xref: /linux/drivers/net/wireless/intel/iwlwifi/pcie/rx.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67 
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73 
74 /******************************************************************************
75  *
76  * RX path functions
77  *
78  ******************************************************************************/
79 
80 /*
81  * Rx theory of operation
82  *
83  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84  * each of which point to Receive Buffers to be filled by the NIC.  These get
85  * used not only for Rx frames, but for any command response or notification
86  * from the NIC.  The driver and NIC manage the Rx buffers by means
87  * of indexes into the circular buffer.
88  *
89  * Rx Queue Indexes
90  * The host/firmware share two index registers for managing the Rx buffers.
91  *
92  * The READ index maps to the first position that the firmware may be writing
93  * to -- the driver can read up to (but not including) this position and get
94  * good data.
95  * The READ index is managed by the firmware once the card is enabled.
96  *
97  * The WRITE index maps to the last position the driver has read from -- the
98  * position preceding WRITE is the last slot the firmware can place a packet.
99  *
100  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101  * WRITE = READ.
102  *
103  * During initialization, the host sets up the READ queue position to the first
104  * INDEX position, and WRITE to the last (READ - 1 wrapped)
105  *
106  * When the firmware places a packet in a buffer, it will advance the READ index
107  * and fire the RX interrupt.  The driver can then query the READ index and
108  * process as many packets as possible, moving the WRITE index forward as it
109  * resets the Rx queue buffers with new memory.
110  *
111  * The management in the driver is as follows:
112  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113  *   When the interrupt handler is called, the request is processed.
114  *   The page is either stolen - transferred to the upper layer
115  *   or reused - added immediately to the iwl->rxq->rx_free list.
116  * + When the page is stolen - the driver updates the matching queue's used
117  *   count, detaches the RBD and transfers it to the queue used list.
118  *   When there are two used RBDs - they are transferred to the allocator empty
119  *   list. Work is then scheduled for the allocator to start allocating
120  *   eight buffers.
121  *   When there are another 6 used RBDs - they are transferred to the allocator
122  *   empty list and the driver tries to claim the pre-allocated buffers and
123  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124  *   until ready.
125  *   When there are 8+ buffers in the free list - either from allocation or from
126  *   8 reused unstolen pages - restock is called to update the FW and indexes.
127  * + In order to make sure the allocator always has RBDs to use for allocation
128  *   the allocator has initial pool in the size of num_queues*(8-2) - the
129  *   maximum missing RBDs per allocation request (request posted with 2
130  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131  *   The queues supplies the recycle of the rest of the RBDs.
132  * + A received packet is processed and handed to the kernel network stack,
133  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
134  * + If there are no allocated buffers in iwl->rxq->rx_free,
135  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136  *   If there were enough free buffers and RX_STALLED is set it is cleared.
137  *
138  *
139  * Driver sequence:
140  *
141  * iwl_rxq_alloc()            Allocates rx_free
142  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
143  *                            iwl_pcie_rxq_restock.
144  *                            Used only during initialization.
145  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
146  *                            queue, updates firmware pointers, and updates
147  *                            the WRITE index.
148  * iwl_pcie_rx_allocator()     Background work for allocating pages.
149  *
150  * -- enable interrupts --
151  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
152  *                            READ INDEX, detaching the SKB from the pool.
153  *                            Moves the packet buffer from queue to rx_used.
154  *                            Posts and claims requests to the allocator.
155  *                            Calls iwl_pcie_rxq_restock to refill any empty
156  *                            slots.
157  *
158  * RBD life-cycle:
159  *
160  * Init:
161  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162  *
163  * Regular Receive interrupt:
164  * Page Stolen:
165  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167  * Page not Stolen:
168  * rxq.queue -> rxq.rx_free -> rxq.queue
169  * ...
170  *
171  */
172 
173 /*
174  * iwl_rxq_space - Return number of free slots available in queue.
175  */
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178 	/* Make sure rx queue size is a power of 2 */
179 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180 
181 	/*
182 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183 	 * between empty and completely full queues.
184 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185 	 * defined for negative dividends.
186 	 */
187 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189 
190 /*
191  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192  */
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195 	return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197 
198 /*
199  * iwl_pcie_rx_stop - stops the Rx DMA
200  */
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
204 		/* TODO: remove this once fw does it */
205 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208 	} else if (trans->trans_cfg->mq_rx_supported) {
209 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212 	} else {
213 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216 					   1000);
217 	}
218 }
219 
220 /*
221  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222  */
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224 				    struct iwl_rxq *rxq)
225 {
226 	u32 reg;
227 
228 	lockdep_assert_held(&rxq->lock);
229 
230 	/*
231 	 * explicitly wake up the NIC if:
232 	 * 1. shadow registers aren't enabled
233 	 * 2. there is a chance that the NIC is asleep
234 	 */
235 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
236 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238 
239 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241 				       reg);
242 			iwl_set_bit(trans, CSR_GP_CNTRL,
243 				    BIT(trans->trans_cfg->csr->flag_mac_access_req));
244 			rxq->need_update = true;
245 			return;
246 		}
247 	}
248 
249 	rxq->write_actual = round_down(rxq->write, 8);
250 	if (trans->trans_cfg->mq_rx_supported)
251 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
252 			    rxq->write_actual);
253 	else
254 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
255 }
256 
257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
258 {
259 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
260 	int i;
261 
262 	for (i = 0; i < trans->num_rx_queues; i++) {
263 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
264 
265 		if (!rxq->need_update)
266 			continue;
267 		spin_lock(&rxq->lock);
268 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
269 		rxq->need_update = false;
270 		spin_unlock(&rxq->lock);
271 	}
272 }
273 
274 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
275 				struct iwl_rxq *rxq,
276 				struct iwl_rx_mem_buffer *rxb)
277 {
278 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
279 		struct iwl_rx_transfer_desc *bd = rxq->bd;
280 
281 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
282 
283 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
284 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
285 	} else {
286 		__le64 *bd = rxq->bd;
287 
288 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
289 	}
290 
291 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
292 		     (u32)rxb->vid, rxq->id, rxq->write);
293 }
294 
295 /*
296  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
297  */
298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
299 				  struct iwl_rxq *rxq)
300 {
301 	struct iwl_rx_mem_buffer *rxb;
302 
303 	/*
304 	 * If the device isn't enabled - no need to try to add buffers...
305 	 * This can happen when we stop the device and still have an interrupt
306 	 * pending. We stop the APM before we sync the interrupts because we
307 	 * have to (see comment there). On the other hand, since the APM is
308 	 * stopped, we cannot access the HW (in particular not prph).
309 	 * So don't try to restock if the APM has been already stopped.
310 	 */
311 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
312 		return;
313 
314 	spin_lock(&rxq->lock);
315 	while (rxq->free_count) {
316 		/* Get next free Rx buffer, remove from free list */
317 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
318 				       list);
319 		list_del(&rxb->list);
320 		rxb->invalid = false;
321 		/* 12 first bits are expected to be empty */
322 		WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
323 		/* Point to Rx buffer via next RBD in circular buffer */
324 		iwl_pcie_restock_bd(trans, rxq, rxb);
325 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
326 		rxq->free_count--;
327 	}
328 	spin_unlock(&rxq->lock);
329 
330 	/*
331 	 * If we've added more space for the firmware to place data, tell it.
332 	 * Increment device's write pointer in multiples of 8.
333 	 */
334 	if (rxq->write_actual != (rxq->write & ~0x7)) {
335 		spin_lock(&rxq->lock);
336 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
337 		spin_unlock(&rxq->lock);
338 	}
339 }
340 
341 /*
342  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
343  */
344 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
345 				  struct iwl_rxq *rxq)
346 {
347 	struct iwl_rx_mem_buffer *rxb;
348 
349 	/*
350 	 * If the device isn't enabled - not need to try to add buffers...
351 	 * This can happen when we stop the device and still have an interrupt
352 	 * pending. We stop the APM before we sync the interrupts because we
353 	 * have to (see comment there). On the other hand, since the APM is
354 	 * stopped, we cannot access the HW (in particular not prph).
355 	 * So don't try to restock if the APM has been already stopped.
356 	 */
357 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
358 		return;
359 
360 	spin_lock(&rxq->lock);
361 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
362 		__le32 *bd = (__le32 *)rxq->bd;
363 		/* The overwritten rxb must be a used one */
364 		rxb = rxq->queue[rxq->write];
365 		BUG_ON(rxb && rxb->page);
366 
367 		/* Get next free Rx buffer, remove from free list */
368 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
369 				       list);
370 		list_del(&rxb->list);
371 		rxb->invalid = false;
372 
373 		/* Point to Rx buffer via next RBD in circular buffer */
374 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
375 		rxq->queue[rxq->write] = rxb;
376 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
377 		rxq->free_count--;
378 	}
379 	spin_unlock(&rxq->lock);
380 
381 	/* If we've added more space for the firmware to place data, tell it.
382 	 * Increment device's write pointer in multiples of 8. */
383 	if (rxq->write_actual != (rxq->write & ~0x7)) {
384 		spin_lock(&rxq->lock);
385 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
386 		spin_unlock(&rxq->lock);
387 	}
388 }
389 
390 /*
391  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
392  *
393  * If there are slots in the RX queue that need to be restocked,
394  * and we have free pre-allocated buffers, fill the ranks as much
395  * as we can, pulling from rx_free.
396  *
397  * This moves the 'write' index forward to catch up with 'processed', and
398  * also updates the memory address in the firmware to reference the new
399  * target buffer.
400  */
401 static
402 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
403 {
404 	if (trans->trans_cfg->mq_rx_supported)
405 		iwl_pcie_rxmq_restock(trans, rxq);
406 	else
407 		iwl_pcie_rxsq_restock(trans, rxq);
408 }
409 
410 /*
411  * iwl_pcie_rx_alloc_page - allocates and returns a page.
412  *
413  */
414 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
415 					   gfp_t priority)
416 {
417 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
418 	struct page *page;
419 	gfp_t gfp_mask = priority;
420 
421 	if (trans_pcie->rx_page_order > 0)
422 		gfp_mask |= __GFP_COMP;
423 
424 	/* Alloc a new receive buffer */
425 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
426 	if (!page) {
427 		if (net_ratelimit())
428 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
429 				       trans_pcie->rx_page_order);
430 		/*
431 		 * Issue an error if we don't have enough pre-allocated
432 		  * buffers.
433 		 */
434 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
435 			IWL_CRIT(trans,
436 				 "Failed to alloc_pages\n");
437 		return NULL;
438 	}
439 	return page;
440 }
441 
442 /*
443  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
444  *
445  * A used RBD is an Rx buffer that has been given to the stack. To use it again
446  * a page must be allocated and the RBD must point to the page. This function
447  * doesn't change the HW pointer but handles the list of pages that is used by
448  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
449  * allocated buffers.
450  */
451 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
452 			    struct iwl_rxq *rxq)
453 {
454 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
455 	struct iwl_rx_mem_buffer *rxb;
456 	struct page *page;
457 
458 	while (1) {
459 		spin_lock(&rxq->lock);
460 		if (list_empty(&rxq->rx_used)) {
461 			spin_unlock(&rxq->lock);
462 			return;
463 		}
464 		spin_unlock(&rxq->lock);
465 
466 		/* Alloc a new receive buffer */
467 		page = iwl_pcie_rx_alloc_page(trans, priority);
468 		if (!page)
469 			return;
470 
471 		spin_lock(&rxq->lock);
472 
473 		if (list_empty(&rxq->rx_used)) {
474 			spin_unlock(&rxq->lock);
475 			__free_pages(page, trans_pcie->rx_page_order);
476 			return;
477 		}
478 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
479 				       list);
480 		list_del(&rxb->list);
481 		spin_unlock(&rxq->lock);
482 
483 		BUG_ON(rxb->page);
484 		rxb->page = page;
485 		/* Get physical address of the RB */
486 		rxb->page_dma =
487 			dma_map_page(trans->dev, page, 0,
488 				     PAGE_SIZE << trans_pcie->rx_page_order,
489 				     DMA_FROM_DEVICE);
490 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
491 			rxb->page = NULL;
492 			spin_lock(&rxq->lock);
493 			list_add(&rxb->list, &rxq->rx_used);
494 			spin_unlock(&rxq->lock);
495 			__free_pages(page, trans_pcie->rx_page_order);
496 			return;
497 		}
498 
499 		spin_lock(&rxq->lock);
500 
501 		list_add_tail(&rxb->list, &rxq->rx_free);
502 		rxq->free_count++;
503 
504 		spin_unlock(&rxq->lock);
505 	}
506 }
507 
508 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
509 {
510 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
511 	int i;
512 
513 	for (i = 0; i < RX_POOL_SIZE; i++) {
514 		if (!trans_pcie->rx_pool[i].page)
515 			continue;
516 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
517 			       PAGE_SIZE << trans_pcie->rx_page_order,
518 			       DMA_FROM_DEVICE);
519 		__free_pages(trans_pcie->rx_pool[i].page,
520 			     trans_pcie->rx_page_order);
521 		trans_pcie->rx_pool[i].page = NULL;
522 	}
523 }
524 
525 /*
526  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
527  *
528  * Allocates for each received request 8 pages
529  * Called as a scheduled work item.
530  */
531 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
532 {
533 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
534 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
535 	struct list_head local_empty;
536 	int pending = atomic_read(&rba->req_pending);
537 
538 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
539 
540 	/* If we were scheduled - there is at least one request */
541 	spin_lock(&rba->lock);
542 	/* swap out the rba->rbd_empty to a local list */
543 	list_replace_init(&rba->rbd_empty, &local_empty);
544 	spin_unlock(&rba->lock);
545 
546 	while (pending) {
547 		int i;
548 		LIST_HEAD(local_allocated);
549 		gfp_t gfp_mask = GFP_KERNEL;
550 
551 		/* Do not post a warning if there are only a few requests */
552 		if (pending < RX_PENDING_WATERMARK)
553 			gfp_mask |= __GFP_NOWARN;
554 
555 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
556 			struct iwl_rx_mem_buffer *rxb;
557 			struct page *page;
558 
559 			/* List should never be empty - each reused RBD is
560 			 * returned to the list, and initial pool covers any
561 			 * possible gap between the time the page is allocated
562 			 * to the time the RBD is added.
563 			 */
564 			BUG_ON(list_empty(&local_empty));
565 			/* Get the first rxb from the rbd list */
566 			rxb = list_first_entry(&local_empty,
567 					       struct iwl_rx_mem_buffer, list);
568 			BUG_ON(rxb->page);
569 
570 			/* Alloc a new receive buffer */
571 			page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
572 			if (!page)
573 				continue;
574 			rxb->page = page;
575 
576 			/* Get physical address of the RB */
577 			rxb->page_dma = dma_map_page(trans->dev, page, 0,
578 					PAGE_SIZE << trans_pcie->rx_page_order,
579 					DMA_FROM_DEVICE);
580 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
581 				rxb->page = NULL;
582 				__free_pages(page, trans_pcie->rx_page_order);
583 				continue;
584 			}
585 
586 			/* move the allocated entry to the out list */
587 			list_move(&rxb->list, &local_allocated);
588 			i++;
589 		}
590 
591 		atomic_dec(&rba->req_pending);
592 		pending--;
593 
594 		if (!pending) {
595 			pending = atomic_read(&rba->req_pending);
596 			if (pending)
597 				IWL_DEBUG_TPT(trans,
598 					      "Got more pending allocation requests = %d\n",
599 					      pending);
600 		}
601 
602 		spin_lock(&rba->lock);
603 		/* add the allocated rbds to the allocator allocated list */
604 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
605 		/* get more empty RBDs for current pending requests */
606 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
607 		spin_unlock(&rba->lock);
608 
609 		atomic_inc(&rba->req_ready);
610 
611 	}
612 
613 	spin_lock(&rba->lock);
614 	/* return unused rbds to the allocator empty list */
615 	list_splice_tail(&local_empty, &rba->rbd_empty);
616 	spin_unlock(&rba->lock);
617 
618 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
619 }
620 
621 /*
622  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
623 .*
624 .* Called by queue when the queue posted allocation request and
625  * has freed 8 RBDs in order to restock itself.
626  * This function directly moves the allocated RBs to the queue's ownership
627  * and updates the relevant counters.
628  */
629 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
630 				      struct iwl_rxq *rxq)
631 {
632 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
633 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
634 	int i;
635 
636 	lockdep_assert_held(&rxq->lock);
637 
638 	/*
639 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
640 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
641 	 * function will return early, as there are no ready requests.
642 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
643 	 * req_ready > 0, i.e. - there are ready requests and the function
644 	 * hands one request to the caller.
645 	 */
646 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
647 		return;
648 
649 	spin_lock(&rba->lock);
650 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
651 		/* Get next free Rx buffer, remove it from free list */
652 		struct iwl_rx_mem_buffer *rxb =
653 			list_first_entry(&rba->rbd_allocated,
654 					 struct iwl_rx_mem_buffer, list);
655 
656 		list_move(&rxb->list, &rxq->rx_free);
657 	}
658 	spin_unlock(&rba->lock);
659 
660 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
661 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
662 }
663 
664 void iwl_pcie_rx_allocator_work(struct work_struct *data)
665 {
666 	struct iwl_rb_allocator *rba_p =
667 		container_of(data, struct iwl_rb_allocator, rx_alloc);
668 	struct iwl_trans_pcie *trans_pcie =
669 		container_of(rba_p, struct iwl_trans_pcie, rba);
670 
671 	iwl_pcie_rx_allocator(trans_pcie->trans);
672 }
673 
674 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
675 {
676 	struct iwl_rx_transfer_desc *rx_td;
677 
678 	if (use_rx_td)
679 		return sizeof(*rx_td);
680 	else
681 		return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) :
682 			sizeof(__le32);
683 }
684 
685 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
686 				  struct iwl_rxq *rxq)
687 {
688 	struct device *dev = trans->dev;
689 	bool use_rx_td = (trans->trans_cfg->device_family >=
690 			  IWL_DEVICE_FAMILY_AX210);
691 	int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
692 
693 	if (rxq->bd)
694 		dma_free_coherent(trans->dev,
695 				  free_size * rxq->queue_size,
696 				  rxq->bd, rxq->bd_dma);
697 	rxq->bd_dma = 0;
698 	rxq->bd = NULL;
699 
700 	rxq->rb_stts_dma = 0;
701 	rxq->rb_stts = NULL;
702 
703 	if (rxq->used_bd)
704 		dma_free_coherent(trans->dev,
705 				  (use_rx_td ? sizeof(*rxq->cd) :
706 				   sizeof(__le32)) * rxq->queue_size,
707 				  rxq->used_bd, rxq->used_bd_dma);
708 	rxq->used_bd_dma = 0;
709 	rxq->used_bd = NULL;
710 
711 	if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
712 		return;
713 
714 	if (rxq->tr_tail)
715 		dma_free_coherent(dev, sizeof(__le16),
716 				  rxq->tr_tail, rxq->tr_tail_dma);
717 	rxq->tr_tail_dma = 0;
718 	rxq->tr_tail = NULL;
719 
720 	if (rxq->cr_tail)
721 		dma_free_coherent(dev, sizeof(__le16),
722 				  rxq->cr_tail, rxq->cr_tail_dma);
723 	rxq->cr_tail_dma = 0;
724 	rxq->cr_tail = NULL;
725 }
726 
727 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
728 				  struct iwl_rxq *rxq)
729 {
730 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
731 	struct device *dev = trans->dev;
732 	int i;
733 	int free_size;
734 	bool use_rx_td = (trans->trans_cfg->device_family >=
735 			  IWL_DEVICE_FAMILY_AX210);
736 	size_t rb_stts_size = use_rx_td ? sizeof(__le16) :
737 			      sizeof(struct iwl_rb_status);
738 
739 	spin_lock_init(&rxq->lock);
740 	if (trans->trans_cfg->mq_rx_supported)
741 		rxq->queue_size = MQ_RX_TABLE_SIZE;
742 	else
743 		rxq->queue_size = RX_QUEUE_SIZE;
744 
745 	free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
746 
747 	/*
748 	 * Allocate the circular buffer of Read Buffer Descriptors
749 	 * (RBDs)
750 	 */
751 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
752 				     &rxq->bd_dma, GFP_KERNEL);
753 	if (!rxq->bd)
754 		goto err;
755 
756 	if (trans->trans_cfg->mq_rx_supported) {
757 		rxq->used_bd = dma_alloc_coherent(dev,
758 						  (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
759 						  &rxq->used_bd_dma,
760 						  GFP_KERNEL);
761 		if (!rxq->used_bd)
762 			goto err;
763 	}
764 
765 	rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
766 	rxq->rb_stts_dma =
767 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
768 
769 	if (!use_rx_td)
770 		return 0;
771 
772 	/* Allocate the driver's pointer to TR tail */
773 	rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
774 					  &rxq->tr_tail_dma, GFP_KERNEL);
775 	if (!rxq->tr_tail)
776 		goto err;
777 
778 	/* Allocate the driver's pointer to CR tail */
779 	rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
780 					  &rxq->cr_tail_dma, GFP_KERNEL);
781 	if (!rxq->cr_tail)
782 		goto err;
783 
784 	return 0;
785 
786 err:
787 	for (i = 0; i < trans->num_rx_queues; i++) {
788 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
789 
790 		iwl_pcie_free_rxq_dma(trans, rxq);
791 	}
792 
793 	return -ENOMEM;
794 }
795 
796 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
797 {
798 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
799 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
800 	int i, ret;
801 	size_t rb_stts_size = trans->trans_cfg->device_family >=
802 				IWL_DEVICE_FAMILY_AX210 ?
803 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
804 
805 	if (WARN_ON(trans_pcie->rxq))
806 		return -EINVAL;
807 
808 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
809 				  GFP_KERNEL);
810 	if (!trans_pcie->rxq)
811 		return -ENOMEM;
812 
813 	spin_lock_init(&rba->lock);
814 
815 	/*
816 	 * Allocate the driver's pointer to receive buffer status.
817 	 * Allocate for all queues continuously (HW requirement).
818 	 */
819 	trans_pcie->base_rb_stts =
820 			dma_alloc_coherent(trans->dev,
821 					   rb_stts_size * trans->num_rx_queues,
822 					   &trans_pcie->base_rb_stts_dma,
823 					   GFP_KERNEL);
824 	if (!trans_pcie->base_rb_stts) {
825 		ret = -ENOMEM;
826 		goto err;
827 	}
828 
829 	for (i = 0; i < trans->num_rx_queues; i++) {
830 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
831 
832 		rxq->id = i;
833 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
834 		if (ret)
835 			goto err;
836 	}
837 	return 0;
838 
839 err:
840 	if (trans_pcie->base_rb_stts) {
841 		dma_free_coherent(trans->dev,
842 				  rb_stts_size * trans->num_rx_queues,
843 				  trans_pcie->base_rb_stts,
844 				  trans_pcie->base_rb_stts_dma);
845 		trans_pcie->base_rb_stts = NULL;
846 		trans_pcie->base_rb_stts_dma = 0;
847 	}
848 	kfree(trans_pcie->rxq);
849 
850 	return ret;
851 }
852 
853 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
854 {
855 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
856 	u32 rb_size;
857 	unsigned long flags;
858 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
859 
860 	switch (trans_pcie->rx_buf_size) {
861 	case IWL_AMSDU_4K:
862 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
863 		break;
864 	case IWL_AMSDU_8K:
865 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
866 		break;
867 	case IWL_AMSDU_12K:
868 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
869 		break;
870 	default:
871 		WARN_ON(1);
872 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
873 	}
874 
875 	if (!iwl_trans_grab_nic_access(trans, &flags))
876 		return;
877 
878 	/* Stop Rx DMA */
879 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
880 	/* reset and flush pointers */
881 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
882 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
883 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
884 
885 	/* Reset driver's Rx queue write index */
886 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
887 
888 	/* Tell device where to find RBD circular buffer in DRAM */
889 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
890 		    (u32)(rxq->bd_dma >> 8));
891 
892 	/* Tell device where in DRAM to update its Rx status */
893 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
894 		    rxq->rb_stts_dma >> 4);
895 
896 	/* Enable Rx DMA
897 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
898 	 *      the credit mechanism in 5000 HW RX FIFO
899 	 * Direct rx interrupts to hosts
900 	 * Rx buffer size 4 or 8k or 12k
901 	 * RB timeout 0x10
902 	 * 256 RBDs
903 	 */
904 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
905 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
906 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
907 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
908 		    rb_size |
909 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
910 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
911 
912 	iwl_trans_release_nic_access(trans, &flags);
913 
914 	/* Set interrupt coalescing timer to default (2048 usecs) */
915 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
916 
917 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
918 	if (trans->cfg->host_interrupt_operation_mode)
919 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
920 }
921 
922 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
923 {
924 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
925 	u32 rb_size, enabled = 0;
926 	unsigned long flags;
927 	int i;
928 
929 	switch (trans_pcie->rx_buf_size) {
930 	case IWL_AMSDU_2K:
931 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
932 		break;
933 	case IWL_AMSDU_4K:
934 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
935 		break;
936 	case IWL_AMSDU_8K:
937 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
938 		break;
939 	case IWL_AMSDU_12K:
940 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
941 		break;
942 	default:
943 		WARN_ON(1);
944 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
945 	}
946 
947 	if (!iwl_trans_grab_nic_access(trans, &flags))
948 		return;
949 
950 	/* Stop Rx DMA */
951 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
952 	/* disable free amd used rx queue operation */
953 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
954 
955 	for (i = 0; i < trans->num_rx_queues; i++) {
956 		/* Tell device where to find RBD free table in DRAM */
957 		iwl_write_prph64_no_grab(trans,
958 					 RFH_Q_FRBDCB_BA_LSB(i),
959 					 trans_pcie->rxq[i].bd_dma);
960 		/* Tell device where to find RBD used table in DRAM */
961 		iwl_write_prph64_no_grab(trans,
962 					 RFH_Q_URBDCB_BA_LSB(i),
963 					 trans_pcie->rxq[i].used_bd_dma);
964 		/* Tell device where in DRAM to update its Rx status */
965 		iwl_write_prph64_no_grab(trans,
966 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
967 					 trans_pcie->rxq[i].rb_stts_dma);
968 		/* Reset device indice tables */
969 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
970 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
971 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
972 
973 		enabled |= BIT(i) | BIT(i + 16);
974 	}
975 
976 	/*
977 	 * Enable Rx DMA
978 	 * Rx buffer size 4 or 8k or 12k
979 	 * Min RB size 4 or 8
980 	 * Drop frames that exceed RB size
981 	 * 512 RBDs
982 	 */
983 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
984 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
985 			       RFH_RXF_DMA_MIN_RB_4_8 |
986 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
987 			       RFH_RXF_DMA_RBDCB_SIZE_512);
988 
989 	/*
990 	 * Activate DMA snooping.
991 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
992 	 * Default queue is 0
993 	 */
994 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
995 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
996 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
997 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
998 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
999 					       trans->cfg->integrated ?
1000 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
1001 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
1002 	/* Enable the relevant rx queues */
1003 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
1004 
1005 	iwl_trans_release_nic_access(trans, &flags);
1006 
1007 	/* Set interrupt coalescing timer to default (2048 usecs) */
1008 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1009 }
1010 
1011 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
1012 {
1013 	lockdep_assert_held(&rxq->lock);
1014 
1015 	INIT_LIST_HEAD(&rxq->rx_free);
1016 	INIT_LIST_HEAD(&rxq->rx_used);
1017 	rxq->free_count = 0;
1018 	rxq->used_count = 0;
1019 }
1020 
1021 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1022 {
1023 	WARN_ON(1);
1024 	return 0;
1025 }
1026 
1027 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1028 {
1029 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1030 	struct iwl_rxq *def_rxq;
1031 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1032 	int i, err, queue_size, allocator_pool_size, num_alloc;
1033 
1034 	if (!trans_pcie->rxq) {
1035 		err = iwl_pcie_rx_alloc(trans);
1036 		if (err)
1037 			return err;
1038 	}
1039 	def_rxq = trans_pcie->rxq;
1040 
1041 	cancel_work_sync(&rba->rx_alloc);
1042 
1043 	spin_lock(&rba->lock);
1044 	atomic_set(&rba->req_pending, 0);
1045 	atomic_set(&rba->req_ready, 0);
1046 	INIT_LIST_HEAD(&rba->rbd_allocated);
1047 	INIT_LIST_HEAD(&rba->rbd_empty);
1048 	spin_unlock(&rba->lock);
1049 
1050 	/* free all first - we might be reconfigured for a different size */
1051 	iwl_pcie_free_rbs_pool(trans);
1052 
1053 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1054 		def_rxq->queue[i] = NULL;
1055 
1056 	for (i = 0; i < trans->num_rx_queues; i++) {
1057 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1058 
1059 		spin_lock(&rxq->lock);
1060 		/*
1061 		 * Set read write pointer to reflect that we have processed
1062 		 * and used all buffers, but have not restocked the Rx queue
1063 		 * with fresh buffers
1064 		 */
1065 		rxq->read = 0;
1066 		rxq->write = 0;
1067 		rxq->write_actual = 0;
1068 		memset(rxq->rb_stts, 0,
1069 		       (trans->trans_cfg->device_family >=
1070 			IWL_DEVICE_FAMILY_AX210) ?
1071 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1072 
1073 		iwl_pcie_rx_init_rxb_lists(rxq);
1074 
1075 		if (!rxq->napi.poll)
1076 			netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1077 				       iwl_pcie_dummy_napi_poll, 64);
1078 
1079 		spin_unlock(&rxq->lock);
1080 	}
1081 
1082 	/* move the pool to the default queue and allocator ownerships */
1083 	queue_size = trans->trans_cfg->mq_rx_supported ?
1084 		     MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1085 	allocator_pool_size = trans->num_rx_queues *
1086 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1087 	num_alloc = queue_size + allocator_pool_size;
1088 	BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1089 		     ARRAY_SIZE(trans_pcie->rx_pool));
1090 	for (i = 0; i < num_alloc; i++) {
1091 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1092 
1093 		if (i < allocator_pool_size)
1094 			list_add(&rxb->list, &rba->rbd_empty);
1095 		else
1096 			list_add(&rxb->list, &def_rxq->rx_used);
1097 		trans_pcie->global_table[i] = rxb;
1098 		rxb->vid = (u16)(i + 1);
1099 		rxb->invalid = true;
1100 	}
1101 
1102 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1103 
1104 	return 0;
1105 }
1106 
1107 int iwl_pcie_rx_init(struct iwl_trans *trans)
1108 {
1109 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1110 	int ret = _iwl_pcie_rx_init(trans);
1111 
1112 	if (ret)
1113 		return ret;
1114 
1115 	if (trans->trans_cfg->mq_rx_supported)
1116 		iwl_pcie_rx_mq_hw_init(trans);
1117 	else
1118 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1119 
1120 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1121 
1122 	spin_lock(&trans_pcie->rxq->lock);
1123 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1124 	spin_unlock(&trans_pcie->rxq->lock);
1125 
1126 	return 0;
1127 }
1128 
1129 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1130 {
1131 	/* Set interrupt coalescing timer to default (2048 usecs) */
1132 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1133 
1134 	/*
1135 	 * We don't configure the RFH.
1136 	 * Restock will be done at alive, after firmware configured the RFH.
1137 	 */
1138 	return _iwl_pcie_rx_init(trans);
1139 }
1140 
1141 void iwl_pcie_rx_free(struct iwl_trans *trans)
1142 {
1143 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1144 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1145 	int i;
1146 	size_t rb_stts_size = trans->trans_cfg->device_family >=
1147 				IWL_DEVICE_FAMILY_AX210 ?
1148 			      sizeof(__le16) : sizeof(struct iwl_rb_status);
1149 
1150 	/*
1151 	 * if rxq is NULL, it means that nothing has been allocated,
1152 	 * exit now
1153 	 */
1154 	if (!trans_pcie->rxq) {
1155 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1156 		return;
1157 	}
1158 
1159 	cancel_work_sync(&rba->rx_alloc);
1160 
1161 	iwl_pcie_free_rbs_pool(trans);
1162 
1163 	if (trans_pcie->base_rb_stts) {
1164 		dma_free_coherent(trans->dev,
1165 				  rb_stts_size * trans->num_rx_queues,
1166 				  trans_pcie->base_rb_stts,
1167 				  trans_pcie->base_rb_stts_dma);
1168 		trans_pcie->base_rb_stts = NULL;
1169 		trans_pcie->base_rb_stts_dma = 0;
1170 	}
1171 
1172 	for (i = 0; i < trans->num_rx_queues; i++) {
1173 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1174 
1175 		iwl_pcie_free_rxq_dma(trans, rxq);
1176 
1177 		if (rxq->napi.poll)
1178 			netif_napi_del(&rxq->napi);
1179 	}
1180 	kfree(trans_pcie->rxq);
1181 }
1182 
1183 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1184 					  struct iwl_rb_allocator *rba)
1185 {
1186 	spin_lock(&rba->lock);
1187 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1188 	spin_unlock(&rba->lock);
1189 }
1190 
1191 /*
1192  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1193  *
1194  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1195  * When there are 2 empty RBDs - a request for allocation is posted
1196  */
1197 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1198 				  struct iwl_rx_mem_buffer *rxb,
1199 				  struct iwl_rxq *rxq, bool emergency)
1200 {
1201 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1202 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1203 
1204 	/* Move the RBD to the used list, will be moved to allocator in batches
1205 	 * before claiming or posting a request*/
1206 	list_add_tail(&rxb->list, &rxq->rx_used);
1207 
1208 	if (unlikely(emergency))
1209 		return;
1210 
1211 	/* Count the allocator owned RBDs */
1212 	rxq->used_count++;
1213 
1214 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1215 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1216 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1217 	 * after but we still need to post another request.
1218 	 */
1219 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1220 		/* Move the 2 RBDs to the allocator ownership.
1221 		 Allocator has another 6 from pool for the request completion*/
1222 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1223 
1224 		atomic_inc(&rba->req_pending);
1225 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1226 	}
1227 }
1228 
1229 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1230 				struct iwl_rxq *rxq,
1231 				struct iwl_rx_mem_buffer *rxb,
1232 				bool emergency,
1233 				int i)
1234 {
1235 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1236 	struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1237 	bool page_stolen = false;
1238 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1239 	u32 offset = 0;
1240 
1241 	if (WARN_ON(!rxb))
1242 		return;
1243 
1244 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1245 
1246 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1247 		struct iwl_rx_packet *pkt;
1248 		u16 sequence;
1249 		bool reclaim;
1250 		int index, cmd_index, len;
1251 		struct iwl_rx_cmd_buffer rxcb = {
1252 			._offset = offset,
1253 			._rx_page_order = trans_pcie->rx_page_order,
1254 			._page = rxb->page,
1255 			._page_stolen = false,
1256 			.truesize = max_len,
1257 		};
1258 
1259 		pkt = rxb_addr(&rxcb);
1260 
1261 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1262 			IWL_DEBUG_RX(trans,
1263 				     "Q %d: RB end marker at offset %d\n",
1264 				     rxq->id, offset);
1265 			break;
1266 		}
1267 
1268 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1269 			FH_RSCSR_RXQ_POS != rxq->id,
1270 		     "frame on invalid queue - is on %d and indicates %d\n",
1271 		     rxq->id,
1272 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1273 			FH_RSCSR_RXQ_POS);
1274 
1275 		IWL_DEBUG_RX(trans,
1276 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1277 			     rxq->id, offset,
1278 			     iwl_get_cmd_string(trans,
1279 						iwl_cmd_id(pkt->hdr.cmd,
1280 							   pkt->hdr.group_id,
1281 							   0)),
1282 			     pkt->hdr.group_id, pkt->hdr.cmd,
1283 			     le16_to_cpu(pkt->hdr.sequence));
1284 
1285 		len = iwl_rx_packet_len(pkt);
1286 		len += sizeof(u32); /* account for status word */
1287 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1288 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1289 
1290 		/* Reclaim a command buffer only if this packet is a response
1291 		 *   to a (driver-originated) command.
1292 		 * If the packet (e.g. Rx frame) originated from uCode,
1293 		 *   there is no command buffer to reclaim.
1294 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1295 		 *   but apparently a few don't get set; catch them here. */
1296 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1297 		if (reclaim && !pkt->hdr.group_id) {
1298 			int i;
1299 
1300 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1301 				if (trans_pcie->no_reclaim_cmds[i] ==
1302 							pkt->hdr.cmd) {
1303 					reclaim = false;
1304 					break;
1305 				}
1306 			}
1307 		}
1308 
1309 		sequence = le16_to_cpu(pkt->hdr.sequence);
1310 		index = SEQ_TO_INDEX(sequence);
1311 		cmd_index = iwl_pcie_get_cmd_index(txq, index);
1312 
1313 		if (rxq->id == trans_pcie->def_rx_queue)
1314 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1315 				       &rxcb);
1316 		else
1317 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1318 					   &rxcb, rxq->id);
1319 
1320 		if (reclaim) {
1321 			kzfree(txq->entries[cmd_index].free_buf);
1322 			txq->entries[cmd_index].free_buf = NULL;
1323 		}
1324 
1325 		/*
1326 		 * After here, we should always check rxcb._page_stolen,
1327 		 * if it is true then one of the handlers took the page.
1328 		 */
1329 
1330 		if (reclaim) {
1331 			/* Invoke any callbacks, transfer the buffer to caller,
1332 			 * and fire off the (possibly) blocking
1333 			 * iwl_trans_send_cmd()
1334 			 * as we reclaim the driver command queue */
1335 			if (!rxcb._page_stolen)
1336 				iwl_pcie_hcmd_complete(trans, &rxcb);
1337 			else
1338 				IWL_WARN(trans, "Claim null rxb?\n");
1339 		}
1340 
1341 		page_stolen |= rxcb._page_stolen;
1342 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1343 			break;
1344 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1345 	}
1346 
1347 	/* page was stolen from us -- free our reference */
1348 	if (page_stolen) {
1349 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1350 		rxb->page = NULL;
1351 	}
1352 
1353 	/* Reuse the page if possible. For notification packets and
1354 	 * SKBs that fail to Rx correctly, add them back into the
1355 	 * rx_free list for reuse later. */
1356 	if (rxb->page != NULL) {
1357 		rxb->page_dma =
1358 			dma_map_page(trans->dev, rxb->page, 0,
1359 				     PAGE_SIZE << trans_pcie->rx_page_order,
1360 				     DMA_FROM_DEVICE);
1361 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1362 			/*
1363 			 * free the page(s) as well to not break
1364 			 * the invariant that the items on the used
1365 			 * list have no page(s)
1366 			 */
1367 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1368 			rxb->page = NULL;
1369 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1370 		} else {
1371 			list_add_tail(&rxb->list, &rxq->rx_free);
1372 			rxq->free_count++;
1373 		}
1374 	} else
1375 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1376 }
1377 
1378 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1379 						  struct iwl_rxq *rxq, int i)
1380 {
1381 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1382 	struct iwl_rx_mem_buffer *rxb;
1383 	u16 vid;
1384 
1385 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1386 
1387 	if (!trans->trans_cfg->mq_rx_supported) {
1388 		rxb = rxq->queue[i];
1389 		rxq->queue[i] = NULL;
1390 		return rxb;
1391 	}
1392 
1393 	/* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1394 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1395 		vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1396 	else
1397 		vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1398 
1399 	if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1400 		goto out_err;
1401 
1402 	rxb = trans_pcie->global_table[vid - 1];
1403 	if (rxb->invalid)
1404 		goto out_err;
1405 
1406 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1407 
1408 	rxb->invalid = true;
1409 
1410 	return rxb;
1411 
1412 out_err:
1413 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1414 	iwl_force_nmi(trans);
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1420  */
1421 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1422 {
1423 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1424 	struct napi_struct *napi;
1425 	struct iwl_rxq *rxq;
1426 	u32 r, i, count = 0;
1427 	bool emergency = false;
1428 
1429 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1430 		return;
1431 
1432 	rxq = &trans_pcie->rxq[queue];
1433 
1434 restart:
1435 	spin_lock(&rxq->lock);
1436 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1437 	 * buffer that the driver may process (last buffer filled by ucode). */
1438 	r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1439 	i = rxq->read;
1440 
1441 	/* W/A 9000 device step A0 wrap-around bug */
1442 	r &= (rxq->queue_size - 1);
1443 
1444 	/* Rx interrupt, but nothing sent from uCode */
1445 	if (i == r)
1446 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1447 
1448 	while (i != r) {
1449 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1450 		struct iwl_rx_mem_buffer *rxb;
1451 		/* number of RBDs still waiting for page allocation */
1452 		u32 rb_pending_alloc =
1453 			atomic_read(&trans_pcie->rba.req_pending) *
1454 			RX_CLAIM_REQ_ALLOC;
1455 
1456 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1457 			     !emergency)) {
1458 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1459 			emergency = true;
1460 			IWL_DEBUG_TPT(trans,
1461 				      "RX path is in emergency. Pending allocations %d\n",
1462 				      rb_pending_alloc);
1463 		}
1464 
1465 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1466 
1467 		rxb = iwl_pcie_get_rxb(trans, rxq, i);
1468 		if (!rxb)
1469 			goto out;
1470 
1471 		iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1472 
1473 		i = (i + 1) & (rxq->queue_size - 1);
1474 
1475 		/*
1476 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1477 		 * try to claim the pre-allocated buffers from the allocator.
1478 		 * If not ready - will try to reclaim next time.
1479 		 * There is no need to reschedule work - allocator exits only
1480 		 * on success
1481 		 */
1482 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1483 			iwl_pcie_rx_allocator_get(trans, rxq);
1484 
1485 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1486 			/* Add the remaining empty RBDs for allocator use */
1487 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1488 		} else if (emergency) {
1489 			count++;
1490 			if (count == 8) {
1491 				count = 0;
1492 				if (rb_pending_alloc < rxq->queue_size / 3) {
1493 					IWL_DEBUG_TPT(trans,
1494 						      "RX path exited emergency. Pending allocations %d\n",
1495 						      rb_pending_alloc);
1496 					emergency = false;
1497 				}
1498 
1499 				rxq->read = i;
1500 				spin_unlock(&rxq->lock);
1501 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1502 				iwl_pcie_rxq_restock(trans, rxq);
1503 				goto restart;
1504 			}
1505 		}
1506 	}
1507 out:
1508 	/* Backtrack one entry */
1509 	rxq->read = i;
1510 	/* update cr tail with the rxq read pointer */
1511 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1512 		*rxq->cr_tail = cpu_to_le16(r);
1513 	spin_unlock(&rxq->lock);
1514 
1515 	/*
1516 	 * handle a case where in emergency there are some unallocated RBDs.
1517 	 * those RBDs are in the used list, but are not tracked by the queue's
1518 	 * used_count which counts allocator owned RBDs.
1519 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1520 	 * when called again the function may not be in emergency mode and
1521 	 * they will be handed to the allocator with no tracking in the RBD
1522 	 * allocator counters, which will lead to them never being claimed back
1523 	 * by the queue.
1524 	 * by allocating them here, they are now in the queue free list, and
1525 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1526 	 */
1527 	if (unlikely(emergency && count))
1528 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1529 
1530 	napi = &rxq->napi;
1531 	if (napi->poll) {
1532 		if (napi->rx_count) {
1533 			netif_receive_skb_list(&napi->rx_list);
1534 			INIT_LIST_HEAD(&napi->rx_list);
1535 			napi->rx_count = 0;
1536 		}
1537 
1538 		napi_gro_flush(napi, false);
1539 	}
1540 
1541 	iwl_pcie_rxq_restock(trans, rxq);
1542 }
1543 
1544 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1545 {
1546 	u8 queue = entry->entry;
1547 	struct msix_entry *entries = entry - queue;
1548 
1549 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1550 }
1551 
1552 /*
1553  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1554  * This interrupt handler should be used with RSS queue only.
1555  */
1556 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1557 {
1558 	struct msix_entry *entry = dev_id;
1559 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1560 	struct iwl_trans *trans = trans_pcie->trans;
1561 
1562 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1563 
1564 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1565 		return IRQ_NONE;
1566 
1567 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1568 
1569 	local_bh_disable();
1570 	iwl_pcie_rx_handle(trans, entry->entry);
1571 	local_bh_enable();
1572 
1573 	iwl_pcie_clear_irq(trans, entry);
1574 
1575 	lock_map_release(&trans->sync_cmd_lockdep_map);
1576 
1577 	return IRQ_HANDLED;
1578 }
1579 
1580 /*
1581  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1582  */
1583 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1584 {
1585 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1586 	int i;
1587 
1588 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1589 	if (trans->cfg->internal_wimax_coex &&
1590 	    !trans->cfg->apmg_not_supported &&
1591 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1592 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1593 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1594 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1595 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1596 		iwl_op_mode_wimax_active(trans->op_mode);
1597 		wake_up(&trans_pcie->wait_command_queue);
1598 		return;
1599 	}
1600 
1601 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1602 		if (!trans_pcie->txq[i])
1603 			continue;
1604 		del_timer(&trans_pcie->txq[i]->stuck_timer);
1605 	}
1606 
1607 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1608 	 * before we wake up the command caller, to ensure a proper cleanup. */
1609 	iwl_trans_fw_error(trans);
1610 
1611 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1612 	wake_up(&trans_pcie->wait_command_queue);
1613 }
1614 
1615 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1616 {
1617 	u32 inta;
1618 
1619 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1620 
1621 	trace_iwlwifi_dev_irq(trans->dev);
1622 
1623 	/* Discover which interrupts are active/pending */
1624 	inta = iwl_read32(trans, CSR_INT);
1625 
1626 	/* the thread will service interrupts and re-enable them */
1627 	return inta;
1628 }
1629 
1630 /* a device (PCI-E) page is 4096 bytes long */
1631 #define ICT_SHIFT	12
1632 #define ICT_SIZE	(1 << ICT_SHIFT)
1633 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1634 
1635 /* interrupt handler using ict table, with this interrupt driver will
1636  * stop using INTA register to get device's interrupt, reading this register
1637  * is expensive, device will write interrupts in ICT dram table, increment
1638  * index then will fire interrupt to driver, driver will OR all ICT table
1639  * entries from current index up to table entry with 0 value. the result is
1640  * the interrupt we need to service, driver will set the entries back to 0 and
1641  * set index.
1642  */
1643 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1644 {
1645 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1646 	u32 inta;
1647 	u32 val = 0;
1648 	u32 read;
1649 
1650 	trace_iwlwifi_dev_irq(trans->dev);
1651 
1652 	/* Ignore interrupt if there's nothing in NIC to service.
1653 	 * This may be due to IRQ shared with another device,
1654 	 * or due to sporadic interrupts thrown from our NIC. */
1655 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1656 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1657 	if (!read)
1658 		return 0;
1659 
1660 	/*
1661 	 * Collect all entries up to the first 0, starting from ict_index;
1662 	 * note we already read at ict_index.
1663 	 */
1664 	do {
1665 		val |= read;
1666 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1667 				trans_pcie->ict_index, read);
1668 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1669 		trans_pcie->ict_index =
1670 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1671 
1672 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1673 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1674 					   read);
1675 	} while (read);
1676 
1677 	/* We should not get this value, just ignore it. */
1678 	if (val == 0xffffffff)
1679 		val = 0;
1680 
1681 	/*
1682 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1683 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1684 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1685 	 * so we use them to decide on the real state of the Rx bit.
1686 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1687 	 */
1688 	if (val & 0xC0000)
1689 		val |= 0x8000;
1690 
1691 	inta = (0xff & val) | ((0xff00 & val) << 16);
1692 	return inta;
1693 }
1694 
1695 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1696 {
1697 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1698 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1699 	bool hw_rfkill, prev, report;
1700 
1701 	mutex_lock(&trans_pcie->mutex);
1702 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1703 	hw_rfkill = iwl_is_rfkill_set(trans);
1704 	if (hw_rfkill) {
1705 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1706 		set_bit(STATUS_RFKILL_HW, &trans->status);
1707 	}
1708 	if (trans_pcie->opmode_down)
1709 		report = hw_rfkill;
1710 	else
1711 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1712 
1713 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1714 		 hw_rfkill ? "disable radio" : "enable radio");
1715 
1716 	isr_stats->rfkill++;
1717 
1718 	if (prev != report)
1719 		iwl_trans_pcie_rf_kill(trans, report);
1720 	mutex_unlock(&trans_pcie->mutex);
1721 
1722 	if (hw_rfkill) {
1723 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1724 				       &trans->status))
1725 			IWL_DEBUG_RF_KILL(trans,
1726 					  "Rfkill while SYNC HCMD in flight\n");
1727 		wake_up(&trans_pcie->wait_command_queue);
1728 	} else {
1729 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1730 		if (trans_pcie->opmode_down)
1731 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1732 	}
1733 }
1734 
1735 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1736 {
1737 	struct iwl_trans *trans = dev_id;
1738 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1739 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1740 	u32 inta = 0;
1741 	u32 handled = 0;
1742 
1743 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1744 
1745 	spin_lock(&trans_pcie->irq_lock);
1746 
1747 	/* dram interrupt table not set yet,
1748 	 * use legacy interrupt.
1749 	 */
1750 	if (likely(trans_pcie->use_ict))
1751 		inta = iwl_pcie_int_cause_ict(trans);
1752 	else
1753 		inta = iwl_pcie_int_cause_non_ict(trans);
1754 
1755 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1756 		IWL_DEBUG_ISR(trans,
1757 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1758 			      inta, trans_pcie->inta_mask,
1759 			      iwl_read32(trans, CSR_INT_MASK),
1760 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1761 		if (inta & (~trans_pcie->inta_mask))
1762 			IWL_DEBUG_ISR(trans,
1763 				      "We got a masked interrupt (0x%08x)\n",
1764 				      inta & (~trans_pcie->inta_mask));
1765 	}
1766 
1767 	inta &= trans_pcie->inta_mask;
1768 
1769 	/*
1770 	 * Ignore interrupt if there's nothing in NIC to service.
1771 	 * This may be due to IRQ shared with another device,
1772 	 * or due to sporadic interrupts thrown from our NIC.
1773 	 */
1774 	if (unlikely(!inta)) {
1775 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1776 		/*
1777 		 * Re-enable interrupts here since we don't
1778 		 * have anything to service
1779 		 */
1780 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1781 			_iwl_enable_interrupts(trans);
1782 		spin_unlock(&trans_pcie->irq_lock);
1783 		lock_map_release(&trans->sync_cmd_lockdep_map);
1784 		return IRQ_NONE;
1785 	}
1786 
1787 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1788 		/*
1789 		 * Hardware disappeared. It might have
1790 		 * already raised an interrupt.
1791 		 */
1792 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1793 		spin_unlock(&trans_pcie->irq_lock);
1794 		goto out;
1795 	}
1796 
1797 	/* Ack/clear/reset pending uCode interrupts.
1798 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1799 	 */
1800 	/* There is a hardware bug in the interrupt mask function that some
1801 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1802 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1803 	 * ICT interrupt handling mechanism has another bug that might cause
1804 	 * these unmasked interrupts fail to be detected. We workaround the
1805 	 * hardware bugs here by ACKing all the possible interrupts so that
1806 	 * interrupt coalescing can still be achieved.
1807 	 */
1808 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1809 
1810 	if (iwl_have_debug_level(IWL_DL_ISR))
1811 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1812 			      inta, iwl_read32(trans, CSR_INT_MASK));
1813 
1814 	spin_unlock(&trans_pcie->irq_lock);
1815 
1816 	/* Now service all interrupt bits discovered above. */
1817 	if (inta & CSR_INT_BIT_HW_ERR) {
1818 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1819 
1820 		/* Tell the device to stop sending interrupts */
1821 		iwl_disable_interrupts(trans);
1822 
1823 		isr_stats->hw++;
1824 		iwl_pcie_irq_handle_error(trans);
1825 
1826 		handled |= CSR_INT_BIT_HW_ERR;
1827 
1828 		goto out;
1829 	}
1830 
1831 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1832 	if (inta & CSR_INT_BIT_SCD) {
1833 		IWL_DEBUG_ISR(trans,
1834 			      "Scheduler finished to transmit the frame/frames.\n");
1835 		isr_stats->sch++;
1836 	}
1837 
1838 	/* Alive notification via Rx interrupt will do the real work */
1839 	if (inta & CSR_INT_BIT_ALIVE) {
1840 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1841 		isr_stats->alive++;
1842 		if (trans->trans_cfg->gen2) {
1843 			/*
1844 			 * We can restock, since firmware configured
1845 			 * the RFH
1846 			 */
1847 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1848 		}
1849 
1850 		handled |= CSR_INT_BIT_ALIVE;
1851 	}
1852 
1853 	/* Safely ignore these bits for debug checks below */
1854 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1855 
1856 	/* HW RF KILL switch toggled */
1857 	if (inta & CSR_INT_BIT_RF_KILL) {
1858 		iwl_pcie_handle_rfkill_irq(trans);
1859 		handled |= CSR_INT_BIT_RF_KILL;
1860 	}
1861 
1862 	/* Chip got too hot and stopped itself */
1863 	if (inta & CSR_INT_BIT_CT_KILL) {
1864 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1865 		isr_stats->ctkill++;
1866 		handled |= CSR_INT_BIT_CT_KILL;
1867 	}
1868 
1869 	/* Error detected by uCode */
1870 	if (inta & CSR_INT_BIT_SW_ERR) {
1871 		IWL_ERR(trans, "Microcode SW error detected. "
1872 			" Restarting 0x%X.\n", inta);
1873 		isr_stats->sw++;
1874 		iwl_pcie_irq_handle_error(trans);
1875 		handled |= CSR_INT_BIT_SW_ERR;
1876 	}
1877 
1878 	/* uCode wakes up after power-down sleep */
1879 	if (inta & CSR_INT_BIT_WAKEUP) {
1880 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1881 		iwl_pcie_rxq_check_wrptr(trans);
1882 		iwl_pcie_txq_check_wrptrs(trans);
1883 
1884 		isr_stats->wakeup++;
1885 
1886 		handled |= CSR_INT_BIT_WAKEUP;
1887 	}
1888 
1889 	/* All uCode command responses, including Tx command responses,
1890 	 * Rx "responses" (frame-received notification), and other
1891 	 * notifications from uCode come through here*/
1892 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1893 		    CSR_INT_BIT_RX_PERIODIC)) {
1894 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1895 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1896 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1897 			iwl_write32(trans, CSR_FH_INT_STATUS,
1898 					CSR_FH_INT_RX_MASK);
1899 		}
1900 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1901 			handled |= CSR_INT_BIT_RX_PERIODIC;
1902 			iwl_write32(trans,
1903 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1904 		}
1905 		/* Sending RX interrupt require many steps to be done in the
1906 		 * the device:
1907 		 * 1- write interrupt to current index in ICT table.
1908 		 * 2- dma RX frame.
1909 		 * 3- update RX shared data to indicate last write index.
1910 		 * 4- send interrupt.
1911 		 * This could lead to RX race, driver could receive RX interrupt
1912 		 * but the shared data changes does not reflect this;
1913 		 * periodic interrupt will detect any dangling Rx activity.
1914 		 */
1915 
1916 		/* Disable periodic interrupt; we use it as just a one-shot. */
1917 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1918 			    CSR_INT_PERIODIC_DIS);
1919 
1920 		/*
1921 		 * Enable periodic interrupt in 8 msec only if we received
1922 		 * real RX interrupt (instead of just periodic int), to catch
1923 		 * any dangling Rx interrupt.  If it was just the periodic
1924 		 * interrupt, there was no dangling Rx activity, and no need
1925 		 * to extend the periodic interrupt; one-shot is enough.
1926 		 */
1927 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1928 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1929 				   CSR_INT_PERIODIC_ENA);
1930 
1931 		isr_stats->rx++;
1932 
1933 		local_bh_disable();
1934 		iwl_pcie_rx_handle(trans, 0);
1935 		local_bh_enable();
1936 	}
1937 
1938 	/* This "Tx" DMA channel is used only for loading uCode */
1939 	if (inta & CSR_INT_BIT_FH_TX) {
1940 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1941 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1942 		isr_stats->tx++;
1943 		handled |= CSR_INT_BIT_FH_TX;
1944 		/* Wake up uCode load routine, now that load is complete */
1945 		trans_pcie->ucode_write_complete = true;
1946 		wake_up(&trans_pcie->ucode_write_waitq);
1947 	}
1948 
1949 	if (inta & ~handled) {
1950 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1951 		isr_stats->unhandled++;
1952 	}
1953 
1954 	if (inta & ~(trans_pcie->inta_mask)) {
1955 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1956 			 inta & ~trans_pcie->inta_mask);
1957 	}
1958 
1959 	spin_lock(&trans_pcie->irq_lock);
1960 	/* only Re-enable all interrupt if disabled by irq */
1961 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1962 		_iwl_enable_interrupts(trans);
1963 	/* we are loading the firmware, enable FH_TX interrupt only */
1964 	else if (handled & CSR_INT_BIT_FH_TX)
1965 		iwl_enable_fw_load_int(trans);
1966 	/* Re-enable RF_KILL if it occurred */
1967 	else if (handled & CSR_INT_BIT_RF_KILL)
1968 		iwl_enable_rfkill_int(trans);
1969 	/* Re-enable the ALIVE / Rx interrupt if it occurred */
1970 	else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
1971 		iwl_enable_fw_load_int_ctx_info(trans);
1972 	spin_unlock(&trans_pcie->irq_lock);
1973 
1974 out:
1975 	lock_map_release(&trans->sync_cmd_lockdep_map);
1976 	return IRQ_HANDLED;
1977 }
1978 
1979 /******************************************************************************
1980  *
1981  * ICT functions
1982  *
1983  ******************************************************************************/
1984 
1985 /* Free dram table */
1986 void iwl_pcie_free_ict(struct iwl_trans *trans)
1987 {
1988 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1989 
1990 	if (trans_pcie->ict_tbl) {
1991 		dma_free_coherent(trans->dev, ICT_SIZE,
1992 				  trans_pcie->ict_tbl,
1993 				  trans_pcie->ict_tbl_dma);
1994 		trans_pcie->ict_tbl = NULL;
1995 		trans_pcie->ict_tbl_dma = 0;
1996 	}
1997 }
1998 
1999 /*
2000  * allocate dram shared table, it is an aligned memory
2001  * block of ICT_SIZE.
2002  * also reset all data related to ICT table interrupt.
2003  */
2004 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2005 {
2006 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2007 
2008 	trans_pcie->ict_tbl =
2009 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2010 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2011 	if (!trans_pcie->ict_tbl)
2012 		return -ENOMEM;
2013 
2014 	/* just an API sanity check ... it is guaranteed to be aligned */
2015 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2016 		iwl_pcie_free_ict(trans);
2017 		return -EINVAL;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 /* Device is going up inform it about using ICT interrupt table,
2024  * also we need to tell the driver to start using ICT interrupt.
2025  */
2026 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2027 {
2028 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2029 	u32 val;
2030 
2031 	if (!trans_pcie->ict_tbl)
2032 		return;
2033 
2034 	spin_lock(&trans_pcie->irq_lock);
2035 	_iwl_disable_interrupts(trans);
2036 
2037 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2038 
2039 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2040 
2041 	val |= CSR_DRAM_INT_TBL_ENABLE |
2042 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2043 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2044 
2045 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2046 
2047 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2048 	trans_pcie->use_ict = true;
2049 	trans_pcie->ict_index = 0;
2050 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2051 	_iwl_enable_interrupts(trans);
2052 	spin_unlock(&trans_pcie->irq_lock);
2053 }
2054 
2055 /* Device is going down disable ict interrupt usage */
2056 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2057 {
2058 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2059 
2060 	spin_lock(&trans_pcie->irq_lock);
2061 	trans_pcie->use_ict = false;
2062 	spin_unlock(&trans_pcie->irq_lock);
2063 }
2064 
2065 irqreturn_t iwl_pcie_isr(int irq, void *data)
2066 {
2067 	struct iwl_trans *trans = data;
2068 
2069 	if (!trans)
2070 		return IRQ_NONE;
2071 
2072 	/* Disable (but don't clear!) interrupts here to avoid
2073 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2074 	 * If we have something to service, the tasklet will re-enable ints.
2075 	 * If we *don't* have something, we'll re-enable before leaving here.
2076 	 */
2077 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2078 
2079 	return IRQ_WAKE_THREAD;
2080 }
2081 
2082 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2083 {
2084 	return IRQ_WAKE_THREAD;
2085 }
2086 
2087 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2088 {
2089 	struct msix_entry *entry = dev_id;
2090 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2091 	struct iwl_trans *trans = trans_pcie->trans;
2092 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2093 	u32 inta_fh, inta_hw;
2094 
2095 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2096 
2097 	spin_lock(&trans_pcie->irq_lock);
2098 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2099 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2100 	/*
2101 	 * Clear causes registers to avoid being handling the same cause.
2102 	 */
2103 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2104 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2105 	spin_unlock(&trans_pcie->irq_lock);
2106 
2107 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2108 
2109 	if (unlikely(!(inta_fh | inta_hw))) {
2110 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2111 		lock_map_release(&trans->sync_cmd_lockdep_map);
2112 		return IRQ_NONE;
2113 	}
2114 
2115 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2116 		IWL_DEBUG_ISR(trans,
2117 			      "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2118 			      inta_fh, trans_pcie->fh_mask,
2119 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2120 		if (inta_fh & ~trans_pcie->fh_mask)
2121 			IWL_DEBUG_ISR(trans,
2122 				      "We got a masked interrupt (0x%08x)\n",
2123 				      inta_fh & ~trans_pcie->fh_mask);
2124 	}
2125 
2126 	inta_fh &= trans_pcie->fh_mask;
2127 
2128 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2129 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2130 		local_bh_disable();
2131 		iwl_pcie_rx_handle(trans, 0);
2132 		local_bh_enable();
2133 	}
2134 
2135 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2136 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2137 		local_bh_disable();
2138 		iwl_pcie_rx_handle(trans, 1);
2139 		local_bh_enable();
2140 	}
2141 
2142 	/* This "Tx" DMA channel is used only for loading uCode */
2143 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2144 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2145 		isr_stats->tx++;
2146 		/*
2147 		 * Wake up uCode load routine,
2148 		 * now that load is complete
2149 		 */
2150 		trans_pcie->ucode_write_complete = true;
2151 		wake_up(&trans_pcie->ucode_write_waitq);
2152 	}
2153 
2154 	/* Error detected by uCode */
2155 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2156 	    (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) {
2157 		IWL_ERR(trans,
2158 			"Microcode SW error detected. Restarting 0x%X.\n",
2159 			inta_fh);
2160 		isr_stats->sw++;
2161 		iwl_pcie_irq_handle_error(trans);
2162 	}
2163 
2164 	/* After checking FH register check HW register */
2165 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2166 		IWL_DEBUG_ISR(trans,
2167 			      "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2168 			      inta_hw, trans_pcie->hw_mask,
2169 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2170 		if (inta_hw & ~trans_pcie->hw_mask)
2171 			IWL_DEBUG_ISR(trans,
2172 				      "We got a masked interrupt 0x%08x\n",
2173 				      inta_hw & ~trans_pcie->hw_mask);
2174 	}
2175 
2176 	inta_hw &= trans_pcie->hw_mask;
2177 
2178 	/* Alive notification via Rx interrupt will do the real work */
2179 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2180 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2181 		isr_stats->alive++;
2182 		if (trans->trans_cfg->gen2) {
2183 			/* We can restock, since firmware configured the RFH */
2184 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2185 		}
2186 	}
2187 
2188 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2189 		u32 sleep_notif =
2190 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2191 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2192 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2193 			IWL_DEBUG_ISR(trans,
2194 				      "Sx interrupt: sleep notification = 0x%x\n",
2195 				      sleep_notif);
2196 			trans_pcie->sx_complete = true;
2197 			wake_up(&trans_pcie->sx_waitq);
2198 		} else {
2199 			/* uCode wakes up after power-down sleep */
2200 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2201 			iwl_pcie_rxq_check_wrptr(trans);
2202 			iwl_pcie_txq_check_wrptrs(trans);
2203 
2204 			isr_stats->wakeup++;
2205 		}
2206 	}
2207 
2208 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) {
2209 		/* Reflect IML transfer status */
2210 		int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2211 
2212 		IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2213 		if (res == IWL_IMAGE_RESP_FAIL) {
2214 			isr_stats->sw++;
2215 			iwl_pcie_irq_handle_error(trans);
2216 		}
2217 	}
2218 
2219 	/* Chip got too hot and stopped itself */
2220 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2221 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2222 		isr_stats->ctkill++;
2223 	}
2224 
2225 	/* HW RF KILL switch toggled */
2226 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2227 		iwl_pcie_handle_rfkill_irq(trans);
2228 
2229 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2230 		IWL_ERR(trans,
2231 			"Hardware error detected. Restarting.\n");
2232 
2233 		isr_stats->hw++;
2234 		trans->dbg.hw_error = true;
2235 		iwl_pcie_irq_handle_error(trans);
2236 	}
2237 
2238 	iwl_pcie_clear_irq(trans, entry);
2239 
2240 	lock_map_release(&trans->sync_cmd_lockdep_map);
2241 
2242 	return IRQ_HANDLED;
2243 }
2244