1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 - 2019 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify it 14 * under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but WITHOUT 18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 20 * more details. 21 * 22 * The full GNU General Public License is included in this distribution in the 23 * file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <linuxwifi@intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2016 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 - 2019 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 * 63 *****************************************************************************/ 64 #include <linux/sched.h> 65 #include <linux/wait.h> 66 #include <linux/gfp.h> 67 68 #include "iwl-prph.h" 69 #include "iwl-io.h" 70 #include "internal.h" 71 #include "iwl-op-mode.h" 72 #include "iwl-context-info-gen3.h" 73 74 /****************************************************************************** 75 * 76 * RX path functions 77 * 78 ******************************************************************************/ 79 80 /* 81 * Rx theory of operation 82 * 83 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 84 * each of which point to Receive Buffers to be filled by the NIC. These get 85 * used not only for Rx frames, but for any command response or notification 86 * from the NIC. The driver and NIC manage the Rx buffers by means 87 * of indexes into the circular buffer. 88 * 89 * Rx Queue Indexes 90 * The host/firmware share two index registers for managing the Rx buffers. 91 * 92 * The READ index maps to the first position that the firmware may be writing 93 * to -- the driver can read up to (but not including) this position and get 94 * good data. 95 * The READ index is managed by the firmware once the card is enabled. 96 * 97 * The WRITE index maps to the last position the driver has read from -- the 98 * position preceding WRITE is the last slot the firmware can place a packet. 99 * 100 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 101 * WRITE = READ. 102 * 103 * During initialization, the host sets up the READ queue position to the first 104 * INDEX position, and WRITE to the last (READ - 1 wrapped) 105 * 106 * When the firmware places a packet in a buffer, it will advance the READ index 107 * and fire the RX interrupt. The driver can then query the READ index and 108 * process as many packets as possible, moving the WRITE index forward as it 109 * resets the Rx queue buffers with new memory. 110 * 111 * The management in the driver is as follows: 112 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 113 * When the interrupt handler is called, the request is processed. 114 * The page is either stolen - transferred to the upper layer 115 * or reused - added immediately to the iwl->rxq->rx_free list. 116 * + When the page is stolen - the driver updates the matching queue's used 117 * count, detaches the RBD and transfers it to the queue used list. 118 * When there are two used RBDs - they are transferred to the allocator empty 119 * list. Work is then scheduled for the allocator to start allocating 120 * eight buffers. 121 * When there are another 6 used RBDs - they are transferred to the allocator 122 * empty list and the driver tries to claim the pre-allocated buffers and 123 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 124 * until ready. 125 * When there are 8+ buffers in the free list - either from allocation or from 126 * 8 reused unstolen pages - restock is called to update the FW and indexes. 127 * + In order to make sure the allocator always has RBDs to use for allocation 128 * the allocator has initial pool in the size of num_queues*(8-2) - the 129 * maximum missing RBDs per allocation request (request posted with 2 130 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 131 * The queues supplies the recycle of the rest of the RBDs. 132 * + A received packet is processed and handed to the kernel network stack, 133 * detached from the iwl->rxq. The driver 'processed' index is updated. 134 * + If there are no allocated buffers in iwl->rxq->rx_free, 135 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 136 * If there were enough free buffers and RX_STALLED is set it is cleared. 137 * 138 * 139 * Driver sequence: 140 * 141 * iwl_rxq_alloc() Allocates rx_free 142 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 143 * iwl_pcie_rxq_restock. 144 * Used only during initialization. 145 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 146 * queue, updates firmware pointers, and updates 147 * the WRITE index. 148 * iwl_pcie_rx_allocator() Background work for allocating pages. 149 * 150 * -- enable interrupts -- 151 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 152 * READ INDEX, detaching the SKB from the pool. 153 * Moves the packet buffer from queue to rx_used. 154 * Posts and claims requests to the allocator. 155 * Calls iwl_pcie_rxq_restock to refill any empty 156 * slots. 157 * 158 * RBD life-cycle: 159 * 160 * Init: 161 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 162 * 163 * Regular Receive interrupt: 164 * Page Stolen: 165 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 166 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 167 * Page not Stolen: 168 * rxq.queue -> rxq.rx_free -> rxq.queue 169 * ... 170 * 171 */ 172 173 /* 174 * iwl_rxq_space - Return number of free slots available in queue. 175 */ 176 static int iwl_rxq_space(const struct iwl_rxq *rxq) 177 { 178 /* Make sure rx queue size is a power of 2 */ 179 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 180 181 /* 182 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 183 * between empty and completely full queues. 184 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 185 * defined for negative dividends. 186 */ 187 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 188 } 189 190 /* 191 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 192 */ 193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 194 { 195 return cpu_to_le32((u32)(dma_addr >> 8)); 196 } 197 198 /* 199 * iwl_pcie_rx_stop - stops the Rx DMA 200 */ 201 int iwl_pcie_rx_stop(struct iwl_trans *trans) 202 { 203 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 204 /* TODO: remove this once fw does it */ 205 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 206 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 207 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 208 } else if (trans->trans_cfg->mq_rx_supported) { 209 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 210 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 211 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 212 } else { 213 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 214 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 215 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 216 1000); 217 } 218 } 219 220 /* 221 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 222 */ 223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 224 struct iwl_rxq *rxq) 225 { 226 u32 reg; 227 228 lockdep_assert_held(&rxq->lock); 229 230 /* 231 * explicitly wake up the NIC if: 232 * 1. shadow registers aren't enabled 233 * 2. there is a chance that the NIC is asleep 234 */ 235 if (!trans->trans_cfg->base_params->shadow_reg_enable && 236 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 237 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 238 239 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 240 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 241 reg); 242 iwl_set_bit(trans, CSR_GP_CNTRL, 243 BIT(trans->trans_cfg->csr->flag_mac_access_req)); 244 rxq->need_update = true; 245 return; 246 } 247 } 248 249 rxq->write_actual = round_down(rxq->write, 8); 250 if (trans->trans_cfg->mq_rx_supported) 251 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 252 rxq->write_actual); 253 else 254 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 255 } 256 257 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 258 { 259 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 260 int i; 261 262 for (i = 0; i < trans->num_rx_queues; i++) { 263 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 264 265 if (!rxq->need_update) 266 continue; 267 spin_lock(&rxq->lock); 268 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 269 rxq->need_update = false; 270 spin_unlock(&rxq->lock); 271 } 272 } 273 274 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 275 struct iwl_rxq *rxq, 276 struct iwl_rx_mem_buffer *rxb) 277 { 278 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 279 struct iwl_rx_transfer_desc *bd = rxq->bd; 280 281 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 282 283 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 284 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 285 } else { 286 __le64 *bd = rxq->bd; 287 288 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 289 } 290 291 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 292 (u32)rxb->vid, rxq->id, rxq->write); 293 } 294 295 /* 296 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 297 */ 298 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 299 struct iwl_rxq *rxq) 300 { 301 struct iwl_rx_mem_buffer *rxb; 302 303 /* 304 * If the device isn't enabled - no need to try to add buffers... 305 * This can happen when we stop the device and still have an interrupt 306 * pending. We stop the APM before we sync the interrupts because we 307 * have to (see comment there). On the other hand, since the APM is 308 * stopped, we cannot access the HW (in particular not prph). 309 * So don't try to restock if the APM has been already stopped. 310 */ 311 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 312 return; 313 314 spin_lock(&rxq->lock); 315 while (rxq->free_count) { 316 /* Get next free Rx buffer, remove from free list */ 317 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 318 list); 319 list_del(&rxb->list); 320 rxb->invalid = false; 321 /* 12 first bits are expected to be empty */ 322 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12)); 323 /* Point to Rx buffer via next RBD in circular buffer */ 324 iwl_pcie_restock_bd(trans, rxq, rxb); 325 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 326 rxq->free_count--; 327 } 328 spin_unlock(&rxq->lock); 329 330 /* 331 * If we've added more space for the firmware to place data, tell it. 332 * Increment device's write pointer in multiples of 8. 333 */ 334 if (rxq->write_actual != (rxq->write & ~0x7)) { 335 spin_lock(&rxq->lock); 336 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 337 spin_unlock(&rxq->lock); 338 } 339 } 340 341 /* 342 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 343 */ 344 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 345 struct iwl_rxq *rxq) 346 { 347 struct iwl_rx_mem_buffer *rxb; 348 349 /* 350 * If the device isn't enabled - not need to try to add buffers... 351 * This can happen when we stop the device and still have an interrupt 352 * pending. We stop the APM before we sync the interrupts because we 353 * have to (see comment there). On the other hand, since the APM is 354 * stopped, we cannot access the HW (in particular not prph). 355 * So don't try to restock if the APM has been already stopped. 356 */ 357 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 358 return; 359 360 spin_lock(&rxq->lock); 361 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 362 __le32 *bd = (__le32 *)rxq->bd; 363 /* The overwritten rxb must be a used one */ 364 rxb = rxq->queue[rxq->write]; 365 BUG_ON(rxb && rxb->page); 366 367 /* Get next free Rx buffer, remove from free list */ 368 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 369 list); 370 list_del(&rxb->list); 371 rxb->invalid = false; 372 373 /* Point to Rx buffer via next RBD in circular buffer */ 374 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 375 rxq->queue[rxq->write] = rxb; 376 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 377 rxq->free_count--; 378 } 379 spin_unlock(&rxq->lock); 380 381 /* If we've added more space for the firmware to place data, tell it. 382 * Increment device's write pointer in multiples of 8. */ 383 if (rxq->write_actual != (rxq->write & ~0x7)) { 384 spin_lock(&rxq->lock); 385 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 386 spin_unlock(&rxq->lock); 387 } 388 } 389 390 /* 391 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 392 * 393 * If there are slots in the RX queue that need to be restocked, 394 * and we have free pre-allocated buffers, fill the ranks as much 395 * as we can, pulling from rx_free. 396 * 397 * This moves the 'write' index forward to catch up with 'processed', and 398 * also updates the memory address in the firmware to reference the new 399 * target buffer. 400 */ 401 static 402 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 403 { 404 if (trans->trans_cfg->mq_rx_supported) 405 iwl_pcie_rxmq_restock(trans, rxq); 406 else 407 iwl_pcie_rxsq_restock(trans, rxq); 408 } 409 410 /* 411 * iwl_pcie_rx_alloc_page - allocates and returns a page. 412 * 413 */ 414 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 415 gfp_t priority) 416 { 417 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 418 struct page *page; 419 gfp_t gfp_mask = priority; 420 421 if (trans_pcie->rx_page_order > 0) 422 gfp_mask |= __GFP_COMP; 423 424 /* Alloc a new receive buffer */ 425 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 426 if (!page) { 427 if (net_ratelimit()) 428 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 429 trans_pcie->rx_page_order); 430 /* 431 * Issue an error if we don't have enough pre-allocated 432 * buffers. 433 */ 434 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 435 IWL_CRIT(trans, 436 "Failed to alloc_pages\n"); 437 return NULL; 438 } 439 return page; 440 } 441 442 /* 443 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 444 * 445 * A used RBD is an Rx buffer that has been given to the stack. To use it again 446 * a page must be allocated and the RBD must point to the page. This function 447 * doesn't change the HW pointer but handles the list of pages that is used by 448 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 449 * allocated buffers. 450 */ 451 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 452 struct iwl_rxq *rxq) 453 { 454 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 455 struct iwl_rx_mem_buffer *rxb; 456 struct page *page; 457 458 while (1) { 459 spin_lock(&rxq->lock); 460 if (list_empty(&rxq->rx_used)) { 461 spin_unlock(&rxq->lock); 462 return; 463 } 464 spin_unlock(&rxq->lock); 465 466 /* Alloc a new receive buffer */ 467 page = iwl_pcie_rx_alloc_page(trans, priority); 468 if (!page) 469 return; 470 471 spin_lock(&rxq->lock); 472 473 if (list_empty(&rxq->rx_used)) { 474 spin_unlock(&rxq->lock); 475 __free_pages(page, trans_pcie->rx_page_order); 476 return; 477 } 478 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 479 list); 480 list_del(&rxb->list); 481 spin_unlock(&rxq->lock); 482 483 BUG_ON(rxb->page); 484 rxb->page = page; 485 /* Get physical address of the RB */ 486 rxb->page_dma = 487 dma_map_page(trans->dev, page, 0, 488 PAGE_SIZE << trans_pcie->rx_page_order, 489 DMA_FROM_DEVICE); 490 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 491 rxb->page = NULL; 492 spin_lock(&rxq->lock); 493 list_add(&rxb->list, &rxq->rx_used); 494 spin_unlock(&rxq->lock); 495 __free_pages(page, trans_pcie->rx_page_order); 496 return; 497 } 498 499 spin_lock(&rxq->lock); 500 501 list_add_tail(&rxb->list, &rxq->rx_free); 502 rxq->free_count++; 503 504 spin_unlock(&rxq->lock); 505 } 506 } 507 508 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 509 { 510 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 511 int i; 512 513 for (i = 0; i < RX_POOL_SIZE; i++) { 514 if (!trans_pcie->rx_pool[i].page) 515 continue; 516 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 517 PAGE_SIZE << trans_pcie->rx_page_order, 518 DMA_FROM_DEVICE); 519 __free_pages(trans_pcie->rx_pool[i].page, 520 trans_pcie->rx_page_order); 521 trans_pcie->rx_pool[i].page = NULL; 522 } 523 } 524 525 /* 526 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 527 * 528 * Allocates for each received request 8 pages 529 * Called as a scheduled work item. 530 */ 531 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 532 { 533 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 534 struct iwl_rb_allocator *rba = &trans_pcie->rba; 535 struct list_head local_empty; 536 int pending = atomic_read(&rba->req_pending); 537 538 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 539 540 /* If we were scheduled - there is at least one request */ 541 spin_lock(&rba->lock); 542 /* swap out the rba->rbd_empty to a local list */ 543 list_replace_init(&rba->rbd_empty, &local_empty); 544 spin_unlock(&rba->lock); 545 546 while (pending) { 547 int i; 548 LIST_HEAD(local_allocated); 549 gfp_t gfp_mask = GFP_KERNEL; 550 551 /* Do not post a warning if there are only a few requests */ 552 if (pending < RX_PENDING_WATERMARK) 553 gfp_mask |= __GFP_NOWARN; 554 555 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 556 struct iwl_rx_mem_buffer *rxb; 557 struct page *page; 558 559 /* List should never be empty - each reused RBD is 560 * returned to the list, and initial pool covers any 561 * possible gap between the time the page is allocated 562 * to the time the RBD is added. 563 */ 564 BUG_ON(list_empty(&local_empty)); 565 /* Get the first rxb from the rbd list */ 566 rxb = list_first_entry(&local_empty, 567 struct iwl_rx_mem_buffer, list); 568 BUG_ON(rxb->page); 569 570 /* Alloc a new receive buffer */ 571 page = iwl_pcie_rx_alloc_page(trans, gfp_mask); 572 if (!page) 573 continue; 574 rxb->page = page; 575 576 /* Get physical address of the RB */ 577 rxb->page_dma = dma_map_page(trans->dev, page, 0, 578 PAGE_SIZE << trans_pcie->rx_page_order, 579 DMA_FROM_DEVICE); 580 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 581 rxb->page = NULL; 582 __free_pages(page, trans_pcie->rx_page_order); 583 continue; 584 } 585 586 /* move the allocated entry to the out list */ 587 list_move(&rxb->list, &local_allocated); 588 i++; 589 } 590 591 atomic_dec(&rba->req_pending); 592 pending--; 593 594 if (!pending) { 595 pending = atomic_read(&rba->req_pending); 596 if (pending) 597 IWL_DEBUG_TPT(trans, 598 "Got more pending allocation requests = %d\n", 599 pending); 600 } 601 602 spin_lock(&rba->lock); 603 /* add the allocated rbds to the allocator allocated list */ 604 list_splice_tail(&local_allocated, &rba->rbd_allocated); 605 /* get more empty RBDs for current pending requests */ 606 list_splice_tail_init(&rba->rbd_empty, &local_empty); 607 spin_unlock(&rba->lock); 608 609 atomic_inc(&rba->req_ready); 610 611 } 612 613 spin_lock(&rba->lock); 614 /* return unused rbds to the allocator empty list */ 615 list_splice_tail(&local_empty, &rba->rbd_empty); 616 spin_unlock(&rba->lock); 617 618 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 619 } 620 621 /* 622 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 623 .* 624 .* Called by queue when the queue posted allocation request and 625 * has freed 8 RBDs in order to restock itself. 626 * This function directly moves the allocated RBs to the queue's ownership 627 * and updates the relevant counters. 628 */ 629 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 630 struct iwl_rxq *rxq) 631 { 632 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 633 struct iwl_rb_allocator *rba = &trans_pcie->rba; 634 int i; 635 636 lockdep_assert_held(&rxq->lock); 637 638 /* 639 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 640 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 641 * function will return early, as there are no ready requests. 642 * atomic_dec_if_positive will perofrm the *actual* decrement only if 643 * req_ready > 0, i.e. - there are ready requests and the function 644 * hands one request to the caller. 645 */ 646 if (atomic_dec_if_positive(&rba->req_ready) < 0) 647 return; 648 649 spin_lock(&rba->lock); 650 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 651 /* Get next free Rx buffer, remove it from free list */ 652 struct iwl_rx_mem_buffer *rxb = 653 list_first_entry(&rba->rbd_allocated, 654 struct iwl_rx_mem_buffer, list); 655 656 list_move(&rxb->list, &rxq->rx_free); 657 } 658 spin_unlock(&rba->lock); 659 660 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 661 rxq->free_count += RX_CLAIM_REQ_ALLOC; 662 } 663 664 void iwl_pcie_rx_allocator_work(struct work_struct *data) 665 { 666 struct iwl_rb_allocator *rba_p = 667 container_of(data, struct iwl_rb_allocator, rx_alloc); 668 struct iwl_trans_pcie *trans_pcie = 669 container_of(rba_p, struct iwl_trans_pcie, rba); 670 671 iwl_pcie_rx_allocator(trans_pcie->trans); 672 } 673 674 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td) 675 { 676 struct iwl_rx_transfer_desc *rx_td; 677 678 if (use_rx_td) 679 return sizeof(*rx_td); 680 else 681 return trans->trans_cfg->mq_rx_supported ? sizeof(__le64) : 682 sizeof(__le32); 683 } 684 685 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 686 struct iwl_rxq *rxq) 687 { 688 struct device *dev = trans->dev; 689 bool use_rx_td = (trans->trans_cfg->device_family >= 690 IWL_DEVICE_FAMILY_AX210); 691 int free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 692 693 if (rxq->bd) 694 dma_free_coherent(trans->dev, 695 free_size * rxq->queue_size, 696 rxq->bd, rxq->bd_dma); 697 rxq->bd_dma = 0; 698 rxq->bd = NULL; 699 700 rxq->rb_stts_dma = 0; 701 rxq->rb_stts = NULL; 702 703 if (rxq->used_bd) 704 dma_free_coherent(trans->dev, 705 (use_rx_td ? sizeof(*rxq->cd) : 706 sizeof(__le32)) * rxq->queue_size, 707 rxq->used_bd, rxq->used_bd_dma); 708 rxq->used_bd_dma = 0; 709 rxq->used_bd = NULL; 710 711 if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210) 712 return; 713 714 if (rxq->tr_tail) 715 dma_free_coherent(dev, sizeof(__le16), 716 rxq->tr_tail, rxq->tr_tail_dma); 717 rxq->tr_tail_dma = 0; 718 rxq->tr_tail = NULL; 719 720 if (rxq->cr_tail) 721 dma_free_coherent(dev, sizeof(__le16), 722 rxq->cr_tail, rxq->cr_tail_dma); 723 rxq->cr_tail_dma = 0; 724 rxq->cr_tail = NULL; 725 } 726 727 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 728 struct iwl_rxq *rxq) 729 { 730 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 731 struct device *dev = trans->dev; 732 int i; 733 int free_size; 734 bool use_rx_td = (trans->trans_cfg->device_family >= 735 IWL_DEVICE_FAMILY_AX210); 736 size_t rb_stts_size = use_rx_td ? sizeof(__le16) : 737 sizeof(struct iwl_rb_status); 738 739 spin_lock_init(&rxq->lock); 740 if (trans->trans_cfg->mq_rx_supported) 741 rxq->queue_size = MQ_RX_TABLE_SIZE; 742 else 743 rxq->queue_size = RX_QUEUE_SIZE; 744 745 free_size = iwl_pcie_free_bd_size(trans, use_rx_td); 746 747 /* 748 * Allocate the circular buffer of Read Buffer Descriptors 749 * (RBDs) 750 */ 751 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 752 &rxq->bd_dma, GFP_KERNEL); 753 if (!rxq->bd) 754 goto err; 755 756 if (trans->trans_cfg->mq_rx_supported) { 757 rxq->used_bd = dma_alloc_coherent(dev, 758 (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size, 759 &rxq->used_bd_dma, 760 GFP_KERNEL); 761 if (!rxq->used_bd) 762 goto err; 763 } 764 765 rxq->rb_stts = trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 766 rxq->rb_stts_dma = 767 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 768 769 if (!use_rx_td) 770 return 0; 771 772 /* Allocate the driver's pointer to TR tail */ 773 rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16), 774 &rxq->tr_tail_dma, GFP_KERNEL); 775 if (!rxq->tr_tail) 776 goto err; 777 778 /* Allocate the driver's pointer to CR tail */ 779 rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16), 780 &rxq->cr_tail_dma, GFP_KERNEL); 781 if (!rxq->cr_tail) 782 goto err; 783 784 return 0; 785 786 err: 787 for (i = 0; i < trans->num_rx_queues; i++) { 788 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 789 790 iwl_pcie_free_rxq_dma(trans, rxq); 791 } 792 793 return -ENOMEM; 794 } 795 796 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 797 { 798 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 799 struct iwl_rb_allocator *rba = &trans_pcie->rba; 800 int i, ret; 801 size_t rb_stts_size = trans->trans_cfg->device_family >= 802 IWL_DEVICE_FAMILY_AX210 ? 803 sizeof(__le16) : sizeof(struct iwl_rb_status); 804 805 if (WARN_ON(trans_pcie->rxq)) 806 return -EINVAL; 807 808 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 809 GFP_KERNEL); 810 if (!trans_pcie->rxq) 811 return -ENOMEM; 812 813 spin_lock_init(&rba->lock); 814 815 /* 816 * Allocate the driver's pointer to receive buffer status. 817 * Allocate for all queues continuously (HW requirement). 818 */ 819 trans_pcie->base_rb_stts = 820 dma_alloc_coherent(trans->dev, 821 rb_stts_size * trans->num_rx_queues, 822 &trans_pcie->base_rb_stts_dma, 823 GFP_KERNEL); 824 if (!trans_pcie->base_rb_stts) { 825 ret = -ENOMEM; 826 goto err; 827 } 828 829 for (i = 0; i < trans->num_rx_queues; i++) { 830 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 831 832 rxq->id = i; 833 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 834 if (ret) 835 goto err; 836 } 837 return 0; 838 839 err: 840 if (trans_pcie->base_rb_stts) { 841 dma_free_coherent(trans->dev, 842 rb_stts_size * trans->num_rx_queues, 843 trans_pcie->base_rb_stts, 844 trans_pcie->base_rb_stts_dma); 845 trans_pcie->base_rb_stts = NULL; 846 trans_pcie->base_rb_stts_dma = 0; 847 } 848 kfree(trans_pcie->rxq); 849 850 return ret; 851 } 852 853 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 854 { 855 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 856 u32 rb_size; 857 unsigned long flags; 858 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 859 860 switch (trans_pcie->rx_buf_size) { 861 case IWL_AMSDU_4K: 862 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 863 break; 864 case IWL_AMSDU_8K: 865 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 866 break; 867 case IWL_AMSDU_12K: 868 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 869 break; 870 default: 871 WARN_ON(1); 872 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 873 } 874 875 if (!iwl_trans_grab_nic_access(trans, &flags)) 876 return; 877 878 /* Stop Rx DMA */ 879 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 880 /* reset and flush pointers */ 881 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 882 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 883 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 884 885 /* Reset driver's Rx queue write index */ 886 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 887 888 /* Tell device where to find RBD circular buffer in DRAM */ 889 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 890 (u32)(rxq->bd_dma >> 8)); 891 892 /* Tell device where in DRAM to update its Rx status */ 893 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 894 rxq->rb_stts_dma >> 4); 895 896 /* Enable Rx DMA 897 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 898 * the credit mechanism in 5000 HW RX FIFO 899 * Direct rx interrupts to hosts 900 * Rx buffer size 4 or 8k or 12k 901 * RB timeout 0x10 902 * 256 RBDs 903 */ 904 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 905 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 906 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 907 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 908 rb_size | 909 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 910 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 911 912 iwl_trans_release_nic_access(trans, &flags); 913 914 /* Set interrupt coalescing timer to default (2048 usecs) */ 915 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 916 917 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 918 if (trans->cfg->host_interrupt_operation_mode) 919 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 920 } 921 922 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 923 { 924 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 925 u32 rb_size, enabled = 0; 926 unsigned long flags; 927 int i; 928 929 switch (trans_pcie->rx_buf_size) { 930 case IWL_AMSDU_2K: 931 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 932 break; 933 case IWL_AMSDU_4K: 934 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 935 break; 936 case IWL_AMSDU_8K: 937 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 938 break; 939 case IWL_AMSDU_12K: 940 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 941 break; 942 default: 943 WARN_ON(1); 944 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 945 } 946 947 if (!iwl_trans_grab_nic_access(trans, &flags)) 948 return; 949 950 /* Stop Rx DMA */ 951 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 952 /* disable free amd used rx queue operation */ 953 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 954 955 for (i = 0; i < trans->num_rx_queues; i++) { 956 /* Tell device where to find RBD free table in DRAM */ 957 iwl_write_prph64_no_grab(trans, 958 RFH_Q_FRBDCB_BA_LSB(i), 959 trans_pcie->rxq[i].bd_dma); 960 /* Tell device where to find RBD used table in DRAM */ 961 iwl_write_prph64_no_grab(trans, 962 RFH_Q_URBDCB_BA_LSB(i), 963 trans_pcie->rxq[i].used_bd_dma); 964 /* Tell device where in DRAM to update its Rx status */ 965 iwl_write_prph64_no_grab(trans, 966 RFH_Q_URBD_STTS_WPTR_LSB(i), 967 trans_pcie->rxq[i].rb_stts_dma); 968 /* Reset device indice tables */ 969 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 970 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 971 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 972 973 enabled |= BIT(i) | BIT(i + 16); 974 } 975 976 /* 977 * Enable Rx DMA 978 * Rx buffer size 4 or 8k or 12k 979 * Min RB size 4 or 8 980 * Drop frames that exceed RB size 981 * 512 RBDs 982 */ 983 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 984 RFH_DMA_EN_ENABLE_VAL | rb_size | 985 RFH_RXF_DMA_MIN_RB_4_8 | 986 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 987 RFH_RXF_DMA_RBDCB_SIZE_512); 988 989 /* 990 * Activate DMA snooping. 991 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 992 * Default queue is 0 993 */ 994 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 995 RFH_GEN_CFG_RFH_DMA_SNOOP | 996 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 997 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 998 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 999 trans->cfg->integrated ? 1000 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 1001 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 1002 /* Enable the relevant rx queues */ 1003 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 1004 1005 iwl_trans_release_nic_access(trans, &flags); 1006 1007 /* Set interrupt coalescing timer to default (2048 usecs) */ 1008 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1009 } 1010 1011 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 1012 { 1013 lockdep_assert_held(&rxq->lock); 1014 1015 INIT_LIST_HEAD(&rxq->rx_free); 1016 INIT_LIST_HEAD(&rxq->rx_used); 1017 rxq->free_count = 0; 1018 rxq->used_count = 0; 1019 } 1020 1021 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget) 1022 { 1023 WARN_ON(1); 1024 return 0; 1025 } 1026 1027 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1028 { 1029 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1030 struct iwl_rxq *def_rxq; 1031 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1032 int i, err, queue_size, allocator_pool_size, num_alloc; 1033 1034 if (!trans_pcie->rxq) { 1035 err = iwl_pcie_rx_alloc(trans); 1036 if (err) 1037 return err; 1038 } 1039 def_rxq = trans_pcie->rxq; 1040 1041 cancel_work_sync(&rba->rx_alloc); 1042 1043 spin_lock(&rba->lock); 1044 atomic_set(&rba->req_pending, 0); 1045 atomic_set(&rba->req_ready, 0); 1046 INIT_LIST_HEAD(&rba->rbd_allocated); 1047 INIT_LIST_HEAD(&rba->rbd_empty); 1048 spin_unlock(&rba->lock); 1049 1050 /* free all first - we might be reconfigured for a different size */ 1051 iwl_pcie_free_rbs_pool(trans); 1052 1053 for (i = 0; i < RX_QUEUE_SIZE; i++) 1054 def_rxq->queue[i] = NULL; 1055 1056 for (i = 0; i < trans->num_rx_queues; i++) { 1057 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1058 1059 spin_lock(&rxq->lock); 1060 /* 1061 * Set read write pointer to reflect that we have processed 1062 * and used all buffers, but have not restocked the Rx queue 1063 * with fresh buffers 1064 */ 1065 rxq->read = 0; 1066 rxq->write = 0; 1067 rxq->write_actual = 0; 1068 memset(rxq->rb_stts, 0, 1069 (trans->trans_cfg->device_family >= 1070 IWL_DEVICE_FAMILY_AX210) ? 1071 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1072 1073 iwl_pcie_rx_init_rxb_lists(rxq); 1074 1075 if (!rxq->napi.poll) 1076 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1077 iwl_pcie_dummy_napi_poll, 64); 1078 1079 spin_unlock(&rxq->lock); 1080 } 1081 1082 /* move the pool to the default queue and allocator ownerships */ 1083 queue_size = trans->trans_cfg->mq_rx_supported ? 1084 MQ_RX_NUM_RBDS : RX_QUEUE_SIZE; 1085 allocator_pool_size = trans->num_rx_queues * 1086 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1087 num_alloc = queue_size + allocator_pool_size; 1088 BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) != 1089 ARRAY_SIZE(trans_pcie->rx_pool)); 1090 for (i = 0; i < num_alloc; i++) { 1091 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1092 1093 if (i < allocator_pool_size) 1094 list_add(&rxb->list, &rba->rbd_empty); 1095 else 1096 list_add(&rxb->list, &def_rxq->rx_used); 1097 trans_pcie->global_table[i] = rxb; 1098 rxb->vid = (u16)(i + 1); 1099 rxb->invalid = true; 1100 } 1101 1102 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1103 1104 return 0; 1105 } 1106 1107 int iwl_pcie_rx_init(struct iwl_trans *trans) 1108 { 1109 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1110 int ret = _iwl_pcie_rx_init(trans); 1111 1112 if (ret) 1113 return ret; 1114 1115 if (trans->trans_cfg->mq_rx_supported) 1116 iwl_pcie_rx_mq_hw_init(trans); 1117 else 1118 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1119 1120 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1121 1122 spin_lock(&trans_pcie->rxq->lock); 1123 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1124 spin_unlock(&trans_pcie->rxq->lock); 1125 1126 return 0; 1127 } 1128 1129 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1130 { 1131 /* Set interrupt coalescing timer to default (2048 usecs) */ 1132 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1133 1134 /* 1135 * We don't configure the RFH. 1136 * Restock will be done at alive, after firmware configured the RFH. 1137 */ 1138 return _iwl_pcie_rx_init(trans); 1139 } 1140 1141 void iwl_pcie_rx_free(struct iwl_trans *trans) 1142 { 1143 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1144 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1145 int i; 1146 size_t rb_stts_size = trans->trans_cfg->device_family >= 1147 IWL_DEVICE_FAMILY_AX210 ? 1148 sizeof(__le16) : sizeof(struct iwl_rb_status); 1149 1150 /* 1151 * if rxq is NULL, it means that nothing has been allocated, 1152 * exit now 1153 */ 1154 if (!trans_pcie->rxq) { 1155 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1156 return; 1157 } 1158 1159 cancel_work_sync(&rba->rx_alloc); 1160 1161 iwl_pcie_free_rbs_pool(trans); 1162 1163 if (trans_pcie->base_rb_stts) { 1164 dma_free_coherent(trans->dev, 1165 rb_stts_size * trans->num_rx_queues, 1166 trans_pcie->base_rb_stts, 1167 trans_pcie->base_rb_stts_dma); 1168 trans_pcie->base_rb_stts = NULL; 1169 trans_pcie->base_rb_stts_dma = 0; 1170 } 1171 1172 for (i = 0; i < trans->num_rx_queues; i++) { 1173 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1174 1175 iwl_pcie_free_rxq_dma(trans, rxq); 1176 1177 if (rxq->napi.poll) 1178 netif_napi_del(&rxq->napi); 1179 } 1180 kfree(trans_pcie->rxq); 1181 } 1182 1183 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1184 struct iwl_rb_allocator *rba) 1185 { 1186 spin_lock(&rba->lock); 1187 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1188 spin_unlock(&rba->lock); 1189 } 1190 1191 /* 1192 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1193 * 1194 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1195 * When there are 2 empty RBDs - a request for allocation is posted 1196 */ 1197 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1198 struct iwl_rx_mem_buffer *rxb, 1199 struct iwl_rxq *rxq, bool emergency) 1200 { 1201 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1202 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1203 1204 /* Move the RBD to the used list, will be moved to allocator in batches 1205 * before claiming or posting a request*/ 1206 list_add_tail(&rxb->list, &rxq->rx_used); 1207 1208 if (unlikely(emergency)) 1209 return; 1210 1211 /* Count the allocator owned RBDs */ 1212 rxq->used_count++; 1213 1214 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1215 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1216 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1217 * after but we still need to post another request. 1218 */ 1219 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1220 /* Move the 2 RBDs to the allocator ownership. 1221 Allocator has another 6 from pool for the request completion*/ 1222 iwl_pcie_rx_move_to_allocator(rxq, rba); 1223 1224 atomic_inc(&rba->req_pending); 1225 queue_work(rba->alloc_wq, &rba->rx_alloc); 1226 } 1227 } 1228 1229 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1230 struct iwl_rxq *rxq, 1231 struct iwl_rx_mem_buffer *rxb, 1232 bool emergency, 1233 int i) 1234 { 1235 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1236 struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue]; 1237 bool page_stolen = false; 1238 int max_len = PAGE_SIZE << trans_pcie->rx_page_order; 1239 u32 offset = 0; 1240 1241 if (WARN_ON(!rxb)) 1242 return; 1243 1244 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1245 1246 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1247 struct iwl_rx_packet *pkt; 1248 u16 sequence; 1249 bool reclaim; 1250 int index, cmd_index, len; 1251 struct iwl_rx_cmd_buffer rxcb = { 1252 ._offset = offset, 1253 ._rx_page_order = trans_pcie->rx_page_order, 1254 ._page = rxb->page, 1255 ._page_stolen = false, 1256 .truesize = max_len, 1257 }; 1258 1259 pkt = rxb_addr(&rxcb); 1260 1261 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1262 IWL_DEBUG_RX(trans, 1263 "Q %d: RB end marker at offset %d\n", 1264 rxq->id, offset); 1265 break; 1266 } 1267 1268 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1269 FH_RSCSR_RXQ_POS != rxq->id, 1270 "frame on invalid queue - is on %d and indicates %d\n", 1271 rxq->id, 1272 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1273 FH_RSCSR_RXQ_POS); 1274 1275 IWL_DEBUG_RX(trans, 1276 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1277 rxq->id, offset, 1278 iwl_get_cmd_string(trans, 1279 iwl_cmd_id(pkt->hdr.cmd, 1280 pkt->hdr.group_id, 1281 0)), 1282 pkt->hdr.group_id, pkt->hdr.cmd, 1283 le16_to_cpu(pkt->hdr.sequence)); 1284 1285 len = iwl_rx_packet_len(pkt); 1286 len += sizeof(u32); /* account for status word */ 1287 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1288 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1289 1290 /* Reclaim a command buffer only if this packet is a response 1291 * to a (driver-originated) command. 1292 * If the packet (e.g. Rx frame) originated from uCode, 1293 * there is no command buffer to reclaim. 1294 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1295 * but apparently a few don't get set; catch them here. */ 1296 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1297 if (reclaim && !pkt->hdr.group_id) { 1298 int i; 1299 1300 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1301 if (trans_pcie->no_reclaim_cmds[i] == 1302 pkt->hdr.cmd) { 1303 reclaim = false; 1304 break; 1305 } 1306 } 1307 } 1308 1309 sequence = le16_to_cpu(pkt->hdr.sequence); 1310 index = SEQ_TO_INDEX(sequence); 1311 cmd_index = iwl_pcie_get_cmd_index(txq, index); 1312 1313 if (rxq->id == trans_pcie->def_rx_queue) 1314 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1315 &rxcb); 1316 else 1317 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1318 &rxcb, rxq->id); 1319 1320 if (reclaim) { 1321 kzfree(txq->entries[cmd_index].free_buf); 1322 txq->entries[cmd_index].free_buf = NULL; 1323 } 1324 1325 /* 1326 * After here, we should always check rxcb._page_stolen, 1327 * if it is true then one of the handlers took the page. 1328 */ 1329 1330 if (reclaim) { 1331 /* Invoke any callbacks, transfer the buffer to caller, 1332 * and fire off the (possibly) blocking 1333 * iwl_trans_send_cmd() 1334 * as we reclaim the driver command queue */ 1335 if (!rxcb._page_stolen) 1336 iwl_pcie_hcmd_complete(trans, &rxcb); 1337 else 1338 IWL_WARN(trans, "Claim null rxb?\n"); 1339 } 1340 1341 page_stolen |= rxcb._page_stolen; 1342 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1343 break; 1344 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1345 } 1346 1347 /* page was stolen from us -- free our reference */ 1348 if (page_stolen) { 1349 __free_pages(rxb->page, trans_pcie->rx_page_order); 1350 rxb->page = NULL; 1351 } 1352 1353 /* Reuse the page if possible. For notification packets and 1354 * SKBs that fail to Rx correctly, add them back into the 1355 * rx_free list for reuse later. */ 1356 if (rxb->page != NULL) { 1357 rxb->page_dma = 1358 dma_map_page(trans->dev, rxb->page, 0, 1359 PAGE_SIZE << trans_pcie->rx_page_order, 1360 DMA_FROM_DEVICE); 1361 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1362 /* 1363 * free the page(s) as well to not break 1364 * the invariant that the items on the used 1365 * list have no page(s) 1366 */ 1367 __free_pages(rxb->page, trans_pcie->rx_page_order); 1368 rxb->page = NULL; 1369 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1370 } else { 1371 list_add_tail(&rxb->list, &rxq->rx_free); 1372 rxq->free_count++; 1373 } 1374 } else 1375 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1376 } 1377 1378 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1379 struct iwl_rxq *rxq, int i) 1380 { 1381 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1382 struct iwl_rx_mem_buffer *rxb; 1383 u16 vid; 1384 1385 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1386 1387 if (!trans->trans_cfg->mq_rx_supported) { 1388 rxb = rxq->queue[i]; 1389 rxq->queue[i] = NULL; 1390 return rxb; 1391 } 1392 1393 /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */ 1394 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1395 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF; 1396 else 1397 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF; 1398 1399 if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table)) 1400 goto out_err; 1401 1402 rxb = trans_pcie->global_table[vid - 1]; 1403 if (rxb->invalid) 1404 goto out_err; 1405 1406 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1407 1408 rxb->invalid = true; 1409 1410 return rxb; 1411 1412 out_err: 1413 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1414 iwl_force_nmi(trans); 1415 return NULL; 1416 } 1417 1418 /* 1419 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1420 */ 1421 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue) 1422 { 1423 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1424 struct napi_struct *napi; 1425 struct iwl_rxq *rxq; 1426 u32 r, i, count = 0; 1427 bool emergency = false; 1428 1429 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1430 return; 1431 1432 rxq = &trans_pcie->rxq[queue]; 1433 1434 restart: 1435 spin_lock(&rxq->lock); 1436 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1437 * buffer that the driver may process (last buffer filled by ucode). */ 1438 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1439 i = rxq->read; 1440 1441 /* W/A 9000 device step A0 wrap-around bug */ 1442 r &= (rxq->queue_size - 1); 1443 1444 /* Rx interrupt, but nothing sent from uCode */ 1445 if (i == r) 1446 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1447 1448 while (i != r) { 1449 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1450 struct iwl_rx_mem_buffer *rxb; 1451 /* number of RBDs still waiting for page allocation */ 1452 u32 rb_pending_alloc = 1453 atomic_read(&trans_pcie->rba.req_pending) * 1454 RX_CLAIM_REQ_ALLOC; 1455 1456 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1457 !emergency)) { 1458 iwl_pcie_rx_move_to_allocator(rxq, rba); 1459 emergency = true; 1460 IWL_DEBUG_TPT(trans, 1461 "RX path is in emergency. Pending allocations %d\n", 1462 rb_pending_alloc); 1463 } 1464 1465 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1466 1467 rxb = iwl_pcie_get_rxb(trans, rxq, i); 1468 if (!rxb) 1469 goto out; 1470 1471 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1472 1473 i = (i + 1) & (rxq->queue_size - 1); 1474 1475 /* 1476 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1477 * try to claim the pre-allocated buffers from the allocator. 1478 * If not ready - will try to reclaim next time. 1479 * There is no need to reschedule work - allocator exits only 1480 * on success 1481 */ 1482 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1483 iwl_pcie_rx_allocator_get(trans, rxq); 1484 1485 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1486 /* Add the remaining empty RBDs for allocator use */ 1487 iwl_pcie_rx_move_to_allocator(rxq, rba); 1488 } else if (emergency) { 1489 count++; 1490 if (count == 8) { 1491 count = 0; 1492 if (rb_pending_alloc < rxq->queue_size / 3) { 1493 IWL_DEBUG_TPT(trans, 1494 "RX path exited emergency. Pending allocations %d\n", 1495 rb_pending_alloc); 1496 emergency = false; 1497 } 1498 1499 rxq->read = i; 1500 spin_unlock(&rxq->lock); 1501 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1502 iwl_pcie_rxq_restock(trans, rxq); 1503 goto restart; 1504 } 1505 } 1506 } 1507 out: 1508 /* Backtrack one entry */ 1509 rxq->read = i; 1510 /* update cr tail with the rxq read pointer */ 1511 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1512 *rxq->cr_tail = cpu_to_le16(r); 1513 spin_unlock(&rxq->lock); 1514 1515 /* 1516 * handle a case where in emergency there are some unallocated RBDs. 1517 * those RBDs are in the used list, but are not tracked by the queue's 1518 * used_count which counts allocator owned RBDs. 1519 * unallocated emergency RBDs must be allocated on exit, otherwise 1520 * when called again the function may not be in emergency mode and 1521 * they will be handed to the allocator with no tracking in the RBD 1522 * allocator counters, which will lead to them never being claimed back 1523 * by the queue. 1524 * by allocating them here, they are now in the queue free list, and 1525 * will be restocked by the next call of iwl_pcie_rxq_restock. 1526 */ 1527 if (unlikely(emergency && count)) 1528 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1529 1530 napi = &rxq->napi; 1531 if (napi->poll) { 1532 if (napi->rx_count) { 1533 netif_receive_skb_list(&napi->rx_list); 1534 INIT_LIST_HEAD(&napi->rx_list); 1535 napi->rx_count = 0; 1536 } 1537 1538 napi_gro_flush(napi, false); 1539 } 1540 1541 iwl_pcie_rxq_restock(trans, rxq); 1542 } 1543 1544 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1545 { 1546 u8 queue = entry->entry; 1547 struct msix_entry *entries = entry - queue; 1548 1549 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1550 } 1551 1552 /* 1553 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1554 * This interrupt handler should be used with RSS queue only. 1555 */ 1556 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1557 { 1558 struct msix_entry *entry = dev_id; 1559 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1560 struct iwl_trans *trans = trans_pcie->trans; 1561 1562 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1563 1564 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1565 return IRQ_NONE; 1566 1567 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1568 1569 local_bh_disable(); 1570 iwl_pcie_rx_handle(trans, entry->entry); 1571 local_bh_enable(); 1572 1573 iwl_pcie_clear_irq(trans, entry); 1574 1575 lock_map_release(&trans->sync_cmd_lockdep_map); 1576 1577 return IRQ_HANDLED; 1578 } 1579 1580 /* 1581 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1582 */ 1583 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1584 { 1585 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1586 int i; 1587 1588 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1589 if (trans->cfg->internal_wimax_coex && 1590 !trans->cfg->apmg_not_supported && 1591 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1592 APMS_CLK_VAL_MRB_FUNC_MODE) || 1593 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1594 APMG_PS_CTRL_VAL_RESET_REQ))) { 1595 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1596 iwl_op_mode_wimax_active(trans->op_mode); 1597 wake_up(&trans_pcie->wait_command_queue); 1598 return; 1599 } 1600 1601 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1602 if (!trans_pcie->txq[i]) 1603 continue; 1604 del_timer(&trans_pcie->txq[i]->stuck_timer); 1605 } 1606 1607 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1608 * before we wake up the command caller, to ensure a proper cleanup. */ 1609 iwl_trans_fw_error(trans); 1610 1611 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1612 wake_up(&trans_pcie->wait_command_queue); 1613 } 1614 1615 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1616 { 1617 u32 inta; 1618 1619 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1620 1621 trace_iwlwifi_dev_irq(trans->dev); 1622 1623 /* Discover which interrupts are active/pending */ 1624 inta = iwl_read32(trans, CSR_INT); 1625 1626 /* the thread will service interrupts and re-enable them */ 1627 return inta; 1628 } 1629 1630 /* a device (PCI-E) page is 4096 bytes long */ 1631 #define ICT_SHIFT 12 1632 #define ICT_SIZE (1 << ICT_SHIFT) 1633 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1634 1635 /* interrupt handler using ict table, with this interrupt driver will 1636 * stop using INTA register to get device's interrupt, reading this register 1637 * is expensive, device will write interrupts in ICT dram table, increment 1638 * index then will fire interrupt to driver, driver will OR all ICT table 1639 * entries from current index up to table entry with 0 value. the result is 1640 * the interrupt we need to service, driver will set the entries back to 0 and 1641 * set index. 1642 */ 1643 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1644 { 1645 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1646 u32 inta; 1647 u32 val = 0; 1648 u32 read; 1649 1650 trace_iwlwifi_dev_irq(trans->dev); 1651 1652 /* Ignore interrupt if there's nothing in NIC to service. 1653 * This may be due to IRQ shared with another device, 1654 * or due to sporadic interrupts thrown from our NIC. */ 1655 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1656 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1657 if (!read) 1658 return 0; 1659 1660 /* 1661 * Collect all entries up to the first 0, starting from ict_index; 1662 * note we already read at ict_index. 1663 */ 1664 do { 1665 val |= read; 1666 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1667 trans_pcie->ict_index, read); 1668 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1669 trans_pcie->ict_index = 1670 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1671 1672 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1673 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1674 read); 1675 } while (read); 1676 1677 /* We should not get this value, just ignore it. */ 1678 if (val == 0xffffffff) 1679 val = 0; 1680 1681 /* 1682 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1683 * (bit 15 before shifting it to 31) to clear when using interrupt 1684 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1685 * so we use them to decide on the real state of the Rx bit. 1686 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1687 */ 1688 if (val & 0xC0000) 1689 val |= 0x8000; 1690 1691 inta = (0xff & val) | ((0xff00 & val) << 16); 1692 return inta; 1693 } 1694 1695 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1696 { 1697 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1698 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1699 bool hw_rfkill, prev, report; 1700 1701 mutex_lock(&trans_pcie->mutex); 1702 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1703 hw_rfkill = iwl_is_rfkill_set(trans); 1704 if (hw_rfkill) { 1705 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1706 set_bit(STATUS_RFKILL_HW, &trans->status); 1707 } 1708 if (trans_pcie->opmode_down) 1709 report = hw_rfkill; 1710 else 1711 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1712 1713 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1714 hw_rfkill ? "disable radio" : "enable radio"); 1715 1716 isr_stats->rfkill++; 1717 1718 if (prev != report) 1719 iwl_trans_pcie_rf_kill(trans, report); 1720 mutex_unlock(&trans_pcie->mutex); 1721 1722 if (hw_rfkill) { 1723 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1724 &trans->status)) 1725 IWL_DEBUG_RF_KILL(trans, 1726 "Rfkill while SYNC HCMD in flight\n"); 1727 wake_up(&trans_pcie->wait_command_queue); 1728 } else { 1729 clear_bit(STATUS_RFKILL_HW, &trans->status); 1730 if (trans_pcie->opmode_down) 1731 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1732 } 1733 } 1734 1735 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1736 { 1737 struct iwl_trans *trans = dev_id; 1738 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1739 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1740 u32 inta = 0; 1741 u32 handled = 0; 1742 1743 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1744 1745 spin_lock(&trans_pcie->irq_lock); 1746 1747 /* dram interrupt table not set yet, 1748 * use legacy interrupt. 1749 */ 1750 if (likely(trans_pcie->use_ict)) 1751 inta = iwl_pcie_int_cause_ict(trans); 1752 else 1753 inta = iwl_pcie_int_cause_non_ict(trans); 1754 1755 if (iwl_have_debug_level(IWL_DL_ISR)) { 1756 IWL_DEBUG_ISR(trans, 1757 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1758 inta, trans_pcie->inta_mask, 1759 iwl_read32(trans, CSR_INT_MASK), 1760 iwl_read32(trans, CSR_FH_INT_STATUS)); 1761 if (inta & (~trans_pcie->inta_mask)) 1762 IWL_DEBUG_ISR(trans, 1763 "We got a masked interrupt (0x%08x)\n", 1764 inta & (~trans_pcie->inta_mask)); 1765 } 1766 1767 inta &= trans_pcie->inta_mask; 1768 1769 /* 1770 * Ignore interrupt if there's nothing in NIC to service. 1771 * This may be due to IRQ shared with another device, 1772 * or due to sporadic interrupts thrown from our NIC. 1773 */ 1774 if (unlikely(!inta)) { 1775 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1776 /* 1777 * Re-enable interrupts here since we don't 1778 * have anything to service 1779 */ 1780 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1781 _iwl_enable_interrupts(trans); 1782 spin_unlock(&trans_pcie->irq_lock); 1783 lock_map_release(&trans->sync_cmd_lockdep_map); 1784 return IRQ_NONE; 1785 } 1786 1787 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1788 /* 1789 * Hardware disappeared. It might have 1790 * already raised an interrupt. 1791 */ 1792 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1793 spin_unlock(&trans_pcie->irq_lock); 1794 goto out; 1795 } 1796 1797 /* Ack/clear/reset pending uCode interrupts. 1798 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1799 */ 1800 /* There is a hardware bug in the interrupt mask function that some 1801 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1802 * they are disabled in the CSR_INT_MASK register. Furthermore the 1803 * ICT interrupt handling mechanism has another bug that might cause 1804 * these unmasked interrupts fail to be detected. We workaround the 1805 * hardware bugs here by ACKing all the possible interrupts so that 1806 * interrupt coalescing can still be achieved. 1807 */ 1808 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1809 1810 if (iwl_have_debug_level(IWL_DL_ISR)) 1811 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1812 inta, iwl_read32(trans, CSR_INT_MASK)); 1813 1814 spin_unlock(&trans_pcie->irq_lock); 1815 1816 /* Now service all interrupt bits discovered above. */ 1817 if (inta & CSR_INT_BIT_HW_ERR) { 1818 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1819 1820 /* Tell the device to stop sending interrupts */ 1821 iwl_disable_interrupts(trans); 1822 1823 isr_stats->hw++; 1824 iwl_pcie_irq_handle_error(trans); 1825 1826 handled |= CSR_INT_BIT_HW_ERR; 1827 1828 goto out; 1829 } 1830 1831 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1832 if (inta & CSR_INT_BIT_SCD) { 1833 IWL_DEBUG_ISR(trans, 1834 "Scheduler finished to transmit the frame/frames.\n"); 1835 isr_stats->sch++; 1836 } 1837 1838 /* Alive notification via Rx interrupt will do the real work */ 1839 if (inta & CSR_INT_BIT_ALIVE) { 1840 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1841 isr_stats->alive++; 1842 if (trans->trans_cfg->gen2) { 1843 /* 1844 * We can restock, since firmware configured 1845 * the RFH 1846 */ 1847 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1848 } 1849 1850 handled |= CSR_INT_BIT_ALIVE; 1851 } 1852 1853 /* Safely ignore these bits for debug checks below */ 1854 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1855 1856 /* HW RF KILL switch toggled */ 1857 if (inta & CSR_INT_BIT_RF_KILL) { 1858 iwl_pcie_handle_rfkill_irq(trans); 1859 handled |= CSR_INT_BIT_RF_KILL; 1860 } 1861 1862 /* Chip got too hot and stopped itself */ 1863 if (inta & CSR_INT_BIT_CT_KILL) { 1864 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1865 isr_stats->ctkill++; 1866 handled |= CSR_INT_BIT_CT_KILL; 1867 } 1868 1869 /* Error detected by uCode */ 1870 if (inta & CSR_INT_BIT_SW_ERR) { 1871 IWL_ERR(trans, "Microcode SW error detected. " 1872 " Restarting 0x%X.\n", inta); 1873 isr_stats->sw++; 1874 iwl_pcie_irq_handle_error(trans); 1875 handled |= CSR_INT_BIT_SW_ERR; 1876 } 1877 1878 /* uCode wakes up after power-down sleep */ 1879 if (inta & CSR_INT_BIT_WAKEUP) { 1880 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1881 iwl_pcie_rxq_check_wrptr(trans); 1882 iwl_pcie_txq_check_wrptrs(trans); 1883 1884 isr_stats->wakeup++; 1885 1886 handled |= CSR_INT_BIT_WAKEUP; 1887 } 1888 1889 /* All uCode command responses, including Tx command responses, 1890 * Rx "responses" (frame-received notification), and other 1891 * notifications from uCode come through here*/ 1892 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1893 CSR_INT_BIT_RX_PERIODIC)) { 1894 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1895 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1896 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1897 iwl_write32(trans, CSR_FH_INT_STATUS, 1898 CSR_FH_INT_RX_MASK); 1899 } 1900 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1901 handled |= CSR_INT_BIT_RX_PERIODIC; 1902 iwl_write32(trans, 1903 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1904 } 1905 /* Sending RX interrupt require many steps to be done in the 1906 * the device: 1907 * 1- write interrupt to current index in ICT table. 1908 * 2- dma RX frame. 1909 * 3- update RX shared data to indicate last write index. 1910 * 4- send interrupt. 1911 * This could lead to RX race, driver could receive RX interrupt 1912 * but the shared data changes does not reflect this; 1913 * periodic interrupt will detect any dangling Rx activity. 1914 */ 1915 1916 /* Disable periodic interrupt; we use it as just a one-shot. */ 1917 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1918 CSR_INT_PERIODIC_DIS); 1919 1920 /* 1921 * Enable periodic interrupt in 8 msec only if we received 1922 * real RX interrupt (instead of just periodic int), to catch 1923 * any dangling Rx interrupt. If it was just the periodic 1924 * interrupt, there was no dangling Rx activity, and no need 1925 * to extend the periodic interrupt; one-shot is enough. 1926 */ 1927 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 1928 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1929 CSR_INT_PERIODIC_ENA); 1930 1931 isr_stats->rx++; 1932 1933 local_bh_disable(); 1934 iwl_pcie_rx_handle(trans, 0); 1935 local_bh_enable(); 1936 } 1937 1938 /* This "Tx" DMA channel is used only for loading uCode */ 1939 if (inta & CSR_INT_BIT_FH_TX) { 1940 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 1941 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 1942 isr_stats->tx++; 1943 handled |= CSR_INT_BIT_FH_TX; 1944 /* Wake up uCode load routine, now that load is complete */ 1945 trans_pcie->ucode_write_complete = true; 1946 wake_up(&trans_pcie->ucode_write_waitq); 1947 } 1948 1949 if (inta & ~handled) { 1950 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 1951 isr_stats->unhandled++; 1952 } 1953 1954 if (inta & ~(trans_pcie->inta_mask)) { 1955 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 1956 inta & ~trans_pcie->inta_mask); 1957 } 1958 1959 spin_lock(&trans_pcie->irq_lock); 1960 /* only Re-enable all interrupt if disabled by irq */ 1961 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1962 _iwl_enable_interrupts(trans); 1963 /* we are loading the firmware, enable FH_TX interrupt only */ 1964 else if (handled & CSR_INT_BIT_FH_TX) 1965 iwl_enable_fw_load_int(trans); 1966 /* Re-enable RF_KILL if it occurred */ 1967 else if (handled & CSR_INT_BIT_RF_KILL) 1968 iwl_enable_rfkill_int(trans); 1969 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 1970 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 1971 iwl_enable_fw_load_int_ctx_info(trans); 1972 spin_unlock(&trans_pcie->irq_lock); 1973 1974 out: 1975 lock_map_release(&trans->sync_cmd_lockdep_map); 1976 return IRQ_HANDLED; 1977 } 1978 1979 /****************************************************************************** 1980 * 1981 * ICT functions 1982 * 1983 ******************************************************************************/ 1984 1985 /* Free dram table */ 1986 void iwl_pcie_free_ict(struct iwl_trans *trans) 1987 { 1988 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1989 1990 if (trans_pcie->ict_tbl) { 1991 dma_free_coherent(trans->dev, ICT_SIZE, 1992 trans_pcie->ict_tbl, 1993 trans_pcie->ict_tbl_dma); 1994 trans_pcie->ict_tbl = NULL; 1995 trans_pcie->ict_tbl_dma = 0; 1996 } 1997 } 1998 1999 /* 2000 * allocate dram shared table, it is an aligned memory 2001 * block of ICT_SIZE. 2002 * also reset all data related to ICT table interrupt. 2003 */ 2004 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2005 { 2006 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2007 2008 trans_pcie->ict_tbl = 2009 dma_alloc_coherent(trans->dev, ICT_SIZE, 2010 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2011 if (!trans_pcie->ict_tbl) 2012 return -ENOMEM; 2013 2014 /* just an API sanity check ... it is guaranteed to be aligned */ 2015 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2016 iwl_pcie_free_ict(trans); 2017 return -EINVAL; 2018 } 2019 2020 return 0; 2021 } 2022 2023 /* Device is going up inform it about using ICT interrupt table, 2024 * also we need to tell the driver to start using ICT interrupt. 2025 */ 2026 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2027 { 2028 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2029 u32 val; 2030 2031 if (!trans_pcie->ict_tbl) 2032 return; 2033 2034 spin_lock(&trans_pcie->irq_lock); 2035 _iwl_disable_interrupts(trans); 2036 2037 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2038 2039 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2040 2041 val |= CSR_DRAM_INT_TBL_ENABLE | 2042 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2043 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2044 2045 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2046 2047 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2048 trans_pcie->use_ict = true; 2049 trans_pcie->ict_index = 0; 2050 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2051 _iwl_enable_interrupts(trans); 2052 spin_unlock(&trans_pcie->irq_lock); 2053 } 2054 2055 /* Device is going down disable ict interrupt usage */ 2056 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2057 { 2058 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2059 2060 spin_lock(&trans_pcie->irq_lock); 2061 trans_pcie->use_ict = false; 2062 spin_unlock(&trans_pcie->irq_lock); 2063 } 2064 2065 irqreturn_t iwl_pcie_isr(int irq, void *data) 2066 { 2067 struct iwl_trans *trans = data; 2068 2069 if (!trans) 2070 return IRQ_NONE; 2071 2072 /* Disable (but don't clear!) interrupts here to avoid 2073 * back-to-back ISRs and sporadic interrupts from our NIC. 2074 * If we have something to service, the tasklet will re-enable ints. 2075 * If we *don't* have something, we'll re-enable before leaving here. 2076 */ 2077 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2078 2079 return IRQ_WAKE_THREAD; 2080 } 2081 2082 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2083 { 2084 return IRQ_WAKE_THREAD; 2085 } 2086 2087 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2088 { 2089 struct msix_entry *entry = dev_id; 2090 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2091 struct iwl_trans *trans = trans_pcie->trans; 2092 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2093 u32 inta_fh, inta_hw; 2094 2095 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2096 2097 spin_lock(&trans_pcie->irq_lock); 2098 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2099 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2100 /* 2101 * Clear causes registers to avoid being handling the same cause. 2102 */ 2103 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); 2104 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2105 spin_unlock(&trans_pcie->irq_lock); 2106 2107 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2108 2109 if (unlikely(!(inta_fh | inta_hw))) { 2110 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2111 lock_map_release(&trans->sync_cmd_lockdep_map); 2112 return IRQ_NONE; 2113 } 2114 2115 if (iwl_have_debug_level(IWL_DL_ISR)) { 2116 IWL_DEBUG_ISR(trans, 2117 "ISR inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2118 inta_fh, trans_pcie->fh_mask, 2119 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2120 if (inta_fh & ~trans_pcie->fh_mask) 2121 IWL_DEBUG_ISR(trans, 2122 "We got a masked interrupt (0x%08x)\n", 2123 inta_fh & ~trans_pcie->fh_mask); 2124 } 2125 2126 inta_fh &= trans_pcie->fh_mask; 2127 2128 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2129 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2130 local_bh_disable(); 2131 iwl_pcie_rx_handle(trans, 0); 2132 local_bh_enable(); 2133 } 2134 2135 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2136 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2137 local_bh_disable(); 2138 iwl_pcie_rx_handle(trans, 1); 2139 local_bh_enable(); 2140 } 2141 2142 /* This "Tx" DMA channel is used only for loading uCode */ 2143 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2144 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2145 isr_stats->tx++; 2146 /* 2147 * Wake up uCode load routine, 2148 * now that load is complete 2149 */ 2150 trans_pcie->ucode_write_complete = true; 2151 wake_up(&trans_pcie->ucode_write_waitq); 2152 } 2153 2154 /* Error detected by uCode */ 2155 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || 2156 (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR)) { 2157 IWL_ERR(trans, 2158 "Microcode SW error detected. Restarting 0x%X.\n", 2159 inta_fh); 2160 isr_stats->sw++; 2161 iwl_pcie_irq_handle_error(trans); 2162 } 2163 2164 /* After checking FH register check HW register */ 2165 if (iwl_have_debug_level(IWL_DL_ISR)) { 2166 IWL_DEBUG_ISR(trans, 2167 "ISR inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2168 inta_hw, trans_pcie->hw_mask, 2169 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2170 if (inta_hw & ~trans_pcie->hw_mask) 2171 IWL_DEBUG_ISR(trans, 2172 "We got a masked interrupt 0x%08x\n", 2173 inta_hw & ~trans_pcie->hw_mask); 2174 } 2175 2176 inta_hw &= trans_pcie->hw_mask; 2177 2178 /* Alive notification via Rx interrupt will do the real work */ 2179 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2180 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2181 isr_stats->alive++; 2182 if (trans->trans_cfg->gen2) { 2183 /* We can restock, since firmware configured the RFH */ 2184 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2185 } 2186 } 2187 2188 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) { 2189 u32 sleep_notif = 2190 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2191 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2192 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2193 IWL_DEBUG_ISR(trans, 2194 "Sx interrupt: sleep notification = 0x%x\n", 2195 sleep_notif); 2196 trans_pcie->sx_complete = true; 2197 wake_up(&trans_pcie->sx_waitq); 2198 } else { 2199 /* uCode wakes up after power-down sleep */ 2200 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2201 iwl_pcie_rxq_check_wrptr(trans); 2202 iwl_pcie_txq_check_wrptrs(trans); 2203 2204 isr_stats->wakeup++; 2205 } 2206 } 2207 2208 if (inta_hw & MSIX_HW_INT_CAUSES_REG_IML) { 2209 /* Reflect IML transfer status */ 2210 int res = iwl_read32(trans, CSR_IML_RESP_ADDR); 2211 2212 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res); 2213 if (res == IWL_IMAGE_RESP_FAIL) { 2214 isr_stats->sw++; 2215 iwl_pcie_irq_handle_error(trans); 2216 } 2217 } 2218 2219 /* Chip got too hot and stopped itself */ 2220 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2221 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2222 isr_stats->ctkill++; 2223 } 2224 2225 /* HW RF KILL switch toggled */ 2226 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2227 iwl_pcie_handle_rfkill_irq(trans); 2228 2229 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2230 IWL_ERR(trans, 2231 "Hardware error detected. Restarting.\n"); 2232 2233 isr_stats->hw++; 2234 trans->dbg.hw_error = true; 2235 iwl_pcie_irq_handle_error(trans); 2236 } 2237 2238 iwl_pcie_clear_irq(trans, entry); 2239 2240 lock_map_release(&trans->sync_cmd_lockdep_map); 2241 2242 return IRQ_HANDLED; 2243 } 2244