1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "iwl-context-info-gen3.h" 16 17 /****************************************************************************** 18 * 19 * RX path functions 20 * 21 ******************************************************************************/ 22 23 /* 24 * Rx theory of operation 25 * 26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27 * each of which point to Receive Buffers to be filled by the NIC. These get 28 * used not only for Rx frames, but for any command response or notification 29 * from the NIC. The driver and NIC manage the Rx buffers by means 30 * of indexes into the circular buffer. 31 * 32 * Rx Queue Indexes 33 * The host/firmware share two index registers for managing the Rx buffers. 34 * 35 * The READ index maps to the first position that the firmware may be writing 36 * to -- the driver can read up to (but not including) this position and get 37 * good data. 38 * The READ index is managed by the firmware once the card is enabled. 39 * 40 * The WRITE index maps to the last position the driver has read from -- the 41 * position preceding WRITE is the last slot the firmware can place a packet. 42 * 43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44 * WRITE = READ. 45 * 46 * During initialization, the host sets up the READ queue position to the first 47 * INDEX position, and WRITE to the last (READ - 1 wrapped) 48 * 49 * When the firmware places a packet in a buffer, it will advance the READ index 50 * and fire the RX interrupt. The driver can then query the READ index and 51 * process as many packets as possible, moving the WRITE index forward as it 52 * resets the Rx queue buffers with new memory. 53 * 54 * The management in the driver is as follows: 55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56 * When the interrupt handler is called, the request is processed. 57 * The page is either stolen - transferred to the upper layer 58 * or reused - added immediately to the iwl->rxq->rx_free list. 59 * + When the page is stolen - the driver updates the matching queue's used 60 * count, detaches the RBD and transfers it to the queue used list. 61 * When there are two used RBDs - they are transferred to the allocator empty 62 * list. Work is then scheduled for the allocator to start allocating 63 * eight buffers. 64 * When there are another 6 used RBDs - they are transferred to the allocator 65 * empty list and the driver tries to claim the pre-allocated buffers and 66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67 * until ready. 68 * When there are 8+ buffers in the free list - either from allocation or from 69 * 8 reused unstolen pages - restock is called to update the FW and indexes. 70 * + In order to make sure the allocator always has RBDs to use for allocation 71 * the allocator has initial pool in the size of num_queues*(8-2) - the 72 * maximum missing RBDs per allocation request (request posted with 2 73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74 * The queues supplies the recycle of the rest of the RBDs. 75 * + A received packet is processed and handed to the kernel network stack, 76 * detached from the iwl->rxq. The driver 'processed' index is updated. 77 * + If there are no allocated buffers in iwl->rxq->rx_free, 78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79 * If there were enough free buffers and RX_STALLED is set it is cleared. 80 * 81 * 82 * Driver sequence: 83 * 84 * iwl_rxq_alloc() Allocates rx_free 85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86 * iwl_pcie_rxq_restock. 87 * Used only during initialization. 88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89 * queue, updates firmware pointers, and updates 90 * the WRITE index. 91 * iwl_pcie_rx_allocator() Background work for allocating pages. 92 * 93 * -- enable interrupts -- 94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95 * READ INDEX, detaching the SKB from the pool. 96 * Moves the packet buffer from queue to rx_used. 97 * Posts and claims requests to the allocator. 98 * Calls iwl_pcie_rxq_restock to refill any empty 99 * slots. 100 * 101 * RBD life-cycle: 102 * 103 * Init: 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105 * 106 * Regular Receive interrupt: 107 * Page Stolen: 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110 * Page not Stolen: 111 * rxq.queue -> rxq.rx_free -> rxq.queue 112 * ... 113 * 114 */ 115 116 /* 117 * iwl_rxq_space - Return number of free slots available in queue. 118 */ 119 static int iwl_rxq_space(const struct iwl_rxq *rxq) 120 { 121 /* Make sure rx queue size is a power of 2 */ 122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123 124 /* 125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126 * between empty and completely full queues. 127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128 * defined for negative dividends. 129 */ 130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131 } 132 133 /* 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135 */ 136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137 { 138 return cpu_to_le32((u32)(dma_addr >> 8)); 139 } 140 141 /* 142 * iwl_pcie_rx_stop - stops the Rx DMA 143 */ 144 int iwl_pcie_rx_stop(struct iwl_trans *trans) 145 { 146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147 /* TODO: remove this once fw does it */ 148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151 } else if (trans->trans_cfg->mq_rx_supported) { 152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155 } else { 156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159 1000); 160 } 161 } 162 163 /* 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165 */ 166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167 struct iwl_rxq *rxq) 168 { 169 u32 reg; 170 171 lockdep_assert_held(&rxq->lock); 172 173 /* 174 * explicitly wake up the NIC if: 175 * 1. shadow registers aren't enabled 176 * 2. there is a chance that the NIC is asleep 177 */ 178 if (!trans->trans_cfg->base_params->shadow_reg_enable && 179 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181 182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184 reg); 185 iwl_set_bit(trans, CSR_GP_CNTRL, 186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187 rxq->need_update = true; 188 return; 189 } 190 } 191 192 rxq->write_actual = round_down(rxq->write, 8); 193 if (!trans->trans_cfg->mq_rx_supported) 194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198 else 199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200 rxq->write_actual); 201 } 202 203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204 { 205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206 int i; 207 208 for (i = 0; i < trans->num_rx_queues; i++) { 209 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210 211 if (!rxq->need_update) 212 continue; 213 spin_lock_bh(&rxq->lock); 214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215 rxq->need_update = false; 216 spin_unlock_bh(&rxq->lock); 217 } 218 } 219 220 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221 struct iwl_rxq *rxq, 222 struct iwl_rx_mem_buffer *rxb) 223 { 224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225 struct iwl_rx_transfer_desc *bd = rxq->bd; 226 227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228 229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231 } else { 232 __le64 *bd = rxq->bd; 233 234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235 } 236 237 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 238 (u32)rxb->vid, rxq->id, rxq->write); 239 } 240 241 /* 242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 243 */ 244 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 245 struct iwl_rxq *rxq) 246 { 247 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 248 struct iwl_rx_mem_buffer *rxb; 249 250 /* 251 * If the device isn't enabled - no need to try to add buffers... 252 * This can happen when we stop the device and still have an interrupt 253 * pending. We stop the APM before we sync the interrupts because we 254 * have to (see comment there). On the other hand, since the APM is 255 * stopped, we cannot access the HW (in particular not prph). 256 * So don't try to restock if the APM has been already stopped. 257 */ 258 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 259 return; 260 261 spin_lock_bh(&rxq->lock); 262 while (rxq->free_count) { 263 /* Get next free Rx buffer, remove from free list */ 264 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 265 list); 266 list_del(&rxb->list); 267 rxb->invalid = false; 268 /* some low bits are expected to be unset (depending on hw) */ 269 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 270 /* Point to Rx buffer via next RBD in circular buffer */ 271 iwl_pcie_restock_bd(trans, rxq, rxb); 272 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 273 rxq->free_count--; 274 } 275 spin_unlock_bh(&rxq->lock); 276 277 /* 278 * If we've added more space for the firmware to place data, tell it. 279 * Increment device's write pointer in multiples of 8. 280 */ 281 if (rxq->write_actual != (rxq->write & ~0x7)) { 282 spin_lock_bh(&rxq->lock); 283 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 284 spin_unlock_bh(&rxq->lock); 285 } 286 } 287 288 /* 289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 290 */ 291 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 292 struct iwl_rxq *rxq) 293 { 294 struct iwl_rx_mem_buffer *rxb; 295 296 /* 297 * If the device isn't enabled - not need to try to add buffers... 298 * This can happen when we stop the device and still have an interrupt 299 * pending. We stop the APM before we sync the interrupts because we 300 * have to (see comment there). On the other hand, since the APM is 301 * stopped, we cannot access the HW (in particular not prph). 302 * So don't try to restock if the APM has been already stopped. 303 */ 304 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 305 return; 306 307 spin_lock_bh(&rxq->lock); 308 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 309 __le32 *bd = (__le32 *)rxq->bd; 310 /* The overwritten rxb must be a used one */ 311 rxb = rxq->queue[rxq->write]; 312 BUG_ON(rxb && rxb->page); 313 314 /* Get next free Rx buffer, remove from free list */ 315 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 316 list); 317 list_del(&rxb->list); 318 rxb->invalid = false; 319 320 /* Point to Rx buffer via next RBD in circular buffer */ 321 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 322 rxq->queue[rxq->write] = rxb; 323 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 324 rxq->free_count--; 325 } 326 spin_unlock_bh(&rxq->lock); 327 328 /* If we've added more space for the firmware to place data, tell it. 329 * Increment device's write pointer in multiples of 8. */ 330 if (rxq->write_actual != (rxq->write & ~0x7)) { 331 spin_lock_bh(&rxq->lock); 332 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 333 spin_unlock_bh(&rxq->lock); 334 } 335 } 336 337 /* 338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 339 * 340 * If there are slots in the RX queue that need to be restocked, 341 * and we have free pre-allocated buffers, fill the ranks as much 342 * as we can, pulling from rx_free. 343 * 344 * This moves the 'write' index forward to catch up with 'processed', and 345 * also updates the memory address in the firmware to reference the new 346 * target buffer. 347 */ 348 static 349 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 350 { 351 if (trans->trans_cfg->mq_rx_supported) 352 iwl_pcie_rxmq_restock(trans, rxq); 353 else 354 iwl_pcie_rxsq_restock(trans, rxq); 355 } 356 357 /* 358 * iwl_pcie_rx_alloc_page - allocates and returns a page. 359 * 360 */ 361 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 362 u32 *offset, gfp_t priority) 363 { 364 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 365 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 366 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 367 struct page *page; 368 gfp_t gfp_mask = priority; 369 370 if (trans_pcie->rx_page_order > 0) 371 gfp_mask |= __GFP_COMP; 372 373 if (trans_pcie->alloc_page) { 374 spin_lock_bh(&trans_pcie->alloc_page_lock); 375 /* recheck */ 376 if (trans_pcie->alloc_page) { 377 *offset = trans_pcie->alloc_page_used; 378 page = trans_pcie->alloc_page; 379 trans_pcie->alloc_page_used += rbsize; 380 if (trans_pcie->alloc_page_used >= allocsize) 381 trans_pcie->alloc_page = NULL; 382 else 383 get_page(page); 384 spin_unlock_bh(&trans_pcie->alloc_page_lock); 385 return page; 386 } 387 spin_unlock_bh(&trans_pcie->alloc_page_lock); 388 } 389 390 /* Alloc a new receive buffer */ 391 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 392 if (!page) { 393 if (net_ratelimit()) 394 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 395 trans_pcie->rx_page_order); 396 /* 397 * Issue an error if we don't have enough pre-allocated 398 * buffers. 399 */ 400 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 401 IWL_CRIT(trans, 402 "Failed to alloc_pages\n"); 403 return NULL; 404 } 405 406 if (2 * rbsize <= allocsize) { 407 spin_lock_bh(&trans_pcie->alloc_page_lock); 408 if (!trans_pcie->alloc_page) { 409 get_page(page); 410 trans_pcie->alloc_page = page; 411 trans_pcie->alloc_page_used = rbsize; 412 } 413 spin_unlock_bh(&trans_pcie->alloc_page_lock); 414 } 415 416 *offset = 0; 417 return page; 418 } 419 420 /* 421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 422 * 423 * A used RBD is an Rx buffer that has been given to the stack. To use it again 424 * a page must be allocated and the RBD must point to the page. This function 425 * doesn't change the HW pointer but handles the list of pages that is used by 426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 427 * allocated buffers. 428 */ 429 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 430 struct iwl_rxq *rxq) 431 { 432 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 433 struct iwl_rx_mem_buffer *rxb; 434 struct page *page; 435 436 while (1) { 437 unsigned int offset; 438 439 spin_lock_bh(&rxq->lock); 440 if (list_empty(&rxq->rx_used)) { 441 spin_unlock_bh(&rxq->lock); 442 return; 443 } 444 spin_unlock_bh(&rxq->lock); 445 446 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 447 if (!page) 448 return; 449 450 spin_lock_bh(&rxq->lock); 451 452 if (list_empty(&rxq->rx_used)) { 453 spin_unlock_bh(&rxq->lock); 454 __free_pages(page, trans_pcie->rx_page_order); 455 return; 456 } 457 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 458 list); 459 list_del(&rxb->list); 460 spin_unlock_bh(&rxq->lock); 461 462 BUG_ON(rxb->page); 463 rxb->page = page; 464 rxb->offset = offset; 465 /* Get physical address of the RB */ 466 rxb->page_dma = 467 dma_map_page(trans->dev, page, rxb->offset, 468 trans_pcie->rx_buf_bytes, 469 DMA_FROM_DEVICE); 470 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 471 rxb->page = NULL; 472 spin_lock_bh(&rxq->lock); 473 list_add(&rxb->list, &rxq->rx_used); 474 spin_unlock_bh(&rxq->lock); 475 __free_pages(page, trans_pcie->rx_page_order); 476 return; 477 } 478 479 spin_lock_bh(&rxq->lock); 480 481 list_add_tail(&rxb->list, &rxq->rx_free); 482 rxq->free_count++; 483 484 spin_unlock_bh(&rxq->lock); 485 } 486 } 487 488 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 489 { 490 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 491 int i; 492 493 if (!trans_pcie->rx_pool) 494 return; 495 496 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 497 if (!trans_pcie->rx_pool[i].page) 498 continue; 499 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 500 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 501 __free_pages(trans_pcie->rx_pool[i].page, 502 trans_pcie->rx_page_order); 503 trans_pcie->rx_pool[i].page = NULL; 504 } 505 } 506 507 /* 508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 509 * 510 * Allocates for each received request 8 pages 511 * Called as a scheduled work item. 512 */ 513 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 514 { 515 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 516 struct iwl_rb_allocator *rba = &trans_pcie->rba; 517 struct list_head local_empty; 518 int pending = atomic_read(&rba->req_pending); 519 520 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 521 522 /* If we were scheduled - there is at least one request */ 523 spin_lock_bh(&rba->lock); 524 /* swap out the rba->rbd_empty to a local list */ 525 list_replace_init(&rba->rbd_empty, &local_empty); 526 spin_unlock_bh(&rba->lock); 527 528 while (pending) { 529 int i; 530 LIST_HEAD(local_allocated); 531 gfp_t gfp_mask = GFP_KERNEL; 532 533 /* Do not post a warning if there are only a few requests */ 534 if (pending < RX_PENDING_WATERMARK) 535 gfp_mask |= __GFP_NOWARN; 536 537 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 538 struct iwl_rx_mem_buffer *rxb; 539 struct page *page; 540 541 /* List should never be empty - each reused RBD is 542 * returned to the list, and initial pool covers any 543 * possible gap between the time the page is allocated 544 * to the time the RBD is added. 545 */ 546 BUG_ON(list_empty(&local_empty)); 547 /* Get the first rxb from the rbd list */ 548 rxb = list_first_entry(&local_empty, 549 struct iwl_rx_mem_buffer, list); 550 BUG_ON(rxb->page); 551 552 /* Alloc a new receive buffer */ 553 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 554 gfp_mask); 555 if (!page) 556 continue; 557 rxb->page = page; 558 559 /* Get physical address of the RB */ 560 rxb->page_dma = dma_map_page(trans->dev, page, 561 rxb->offset, 562 trans_pcie->rx_buf_bytes, 563 DMA_FROM_DEVICE); 564 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 565 rxb->page = NULL; 566 __free_pages(page, trans_pcie->rx_page_order); 567 continue; 568 } 569 570 /* move the allocated entry to the out list */ 571 list_move(&rxb->list, &local_allocated); 572 i++; 573 } 574 575 atomic_dec(&rba->req_pending); 576 pending--; 577 578 if (!pending) { 579 pending = atomic_read(&rba->req_pending); 580 if (pending) 581 IWL_DEBUG_TPT(trans, 582 "Got more pending allocation requests = %d\n", 583 pending); 584 } 585 586 spin_lock_bh(&rba->lock); 587 /* add the allocated rbds to the allocator allocated list */ 588 list_splice_tail(&local_allocated, &rba->rbd_allocated); 589 /* get more empty RBDs for current pending requests */ 590 list_splice_tail_init(&rba->rbd_empty, &local_empty); 591 spin_unlock_bh(&rba->lock); 592 593 atomic_inc(&rba->req_ready); 594 595 } 596 597 spin_lock_bh(&rba->lock); 598 /* return unused rbds to the allocator empty list */ 599 list_splice_tail(&local_empty, &rba->rbd_empty); 600 spin_unlock_bh(&rba->lock); 601 602 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 603 } 604 605 /* 606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 607 .* 608 .* Called by queue when the queue posted allocation request and 609 * has freed 8 RBDs in order to restock itself. 610 * This function directly moves the allocated RBs to the queue's ownership 611 * and updates the relevant counters. 612 */ 613 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 614 struct iwl_rxq *rxq) 615 { 616 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 617 struct iwl_rb_allocator *rba = &trans_pcie->rba; 618 int i; 619 620 lockdep_assert_held(&rxq->lock); 621 622 /* 623 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 624 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 625 * function will return early, as there are no ready requests. 626 * atomic_dec_if_positive will perofrm the *actual* decrement only if 627 * req_ready > 0, i.e. - there are ready requests and the function 628 * hands one request to the caller. 629 */ 630 if (atomic_dec_if_positive(&rba->req_ready) < 0) 631 return; 632 633 spin_lock(&rba->lock); 634 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 635 /* Get next free Rx buffer, remove it from free list */ 636 struct iwl_rx_mem_buffer *rxb = 637 list_first_entry(&rba->rbd_allocated, 638 struct iwl_rx_mem_buffer, list); 639 640 list_move(&rxb->list, &rxq->rx_free); 641 } 642 spin_unlock(&rba->lock); 643 644 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 645 rxq->free_count += RX_CLAIM_REQ_ALLOC; 646 } 647 648 void iwl_pcie_rx_allocator_work(struct work_struct *data) 649 { 650 struct iwl_rb_allocator *rba_p = 651 container_of(data, struct iwl_rb_allocator, rx_alloc); 652 struct iwl_trans_pcie *trans_pcie = 653 container_of(rba_p, struct iwl_trans_pcie, rba); 654 655 iwl_pcie_rx_allocator(trans_pcie->trans); 656 } 657 658 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 659 { 660 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 661 return sizeof(struct iwl_rx_transfer_desc); 662 663 return trans->trans_cfg->mq_rx_supported ? 664 sizeof(__le64) : sizeof(__le32); 665 } 666 667 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 668 { 669 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 670 return sizeof(struct iwl_rx_completion_desc_bz); 671 672 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 673 return sizeof(struct iwl_rx_completion_desc); 674 675 return sizeof(__le32); 676 } 677 678 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 679 struct iwl_rxq *rxq) 680 { 681 int free_size = iwl_pcie_free_bd_size(trans); 682 683 if (rxq->bd) 684 dma_free_coherent(trans->dev, 685 free_size * rxq->queue_size, 686 rxq->bd, rxq->bd_dma); 687 rxq->bd_dma = 0; 688 rxq->bd = NULL; 689 690 rxq->rb_stts_dma = 0; 691 rxq->rb_stts = NULL; 692 693 if (rxq->used_bd) 694 dma_free_coherent(trans->dev, 695 iwl_pcie_used_bd_size(trans) * 696 rxq->queue_size, 697 rxq->used_bd, rxq->used_bd_dma); 698 rxq->used_bd_dma = 0; 699 rxq->used_bd = NULL; 700 } 701 702 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) 703 { 704 bool use_rx_td = (trans->trans_cfg->device_family >= 705 IWL_DEVICE_FAMILY_AX210); 706 707 if (use_rx_td) 708 return sizeof(__le16); 709 710 return sizeof(struct iwl_rb_status); 711 } 712 713 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 714 struct iwl_rxq *rxq) 715 { 716 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 717 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 718 struct device *dev = trans->dev; 719 int i; 720 int free_size; 721 722 spin_lock_init(&rxq->lock); 723 if (trans->trans_cfg->mq_rx_supported) 724 rxq->queue_size = trans->cfg->num_rbds; 725 else 726 rxq->queue_size = RX_QUEUE_SIZE; 727 728 free_size = iwl_pcie_free_bd_size(trans); 729 730 /* 731 * Allocate the circular buffer of Read Buffer Descriptors 732 * (RBDs) 733 */ 734 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 735 &rxq->bd_dma, GFP_KERNEL); 736 if (!rxq->bd) 737 goto err; 738 739 if (trans->trans_cfg->mq_rx_supported) { 740 rxq->used_bd = dma_alloc_coherent(dev, 741 iwl_pcie_used_bd_size(trans) * 742 rxq->queue_size, 743 &rxq->used_bd_dma, 744 GFP_KERNEL); 745 if (!rxq->used_bd) 746 goto err; 747 } 748 749 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 750 rxq->rb_stts_dma = 751 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 752 753 return 0; 754 755 err: 756 for (i = 0; i < trans->num_rx_queues; i++) { 757 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 758 759 iwl_pcie_free_rxq_dma(trans, rxq); 760 } 761 762 return -ENOMEM; 763 } 764 765 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 766 { 767 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 768 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 769 struct iwl_rb_allocator *rba = &trans_pcie->rba; 770 int i, ret; 771 772 if (WARN_ON(trans_pcie->rxq)) 773 return -EINVAL; 774 775 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 776 GFP_KERNEL); 777 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 778 sizeof(trans_pcie->rx_pool[0]), 779 GFP_KERNEL); 780 trans_pcie->global_table = 781 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 782 sizeof(trans_pcie->global_table[0]), 783 GFP_KERNEL); 784 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 785 !trans_pcie->global_table) { 786 ret = -ENOMEM; 787 goto err; 788 } 789 790 spin_lock_init(&rba->lock); 791 792 /* 793 * Allocate the driver's pointer to receive buffer status. 794 * Allocate for all queues continuously (HW requirement). 795 */ 796 trans_pcie->base_rb_stts = 797 dma_alloc_coherent(trans->dev, 798 rb_stts_size * trans->num_rx_queues, 799 &trans_pcie->base_rb_stts_dma, 800 GFP_KERNEL); 801 if (!trans_pcie->base_rb_stts) { 802 ret = -ENOMEM; 803 goto err; 804 } 805 806 for (i = 0; i < trans->num_rx_queues; i++) { 807 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 808 809 rxq->id = i; 810 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 811 if (ret) 812 goto err; 813 } 814 return 0; 815 816 err: 817 if (trans_pcie->base_rb_stts) { 818 dma_free_coherent(trans->dev, 819 rb_stts_size * trans->num_rx_queues, 820 trans_pcie->base_rb_stts, 821 trans_pcie->base_rb_stts_dma); 822 trans_pcie->base_rb_stts = NULL; 823 trans_pcie->base_rb_stts_dma = 0; 824 } 825 kfree(trans_pcie->rx_pool); 826 trans_pcie->rx_pool = NULL; 827 kfree(trans_pcie->global_table); 828 trans_pcie->global_table = NULL; 829 kfree(trans_pcie->rxq); 830 trans_pcie->rxq = NULL; 831 832 return ret; 833 } 834 835 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 836 { 837 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 838 u32 rb_size; 839 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 840 841 switch (trans_pcie->rx_buf_size) { 842 case IWL_AMSDU_4K: 843 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 844 break; 845 case IWL_AMSDU_8K: 846 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 847 break; 848 case IWL_AMSDU_12K: 849 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 850 break; 851 default: 852 WARN_ON(1); 853 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 854 } 855 856 if (!iwl_trans_grab_nic_access(trans)) 857 return; 858 859 /* Stop Rx DMA */ 860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 861 /* reset and flush pointers */ 862 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 863 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 864 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 865 866 /* Reset driver's Rx queue write index */ 867 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 868 869 /* Tell device where to find RBD circular buffer in DRAM */ 870 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 871 (u32)(rxq->bd_dma >> 8)); 872 873 /* Tell device where in DRAM to update its Rx status */ 874 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 875 rxq->rb_stts_dma >> 4); 876 877 /* Enable Rx DMA 878 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 879 * the credit mechanism in 5000 HW RX FIFO 880 * Direct rx interrupts to hosts 881 * Rx buffer size 4 or 8k or 12k 882 * RB timeout 0x10 883 * 256 RBDs 884 */ 885 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 886 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 887 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 888 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 889 rb_size | 890 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 891 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 892 893 iwl_trans_release_nic_access(trans); 894 895 /* Set interrupt coalescing timer to default (2048 usecs) */ 896 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 897 898 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 899 if (trans->cfg->host_interrupt_operation_mode) 900 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 901 } 902 903 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 904 { 905 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 906 u32 rb_size, enabled = 0; 907 int i; 908 909 switch (trans_pcie->rx_buf_size) { 910 case IWL_AMSDU_2K: 911 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 912 break; 913 case IWL_AMSDU_4K: 914 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 915 break; 916 case IWL_AMSDU_8K: 917 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 918 break; 919 case IWL_AMSDU_12K: 920 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 921 break; 922 default: 923 WARN_ON(1); 924 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 925 } 926 927 if (!iwl_trans_grab_nic_access(trans)) 928 return; 929 930 /* Stop Rx DMA */ 931 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 932 /* disable free amd used rx queue operation */ 933 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 934 935 for (i = 0; i < trans->num_rx_queues; i++) { 936 /* Tell device where to find RBD free table in DRAM */ 937 iwl_write_prph64_no_grab(trans, 938 RFH_Q_FRBDCB_BA_LSB(i), 939 trans_pcie->rxq[i].bd_dma); 940 /* Tell device where to find RBD used table in DRAM */ 941 iwl_write_prph64_no_grab(trans, 942 RFH_Q_URBDCB_BA_LSB(i), 943 trans_pcie->rxq[i].used_bd_dma); 944 /* Tell device where in DRAM to update its Rx status */ 945 iwl_write_prph64_no_grab(trans, 946 RFH_Q_URBD_STTS_WPTR_LSB(i), 947 trans_pcie->rxq[i].rb_stts_dma); 948 /* Reset device indice tables */ 949 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 950 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 951 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 952 953 enabled |= BIT(i) | BIT(i + 16); 954 } 955 956 /* 957 * Enable Rx DMA 958 * Rx buffer size 4 or 8k or 12k 959 * Min RB size 4 or 8 960 * Drop frames that exceed RB size 961 * 512 RBDs 962 */ 963 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 964 RFH_DMA_EN_ENABLE_VAL | rb_size | 965 RFH_RXF_DMA_MIN_RB_4_8 | 966 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 967 RFH_RXF_DMA_RBDCB_SIZE_512); 968 969 /* 970 * Activate DMA snooping. 971 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 972 * Default queue is 0 973 */ 974 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 975 RFH_GEN_CFG_RFH_DMA_SNOOP | 976 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 977 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 978 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 979 trans->trans_cfg->integrated ? 980 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 981 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 982 /* Enable the relevant rx queues */ 983 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 984 985 iwl_trans_release_nic_access(trans); 986 987 /* Set interrupt coalescing timer to default (2048 usecs) */ 988 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 989 } 990 991 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 992 { 993 lockdep_assert_held(&rxq->lock); 994 995 INIT_LIST_HEAD(&rxq->rx_free); 996 INIT_LIST_HEAD(&rxq->rx_used); 997 rxq->free_count = 0; 998 rxq->used_count = 0; 999 } 1000 1001 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1002 1003 static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev) 1004 { 1005 return *(struct iwl_trans_pcie **)netdev_priv(dev); 1006 } 1007 1008 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1009 { 1010 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1011 struct iwl_trans_pcie *trans_pcie; 1012 struct iwl_trans *trans; 1013 int ret; 1014 1015 trans_pcie = iwl_netdev_to_trans_pcie(napi->dev); 1016 trans = trans_pcie->trans; 1017 1018 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1019 1020 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1021 rxq->id, ret, budget); 1022 1023 if (ret < budget) { 1024 spin_lock(&trans_pcie->irq_lock); 1025 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1026 _iwl_enable_interrupts(trans); 1027 spin_unlock(&trans_pcie->irq_lock); 1028 1029 napi_complete_done(&rxq->napi, ret); 1030 } 1031 1032 return ret; 1033 } 1034 1035 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1036 { 1037 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1038 struct iwl_trans_pcie *trans_pcie; 1039 struct iwl_trans *trans; 1040 int ret; 1041 1042 trans_pcie = iwl_netdev_to_trans_pcie(napi->dev); 1043 trans = trans_pcie->trans; 1044 1045 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1046 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1047 budget); 1048 1049 if (ret < budget) { 1050 int irq_line = rxq->id; 1051 1052 /* FIRST_RSS is shared with line 0 */ 1053 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1054 rxq->id == 1) 1055 irq_line = 0; 1056 1057 spin_lock(&trans_pcie->irq_lock); 1058 iwl_pcie_clear_irq(trans, irq_line); 1059 spin_unlock(&trans_pcie->irq_lock); 1060 1061 napi_complete_done(&rxq->napi, ret); 1062 } 1063 1064 return ret; 1065 } 1066 1067 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) 1068 { 1069 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1070 int i; 1071 1072 if (unlikely(!trans_pcie->rxq)) 1073 return; 1074 1075 for (i = 0; i < trans->num_rx_queues; i++) { 1076 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1077 1078 if (rxq && rxq->napi.poll) 1079 napi_synchronize(&rxq->napi); 1080 } 1081 } 1082 1083 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1084 { 1085 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1086 struct iwl_rxq *def_rxq; 1087 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1088 int i, err, queue_size, allocator_pool_size, num_alloc; 1089 1090 if (!trans_pcie->rxq) { 1091 err = iwl_pcie_rx_alloc(trans); 1092 if (err) 1093 return err; 1094 } 1095 def_rxq = trans_pcie->rxq; 1096 1097 cancel_work_sync(&rba->rx_alloc); 1098 1099 spin_lock_bh(&rba->lock); 1100 atomic_set(&rba->req_pending, 0); 1101 atomic_set(&rba->req_ready, 0); 1102 INIT_LIST_HEAD(&rba->rbd_allocated); 1103 INIT_LIST_HEAD(&rba->rbd_empty); 1104 spin_unlock_bh(&rba->lock); 1105 1106 /* free all first - we overwrite everything here */ 1107 iwl_pcie_free_rbs_pool(trans); 1108 1109 for (i = 0; i < RX_QUEUE_SIZE; i++) 1110 def_rxq->queue[i] = NULL; 1111 1112 for (i = 0; i < trans->num_rx_queues; i++) { 1113 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1114 1115 spin_lock_bh(&rxq->lock); 1116 /* 1117 * Set read write pointer to reflect that we have processed 1118 * and used all buffers, but have not restocked the Rx queue 1119 * with fresh buffers 1120 */ 1121 rxq->read = 0; 1122 rxq->write = 0; 1123 rxq->write_actual = 0; 1124 memset(rxq->rb_stts, 0, 1125 (trans->trans_cfg->device_family >= 1126 IWL_DEVICE_FAMILY_AX210) ? 1127 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1128 1129 iwl_pcie_rx_init_rxb_lists(rxq); 1130 1131 spin_unlock_bh(&rxq->lock); 1132 1133 if (!rxq->napi.poll) { 1134 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1135 1136 if (trans_pcie->msix_enabled) 1137 poll = iwl_pcie_napi_poll_msix; 1138 1139 netif_napi_add(trans_pcie->napi_dev, &rxq->napi, 1140 poll); 1141 napi_enable(&rxq->napi); 1142 } 1143 1144 } 1145 1146 /* move the pool to the default queue and allocator ownerships */ 1147 queue_size = trans->trans_cfg->mq_rx_supported ? 1148 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1149 allocator_pool_size = trans->num_rx_queues * 1150 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1151 num_alloc = queue_size + allocator_pool_size; 1152 1153 for (i = 0; i < num_alloc; i++) { 1154 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1155 1156 if (i < allocator_pool_size) 1157 list_add(&rxb->list, &rba->rbd_empty); 1158 else 1159 list_add(&rxb->list, &def_rxq->rx_used); 1160 trans_pcie->global_table[i] = rxb; 1161 rxb->vid = (u16)(i + 1); 1162 rxb->invalid = true; 1163 } 1164 1165 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1166 1167 return 0; 1168 } 1169 1170 int iwl_pcie_rx_init(struct iwl_trans *trans) 1171 { 1172 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1173 int ret = _iwl_pcie_rx_init(trans); 1174 1175 if (ret) 1176 return ret; 1177 1178 if (trans->trans_cfg->mq_rx_supported) 1179 iwl_pcie_rx_mq_hw_init(trans); 1180 else 1181 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1182 1183 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1184 1185 spin_lock_bh(&trans_pcie->rxq->lock); 1186 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1187 spin_unlock_bh(&trans_pcie->rxq->lock); 1188 1189 return 0; 1190 } 1191 1192 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1193 { 1194 /* Set interrupt coalescing timer to default (2048 usecs) */ 1195 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1196 1197 /* 1198 * We don't configure the RFH. 1199 * Restock will be done at alive, after firmware configured the RFH. 1200 */ 1201 return _iwl_pcie_rx_init(trans); 1202 } 1203 1204 void iwl_pcie_rx_free(struct iwl_trans *trans) 1205 { 1206 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1207 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 1208 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1209 int i; 1210 1211 /* 1212 * if rxq is NULL, it means that nothing has been allocated, 1213 * exit now 1214 */ 1215 if (!trans_pcie->rxq) { 1216 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1217 return; 1218 } 1219 1220 cancel_work_sync(&rba->rx_alloc); 1221 1222 iwl_pcie_free_rbs_pool(trans); 1223 1224 if (trans_pcie->base_rb_stts) { 1225 dma_free_coherent(trans->dev, 1226 rb_stts_size * trans->num_rx_queues, 1227 trans_pcie->base_rb_stts, 1228 trans_pcie->base_rb_stts_dma); 1229 trans_pcie->base_rb_stts = NULL; 1230 trans_pcie->base_rb_stts_dma = 0; 1231 } 1232 1233 for (i = 0; i < trans->num_rx_queues; i++) { 1234 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1235 1236 iwl_pcie_free_rxq_dma(trans, rxq); 1237 1238 if (rxq->napi.poll) { 1239 napi_disable(&rxq->napi); 1240 netif_napi_del(&rxq->napi); 1241 } 1242 } 1243 kfree(trans_pcie->rx_pool); 1244 kfree(trans_pcie->global_table); 1245 kfree(trans_pcie->rxq); 1246 1247 if (trans_pcie->alloc_page) 1248 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1249 } 1250 1251 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1252 struct iwl_rb_allocator *rba) 1253 { 1254 spin_lock(&rba->lock); 1255 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1256 spin_unlock(&rba->lock); 1257 } 1258 1259 /* 1260 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1261 * 1262 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1263 * When there are 2 empty RBDs - a request for allocation is posted 1264 */ 1265 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1266 struct iwl_rx_mem_buffer *rxb, 1267 struct iwl_rxq *rxq, bool emergency) 1268 { 1269 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1270 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1271 1272 /* Move the RBD to the used list, will be moved to allocator in batches 1273 * before claiming or posting a request*/ 1274 list_add_tail(&rxb->list, &rxq->rx_used); 1275 1276 if (unlikely(emergency)) 1277 return; 1278 1279 /* Count the allocator owned RBDs */ 1280 rxq->used_count++; 1281 1282 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1283 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1284 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1285 * after but we still need to post another request. 1286 */ 1287 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1288 /* Move the 2 RBDs to the allocator ownership. 1289 Allocator has another 6 from pool for the request completion*/ 1290 iwl_pcie_rx_move_to_allocator(rxq, rba); 1291 1292 atomic_inc(&rba->req_pending); 1293 queue_work(rba->alloc_wq, &rba->rx_alloc); 1294 } 1295 } 1296 1297 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1298 struct iwl_rxq *rxq, 1299 struct iwl_rx_mem_buffer *rxb, 1300 bool emergency, 1301 int i) 1302 { 1303 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1304 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; 1305 bool page_stolen = false; 1306 int max_len = trans_pcie->rx_buf_bytes; 1307 u32 offset = 0; 1308 1309 if (WARN_ON(!rxb)) 1310 return; 1311 1312 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1313 1314 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1315 struct iwl_rx_packet *pkt; 1316 bool reclaim; 1317 int len; 1318 struct iwl_rx_cmd_buffer rxcb = { 1319 ._offset = rxb->offset + offset, 1320 ._rx_page_order = trans_pcie->rx_page_order, 1321 ._page = rxb->page, 1322 ._page_stolen = false, 1323 .truesize = max_len, 1324 }; 1325 1326 pkt = rxb_addr(&rxcb); 1327 1328 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1329 IWL_DEBUG_RX(trans, 1330 "Q %d: RB end marker at offset %d\n", 1331 rxq->id, offset); 1332 break; 1333 } 1334 1335 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1336 FH_RSCSR_RXQ_POS != rxq->id, 1337 "frame on invalid queue - is on %d and indicates %d\n", 1338 rxq->id, 1339 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1340 FH_RSCSR_RXQ_POS); 1341 1342 IWL_DEBUG_RX(trans, 1343 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1344 rxq->id, offset, 1345 iwl_get_cmd_string(trans, 1346 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1347 pkt->hdr.group_id, pkt->hdr.cmd, 1348 le16_to_cpu(pkt->hdr.sequence)); 1349 1350 len = iwl_rx_packet_len(pkt); 1351 len += sizeof(u32); /* account for status word */ 1352 1353 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1354 1355 /* check that what the device tells us made sense */ 1356 if (len < sizeof(*pkt) || offset > max_len) 1357 break; 1358 1359 maybe_trace_iwlwifi_dev_rx(trans, pkt, len); 1360 1361 /* Reclaim a command buffer only if this packet is a response 1362 * to a (driver-originated) command. 1363 * If the packet (e.g. Rx frame) originated from uCode, 1364 * there is no command buffer to reclaim. 1365 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1366 * but apparently a few don't get set; catch them here. */ 1367 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1368 if (reclaim && !pkt->hdr.group_id) { 1369 int i; 1370 1371 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1372 if (trans_pcie->no_reclaim_cmds[i] == 1373 pkt->hdr.cmd) { 1374 reclaim = false; 1375 break; 1376 } 1377 } 1378 } 1379 1380 if (rxq->id == IWL_DEFAULT_RX_QUEUE) 1381 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1382 &rxcb); 1383 else 1384 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1385 &rxcb, rxq->id); 1386 1387 /* 1388 * After here, we should always check rxcb._page_stolen, 1389 * if it is true then one of the handlers took the page. 1390 */ 1391 1392 if (reclaim && txq) { 1393 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1394 int index = SEQ_TO_INDEX(sequence); 1395 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1396 1397 kfree_sensitive(txq->entries[cmd_index].free_buf); 1398 txq->entries[cmd_index].free_buf = NULL; 1399 1400 /* Invoke any callbacks, transfer the buffer to caller, 1401 * and fire off the (possibly) blocking 1402 * iwl_trans_send_cmd() 1403 * as we reclaim the driver command queue */ 1404 if (!rxcb._page_stolen) 1405 iwl_pcie_hcmd_complete(trans, &rxcb); 1406 else 1407 IWL_WARN(trans, "Claim null rxb?\n"); 1408 } 1409 1410 page_stolen |= rxcb._page_stolen; 1411 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1412 break; 1413 } 1414 1415 /* page was stolen from us -- free our reference */ 1416 if (page_stolen) { 1417 __free_pages(rxb->page, trans_pcie->rx_page_order); 1418 rxb->page = NULL; 1419 } 1420 1421 /* Reuse the page if possible. For notification packets and 1422 * SKBs that fail to Rx correctly, add them back into the 1423 * rx_free list for reuse later. */ 1424 if (rxb->page != NULL) { 1425 rxb->page_dma = 1426 dma_map_page(trans->dev, rxb->page, rxb->offset, 1427 trans_pcie->rx_buf_bytes, 1428 DMA_FROM_DEVICE); 1429 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1430 /* 1431 * free the page(s) as well to not break 1432 * the invariant that the items on the used 1433 * list have no page(s) 1434 */ 1435 __free_pages(rxb->page, trans_pcie->rx_page_order); 1436 rxb->page = NULL; 1437 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1438 } else { 1439 list_add_tail(&rxb->list, &rxq->rx_free); 1440 rxq->free_count++; 1441 } 1442 } else 1443 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1444 } 1445 1446 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1447 struct iwl_rxq *rxq, int i, 1448 bool *join) 1449 { 1450 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1451 struct iwl_rx_mem_buffer *rxb; 1452 u16 vid; 1453 1454 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1455 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1456 1457 if (!trans->trans_cfg->mq_rx_supported) { 1458 rxb = rxq->queue[i]; 1459 rxq->queue[i] = NULL; 1460 return rxb; 1461 } 1462 1463 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1464 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1465 1466 vid = le16_to_cpu(cd[i].rbid); 1467 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1468 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1469 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1470 1471 vid = le16_to_cpu(cd[i].rbid); 1472 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1473 } else { 1474 __le32 *cd = rxq->used_bd; 1475 1476 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1477 } 1478 1479 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1480 goto out_err; 1481 1482 rxb = trans_pcie->global_table[vid - 1]; 1483 if (rxb->invalid) 1484 goto out_err; 1485 1486 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1487 1488 rxb->invalid = true; 1489 1490 return rxb; 1491 1492 out_err: 1493 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1494 iwl_force_nmi(trans); 1495 return NULL; 1496 } 1497 1498 /* 1499 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1500 */ 1501 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1502 { 1503 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1504 struct iwl_rxq *rxq; 1505 u32 r, i, count = 0, handled = 0; 1506 bool emergency = false; 1507 1508 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1509 return budget; 1510 1511 rxq = &trans_pcie->rxq[queue]; 1512 1513 restart: 1514 spin_lock(&rxq->lock); 1515 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1516 * buffer that the driver may process (last buffer filled by ucode). */ 1517 r = iwl_get_closed_rb_stts(trans, rxq); 1518 i = rxq->read; 1519 1520 /* W/A 9000 device step A0 wrap-around bug */ 1521 r &= (rxq->queue_size - 1); 1522 1523 /* Rx interrupt, but nothing sent from uCode */ 1524 if (i == r) 1525 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1526 1527 while (i != r && ++handled < budget) { 1528 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1529 struct iwl_rx_mem_buffer *rxb; 1530 /* number of RBDs still waiting for page allocation */ 1531 u32 rb_pending_alloc = 1532 atomic_read(&trans_pcie->rba.req_pending) * 1533 RX_CLAIM_REQ_ALLOC; 1534 bool join = false; 1535 1536 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1537 !emergency)) { 1538 iwl_pcie_rx_move_to_allocator(rxq, rba); 1539 emergency = true; 1540 IWL_DEBUG_TPT(trans, 1541 "RX path is in emergency. Pending allocations %d\n", 1542 rb_pending_alloc); 1543 } 1544 1545 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1546 1547 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1548 if (!rxb) 1549 goto out; 1550 1551 if (unlikely(join || rxq->next_rb_is_fragment)) { 1552 rxq->next_rb_is_fragment = join; 1553 /* 1554 * We can only get a multi-RB in the following cases: 1555 * - firmware issue, sending a too big notification 1556 * - sniffer mode with a large A-MSDU 1557 * - large MTU frames (>2k) 1558 * since the multi-RB functionality is limited to newer 1559 * hardware that cannot put multiple entries into a 1560 * single RB. 1561 * 1562 * Right now, the higher layers aren't set up to deal 1563 * with that, so discard all of these. 1564 */ 1565 list_add_tail(&rxb->list, &rxq->rx_free); 1566 rxq->free_count++; 1567 } else { 1568 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1569 } 1570 1571 i = (i + 1) & (rxq->queue_size - 1); 1572 1573 /* 1574 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1575 * try to claim the pre-allocated buffers from the allocator. 1576 * If not ready - will try to reclaim next time. 1577 * There is no need to reschedule work - allocator exits only 1578 * on success 1579 */ 1580 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1581 iwl_pcie_rx_allocator_get(trans, rxq); 1582 1583 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1584 /* Add the remaining empty RBDs for allocator use */ 1585 iwl_pcie_rx_move_to_allocator(rxq, rba); 1586 } else if (emergency) { 1587 count++; 1588 if (count == 8) { 1589 count = 0; 1590 if (rb_pending_alloc < rxq->queue_size / 3) { 1591 IWL_DEBUG_TPT(trans, 1592 "RX path exited emergency. Pending allocations %d\n", 1593 rb_pending_alloc); 1594 emergency = false; 1595 } 1596 1597 rxq->read = i; 1598 spin_unlock(&rxq->lock); 1599 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1600 iwl_pcie_rxq_restock(trans, rxq); 1601 goto restart; 1602 } 1603 } 1604 } 1605 out: 1606 /* Backtrack one entry */ 1607 rxq->read = i; 1608 spin_unlock(&rxq->lock); 1609 1610 /* 1611 * handle a case where in emergency there are some unallocated RBDs. 1612 * those RBDs are in the used list, but are not tracked by the queue's 1613 * used_count which counts allocator owned RBDs. 1614 * unallocated emergency RBDs must be allocated on exit, otherwise 1615 * when called again the function may not be in emergency mode and 1616 * they will be handed to the allocator with no tracking in the RBD 1617 * allocator counters, which will lead to them never being claimed back 1618 * by the queue. 1619 * by allocating them here, they are now in the queue free list, and 1620 * will be restocked by the next call of iwl_pcie_rxq_restock. 1621 */ 1622 if (unlikely(emergency && count)) 1623 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1624 1625 iwl_pcie_rxq_restock(trans, rxq); 1626 1627 return handled; 1628 } 1629 1630 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1631 { 1632 u8 queue = entry->entry; 1633 struct msix_entry *entries = entry - queue; 1634 1635 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1636 } 1637 1638 /* 1639 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1640 * This interrupt handler should be used with RSS queue only. 1641 */ 1642 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1643 { 1644 struct msix_entry *entry = dev_id; 1645 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1646 struct iwl_trans *trans = trans_pcie->trans; 1647 struct iwl_rxq *rxq; 1648 1649 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1650 1651 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1652 return IRQ_NONE; 1653 1654 if (!trans_pcie->rxq) { 1655 if (net_ratelimit()) 1656 IWL_ERR(trans, 1657 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1658 entry->entry); 1659 return IRQ_NONE; 1660 } 1661 1662 rxq = &trans_pcie->rxq[entry->entry]; 1663 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1664 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1665 1666 local_bh_disable(); 1667 if (!napi_schedule(&rxq->napi)) 1668 iwl_pcie_clear_irq(trans, entry->entry); 1669 local_bh_enable(); 1670 1671 lock_map_release(&trans->sync_cmd_lockdep_map); 1672 1673 return IRQ_HANDLED; 1674 } 1675 1676 /* 1677 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1678 */ 1679 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1680 { 1681 int i; 1682 1683 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1684 if (trans->cfg->internal_wimax_coex && 1685 !trans->cfg->apmg_not_supported && 1686 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1687 APMS_CLK_VAL_MRB_FUNC_MODE) || 1688 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1689 APMG_PS_CTRL_VAL_RESET_REQ))) { 1690 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1691 iwl_op_mode_wimax_active(trans->op_mode); 1692 wake_up(&trans->wait_command_queue); 1693 return; 1694 } 1695 1696 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1697 if (!trans->txqs.txq[i]) 1698 continue; 1699 del_timer(&trans->txqs.txq[i]->stuck_timer); 1700 } 1701 1702 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1703 * before we wake up the command caller, to ensure a proper cleanup. */ 1704 iwl_trans_fw_error(trans, false); 1705 1706 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1707 wake_up(&trans->wait_command_queue); 1708 } 1709 1710 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1711 { 1712 u32 inta; 1713 1714 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1715 1716 trace_iwlwifi_dev_irq(trans->dev); 1717 1718 /* Discover which interrupts are active/pending */ 1719 inta = iwl_read32(trans, CSR_INT); 1720 1721 /* the thread will service interrupts and re-enable them */ 1722 return inta; 1723 } 1724 1725 /* a device (PCI-E) page is 4096 bytes long */ 1726 #define ICT_SHIFT 12 1727 #define ICT_SIZE (1 << ICT_SHIFT) 1728 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1729 1730 /* interrupt handler using ict table, with this interrupt driver will 1731 * stop using INTA register to get device's interrupt, reading this register 1732 * is expensive, device will write interrupts in ICT dram table, increment 1733 * index then will fire interrupt to driver, driver will OR all ICT table 1734 * entries from current index up to table entry with 0 value. the result is 1735 * the interrupt we need to service, driver will set the entries back to 0 and 1736 * set index. 1737 */ 1738 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1739 { 1740 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1741 u32 inta; 1742 u32 val = 0; 1743 u32 read; 1744 1745 trace_iwlwifi_dev_irq(trans->dev); 1746 1747 /* Ignore interrupt if there's nothing in NIC to service. 1748 * This may be due to IRQ shared with another device, 1749 * or due to sporadic interrupts thrown from our NIC. */ 1750 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1751 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1752 if (!read) 1753 return 0; 1754 1755 /* 1756 * Collect all entries up to the first 0, starting from ict_index; 1757 * note we already read at ict_index. 1758 */ 1759 do { 1760 val |= read; 1761 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1762 trans_pcie->ict_index, read); 1763 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1764 trans_pcie->ict_index = 1765 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1766 1767 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1768 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1769 read); 1770 } while (read); 1771 1772 /* We should not get this value, just ignore it. */ 1773 if (val == 0xffffffff) 1774 val = 0; 1775 1776 /* 1777 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1778 * (bit 15 before shifting it to 31) to clear when using interrupt 1779 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1780 * so we use them to decide on the real state of the Rx bit. 1781 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1782 */ 1783 if (val & 0xC0000) 1784 val |= 0x8000; 1785 1786 inta = (0xff & val) | ((0xff00 & val) << 16); 1787 return inta; 1788 } 1789 1790 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq) 1791 { 1792 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1793 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1794 bool hw_rfkill, prev, report; 1795 1796 mutex_lock(&trans_pcie->mutex); 1797 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1798 hw_rfkill = iwl_is_rfkill_set(trans); 1799 if (hw_rfkill) { 1800 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1801 set_bit(STATUS_RFKILL_HW, &trans->status); 1802 } 1803 if (trans_pcie->opmode_down) 1804 report = hw_rfkill; 1805 else 1806 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1807 1808 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1809 hw_rfkill ? "disable radio" : "enable radio"); 1810 1811 isr_stats->rfkill++; 1812 1813 if (prev != report) 1814 iwl_trans_pcie_rf_kill(trans, report, from_irq); 1815 mutex_unlock(&trans_pcie->mutex); 1816 1817 if (hw_rfkill) { 1818 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1819 &trans->status)) 1820 IWL_DEBUG_RF_KILL(trans, 1821 "Rfkill while SYNC HCMD in flight\n"); 1822 wake_up(&trans->wait_command_queue); 1823 } else { 1824 clear_bit(STATUS_RFKILL_HW, &trans->status); 1825 if (trans_pcie->opmode_down) 1826 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1827 } 1828 } 1829 1830 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1831 { 1832 struct iwl_trans *trans = dev_id; 1833 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1834 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1835 u32 inta = 0; 1836 u32 handled = 0; 1837 bool polling = false; 1838 1839 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1840 1841 spin_lock_bh(&trans_pcie->irq_lock); 1842 1843 /* dram interrupt table not set yet, 1844 * use legacy interrupt. 1845 */ 1846 if (likely(trans_pcie->use_ict)) 1847 inta = iwl_pcie_int_cause_ict(trans); 1848 else 1849 inta = iwl_pcie_int_cause_non_ict(trans); 1850 1851 if (iwl_have_debug_level(IWL_DL_ISR)) { 1852 IWL_DEBUG_ISR(trans, 1853 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1854 inta, trans_pcie->inta_mask, 1855 iwl_read32(trans, CSR_INT_MASK), 1856 iwl_read32(trans, CSR_FH_INT_STATUS)); 1857 if (inta & (~trans_pcie->inta_mask)) 1858 IWL_DEBUG_ISR(trans, 1859 "We got a masked interrupt (0x%08x)\n", 1860 inta & (~trans_pcie->inta_mask)); 1861 } 1862 1863 inta &= trans_pcie->inta_mask; 1864 1865 /* 1866 * Ignore interrupt if there's nothing in NIC to service. 1867 * This may be due to IRQ shared with another device, 1868 * or due to sporadic interrupts thrown from our NIC. 1869 */ 1870 if (unlikely(!inta)) { 1871 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1872 /* 1873 * Re-enable interrupts here since we don't 1874 * have anything to service 1875 */ 1876 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1877 _iwl_enable_interrupts(trans); 1878 spin_unlock_bh(&trans_pcie->irq_lock); 1879 lock_map_release(&trans->sync_cmd_lockdep_map); 1880 return IRQ_NONE; 1881 } 1882 1883 if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { 1884 /* 1885 * Hardware disappeared. It might have 1886 * already raised an interrupt. 1887 */ 1888 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1889 spin_unlock_bh(&trans_pcie->irq_lock); 1890 goto out; 1891 } 1892 1893 /* Ack/clear/reset pending uCode interrupts. 1894 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1895 */ 1896 /* There is a hardware bug in the interrupt mask function that some 1897 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1898 * they are disabled in the CSR_INT_MASK register. Furthermore the 1899 * ICT interrupt handling mechanism has another bug that might cause 1900 * these unmasked interrupts fail to be detected. We workaround the 1901 * hardware bugs here by ACKing all the possible interrupts so that 1902 * interrupt coalescing can still be achieved. 1903 */ 1904 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1905 1906 if (iwl_have_debug_level(IWL_DL_ISR)) 1907 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1908 inta, iwl_read32(trans, CSR_INT_MASK)); 1909 1910 spin_unlock_bh(&trans_pcie->irq_lock); 1911 1912 /* Now service all interrupt bits discovered above. */ 1913 if (inta & CSR_INT_BIT_HW_ERR) { 1914 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1915 1916 /* Tell the device to stop sending interrupts */ 1917 iwl_disable_interrupts(trans); 1918 1919 isr_stats->hw++; 1920 iwl_pcie_irq_handle_error(trans); 1921 1922 handled |= CSR_INT_BIT_HW_ERR; 1923 1924 goto out; 1925 } 1926 1927 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1928 if (inta & CSR_INT_BIT_SCD) { 1929 IWL_DEBUG_ISR(trans, 1930 "Scheduler finished to transmit the frame/frames.\n"); 1931 isr_stats->sch++; 1932 } 1933 1934 /* Alive notification via Rx interrupt will do the real work */ 1935 if (inta & CSR_INT_BIT_ALIVE) { 1936 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1937 isr_stats->alive++; 1938 if (trans->trans_cfg->gen2) { 1939 /* 1940 * We can restock, since firmware configured 1941 * the RFH 1942 */ 1943 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1944 } 1945 1946 handled |= CSR_INT_BIT_ALIVE; 1947 } 1948 1949 /* Safely ignore these bits for debug checks below */ 1950 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1951 1952 /* HW RF KILL switch toggled */ 1953 if (inta & CSR_INT_BIT_RF_KILL) { 1954 iwl_pcie_handle_rfkill_irq(trans, true); 1955 handled |= CSR_INT_BIT_RF_KILL; 1956 } 1957 1958 /* Chip got too hot and stopped itself */ 1959 if (inta & CSR_INT_BIT_CT_KILL) { 1960 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1961 isr_stats->ctkill++; 1962 handled |= CSR_INT_BIT_CT_KILL; 1963 } 1964 1965 /* Error detected by uCode */ 1966 if (inta & CSR_INT_BIT_SW_ERR) { 1967 IWL_ERR(trans, "Microcode SW error detected. " 1968 " Restarting 0x%X.\n", inta); 1969 isr_stats->sw++; 1970 iwl_pcie_irq_handle_error(trans); 1971 handled |= CSR_INT_BIT_SW_ERR; 1972 } 1973 1974 /* uCode wakes up after power-down sleep */ 1975 if (inta & CSR_INT_BIT_WAKEUP) { 1976 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1977 iwl_pcie_rxq_check_wrptr(trans); 1978 iwl_pcie_txq_check_wrptrs(trans); 1979 1980 isr_stats->wakeup++; 1981 1982 handled |= CSR_INT_BIT_WAKEUP; 1983 } 1984 1985 /* All uCode command responses, including Tx command responses, 1986 * Rx "responses" (frame-received notification), and other 1987 * notifications from uCode come through here*/ 1988 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1989 CSR_INT_BIT_RX_PERIODIC)) { 1990 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1991 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1992 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1993 iwl_write32(trans, CSR_FH_INT_STATUS, 1994 CSR_FH_INT_RX_MASK); 1995 } 1996 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1997 handled |= CSR_INT_BIT_RX_PERIODIC; 1998 iwl_write32(trans, 1999 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 2000 } 2001 /* Sending RX interrupt require many steps to be done in the 2002 * device: 2003 * 1- write interrupt to current index in ICT table. 2004 * 2- dma RX frame. 2005 * 3- update RX shared data to indicate last write index. 2006 * 4- send interrupt. 2007 * This could lead to RX race, driver could receive RX interrupt 2008 * but the shared data changes does not reflect this; 2009 * periodic interrupt will detect any dangling Rx activity. 2010 */ 2011 2012 /* Disable periodic interrupt; we use it as just a one-shot. */ 2013 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2014 CSR_INT_PERIODIC_DIS); 2015 2016 /* 2017 * Enable periodic interrupt in 8 msec only if we received 2018 * real RX interrupt (instead of just periodic int), to catch 2019 * any dangling Rx interrupt. If it was just the periodic 2020 * interrupt, there was no dangling Rx activity, and no need 2021 * to extend the periodic interrupt; one-shot is enough. 2022 */ 2023 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2024 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2025 CSR_INT_PERIODIC_ENA); 2026 2027 isr_stats->rx++; 2028 2029 local_bh_disable(); 2030 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2031 polling = true; 2032 __napi_schedule(&trans_pcie->rxq[0].napi); 2033 } 2034 local_bh_enable(); 2035 } 2036 2037 /* This "Tx" DMA channel is used only for loading uCode */ 2038 if (inta & CSR_INT_BIT_FH_TX) { 2039 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2040 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2041 isr_stats->tx++; 2042 handled |= CSR_INT_BIT_FH_TX; 2043 /* Wake up uCode load routine, now that load is complete */ 2044 trans_pcie->ucode_write_complete = true; 2045 wake_up(&trans_pcie->ucode_write_waitq); 2046 /* Wake up IMR write routine, now that write to SRAM is complete */ 2047 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2048 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2049 wake_up(&trans_pcie->ucode_write_waitq); 2050 } 2051 } 2052 2053 if (inta & ~handled) { 2054 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2055 isr_stats->unhandled++; 2056 } 2057 2058 if (inta & ~(trans_pcie->inta_mask)) { 2059 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2060 inta & ~trans_pcie->inta_mask); 2061 } 2062 2063 if (!polling) { 2064 spin_lock_bh(&trans_pcie->irq_lock); 2065 /* only Re-enable all interrupt if disabled by irq */ 2066 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2067 _iwl_enable_interrupts(trans); 2068 /* we are loading the firmware, enable FH_TX interrupt only */ 2069 else if (handled & CSR_INT_BIT_FH_TX) 2070 iwl_enable_fw_load_int(trans); 2071 /* Re-enable RF_KILL if it occurred */ 2072 else if (handled & CSR_INT_BIT_RF_KILL) 2073 iwl_enable_rfkill_int(trans); 2074 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2075 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2076 iwl_enable_fw_load_int_ctx_info(trans); 2077 spin_unlock_bh(&trans_pcie->irq_lock); 2078 } 2079 2080 out: 2081 lock_map_release(&trans->sync_cmd_lockdep_map); 2082 return IRQ_HANDLED; 2083 } 2084 2085 /****************************************************************************** 2086 * 2087 * ICT functions 2088 * 2089 ******************************************************************************/ 2090 2091 /* Free dram table */ 2092 void iwl_pcie_free_ict(struct iwl_trans *trans) 2093 { 2094 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2095 2096 if (trans_pcie->ict_tbl) { 2097 dma_free_coherent(trans->dev, ICT_SIZE, 2098 trans_pcie->ict_tbl, 2099 trans_pcie->ict_tbl_dma); 2100 trans_pcie->ict_tbl = NULL; 2101 trans_pcie->ict_tbl_dma = 0; 2102 } 2103 } 2104 2105 /* 2106 * allocate dram shared table, it is an aligned memory 2107 * block of ICT_SIZE. 2108 * also reset all data related to ICT table interrupt. 2109 */ 2110 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2111 { 2112 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2113 2114 trans_pcie->ict_tbl = 2115 dma_alloc_coherent(trans->dev, ICT_SIZE, 2116 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2117 if (!trans_pcie->ict_tbl) 2118 return -ENOMEM; 2119 2120 /* just an API sanity check ... it is guaranteed to be aligned */ 2121 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2122 iwl_pcie_free_ict(trans); 2123 return -EINVAL; 2124 } 2125 2126 return 0; 2127 } 2128 2129 /* Device is going up inform it about using ICT interrupt table, 2130 * also we need to tell the driver to start using ICT interrupt. 2131 */ 2132 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2133 { 2134 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2135 u32 val; 2136 2137 if (!trans_pcie->ict_tbl) 2138 return; 2139 2140 spin_lock_bh(&trans_pcie->irq_lock); 2141 _iwl_disable_interrupts(trans); 2142 2143 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2144 2145 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2146 2147 val |= CSR_DRAM_INT_TBL_ENABLE | 2148 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2149 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2150 2151 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2152 2153 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2154 trans_pcie->use_ict = true; 2155 trans_pcie->ict_index = 0; 2156 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2157 _iwl_enable_interrupts(trans); 2158 spin_unlock_bh(&trans_pcie->irq_lock); 2159 } 2160 2161 /* Device is going down disable ict interrupt usage */ 2162 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2163 { 2164 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2165 2166 spin_lock_bh(&trans_pcie->irq_lock); 2167 trans_pcie->use_ict = false; 2168 spin_unlock_bh(&trans_pcie->irq_lock); 2169 } 2170 2171 irqreturn_t iwl_pcie_isr(int irq, void *data) 2172 { 2173 struct iwl_trans *trans = data; 2174 2175 if (!trans) 2176 return IRQ_NONE; 2177 2178 /* Disable (but don't clear!) interrupts here to avoid 2179 * back-to-back ISRs and sporadic interrupts from our NIC. 2180 * If we have something to service, the tasklet will re-enable ints. 2181 * If we *don't* have something, we'll re-enable before leaving here. 2182 */ 2183 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2184 2185 return IRQ_WAKE_THREAD; 2186 } 2187 2188 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2189 { 2190 return IRQ_WAKE_THREAD; 2191 } 2192 2193 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2194 { 2195 struct msix_entry *entry = dev_id; 2196 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2197 struct iwl_trans *trans = trans_pcie->trans; 2198 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2199 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2200 u32 inta_fh, inta_hw; 2201 bool polling = false; 2202 bool sw_err; 2203 2204 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2205 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2206 2207 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2208 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2209 2210 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2211 2212 spin_lock_bh(&trans_pcie->irq_lock); 2213 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2214 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2215 /* 2216 * Clear causes registers to avoid being handling the same cause. 2217 */ 2218 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2219 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2220 spin_unlock_bh(&trans_pcie->irq_lock); 2221 2222 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2223 2224 if (unlikely(!(inta_fh | inta_hw))) { 2225 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2226 lock_map_release(&trans->sync_cmd_lockdep_map); 2227 return IRQ_NONE; 2228 } 2229 2230 if (iwl_have_debug_level(IWL_DL_ISR)) { 2231 IWL_DEBUG_ISR(trans, 2232 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2233 entry->entry, inta_fh, trans_pcie->fh_mask, 2234 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2235 if (inta_fh & ~trans_pcie->fh_mask) 2236 IWL_DEBUG_ISR(trans, 2237 "We got a masked interrupt (0x%08x)\n", 2238 inta_fh & ~trans_pcie->fh_mask); 2239 } 2240 2241 inta_fh &= trans_pcie->fh_mask; 2242 2243 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2244 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2245 local_bh_disable(); 2246 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2247 polling = true; 2248 __napi_schedule(&trans_pcie->rxq[0].napi); 2249 } 2250 local_bh_enable(); 2251 } 2252 2253 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2254 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2255 local_bh_disable(); 2256 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2257 polling = true; 2258 __napi_schedule(&trans_pcie->rxq[1].napi); 2259 } 2260 local_bh_enable(); 2261 } 2262 2263 /* This "Tx" DMA channel is used only for loading uCode */ 2264 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2265 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2266 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2267 isr_stats->tx++; 2268 2269 /* Wake up IMR routine once write to SRAM is complete */ 2270 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2271 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2272 wake_up(&trans_pcie->ucode_write_waitq); 2273 } 2274 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2275 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2276 isr_stats->tx++; 2277 /* 2278 * Wake up uCode load routine, 2279 * now that load is complete 2280 */ 2281 trans_pcie->ucode_write_complete = true; 2282 wake_up(&trans_pcie->ucode_write_waitq); 2283 2284 /* Wake up IMR routine once write to SRAM is complete */ 2285 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2286 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2287 wake_up(&trans_pcie->ucode_write_waitq); 2288 } 2289 } 2290 2291 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2292 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2293 else 2294 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2295 2296 if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) { 2297 IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n", 2298 inta_hw); 2299 /* TODO: PLDR flow required here for >= Bz */ 2300 } 2301 2302 /* Error detected by uCode */ 2303 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2304 IWL_ERR(trans, 2305 "Microcode SW error detected. Restarting 0x%X.\n", 2306 inta_fh); 2307 isr_stats->sw++; 2308 /* during FW reset flow report errors from there */ 2309 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2310 trans_pcie->imr_status = IMR_D2S_ERROR; 2311 wake_up(&trans_pcie->imr_waitq); 2312 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2313 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2314 wake_up(&trans_pcie->fw_reset_waitq); 2315 } else { 2316 iwl_pcie_irq_handle_error(trans); 2317 } 2318 } 2319 2320 /* After checking FH register check HW register */ 2321 if (iwl_have_debug_level(IWL_DL_ISR)) { 2322 IWL_DEBUG_ISR(trans, 2323 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2324 entry->entry, inta_hw, trans_pcie->hw_mask, 2325 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2326 if (inta_hw & ~trans_pcie->hw_mask) 2327 IWL_DEBUG_ISR(trans, 2328 "We got a masked interrupt 0x%08x\n", 2329 inta_hw & ~trans_pcie->hw_mask); 2330 } 2331 2332 inta_hw &= trans_pcie->hw_mask; 2333 2334 /* Alive notification via Rx interrupt will do the real work */ 2335 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2336 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2337 isr_stats->alive++; 2338 if (trans->trans_cfg->gen2) { 2339 /* We can restock, since firmware configured the RFH */ 2340 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2341 } 2342 } 2343 2344 /* 2345 * In some rare cases when the HW is in a bad state, we may 2346 * get this interrupt too early, when prph_info is still NULL. 2347 * So make sure that it's not NULL to prevent crashing. 2348 */ 2349 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2350 u32 sleep_notif = 2351 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2352 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2353 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2354 IWL_DEBUG_ISR(trans, 2355 "Sx interrupt: sleep notification = 0x%x\n", 2356 sleep_notif); 2357 trans_pcie->sx_complete = true; 2358 wake_up(&trans_pcie->sx_waitq); 2359 } else { 2360 /* uCode wakes up after power-down sleep */ 2361 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2362 iwl_pcie_rxq_check_wrptr(trans); 2363 iwl_pcie_txq_check_wrptrs(trans); 2364 2365 isr_stats->wakeup++; 2366 } 2367 } 2368 2369 /* Chip got too hot and stopped itself */ 2370 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2371 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2372 isr_stats->ctkill++; 2373 } 2374 2375 /* HW RF KILL switch toggled */ 2376 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2377 iwl_pcie_handle_rfkill_irq(trans, true); 2378 2379 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2380 IWL_ERR(trans, 2381 "Hardware error detected. Restarting.\n"); 2382 2383 isr_stats->hw++; 2384 trans->dbg.hw_error = true; 2385 iwl_pcie_irq_handle_error(trans); 2386 } 2387 2388 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2389 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2390 trans_pcie->fw_reset_state = FW_RESET_OK; 2391 wake_up(&trans_pcie->fw_reset_waitq); 2392 } 2393 2394 if (!polling) 2395 iwl_pcie_clear_irq(trans, entry->entry); 2396 2397 lock_map_release(&trans->sync_cmd_lockdep_map); 2398 2399 return IRQ_HANDLED; 2400 } 2401