 706 rxq->queue_size = RX_QUEUE_SIZE; 707 708 free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 709 710 /* 711 * Allocate the circular buffer of Read Buffer Descriptors 712 * (RBDs) 713 */ 714 rxq->bd = dma_zalloc_coherent(dev, 715 free_size * rxq->queue_size, 716 &rxq->bd_dma, GFP_KERNEL); 717 if (!rxq->bd) 718 goto err; 719 720 if (trans->cfg->mq_rx_supported) { 721 rxq->used_bd = dma_zalloc_coherent(dev, 722 (use_rx_td ? 723 sizeof(*rxq->cd) : 724 sizeof(__le32)) * 725 rxq->queue_size, 726 &rxq->used_bd_dma, 727 GFP_KERNEL); 728 if (!rxq->used_bd) 729 goto err; 730 } 731 732 /* Allocate the driver's pointer to receive buffer status */ 733 rxq->rb_stts = dma_zalloc_coherent(dev, use_rx_td ? 734 sizeof(__le16) : 735 sizeof(struct iwl_rb_status), 736 &rxq->rb_stts_dma, 737 GFP_KERNEL); 738 if (!rxq->rb_stts) 739 goto err; 740 741 if (!use_rx_td) 742 return 0; 743 744 /* Allocate the driver's pointer to TR tail */ 745 rxq->tr_tail = dma_zalloc_coherent(dev, sizeof(__le16), 746 &rxq->tr_tail_dma, 747 GFP_KERNEL); 748 if (!rxq->tr_tail) 749 goto err; 750 751 /* Allocate the driver's pointer to CR tail */ 752 rxq->cr_tail = dma_zalloc_coherent(dev, sizeof(__le16), 753 &rxq->cr_tail_dma, 754 GFP_KERNEL); 755 if (!rxq->cr_tail) 756 goto err; 757 /* 758 * W/A 22560 device step Z0 must be non zero bug 759 * TODO: remove this when stop supporting Z0 760 */ 761 *rxq->cr_tail = cpu_to_le16(500); 762 763 return 0; 764 765 err: 766 for (i = 0; i < trans->num_rx_queues; i++) { 767 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 768 769 iwl_pcie_free_rxq_dma(trans, rxq); 770 } 771 kfree(trans_pcie->rxq); 772 773 return -ENOMEM; 774 } 775 776 int iwl_pcie_rx_alloc(struct iwl_trans *trans) 777 { 778 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 779 struct iwl_rb_allocator *rba = &trans_pcie->rba; 780 int i, ret; 781 782 if (WARN_ON(trans_pcie->rxq)) 783 return -EINVAL; 784 785 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 786 GFP_KERNEL); 787 if (!trans_pcie->rxq) 788 return -EINVAL; 789 790 spin_lock_init(&rba->lock); 791 792 for (i = 0; i < trans->num_rx_queues; i++) { 793 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 794 795 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 796 if (ret) 797 return ret; 798 } 799 return 0; 800 } 801 802 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 803 { 804 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 805 u32 rb_size; 806 unsigned long flags; 807 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 808 809 switch (trans_pcie->rx_buf_size) { 810 case IWL_AMSDU_4K: 811 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 812 break; 813 case IWL_AMSDU_8K: 814 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 815 break; 816 case IWL_AMSDU_12K: 817 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 818 break; 819 default: 820 WARN_ON(1); 821 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 822 } 823 824 if (!iwl_trans_grab_nic_access(trans, &flags)) 825 return; 826 827 /* Stop Rx DMA */ 828 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 829 /* reset and flush pointers */ 830 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 831 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 832 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 833 834 /* Reset driver's Rx queue write index */ 835 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 836 837 /* Tell device where to find RBD circular buffer in DRAM */ 838 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 839 (u32)(rxq->bd_dma >> 8)); 840 841 /* Tell device where in DRAM to update its Rx status */ 842 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 843 rxq->rb_stts_dma >> 4); 844 845 /* Enable Rx DMA 846 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 847 * the credit mechanism in 5000 HW RX FIFO 848 * Direct rx interrupts to hosts 849 * Rx buffer size 4 or 8k or 12k 850 * RB timeout 0x10 851 * 256 RBDs 852 */ 853 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 854 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 855 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 856 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 857 rb_size | 858 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 859 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 860 861 iwl_trans_release_nic_access(trans, &flags); 862 863 /* Set interrupt coalescing timer to default (2048 usecs) */ 864 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 865 866 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 867 if (trans->cfg->host_interrupt_operation_mode) 868 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 869 } 870 871 void iwl_pcie_enable_rx_wake(struct iwl_trans *trans, bool enable) 872 { 873 if (trans->cfg->device_family != IWL_DEVICE_FAMILY_9000) 874 return; 875 876 if (CSR_HW_REV_STEP(trans->hw_rev) != SILICON_A_STEP) 877 return; 878 879 if (!trans->cfg->integrated) 880 return; 881 882 /* 883 * Turn on the chicken-bits that cause MAC wakeup for RX-related 884 * values. 885 * This costs some power, but needed for W/A 9000 integrated A-step 886 * bug where shadow registers are not in the retention list and their 887 * value is lost when NIC powers down 888 */ 889 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 890 CSR_MAC_SHADOW_REG_CTRL_RX_WAKE); 891 iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTL2, 892 CSR_MAC_SHADOW_REG_CTL2_RX_WAKE); 893 } 894 895 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 896 { 897 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 898 u32 rb_size, enabled = 0; 899 unsigned long flags; 900 int i; 901 902 switch (trans_pcie->rx_buf_size) { 903 case IWL_AMSDU_2K: 904 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 905 break; 906 case IWL_AMSDU_4K: 907 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 908 break; 909 case IWL_AMSDU_8K: 910 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 911 break; 912 case IWL_AMSDU_12K: 913 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 914 break; 915 default: 916 WARN_ON(1); 917 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 918 } 919 920 if (!iwl_trans_grab_nic_access(trans, &flags)) 921 return; 922 923 /* Stop Rx DMA */ 924 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 925 /* disable free amd used rx queue operation */ 926 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 927 928 for (i = 0; i < trans->num_rx_queues; i++) { 929 /* Tell device where to find RBD free table in DRAM */ 930 iwl_write_prph64_no_grab(trans, 931 RFH_Q_FRBDCB_BA_LSB(i), 932 trans_pcie->rxq[i].bd_dma); 933 /* Tell device where to find RBD used table in DRAM */ 934 iwl_write_prph64_no_grab(trans, 935 RFH_Q_URBDCB_BA_LSB(i), 936 trans_pcie->rxq[i].used_bd_dma); 937 /* Tell device where in DRAM to update its Rx status */ 938 iwl_write_prph64_no_grab(trans, 939 RFH_Q_URBD_STTS_WPTR_LSB(i), 940 trans_pcie->rxq[i].rb_stts_dma); 941 /* Reset device indice tables */ 942 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 943 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 944 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 945 946 enabled |= BIT(i) | BIT(i + 16); 947 } 948 949 /* 950 * Enable Rx DMA 951 * Rx buffer size 4 or 8k or 12k 952 * Min RB size 4 or 8 953 * Drop frames that exceed RB size 954 * 512 RBDs 955 */ 956 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 957 RFH_DMA_EN_ENABLE_VAL | rb_size | 958 RFH_RXF_DMA_MIN_RB_4_8 | 959 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 960 RFH_RXF_DMA_RBDCB_SIZE_512); 961 962 /* 963 * Activate DMA snooping. 964 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 965 * Default queue is 0 966 */ 967 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 968 RFH_GEN_CFG_RFH_DMA_SNOOP | 969 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 970 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 971 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 972 trans->cfg->integrated ? 973 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 974 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 975 /* Enable the relevant rx queues */ 976 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 977 978 iwl_trans_release_nic_access(trans, &flags); 979 980 /* Set interrupt coalescing timer to default (2048 usecs) */ 981 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 982 983 iwl_pcie_enable_rx_wake(trans, true); 984 } 985 986 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 987 { 988 lockdep_assert_held(&rxq->lock); 989 990 INIT_LIST_HEAD(&rxq->rx_free); 991 INIT_LIST_HEAD(&rxq->rx_used); 992 rxq->free_count = 0; 993 rxq->used_count = 0; 994 } 995 996 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) 997 { 998 WARN_ON(1); 999 return 0; 1000 } 1001 1002 int _iwl_pcie_rx_init(struct iwl_trans *trans) 1003 { 1004 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1005 struct iwl_rxq *def_rxq; 1006 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1007 int i, err, queue_size, allocator_pool_size, num_alloc; 1008 1009 if (!trans_pcie->rxq) { 1010 err = iwl_pcie_rx_alloc(trans); 1011 if (err) 1012 return err; 1013 } 1014 def_rxq = trans_pcie->rxq; 1015 1016 cancel_work_sync(&rba->rx_alloc); 1017 1018 spin_lock(&rba->lock); 1019 atomic_set(&rba->req_pending, 0); 1020 atomic_set(&rba->req_ready, 0); 1021 INIT_LIST_HEAD(&rba->rbd_allocated); 1022 INIT_LIST_HEAD(&rba->rbd_empty); 1023 spin_unlock(&rba->lock); 1024 1025 /* free all first - we might be reconfigured for a different size */ 1026 iwl_pcie_free_rbs_pool(trans); 1027 1028 for (i = 0; i < RX_QUEUE_SIZE; i++) 1029 def_rxq->queue[i] = NULL; 1030 1031 for (i = 0; i < trans->num_rx_queues; i++) { 1032 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1033 1034 rxq->id = i; 1035 1036 spin_lock(&rxq->lock); 1037 /* 1038 * Set read write pointer to reflect that we have processed 1039 * and used all buffers, but have not restocked the Rx queue 1040 * with fresh buffers 1041 */ 1042 rxq->read = 0; 1043 rxq->write = 0; 1044 rxq->write_actual = 0; 1045 memset(rxq->rb_stts, 0, 1046 (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ? 1047 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1048 1049 iwl_pcie_rx_init_rxb_lists(rxq); 1050 1051 if (!rxq->napi.poll) 1052 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1053 iwl_pcie_dummy_napi_poll, 64); 1054 1055 spin_unlock(&rxq->lock); 1056 } 1057 1058 /* move the pool to the default queue and allocator ownerships */ 1059 queue_size = trans->cfg->mq_rx_supported ? 1060 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE; 1061 allocator_pool_size = trans->num_rx_queues * 1062 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1063 num_alloc = queue_size + allocator_pool_size; 1064 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) != 1065 ARRAY_SIZE(trans_pcie->rx_pool)); 1066 for (i = 0; i < num_alloc; i++) { 1067 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1068 1069 if (i < allocator_pool_size) 1070 list_add(&rxb->list, &rba->rbd_empty); 1071 else 1072 list_add(&rxb->list, &def_rxq->rx_used); 1073 trans_pcie->global_table[i] = rxb; 1074 rxb->vid = (u16)(i + 1); 1075 rxb->invalid = true; 1076 } 1077 1078 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1079 1080 return 0; 1081 } 1082 1083 int iwl_pcie_rx_init(struct iwl_trans *trans) 1084 { 1085 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1086 int ret = _iwl_pcie_rx_init(trans); 1087 1088 if (ret) 1089 return ret; 1090 1091 if (trans->cfg->mq_rx_supported) 1092 iwl_pcie_rx_mq_hw_init(trans); 1093 else 1094 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1095 1096 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1097 1098 spin_lock(&trans_pcie->rxq->lock); 1099 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1100 spin_unlock(&trans_pcie->rxq->lock); 1101 1102 return 0; 1103 } 1104 1105 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1106 { 1107 /* Set interrupt coalescing timer to default (2048 usecs) */ 1108 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1109 1110 /* 1111 * We don't configure the RFH. 1112 * Restock will be done at alive, after firmware configured the RFH. 1113 */ 1114 return _iwl_pcie_rx_init(trans); 1115 } 1116 1117 void iwl_pcie_rx_free(struct iwl_trans *trans) 1118 { 1119 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1120 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1121 int i; 1122 1123 /* 1124 * if rxq is NULL, it means that nothing has been allocated, 1125 * exit now 1126 */ 1127 if (!trans_pcie->rxq) { 1128 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1129 return; 1130 } 1131 1132 cancel_work_sync(&rba->rx_alloc); 1133 1134 iwl_pcie_free_rbs_pool(trans); 1135 1136 for (i = 0; i < trans->num_rx_queues; i++) { 1137 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1138 1139 iwl_pcie_free_rxq_dma(trans, rxq); 1140 1141 if (rxq->napi.poll) 1142 netif_napi_del(&rxq->napi); 1143 } 1144 kfree(trans_pcie->rxq); 1145 } 1146 1147 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1148 struct iwl_rb_allocator *rba) 1149 { 1150 spin_lock(&rba->lock); 1151 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1152 spin_unlock(&rba->lock); 1153 } 1154 1155 /* 1156 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1157 * 1158 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1159 * When there are 2 empty RBDs - a request for allocation is posted 1160 */ 1161 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1162 struct iwl_rx_mem_buffer *rxb, 1163 struct iwl_rxq *rxq, bool emergency) 1164 { 1165 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1166 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1167 1168 /* Move the RBD to the used list, will be moved to allocator in batches 1169 * before claiming or posting a request*/ 1170 list_add_tail(&rxb->list, &rxq->rx_used); 1171 1172 if (unlikely(emergency)) 1173 return; 1174 1175 /* Count the allocator owned RBDs */ 1176 rxq->used_count++; 1177 1178 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1179 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1180 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1181 * after but we still need to post another request. 1182 */ 1183 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1184 /* Move the 2 RBDs to the allocator ownership. 1185 Allocator has another 6 from pool for the request completion*/ 1186 iwl_pcie_rx_move_to_allocator(rxq, rba); 1187 1188 atomic_inc(&rba->req_pending); 1189 queue_work(rba->alloc_wq, &rba->rx_alloc); 1190 } 1191 } 1192 1193 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1194 struct iwl_rxq *rxq, 1195 struct iwl_rx_mem_buffer *rxb, 1196 bool emergency, 1197 int i) 1198 { 1199 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1200 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; 1201 bool page_stolen = false; 1202 int max_len = PAGE_SIZE << trans_pcie->rx_page_order; 1203 u32 offset = 0; 1204 1205 if (WARN_ON(!rxb)) 1206 return; 1207 1208 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1209 1210 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1211 struct iwl_rx_packet *pkt; 1212 u16 sequence; 1213 bool reclaim; 1214 int index, cmd_index, len; 1215 struct iwl_rx_cmd_buffer rxcb = { 1216 ._offset = offset, 1217 ._rx_page_order = trans_pcie->rx_page_order, 1218 ._page = rxb->page, 1219 ._page_stolen = false, 1220 .truesize = max_len, 1221 }; 1222 1223 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1224 rxcb.status = rxq->cd[i].status; 1225 1226 pkt = rxb_addr(&rxcb); 1227 1228 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1229 IWL_DEBUG_RX(trans, 1230 "Q %d: RB end marker at offset %d\n", 1231 rxq->id, offset); 1232 break; 1233 } 1234 1235 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1236 FH_RSCSR_RXQ_POS != rxq->id, 1237 "frame on invalid queue - is on %d and indicates %d\n", 1238 rxq->id, 1239 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1240 FH_RSCSR_RXQ_POS); 1241 1242 IWL_DEBUG_RX(trans, 1243 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1244 rxq->id, offset, 1245 iwl_get_cmd_string(trans, 1246 iwl_cmd_id(pkt->hdr.cmd, 1247 pkt->hdr.group_id, 1248 0)), 1249 pkt->hdr.group_id, pkt->hdr.cmd, 1250 le16_to_cpu(pkt->hdr.sequence)); 1251 1252 len = iwl_rx_packet_len(pkt); 1253 len += sizeof(u32); /* account for status word */ 1254 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1255 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1256 1257 /* Reclaim a command buffer only if this packet is a response 1258 * to a (driver-originated) command. 1259 * If the packet (e.g. Rx frame) originated from uCode, 1260 * there is no command buffer to reclaim. 1261 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1262 * but apparently a few don't get set; catch them here. */ 1263 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1264 if (reclaim && !pkt->hdr.group_id) { 1265 int i; 1266 1267 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1268 if (trans_pcie->no_reclaim_cmds[i] == 1269 pkt->hdr.cmd) { 1270 reclaim = false; 1271 break; 1272 } 1273 } 1274 } 1275 1276 sequence = le16_to_cpu(pkt->hdr.sequence); 1277 index = SEQ_TO_INDEX(sequence); 1278 cmd_index = iwl_pcie_get_cmd_index(txq, index); 1279 1280 if (rxq->id == trans_pcie->def_rx_queue) 1281 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1282 &rxcb); 1283 else 1284 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1285 &rxcb, rxq->id); 1286 1287 if (reclaim) { 1288 kzfree(txq->entries[cmd_index].free_buf); 1289 txq->entries[cmd_index].free_buf = NULL; 1290 } 1291 1292 /* 1293 * After here, we should always check rxcb._page_stolen, 1294 * if it is true then one of the handlers took the page. 1295 */ 1296 1297 if (reclaim) { 1298 /* Invoke any callbacks, transfer the buffer to caller, 1299 * and fire off the (possibly) blocking 1300 * iwl_trans_send_cmd() 1301 * as we reclaim the driver command queue */ 1302 if (!rxcb._page_stolen) 1303 iwl_pcie_hcmd_complete(trans, &rxcb); 1304 else 1305 IWL_WARN(trans, "Claim null rxb?\n"); 1306 } 1307 1308 page_stolen |= rxcb._page_stolen; 1309 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1310 break; 1311 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1312 } 1313 1314 /* page was stolen from us -- free our reference */ 1315 if (page_stolen) { 1316 __free_pages(rxb->page, trans_pcie->rx_page_order); 1317 rxb->page = NULL; 1318 } 1319 1320 /* Reuse the page if possible. For notification packets and 1321 * SKBs that fail to Rx correctly, add them back into the 1322 * rx_free list for reuse later. */ 1323 if (rxb->page != NULL) { 1324 rxb->page_dma = 1325 dma_map_page(trans->dev, rxb->page, 0, 1326 PAGE_SIZE << trans_pcie->rx_page_order, 1327 DMA_FROM_DEVICE); 1328 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1329 /* 1330 * free the page(s) as well to not break 1331 * the invariant that the items on the used 1332 * list have no page(s) 1333 */ 1334 __free_pages(rxb->page, trans_pcie->rx_page_order); 1335 rxb->page = NULL; 1336 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1337 } else { 1338 list_add_tail(&rxb->list, &rxq->rx_free); 1339 rxq->free_count++; 1340 } 1341 } else 1342 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1343 } 1344 1345 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1346 struct iwl_rxq *rxq, int i) 1347 { 1348 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1349 struct iwl_rx_mem_buffer *rxb; 1350 u16 vid; 1351 1352 if (!trans->cfg->mq_rx_supported) { 1353 rxb = rxq->queue[i]; 1354 rxq->queue[i] = NULL; 1355 return rxb; 1356 } 1357 1358 /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */ 1359 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1360 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF; 1361 else 1362 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; 1363 1364 if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table)) 1365 goto out_err; 1366 1367 rxb = trans_pcie->global_table[vid - 1]; 1368 if (rxb->invalid) 1369 goto out_err; 1370 1371 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1372 rxb->size = le32_to_cpu(rxq->cd[i].size) & IWL_RX_CD_SIZE; 1373 1374 rxb->invalid = true; 1375 1376 return rxb; 1377 1378 out_err: 1379 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1380 iwl_force_nmi(trans); 1381 return NULL; 1382 } 1383 1384 /* 1385 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1386 */ 1387 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) 1388 { 1389 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1390 struct iwl_rxq *rxq = &trans_pcie->rxq[queue]; 1391 u32 r, i, count = 0; 1392 bool emergency = false; 1393 1394 restart: 1395 spin_lock(&rxq->lock); 1396 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1397 * buffer that the driver may process (last buffer filled by ucode). */ 1398 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1399 i = rxq->read; 1400 1401 /* W/A 9000 device step A0 wrap-around bug */ 1402 r &= (rxq->queue_size - 1); 1403 1404 /* Rx interrupt, but nothing sent from uCode */ 1405 if (i == r) 1406 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1407 1408 while (i != r) { 1409 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1410 struct iwl_rx_mem_buffer *rxb; 1411 /* number of RBDs still waiting for page allocation */ 1412 u32 rb_pending_alloc = 1413 atomic_read(&trans_pcie->rba.req_pending) * 1414 RX_CLAIM_REQ_ALLOC; 1415 1416 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1417 !emergency)) { 1418 iwl_pcie_rx_move_to_allocator(rxq, rba); 1419 emergency = true; 1420 } 1421 1422 rxb = iwl_pcie_get_rxb(trans, rxq, i); 1423 if (!rxb) 1424 goto out; 1425 1426 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1427 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1428 1429 i = (i + 1) & (rxq->queue_size - 1); 1430 1431 /* 1432 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1433 * try to claim the pre-allocated buffers from the allocator. 1434 * If not ready - will try to reclaim next time. 1435 * There is no need to reschedule work - allocator exits only 1436 * on success 1437 */ 1438 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1439 iwl_pcie_rx_allocator_get(trans, rxq); 1440 1441 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1442 /* Add the remaining empty RBDs for allocator use */ 1443 iwl_pcie_rx_move_to_allocator(rxq, rba); 1444 } else if (emergency) { 1445 count++; 1446 if (count == 8) { 1447 count = 0; 1448 if (rb_pending_alloc < rxq->queue_size / 3) 1449 emergency = false; 1450 1451 rxq->read = i; 1452 spin_unlock(&rxq->lock); 1453 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1454 iwl_pcie_rxq_restock(trans, rxq); 1455 goto restart; 1456 } 1457 } 1458 } 1459 out: 1460 /* Backtrack one entry */ 1461 rxq->read = i; 1462 /* update cr tail with the rxq read pointer */ 1463 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1464 *rxq->cr_tail = cpu_to_le16(r); 1465 spin_unlock(&rxq->lock); 1466 1467 /* 1468 * handle a case where in emergency there are some unallocated RBDs. 1469 * those RBDs are in the used list, but are not tracked by the queue's 1470 * used_count which counts allocator owned RBDs. 1471 * unallocated emergency RBDs must be allocated on exit, otherwise 1472 * when called again the function may not be in emergency mode and 1473 * they will be handed to the allocator with no tracking in the RBD 1474 * allocator counters, which will lead to them never being claimed back 1475 * by the queue. 1476 * by allocating them here, they are now in the queue free list, and 1477 * will be restocked by the next call of iwl_pcie_rxq_restock. 1478 */ 1479 if (unlikely(emergency && count)) 1480 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1481 1482 if (rxq->napi.poll) 1483 napi_gro_flush(&rxq->napi, false); 1484 1485 iwl_pcie_rxq_restock(trans, rxq); 1486 } 1487 1488 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1489 { 1490 u8 queue = entry->entry; 1491 struct msix_entry *entries = entry - queue; 1492 1493 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1494 } 1495 1496 /* 1497 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1498 * This interrupt handler should be used with RSS queue only. 1499 */ 1500 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1501 { 1502 struct msix_entry *entry = dev_id; 1503 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1504 struct iwl_trans *trans = trans_pcie->trans; 1505 1506 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1507 1508 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1509 return IRQ_NONE; 1510 1511 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1512 1513 local_bh_disable(); 1514 iwl_pcie_rx_handle(trans, entry->entry); 1515 local_bh_enable(); 1516 1517 iwl_pcie_clear_irq(trans, entry); 1518 1519 lock_map_release(&trans->sync_cmd_lockdep_map); 1520 1521 return IRQ_HANDLED; 1522 } 1523 1524 /* 1525 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1526 */ 1527 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1528 { 1529 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1530 int i; 1531 1532 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1533 if (trans->cfg->internal_wimax_coex && 1534 !trans->cfg->apmg_not_supported && 1535 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1536 APMS_CLK_VAL_MRB_FUNC_MODE) || 1537 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1538 APMG_PS_CTRL_VAL_RESET_REQ))) { 1539 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1540 iwl_op_mode_wimax_active(trans->op_mode); 1541 wake_up(&trans_pcie->wait_command_queue); 1542 return; 1543 } 1544 1545 for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) { 1546 if (!trans_pcie->txq[i]) 1547 continue; 1548 del_timer(&trans_pcie->txq[i]->stuck_timer); 1549 } 1550 1551 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1552 * before we wake up the command caller, to ensure a proper cleanup. */ 1553 iwl_trans_fw_error(trans); 1554 1555 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1556 wake_up(&trans_pcie->wait_command_queue); 1557 } 1558 1559 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1560 { 1561 u32 inta; 1562 1563 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1564 1565 trace_iwlwifi_dev_irq(trans->dev); 1566 1567 /* Discover which interrupts are active/pending */ 1568 inta = iwl_read32(trans, CSR_INT); 1569 1570 /* the thread will service interrupts and re-enable them */ 1571 return inta; 1572 } 1573 1574 /* a device (PCI-E) page is 4096 bytes long */ 1575 #define ICT_SHIFT 12 1576 #define ICT_SIZE (1 << ICT_SHIFT) 1577 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1578 1579 /* interrupt handler using ict table, with this interrupt driver will 1580 * stop using INTA register to get device's interrupt, reading this register 1581 * is expensive, device will write interrupts in ICT dram table, increment 1582 * index then will fire interrupt to driver, driver will OR all ICT table 1583 * entries from current index up to table entry with 0 value. the result is 1584 * the interrupt we need to service, driver will set the entries back to 0 and 1585 * set index. 1586 */ 1587 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1588 { 1589 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1590 u32 inta; 1591 u32 val = 0; 1592 u32 read; 1593 1594 trace_iwlwifi_dev_irq(trans->dev); 1595 1596 /* Ignore interrupt if there's nothing in NIC to service. 1597 * This may be due to IRQ shared with another device, 1598 * or due to sporadic interrupts thrown from our NIC. */ 1599 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1600 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1601 if (!read) 1602 return 0; 1603 1604 /* 1605 * Collect all entries up to the first 0, starting from ict_index; 1606 * note we already read at ict_index. 1607 */ 1608 do { 1609 val |= read; 1610 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1611 trans_pcie->ict_index, read); 1612 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1613 trans_pcie->ict_index = 1614 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1615 1616 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1617 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1618 read); 1619 } while (read); 1620 1621 /* We should not get this value, just ignore it. */ 1622 if (val == 0xffffffff) 1623 val = 0; 1624 1625 /* 1626 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1627 * (bit 15 before shifting it to 31) to clear when using interrupt 1628 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1629 * so we use them to decide on the real state of the Rx bit. 1630 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1631 */ 1632 if (val & 0xC0000) 1633 val |= 0x8000; 1634 1635 inta = (0xff & val) | ((0xff00 & val) << 16); 1636 return inta; 1637 } 1638 1639 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1640 { 1641 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1642 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1643 bool hw_rfkill, prev, report; 1644 1645 mutex_lock(&trans_pcie->mutex); 1646 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1647 hw_rfkill = iwl_is_rfkill_set(trans); 1648 if (hw_rfkill) { 1649 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1650 set_bit(STATUS_RFKILL_HW, &trans->status); 1651 } 1652 if (trans_pcie->opmode_down) 1653 report = hw_rfkill; 1654 else 1655 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1656 1657 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1658 hw_rfkill ? "disable radio" : "enable radio"); 1659 1660 isr_stats->rfkill++; 1661 1662 if (prev != report) 1663 iwl_trans_pcie_rf_kill(trans, report); 1664 mutex_unlock(&trans_pcie->mutex); 1665 1666 if (hw_rfkill) { 1667 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1668 &trans->status)) 1669 IWL_DEBUG_RF_KILL(trans, 1670 "Rfkill while SYNC HCMD in flight\n"); 1671 wake_up(&trans_pcie->wait_command_queue); 1672 } else { 1673 clear_bit(STATUS_RFKILL_HW, &trans->status); 1674 if (trans_pcie->opmode_down) 1675 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1676 } 1677 } 1678 1679 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1680 { 1681 struct iwl_trans *trans = dev_id; 1682 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1683 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1684 u32 inta = 0; 1685 u32 handled = 0; 1686 1687 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1688 1689 spin_lock(&trans_pcie->irq_lock); 1690 1691 /* dram interrupt table not set yet, 1692 * use legacy interrupt. 1693 */ 1694 if (likely(trans_pcie->use_ict)) 1695 inta = iwl_pcie_int_cause_ict(trans); 1696 else 1697 inta = iwl_pcie_int_cause_non_ict(trans); 1698 1699 if (iwl_have_debug_level(IWL_DL_ISR)) { 1700 IWL_DEBUG_ISR(trans, 1701 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1702 inta, trans_pcie->inta_mask, 1703 iwl_read32(trans, CSR_INT_MASK), 1704 iwl_read32(trans, CSR_FH_INT_STATUS)); 1705 if (inta & (~trans_pcie->inta_mask)) 1706 IWL_DEBUG_ISR(trans, 1707 "We got a masked interrupt (0x%08x)\n", 1708 inta & (~trans_pcie->inta_mask)); 1709 } 1710 1711 inta &= trans_pcie->inta_mask; 1712 1713 /* 1714 * Ignore interrupt if there's nothing in NIC to service. 1715 * This may be due to IRQ shared with another device, 1716 * or due to sporadic interrupts thrown from our NIC. 1717 */ 1718 if (unlikely(!inta)) { 1719 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1720 /* 1721 * Re-enable interrupts here since we don't 1722 * have anything to service 1723 */ 1724 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1725 _iwl_enable_interrupts(trans); 1726 spin_unlock(&trans_pcie->irq_lock); 1727 lock_map_release(&trans->sync_cmd_lockdep_map); 1728 return IRQ_NONE; 1729 } 1730 1731 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1732 /* 1733 * Hardware disappeared. It might have 1734 * already raised an interrupt. 1735 */ 1736 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1737 spin_unlock(&trans_pcie->irq_lock); 1738 goto out; 1739 } 1740 1741 /* Ack/clear/reset pending uCode interrupts. 1742 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1743 */ 1744 /* There is a hardware bug in the interrupt mask function that some 1745 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1746 * they are disabled in the CSR_INT_MASK register. Furthermore the 1747 * ICT interrupt handling mechanism has another bug that might cause 1748 * these unmasked interrupts fail to be detected. We workaround the 1749 * hardware bugs here by ACKing all the possible interrupts so that 1750 * interrupt coalescing can still be achieved. 1751 */ 1752 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1753 1754 if (iwl_have_debug_level(IWL_DL_ISR)) 1755 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1756 inta, iwl_read32(trans, CSR_INT_MASK)); 1757 1758 spin_unlock(&trans_pcie->irq_lock); 1759 1760 /* Now service all interrupt bits discovered above. */ 1761 if (inta & CSR_INT_BIT_HW_ERR) { 1762 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1763 1764 /* Tell the device to stop sending interrupts */ 1765 iwl_disable_interrupts(trans); 1766 1767 isr_stats->hw++; 1768 iwl_pcie_irq_handle_error(trans); 1769 1770 handled |= CSR_INT_BIT_HW_ERR; 1771 1772 goto out; 1773 } 1774 1775 if (iwl_have_debug_level(IWL_DL_ISR)) { 1776 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1777 if (inta & CSR_INT_BIT_SCD) { 1778 IWL_DEBUG_ISR(trans, 1779 "Scheduler finished to transmit the frame/frames.\n"); 1780 isr_stats->sch++; 1781 } 1782 1783 /* Alive notification via Rx interrupt will do the real work */ 1784 if (inta & CSR_INT_BIT_ALIVE) { 1785 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1786 isr_stats->alive++; 1787 if (trans->cfg->gen2) { 1788 /* 1789 * We can restock, since firmware configured 1790 * the RFH 1791 */ 1792 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1793 } 1794 } 1795 } 1796 1797 /* Safely ignore these bits for debug checks below */ 1798 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1799 1800 /* HW RF KILL switch toggled */ 1801 if (inta & CSR_INT_BIT_RF_KILL) { 1802 iwl_pcie_handle_rfkill_irq(trans); 1803 handled |= CSR_INT_BIT_RF_KILL; 1804 } 1805 1806 /* Chip got too hot and stopped itself */ 1807 if (inta & CSR_INT_BIT_CT_KILL) { 1808 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1809 isr_stats->ctkill++; 1810 handled |= CSR_INT_BIT_CT_KILL; 1811 } 1812 1813 /* Error detected by uCode */ 1814 if (inta & CSR_INT_BIT_SW_ERR) { 1815 IWL_ERR(trans, "Microcode SW error detected. " 1816 " Restarting 0x%X.\n", inta); 1817 isr_stats->sw++; 1818 iwl_pcie_irq_handle_error(trans); 1819 handled |= CSR_INT_BIT_SW_ERR; 1820 } 1821 1822 /* uCode wakes up after power-down sleep */ 1823 if (inta & CSR_INT_BIT_WAKEUP) { 1824 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1825 iwl_pcie_rxq_check_wrptr(trans); 1826 iwl_pcie_txq_check_wrptrs(trans); 1827 1828 isr_stats->wakeup++; 1829 1830 handled |= CSR_INT_BIT_WAKEUP; 1831 } 1832 1833 /* All uCode command responses, including Tx command responses, 1834 * Rx "responses" (frame-received notification), and other 1835 * notifications from uCode come through here*/ 1836 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1837 CSR_INT_BIT_RX_PERIODIC)) { 1838 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1839 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1840 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1841 iwl_write32(trans, CSR_FH_INT_STATUS, 1842 CSR_FH_INT_RX_MASK); 1843 } 1844 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1845 handled |= CSR_INT_BIT_RX_PERIODIC; 1846 iwl_write32(trans, 1847 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1848 } 1849 /* Sending RX interrupt require many steps to be done in the 1850 * the device: 1851 * 1- write interrupt to current index in ICT table. 1852 * 2- dma RX frame. 1853 * 3- update RX shared data to indicate last write index. 1854 * 4- send interrupt. 1855 * This could lead to RX race, driver could receive RX interrupt 1856 * but the shared data changes does not reflect this; 1857 * periodic interrupt will detect any dangling Rx activity. 1858 */ 1859 1860 /* Disable periodic interrupt; we use it as just a one-shot. */ 1861 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1862 CSR_INT_PERIODIC_DIS); 1863 1864 /* 1865 * Enable periodic interrupt in 8 msec only if we received 1866 * real RX interrupt (instead of just periodic int), to catch 1867 * any dangling Rx interrupt. If it was just the periodic 1868 * interrupt, there was no dangling Rx activity, and no need 1869 * to extend the periodic interrupt; one-shot is enough. 1870 */ 1871 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 1872 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1873 CSR_INT_PERIODIC_ENA); 1874 1875 isr_stats->rx++; 1876 1877 local_bh_disable(); 1878 iwl_pcie_rx_handle(trans, 0); 1879 local_bh_enable(); 1880 } 1881 1882 /* This "Tx" DMA channel is used only for loading uCode */ 1883 if (inta & CSR_INT_BIT_FH_TX) { 1884 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 1885 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1886 isr_stats->tx++; 1887 handled |= CSR_INT_BIT_FH_TX; 1888 /* Wake up uCode load routine, now that load is complete */ 1889 trans_pcie->ucode_write_complete = true; 1890 wake_up(&trans_pcie->ucode_write_waitq); 1891 } 1892 1893 if (inta & ~handled) { 1894 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 1895 isr_stats->unhandled++; 1896 } 1897 1898 if (inta & ~(trans_pcie->inta_mask)) { 1899 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 1900 inta & ~trans_pcie->inta_mask); 1901 } 1902 1903 spin_lock(&trans_pcie->irq_lock); 1904 /* only Re-enable all interrupt if disabled by irq */ 1905 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1906 _iwl_enable_interrupts(trans); 1907 /* we are loading the firmware, enable FH_TX interrupt only */ 1908 else if (handled & CSR_INT_BIT_FH_TX) 1909 iwl_enable_fw_load_int(trans); 1910 /* Re-enable RF_KILL if it occurred */ 1911 else if (handled & CSR_INT_BIT_RF_KILL) 1912 iwl_enable_rfkill_int(trans); 1913 spin_unlock(&trans_pcie->irq_lock); 1914 1915 out: 1916 lock_map_release(&trans->sync_cmd_lockdep_map); 1917 return IRQ_HANDLED; 1918 } 1919 1920 /****************************************************************************** 1921 * 1922 * ICT functions 1923 * 1924 ******************************************************************************/ 1925 1926 /* Free dram table */ 1927 void iwl_pcie_free_ict(struct iwl_trans *trans) 1928 { 1929 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1930 1931 if (trans_pcie->ict_tbl) { 1932 dma_free_coherent(trans->dev, ICT_SIZE, 1933 trans_pcie->ict_tbl, 1934 trans_pcie->ict_tbl_dma); 1935 trans_pcie->ict_tbl = NULL; 1936 trans_pcie->ict_tbl_dma = 0; 1937 } 1938 } 1939 1940 /* 1941 * allocate dram shared table, it is an aligned memory 1942 * block of ICT_SIZE. 1943 * also reset all data related to ICT table interrupt. 1944 */ 1945 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 1946 { 1947 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1948 1949 trans_pcie->ict_tbl = 1950 dma_zalloc_coherent(trans->dev, ICT_SIZE, 1951 &trans_pcie->ict_tbl_dma, 1952 GFP_KERNEL); 1953 if (!trans_pcie->ict_tbl) 1954 return -ENOMEM; 1955 1956 /* just an API sanity check ... it is guaranteed to be aligned */ 1957 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 1958 iwl_pcie_free_ict(trans); 1959 return -EINVAL; 1960 } 1961 1962 return 0; 1963 } 1964 1965 /* Device is going up inform it about using ICT interrupt table, 1966 * also we need to tell the driver to start using ICT interrupt. 1967 */ 1968 void iwl_pcie_reset_ict(struct iwl_trans *trans) 1969 { 1970 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1971 u32 val; 1972 1973 if (!trans_pcie->ict_tbl) 1974 return; 1975 1976 spin_lock(&trans_pcie->irq_lock); 1977 _iwl_disable_interrupts(trans); 1978 1979 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 1980 1981 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 1982 1983 val |= CSR_DRAM_INT_TBL_ENABLE | 1984 CSR_DRAM_INIT_TBL_WRAP_CHECK | 1985 CSR_DRAM_INIT_TBL_WRITE_POINTER; 1986 1987 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 1988 1989 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 1990 trans_pcie->use_ict = true; 1991 trans_pcie->ict_index = 0; 1992 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 1993 _iwl_enable_interrupts(trans); 1994 spin_unlock(&trans_pcie->irq_lock); 1995 } 1996 1997 /* Device is going down disable ict interrupt usage */ 1998 void iwl_pcie_disable_ict(struct iwl_trans *trans) 1999 { 2000 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2001 2002 spin_lock(&trans_pcie->irq_lock); 2003 trans_pcie->use_ict = false; 2004 spin_unlock(&trans_pcie->irq_lock); 2005 } 2006 2007 irqreturn_t iwl_pcie_isr(int irq, void *data) 2008 { 2009 struct iwl_trans *trans = data; 2010 2011 if (!trans) 2012 return IRQ_NONE; 2013 2014 /* Disable (but don't clear!) interrupts here to avoid 2015 * back-to-back ISRs and sporadic interrupts from our NIC. 2016 * If we have something to service, the tasklet will re-enable ints. 2017 * If we *don't* have something, we'll re-enable before leaving here. 2018 */ 2019 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2020 2021 return IRQ_WAKE_THREAD; 2022 } 2023 2024 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2025 { 2026 return IRQ_WAKE_THREAD; 2027 } 2028 2029 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2030 { 2031 struct msix_entry *entry = dev_id; 2032 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2033 struct iwl_trans *trans = trans_pcie->trans; 2034 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2035 u32 inta_fh, inta_hw; 2036 2037 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2038 2039 spin_lock(&trans_pcie->irq_lock); 2040 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2041 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2042 /* 2043 * Clear causes registers to avoid being handling the same cause. 2044 */ 2045 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); 2046 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2047 spin_unlock(&trans_pcie->irq_lock); 2048 2049 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2050 2051 if (unlikely(!(inta_fh | inta_hw))) { 2052 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2053 lock_map_release(&trans->sync_cmd_lockdep_map); 2054 return IRQ_NONE; 2055 } 2056 2057 if (iwl_have_debug_level(IWL_DL_ISR)) 2058 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n", 2059 inta_fh, 2060 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2061 2062 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2063 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2064 local_bh_disable(); 2065 iwl_pcie_rx_handle(trans, 0); 2066 local_bh_enable(); 2067 } 2068 2069 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2070 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2071 local_bh_disable(); 2072 iwl_pcie_rx_handle(trans, 1); 2073 local_bh_enable(); 2074 } 2075 2076 /* This "Tx" DMA channel is used only for loading uCode */ 2077 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2078 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2079 isr_stats->tx++; 2080 /* 2081 * Wake up uCode load routine, 2082 * now that load is complete 2083 */ 2084 trans_pcie->ucode_write_complete = true; 2085 wake_up(&trans_pcie->ucode_write_waitq); 2086 } 2087 2088 /* Error detected by uCode */ 2089 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || 2090 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) || 2091 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) { 2092 IWL_ERR(trans, 2093 "Microcode SW error detected. Restarting 0x%X.\n", 2094 inta_fh); 2095 isr_stats->sw++; 2096 iwl_pcie_irq_handle_error(trans); 2097 } 2098 2099 /* After checking FH register check HW register */ 2100 if (iwl_have_debug_level(IWL_DL_ISR)) 2101 IWL_DEBUG_ISR(trans, 2102 "ISR inta_hw 0x%08x, enabled 0x%08x\n", 2103 inta_hw, 2104 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2105 2106 /* Alive notification via Rx interrupt will do the real work */ 2107 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2108 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2109 isr_stats->alive++; 2110 if (trans->cfg->gen2) { 2111 /* We can restock, since firmware configured the RFH */ 2112 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2113 } 2114 } 2115 2116 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560 && 2117 inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) { 2118 /* Reflect IML transfer status */ 2119 int res = iwl_read32(trans, CSR_IML_RESP_ADDR); 2120 2121 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res); 2122 if (res == IWL_IMAGE_RESP_FAIL) { 2123 isr_stats->sw++; 2124 iwl_pcie_irq_handle_error(trans); 2125 } 2126 } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { 2127 /* uCode wakes up after power-down sleep */ 2128 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2129 iwl_pcie_rxq_check_wrptr(trans); 2130 iwl_pcie_txq_check_wrptrs(trans); 2131 2132 isr_stats->wakeup++; 2133 } 2134 2135 /* Chip got too hot and stopped itself */ 2136 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2137 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2138 isr_stats->ctkill++; 2139 } 2140 2141 /* HW RF KILL switch toggled */ 2142 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2143 iwl_pcie_handle_rfkill_irq(trans); 2144 2145 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2146 IWL_ERR(trans, 2147 "Hardware error detected. Restarting.\n"); 2148 2149 isr_stats->hw++; 2150 iwl_pcie_irq_handle_error(trans); 2151 } 2152 2153 iwl_pcie_clear_irq(trans, entry); 2154 2155 lock_map_release(&trans->sync_cmd_lockdep_map); 2156 2157 return IRQ_HANDLED; 2158 } 2159