xref: /linux/drivers/net/wireless/intel/iwlwifi/pcie/rx.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2003-2014, 2018-2024 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/sched.h>
8 #include <linux/wait.h>
9 #include <linux/gfp.h>
10 
11 #include "iwl-prph.h"
12 #include "iwl-io.h"
13 #include "internal.h"
14 #include "iwl-op-mode.h"
15 #include "iwl-context-info-gen3.h"
16 
17 /******************************************************************************
18  *
19  * RX path functions
20  *
21  ******************************************************************************/
22 
23 /*
24  * Rx theory of operation
25  *
26  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
27  * each of which point to Receive Buffers to be filled by the NIC.  These get
28  * used not only for Rx frames, but for any command response or notification
29  * from the NIC.  The driver and NIC manage the Rx buffers by means
30  * of indexes into the circular buffer.
31  *
32  * Rx Queue Indexes
33  * The host/firmware share two index registers for managing the Rx buffers.
34  *
35  * The READ index maps to the first position that the firmware may be writing
36  * to -- the driver can read up to (but not including) this position and get
37  * good data.
38  * The READ index is managed by the firmware once the card is enabled.
39  *
40  * The WRITE index maps to the last position the driver has read from -- the
41  * position preceding WRITE is the last slot the firmware can place a packet.
42  *
43  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
44  * WRITE = READ.
45  *
46  * During initialization, the host sets up the READ queue position to the first
47  * INDEX position, and WRITE to the last (READ - 1 wrapped)
48  *
49  * When the firmware places a packet in a buffer, it will advance the READ index
50  * and fire the RX interrupt.  The driver can then query the READ index and
51  * process as many packets as possible, moving the WRITE index forward as it
52  * resets the Rx queue buffers with new memory.
53  *
54  * The management in the driver is as follows:
55  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
56  *   When the interrupt handler is called, the request is processed.
57  *   The page is either stolen - transferred to the upper layer
58  *   or reused - added immediately to the iwl->rxq->rx_free list.
59  * + When the page is stolen - the driver updates the matching queue's used
60  *   count, detaches the RBD and transfers it to the queue used list.
61  *   When there are two used RBDs - they are transferred to the allocator empty
62  *   list. Work is then scheduled for the allocator to start allocating
63  *   eight buffers.
64  *   When there are another 6 used RBDs - they are transferred to the allocator
65  *   empty list and the driver tries to claim the pre-allocated buffers and
66  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
67  *   until ready.
68  *   When there are 8+ buffers in the free list - either from allocation or from
69  *   8 reused unstolen pages - restock is called to update the FW and indexes.
70  * + In order to make sure the allocator always has RBDs to use for allocation
71  *   the allocator has initial pool in the size of num_queues*(8-2) - the
72  *   maximum missing RBDs per allocation request (request posted with 2
73  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
74  *   The queues supplies the recycle of the rest of the RBDs.
75  * + A received packet is processed and handed to the kernel network stack,
76  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
77  * + If there are no allocated buffers in iwl->rxq->rx_free,
78  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
79  *   If there were enough free buffers and RX_STALLED is set it is cleared.
80  *
81  *
82  * Driver sequence:
83  *
84  * iwl_rxq_alloc()            Allocates rx_free
85  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
86  *                            iwl_pcie_rxq_restock.
87  *                            Used only during initialization.
88  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
89  *                            queue, updates firmware pointers, and updates
90  *                            the WRITE index.
91  * iwl_pcie_rx_allocator()     Background work for allocating pages.
92  *
93  * -- enable interrupts --
94  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
95  *                            READ INDEX, detaching the SKB from the pool.
96  *                            Moves the packet buffer from queue to rx_used.
97  *                            Posts and claims requests to the allocator.
98  *                            Calls iwl_pcie_rxq_restock to refill any empty
99  *                            slots.
100  *
101  * RBD life-cycle:
102  *
103  * Init:
104  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
105  *
106  * Regular Receive interrupt:
107  * Page Stolen:
108  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
109  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
110  * Page not Stolen:
111  * rxq.queue -> rxq.rx_free -> rxq.queue
112  * ...
113  *
114  */
115 
116 /*
117  * iwl_rxq_space - Return number of free slots available in queue.
118  */
119 static int iwl_rxq_space(const struct iwl_rxq *rxq)
120 {
121 	/* Make sure rx queue size is a power of 2 */
122 	WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
123 
124 	/*
125 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
126 	 * between empty and completely full queues.
127 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
128 	 * defined for negative dividends.
129 	 */
130 	return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
131 }
132 
133 /*
134  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
135  */
136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
137 {
138 	return cpu_to_le32((u32)(dma_addr >> 8));
139 }
140 
141 /*
142  * iwl_pcie_rx_stop - stops the Rx DMA
143  */
144 int iwl_pcie_rx_stop(struct iwl_trans *trans)
145 {
146 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
147 		/* TODO: remove this once fw does it */
148 		iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
149 		return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3,
150 					      RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
151 	} else if (trans->trans_cfg->mq_rx_supported) {
152 		iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
153 		return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
154 					   RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
155 	} else {
156 		iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
157 		return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
158 					   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
159 					   1000);
160 	}
161 }
162 
163 /*
164  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
165  */
166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
167 				    struct iwl_rxq *rxq)
168 {
169 	u32 reg;
170 
171 	lockdep_assert_held(&rxq->lock);
172 
173 	/*
174 	 * explicitly wake up the NIC if:
175 	 * 1. shadow registers aren't enabled
176 	 * 2. there is a chance that the NIC is asleep
177 	 */
178 	if (!trans->trans_cfg->base_params->shadow_reg_enable &&
179 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
180 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
181 
182 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
183 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
184 				       reg);
185 			iwl_set_bit(trans, CSR_GP_CNTRL,
186 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
187 			rxq->need_update = true;
188 			return;
189 		}
190 	}
191 
192 	rxq->write_actual = round_down(rxq->write, 8);
193 	if (!trans->trans_cfg->mq_rx_supported)
194 		iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
195 	else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
196 		iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual |
197 			    HBUS_TARG_WRPTR_RX_Q(rxq->id));
198 	else
199 		iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
200 			    rxq->write_actual);
201 }
202 
203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
204 {
205 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
206 	int i;
207 
208 	for (i = 0; i < trans->num_rx_queues; i++) {
209 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
210 
211 		if (!rxq->need_update)
212 			continue;
213 		spin_lock_bh(&rxq->lock);
214 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
215 		rxq->need_update = false;
216 		spin_unlock_bh(&rxq->lock);
217 	}
218 }
219 
220 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
221 				struct iwl_rxq *rxq,
222 				struct iwl_rx_mem_buffer *rxb)
223 {
224 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
225 		struct iwl_rx_transfer_desc *bd = rxq->bd;
226 
227 		BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64));
228 
229 		bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
230 		bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
231 	} else {
232 		__le64 *bd = rxq->bd;
233 
234 		bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
235 	}
236 
237 	IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
238 		     (u32)rxb->vid, rxq->id, rxq->write);
239 }
240 
241 /*
242  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
243  */
244 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
245 				  struct iwl_rxq *rxq)
246 {
247 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
248 	struct iwl_rx_mem_buffer *rxb;
249 
250 	/*
251 	 * If the device isn't enabled - no need to try to add buffers...
252 	 * This can happen when we stop the device and still have an interrupt
253 	 * pending. We stop the APM before we sync the interrupts because we
254 	 * have to (see comment there). On the other hand, since the APM is
255 	 * stopped, we cannot access the HW (in particular not prph).
256 	 * So don't try to restock if the APM has been already stopped.
257 	 */
258 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
259 		return;
260 
261 	spin_lock_bh(&rxq->lock);
262 	while (rxq->free_count) {
263 		/* Get next free Rx buffer, remove from free list */
264 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
265 				       list);
266 		list_del(&rxb->list);
267 		rxb->invalid = false;
268 		/* some low bits are expected to be unset (depending on hw) */
269 		WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask);
270 		/* Point to Rx buffer via next RBD in circular buffer */
271 		iwl_pcie_restock_bd(trans, rxq, rxb);
272 		rxq->write = (rxq->write + 1) & (rxq->queue_size - 1);
273 		rxq->free_count--;
274 	}
275 	spin_unlock_bh(&rxq->lock);
276 
277 	/*
278 	 * If we've added more space for the firmware to place data, tell it.
279 	 * Increment device's write pointer in multiples of 8.
280 	 */
281 	if (rxq->write_actual != (rxq->write & ~0x7)) {
282 		spin_lock_bh(&rxq->lock);
283 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
284 		spin_unlock_bh(&rxq->lock);
285 	}
286 }
287 
288 /*
289  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
290  */
291 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
292 				  struct iwl_rxq *rxq)
293 {
294 	struct iwl_rx_mem_buffer *rxb;
295 
296 	/*
297 	 * If the device isn't enabled - not need to try to add buffers...
298 	 * This can happen when we stop the device and still have an interrupt
299 	 * pending. We stop the APM before we sync the interrupts because we
300 	 * have to (see comment there). On the other hand, since the APM is
301 	 * stopped, we cannot access the HW (in particular not prph).
302 	 * So don't try to restock if the APM has been already stopped.
303 	 */
304 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
305 		return;
306 
307 	spin_lock_bh(&rxq->lock);
308 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
309 		__le32 *bd = (__le32 *)rxq->bd;
310 		/* The overwritten rxb must be a used one */
311 		rxb = rxq->queue[rxq->write];
312 		BUG_ON(rxb && rxb->page);
313 
314 		/* Get next free Rx buffer, remove from free list */
315 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
316 				       list);
317 		list_del(&rxb->list);
318 		rxb->invalid = false;
319 
320 		/* Point to Rx buffer via next RBD in circular buffer */
321 		bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
322 		rxq->queue[rxq->write] = rxb;
323 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
324 		rxq->free_count--;
325 	}
326 	spin_unlock_bh(&rxq->lock);
327 
328 	/* If we've added more space for the firmware to place data, tell it.
329 	 * Increment device's write pointer in multiples of 8. */
330 	if (rxq->write_actual != (rxq->write & ~0x7)) {
331 		spin_lock_bh(&rxq->lock);
332 		iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
333 		spin_unlock_bh(&rxq->lock);
334 	}
335 }
336 
337 /*
338  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
339  *
340  * If there are slots in the RX queue that need to be restocked,
341  * and we have free pre-allocated buffers, fill the ranks as much
342  * as we can, pulling from rx_free.
343  *
344  * This moves the 'write' index forward to catch up with 'processed', and
345  * also updates the memory address in the firmware to reference the new
346  * target buffer.
347  */
348 static
349 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
350 {
351 	if (trans->trans_cfg->mq_rx_supported)
352 		iwl_pcie_rxmq_restock(trans, rxq);
353 	else
354 		iwl_pcie_rxsq_restock(trans, rxq);
355 }
356 
357 /*
358  * iwl_pcie_rx_alloc_page - allocates and returns a page.
359  *
360  */
361 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
362 					   u32 *offset, gfp_t priority)
363 {
364 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
365 	unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size);
366 	unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order;
367 	struct page *page;
368 	gfp_t gfp_mask = priority;
369 
370 	if (trans_pcie->rx_page_order > 0)
371 		gfp_mask |= __GFP_COMP;
372 
373 	if (trans_pcie->alloc_page) {
374 		spin_lock_bh(&trans_pcie->alloc_page_lock);
375 		/* recheck */
376 		if (trans_pcie->alloc_page) {
377 			*offset = trans_pcie->alloc_page_used;
378 			page = trans_pcie->alloc_page;
379 			trans_pcie->alloc_page_used += rbsize;
380 			if (trans_pcie->alloc_page_used >= allocsize)
381 				trans_pcie->alloc_page = NULL;
382 			else
383 				get_page(page);
384 			spin_unlock_bh(&trans_pcie->alloc_page_lock);
385 			return page;
386 		}
387 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
388 	}
389 
390 	/* Alloc a new receive buffer */
391 	page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
392 	if (!page) {
393 		if (net_ratelimit())
394 			IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
395 				       trans_pcie->rx_page_order);
396 		/*
397 		 * Issue an error if we don't have enough pre-allocated
398 		  * buffers.
399 		 */
400 		if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
401 			IWL_CRIT(trans,
402 				 "Failed to alloc_pages\n");
403 		return NULL;
404 	}
405 
406 	if (2 * rbsize <= allocsize) {
407 		spin_lock_bh(&trans_pcie->alloc_page_lock);
408 		if (!trans_pcie->alloc_page) {
409 			get_page(page);
410 			trans_pcie->alloc_page = page;
411 			trans_pcie->alloc_page_used = rbsize;
412 		}
413 		spin_unlock_bh(&trans_pcie->alloc_page_lock);
414 	}
415 
416 	*offset = 0;
417 	return page;
418 }
419 
420 /*
421  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
422  *
423  * A used RBD is an Rx buffer that has been given to the stack. To use it again
424  * a page must be allocated and the RBD must point to the page. This function
425  * doesn't change the HW pointer but handles the list of pages that is used by
426  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
427  * allocated buffers.
428  */
429 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
430 			    struct iwl_rxq *rxq)
431 {
432 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
433 	struct iwl_rx_mem_buffer *rxb;
434 	struct page *page;
435 
436 	while (1) {
437 		unsigned int offset;
438 
439 		spin_lock_bh(&rxq->lock);
440 		if (list_empty(&rxq->rx_used)) {
441 			spin_unlock_bh(&rxq->lock);
442 			return;
443 		}
444 		spin_unlock_bh(&rxq->lock);
445 
446 		page = iwl_pcie_rx_alloc_page(trans, &offset, priority);
447 		if (!page)
448 			return;
449 
450 		spin_lock_bh(&rxq->lock);
451 
452 		if (list_empty(&rxq->rx_used)) {
453 			spin_unlock_bh(&rxq->lock);
454 			__free_pages(page, trans_pcie->rx_page_order);
455 			return;
456 		}
457 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
458 				       list);
459 		list_del(&rxb->list);
460 		spin_unlock_bh(&rxq->lock);
461 
462 		BUG_ON(rxb->page);
463 		rxb->page = page;
464 		rxb->offset = offset;
465 		/* Get physical address of the RB */
466 		rxb->page_dma =
467 			dma_map_page(trans->dev, page, rxb->offset,
468 				     trans_pcie->rx_buf_bytes,
469 				     DMA_FROM_DEVICE);
470 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
471 			rxb->page = NULL;
472 			spin_lock_bh(&rxq->lock);
473 			list_add(&rxb->list, &rxq->rx_used);
474 			spin_unlock_bh(&rxq->lock);
475 			__free_pages(page, trans_pcie->rx_page_order);
476 			return;
477 		}
478 
479 		spin_lock_bh(&rxq->lock);
480 
481 		list_add_tail(&rxb->list, &rxq->rx_free);
482 		rxq->free_count++;
483 
484 		spin_unlock_bh(&rxq->lock);
485 	}
486 }
487 
488 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
489 {
490 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
491 	int i;
492 
493 	if (!trans_pcie->rx_pool)
494 		return;
495 
496 	for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) {
497 		if (!trans_pcie->rx_pool[i].page)
498 			continue;
499 		dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
500 			       trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE);
501 		__free_pages(trans_pcie->rx_pool[i].page,
502 			     trans_pcie->rx_page_order);
503 		trans_pcie->rx_pool[i].page = NULL;
504 	}
505 }
506 
507 /*
508  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
509  *
510  * Allocates for each received request 8 pages
511  * Called as a scheduled work item.
512  */
513 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
514 {
515 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
516 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
517 	struct list_head local_empty;
518 	int pending = atomic_read(&rba->req_pending);
519 
520 	IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
521 
522 	/* If we were scheduled - there is at least one request */
523 	spin_lock_bh(&rba->lock);
524 	/* swap out the rba->rbd_empty to a local list */
525 	list_replace_init(&rba->rbd_empty, &local_empty);
526 	spin_unlock_bh(&rba->lock);
527 
528 	while (pending) {
529 		int i;
530 		LIST_HEAD(local_allocated);
531 		gfp_t gfp_mask = GFP_KERNEL;
532 
533 		/* Do not post a warning if there are only a few requests */
534 		if (pending < RX_PENDING_WATERMARK)
535 			gfp_mask |= __GFP_NOWARN;
536 
537 		for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
538 			struct iwl_rx_mem_buffer *rxb;
539 			struct page *page;
540 
541 			/* List should never be empty - each reused RBD is
542 			 * returned to the list, and initial pool covers any
543 			 * possible gap between the time the page is allocated
544 			 * to the time the RBD is added.
545 			 */
546 			BUG_ON(list_empty(&local_empty));
547 			/* Get the first rxb from the rbd list */
548 			rxb = list_first_entry(&local_empty,
549 					       struct iwl_rx_mem_buffer, list);
550 			BUG_ON(rxb->page);
551 
552 			/* Alloc a new receive buffer */
553 			page = iwl_pcie_rx_alloc_page(trans, &rxb->offset,
554 						      gfp_mask);
555 			if (!page)
556 				continue;
557 			rxb->page = page;
558 
559 			/* Get physical address of the RB */
560 			rxb->page_dma = dma_map_page(trans->dev, page,
561 						     rxb->offset,
562 						     trans_pcie->rx_buf_bytes,
563 						     DMA_FROM_DEVICE);
564 			if (dma_mapping_error(trans->dev, rxb->page_dma)) {
565 				rxb->page = NULL;
566 				__free_pages(page, trans_pcie->rx_page_order);
567 				continue;
568 			}
569 
570 			/* move the allocated entry to the out list */
571 			list_move(&rxb->list, &local_allocated);
572 			i++;
573 		}
574 
575 		atomic_dec(&rba->req_pending);
576 		pending--;
577 
578 		if (!pending) {
579 			pending = atomic_read(&rba->req_pending);
580 			if (pending)
581 				IWL_DEBUG_TPT(trans,
582 					      "Got more pending allocation requests = %d\n",
583 					      pending);
584 		}
585 
586 		spin_lock_bh(&rba->lock);
587 		/* add the allocated rbds to the allocator allocated list */
588 		list_splice_tail(&local_allocated, &rba->rbd_allocated);
589 		/* get more empty RBDs for current pending requests */
590 		list_splice_tail_init(&rba->rbd_empty, &local_empty);
591 		spin_unlock_bh(&rba->lock);
592 
593 		atomic_inc(&rba->req_ready);
594 
595 	}
596 
597 	spin_lock_bh(&rba->lock);
598 	/* return unused rbds to the allocator empty list */
599 	list_splice_tail(&local_empty, &rba->rbd_empty);
600 	spin_unlock_bh(&rba->lock);
601 
602 	IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
603 }
604 
605 /*
606  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
607 .*
608 .* Called by queue when the queue posted allocation request and
609  * has freed 8 RBDs in order to restock itself.
610  * This function directly moves the allocated RBs to the queue's ownership
611  * and updates the relevant counters.
612  */
613 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
614 				      struct iwl_rxq *rxq)
615 {
616 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
617 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
618 	int i;
619 
620 	lockdep_assert_held(&rxq->lock);
621 
622 	/*
623 	 * atomic_dec_if_positive returns req_ready - 1 for any scenario.
624 	 * If req_ready is 0 atomic_dec_if_positive will return -1 and this
625 	 * function will return early, as there are no ready requests.
626 	 * atomic_dec_if_positive will perofrm the *actual* decrement only if
627 	 * req_ready > 0, i.e. - there are ready requests and the function
628 	 * hands one request to the caller.
629 	 */
630 	if (atomic_dec_if_positive(&rba->req_ready) < 0)
631 		return;
632 
633 	spin_lock(&rba->lock);
634 	for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
635 		/* Get next free Rx buffer, remove it from free list */
636 		struct iwl_rx_mem_buffer *rxb =
637 			list_first_entry(&rba->rbd_allocated,
638 					 struct iwl_rx_mem_buffer, list);
639 
640 		list_move(&rxb->list, &rxq->rx_free);
641 	}
642 	spin_unlock(&rba->lock);
643 
644 	rxq->used_count -= RX_CLAIM_REQ_ALLOC;
645 	rxq->free_count += RX_CLAIM_REQ_ALLOC;
646 }
647 
648 void iwl_pcie_rx_allocator_work(struct work_struct *data)
649 {
650 	struct iwl_rb_allocator *rba_p =
651 		container_of(data, struct iwl_rb_allocator, rx_alloc);
652 	struct iwl_trans_pcie *trans_pcie =
653 		container_of(rba_p, struct iwl_trans_pcie, rba);
654 
655 	iwl_pcie_rx_allocator(trans_pcie->trans);
656 }
657 
658 static int iwl_pcie_free_bd_size(struct iwl_trans *trans)
659 {
660 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
661 		return sizeof(struct iwl_rx_transfer_desc);
662 
663 	return trans->trans_cfg->mq_rx_supported ?
664 			sizeof(__le64) : sizeof(__le32);
665 }
666 
667 static int iwl_pcie_used_bd_size(struct iwl_trans *trans)
668 {
669 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
670 		return sizeof(struct iwl_rx_completion_desc_bz);
671 
672 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
673 		return sizeof(struct iwl_rx_completion_desc);
674 
675 	return sizeof(__le32);
676 }
677 
678 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
679 				  struct iwl_rxq *rxq)
680 {
681 	int free_size = iwl_pcie_free_bd_size(trans);
682 
683 	if (rxq->bd)
684 		dma_free_coherent(trans->dev,
685 				  free_size * rxq->queue_size,
686 				  rxq->bd, rxq->bd_dma);
687 	rxq->bd_dma = 0;
688 	rxq->bd = NULL;
689 
690 	rxq->rb_stts_dma = 0;
691 	rxq->rb_stts = NULL;
692 
693 	if (rxq->used_bd)
694 		dma_free_coherent(trans->dev,
695 				  iwl_pcie_used_bd_size(trans) *
696 					rxq->queue_size,
697 				  rxq->used_bd, rxq->used_bd_dma);
698 	rxq->used_bd_dma = 0;
699 	rxq->used_bd = NULL;
700 }
701 
702 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans)
703 {
704 	bool use_rx_td = (trans->trans_cfg->device_family >=
705 			  IWL_DEVICE_FAMILY_AX210);
706 
707 	if (use_rx_td)
708 		return sizeof(__le16);
709 
710 	return sizeof(struct iwl_rb_status);
711 }
712 
713 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
714 				  struct iwl_rxq *rxq)
715 {
716 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
717 	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
718 	struct device *dev = trans->dev;
719 	int i;
720 	int free_size;
721 
722 	spin_lock_init(&rxq->lock);
723 	if (trans->trans_cfg->mq_rx_supported)
724 		rxq->queue_size = trans->cfg->num_rbds;
725 	else
726 		rxq->queue_size = RX_QUEUE_SIZE;
727 
728 	free_size = iwl_pcie_free_bd_size(trans);
729 
730 	/*
731 	 * Allocate the circular buffer of Read Buffer Descriptors
732 	 * (RBDs)
733 	 */
734 	rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
735 				     &rxq->bd_dma, GFP_KERNEL);
736 	if (!rxq->bd)
737 		goto err;
738 
739 	if (trans->trans_cfg->mq_rx_supported) {
740 		rxq->used_bd = dma_alloc_coherent(dev,
741 						  iwl_pcie_used_bd_size(trans) *
742 							rxq->queue_size,
743 						  &rxq->used_bd_dma,
744 						  GFP_KERNEL);
745 		if (!rxq->used_bd)
746 			goto err;
747 	}
748 
749 	rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size;
750 	rxq->rb_stts_dma =
751 		trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size;
752 
753 	return 0;
754 
755 err:
756 	for (i = 0; i < trans->num_rx_queues; i++) {
757 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
758 
759 		iwl_pcie_free_rxq_dma(trans, rxq);
760 	}
761 
762 	return -ENOMEM;
763 }
764 
765 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
766 {
767 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
768 	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
769 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
770 	int i, ret;
771 
772 	if (WARN_ON(trans_pcie->rxq))
773 		return -EINVAL;
774 
775 	trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
776 				  GFP_KERNEL);
777 	trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
778 				      sizeof(trans_pcie->rx_pool[0]),
779 				      GFP_KERNEL);
780 	trans_pcie->global_table =
781 		kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs),
782 			sizeof(trans_pcie->global_table[0]),
783 			GFP_KERNEL);
784 	if (!trans_pcie->rxq || !trans_pcie->rx_pool ||
785 	    !trans_pcie->global_table) {
786 		ret = -ENOMEM;
787 		goto err;
788 	}
789 
790 	spin_lock_init(&rba->lock);
791 
792 	/*
793 	 * Allocate the driver's pointer to receive buffer status.
794 	 * Allocate for all queues continuously (HW requirement).
795 	 */
796 	trans_pcie->base_rb_stts =
797 			dma_alloc_coherent(trans->dev,
798 					   rb_stts_size * trans->num_rx_queues,
799 					   &trans_pcie->base_rb_stts_dma,
800 					   GFP_KERNEL);
801 	if (!trans_pcie->base_rb_stts) {
802 		ret = -ENOMEM;
803 		goto err;
804 	}
805 
806 	for (i = 0; i < trans->num_rx_queues; i++) {
807 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
808 
809 		rxq->id = i;
810 		ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
811 		if (ret)
812 			goto err;
813 	}
814 	return 0;
815 
816 err:
817 	if (trans_pcie->base_rb_stts) {
818 		dma_free_coherent(trans->dev,
819 				  rb_stts_size * trans->num_rx_queues,
820 				  trans_pcie->base_rb_stts,
821 				  trans_pcie->base_rb_stts_dma);
822 		trans_pcie->base_rb_stts = NULL;
823 		trans_pcie->base_rb_stts_dma = 0;
824 	}
825 	kfree(trans_pcie->rx_pool);
826 	trans_pcie->rx_pool = NULL;
827 	kfree(trans_pcie->global_table);
828 	trans_pcie->global_table = NULL;
829 	kfree(trans_pcie->rxq);
830 	trans_pcie->rxq = NULL;
831 
832 	return ret;
833 }
834 
835 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
836 {
837 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
838 	u32 rb_size;
839 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
840 
841 	switch (trans_pcie->rx_buf_size) {
842 	case IWL_AMSDU_4K:
843 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
844 		break;
845 	case IWL_AMSDU_8K:
846 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
847 		break;
848 	case IWL_AMSDU_12K:
849 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
850 		break;
851 	default:
852 		WARN_ON(1);
853 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
854 	}
855 
856 	if (!iwl_trans_grab_nic_access(trans))
857 		return;
858 
859 	/* Stop Rx DMA */
860 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
861 	/* reset and flush pointers */
862 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
863 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
864 	iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
865 
866 	/* Reset driver's Rx queue write index */
867 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
868 
869 	/* Tell device where to find RBD circular buffer in DRAM */
870 	iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
871 		    (u32)(rxq->bd_dma >> 8));
872 
873 	/* Tell device where in DRAM to update its Rx status */
874 	iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
875 		    rxq->rb_stts_dma >> 4);
876 
877 	/* Enable Rx DMA
878 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
879 	 *      the credit mechanism in 5000 HW RX FIFO
880 	 * Direct rx interrupts to hosts
881 	 * Rx buffer size 4 or 8k or 12k
882 	 * RB timeout 0x10
883 	 * 256 RBDs
884 	 */
885 	iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
886 		    FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
887 		    FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
888 		    FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
889 		    rb_size |
890 		    (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
891 		    (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
892 
893 	iwl_trans_release_nic_access(trans);
894 
895 	/* Set interrupt coalescing timer to default (2048 usecs) */
896 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
897 
898 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
899 	if (trans->cfg->host_interrupt_operation_mode)
900 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
901 }
902 
903 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
904 {
905 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
906 	u32 rb_size, enabled = 0;
907 	int i;
908 
909 	switch (trans_pcie->rx_buf_size) {
910 	case IWL_AMSDU_2K:
911 		rb_size = RFH_RXF_DMA_RB_SIZE_2K;
912 		break;
913 	case IWL_AMSDU_4K:
914 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
915 		break;
916 	case IWL_AMSDU_8K:
917 		rb_size = RFH_RXF_DMA_RB_SIZE_8K;
918 		break;
919 	case IWL_AMSDU_12K:
920 		rb_size = RFH_RXF_DMA_RB_SIZE_12K;
921 		break;
922 	default:
923 		WARN_ON(1);
924 		rb_size = RFH_RXF_DMA_RB_SIZE_4K;
925 	}
926 
927 	if (!iwl_trans_grab_nic_access(trans))
928 		return;
929 
930 	/* Stop Rx DMA */
931 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
932 	/* disable free amd used rx queue operation */
933 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
934 
935 	for (i = 0; i < trans->num_rx_queues; i++) {
936 		/* Tell device where to find RBD free table in DRAM */
937 		iwl_write_prph64_no_grab(trans,
938 					 RFH_Q_FRBDCB_BA_LSB(i),
939 					 trans_pcie->rxq[i].bd_dma);
940 		/* Tell device where to find RBD used table in DRAM */
941 		iwl_write_prph64_no_grab(trans,
942 					 RFH_Q_URBDCB_BA_LSB(i),
943 					 trans_pcie->rxq[i].used_bd_dma);
944 		/* Tell device where in DRAM to update its Rx status */
945 		iwl_write_prph64_no_grab(trans,
946 					 RFH_Q_URBD_STTS_WPTR_LSB(i),
947 					 trans_pcie->rxq[i].rb_stts_dma);
948 		/* Reset device indice tables */
949 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
950 		iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
951 		iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
952 
953 		enabled |= BIT(i) | BIT(i + 16);
954 	}
955 
956 	/*
957 	 * Enable Rx DMA
958 	 * Rx buffer size 4 or 8k or 12k
959 	 * Min RB size 4 or 8
960 	 * Drop frames that exceed RB size
961 	 * 512 RBDs
962 	 */
963 	iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
964 			       RFH_DMA_EN_ENABLE_VAL | rb_size |
965 			       RFH_RXF_DMA_MIN_RB_4_8 |
966 			       RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
967 			       RFH_RXF_DMA_RBDCB_SIZE_512);
968 
969 	/*
970 	 * Activate DMA snooping.
971 	 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
972 	 * Default queue is 0
973 	 */
974 	iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
975 			       RFH_GEN_CFG_RFH_DMA_SNOOP |
976 			       RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
977 			       RFH_GEN_CFG_SERVICE_DMA_SNOOP |
978 			       RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
979 					       trans->trans_cfg->integrated ?
980 					       RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
981 					       RFH_GEN_CFG_RB_CHUNK_SIZE_128));
982 	/* Enable the relevant rx queues */
983 	iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
984 
985 	iwl_trans_release_nic_access(trans);
986 
987 	/* Set interrupt coalescing timer to default (2048 usecs) */
988 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
989 }
990 
991 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
992 {
993 	lockdep_assert_held(&rxq->lock);
994 
995 	INIT_LIST_HEAD(&rxq->rx_free);
996 	INIT_LIST_HEAD(&rxq->rx_used);
997 	rxq->free_count = 0;
998 	rxq->used_count = 0;
999 }
1000 
1001 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget);
1002 
1003 static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev)
1004 {
1005 	return *(struct iwl_trans_pcie **)netdev_priv(dev);
1006 }
1007 
1008 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget)
1009 {
1010 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1011 	struct iwl_trans_pcie *trans_pcie;
1012 	struct iwl_trans *trans;
1013 	int ret;
1014 
1015 	trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1016 	trans = trans_pcie->trans;
1017 
1018 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1019 
1020 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n",
1021 		      rxq->id, ret, budget);
1022 
1023 	if (ret < budget) {
1024 		spin_lock(&trans_pcie->irq_lock);
1025 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1026 			_iwl_enable_interrupts(trans);
1027 		spin_unlock(&trans_pcie->irq_lock);
1028 
1029 		napi_complete_done(&rxq->napi, ret);
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget)
1036 {
1037 	struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi);
1038 	struct iwl_trans_pcie *trans_pcie;
1039 	struct iwl_trans *trans;
1040 	int ret;
1041 
1042 	trans_pcie = iwl_netdev_to_trans_pcie(napi->dev);
1043 	trans = trans_pcie->trans;
1044 
1045 	ret = iwl_pcie_rx_handle(trans, rxq->id, budget);
1046 	IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret,
1047 		      budget);
1048 
1049 	if (ret < budget) {
1050 		int irq_line = rxq->id;
1051 
1052 		/* FIRST_RSS is shared with line 0 */
1053 		if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS &&
1054 		    rxq->id == 1)
1055 			irq_line = 0;
1056 
1057 		spin_lock(&trans_pcie->irq_lock);
1058 		iwl_pcie_clear_irq(trans, irq_line);
1059 		spin_unlock(&trans_pcie->irq_lock);
1060 
1061 		napi_complete_done(&rxq->napi, ret);
1062 	}
1063 
1064 	return ret;
1065 }
1066 
1067 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans)
1068 {
1069 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1070 	int i;
1071 
1072 	if (unlikely(!trans_pcie->rxq))
1073 		return;
1074 
1075 	for (i = 0; i < trans->num_rx_queues; i++) {
1076 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1077 
1078 		if (rxq && rxq->napi.poll)
1079 			napi_synchronize(&rxq->napi);
1080 	}
1081 }
1082 
1083 static int _iwl_pcie_rx_init(struct iwl_trans *trans)
1084 {
1085 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1086 	struct iwl_rxq *def_rxq;
1087 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1088 	int i, err, queue_size, allocator_pool_size, num_alloc;
1089 
1090 	if (!trans_pcie->rxq) {
1091 		err = iwl_pcie_rx_alloc(trans);
1092 		if (err)
1093 			return err;
1094 	}
1095 	def_rxq = trans_pcie->rxq;
1096 
1097 	cancel_work_sync(&rba->rx_alloc);
1098 
1099 	spin_lock_bh(&rba->lock);
1100 	atomic_set(&rba->req_pending, 0);
1101 	atomic_set(&rba->req_ready, 0);
1102 	INIT_LIST_HEAD(&rba->rbd_allocated);
1103 	INIT_LIST_HEAD(&rba->rbd_empty);
1104 	spin_unlock_bh(&rba->lock);
1105 
1106 	/* free all first - we overwrite everything here */
1107 	iwl_pcie_free_rbs_pool(trans);
1108 
1109 	for (i = 0; i < RX_QUEUE_SIZE; i++)
1110 		def_rxq->queue[i] = NULL;
1111 
1112 	for (i = 0; i < trans->num_rx_queues; i++) {
1113 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1114 
1115 		spin_lock_bh(&rxq->lock);
1116 		/*
1117 		 * Set read write pointer to reflect that we have processed
1118 		 * and used all buffers, but have not restocked the Rx queue
1119 		 * with fresh buffers
1120 		 */
1121 		rxq->read = 0;
1122 		rxq->write = 0;
1123 		rxq->write_actual = 0;
1124 		memset(rxq->rb_stts, 0,
1125 		       (trans->trans_cfg->device_family >=
1126 			IWL_DEVICE_FAMILY_AX210) ?
1127 		       sizeof(__le16) : sizeof(struct iwl_rb_status));
1128 
1129 		iwl_pcie_rx_init_rxb_lists(rxq);
1130 
1131 		spin_unlock_bh(&rxq->lock);
1132 
1133 		if (!rxq->napi.poll) {
1134 			int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll;
1135 
1136 			if (trans_pcie->msix_enabled)
1137 				poll = iwl_pcie_napi_poll_msix;
1138 
1139 			netif_napi_add(trans_pcie->napi_dev, &rxq->napi,
1140 				       poll);
1141 			napi_enable(&rxq->napi);
1142 		}
1143 
1144 	}
1145 
1146 	/* move the pool to the default queue and allocator ownerships */
1147 	queue_size = trans->trans_cfg->mq_rx_supported ?
1148 			trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE;
1149 	allocator_pool_size = trans->num_rx_queues *
1150 		(RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1151 	num_alloc = queue_size + allocator_pool_size;
1152 
1153 	for (i = 0; i < num_alloc; i++) {
1154 		struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1155 
1156 		if (i < allocator_pool_size)
1157 			list_add(&rxb->list, &rba->rbd_empty);
1158 		else
1159 			list_add(&rxb->list, &def_rxq->rx_used);
1160 		trans_pcie->global_table[i] = rxb;
1161 		rxb->vid = (u16)(i + 1);
1162 		rxb->invalid = true;
1163 	}
1164 
1165 	iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1166 
1167 	return 0;
1168 }
1169 
1170 int iwl_pcie_rx_init(struct iwl_trans *trans)
1171 {
1172 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1173 	int ret = _iwl_pcie_rx_init(trans);
1174 
1175 	if (ret)
1176 		return ret;
1177 
1178 	if (trans->trans_cfg->mq_rx_supported)
1179 		iwl_pcie_rx_mq_hw_init(trans);
1180 	else
1181 		iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1182 
1183 	iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1184 
1185 	spin_lock_bh(&trans_pcie->rxq->lock);
1186 	iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1187 	spin_unlock_bh(&trans_pcie->rxq->lock);
1188 
1189 	return 0;
1190 }
1191 
1192 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1193 {
1194 	/* Set interrupt coalescing timer to default (2048 usecs) */
1195 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1196 
1197 	/*
1198 	 * We don't configure the RFH.
1199 	 * Restock will be done at alive, after firmware configured the RFH.
1200 	 */
1201 	return _iwl_pcie_rx_init(trans);
1202 }
1203 
1204 void iwl_pcie_rx_free(struct iwl_trans *trans)
1205 {
1206 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1207 	size_t rb_stts_size = iwl_pcie_rb_stts_size(trans);
1208 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1209 	int i;
1210 
1211 	/*
1212 	 * if rxq is NULL, it means that nothing has been allocated,
1213 	 * exit now
1214 	 */
1215 	if (!trans_pcie->rxq) {
1216 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1217 		return;
1218 	}
1219 
1220 	cancel_work_sync(&rba->rx_alloc);
1221 
1222 	iwl_pcie_free_rbs_pool(trans);
1223 
1224 	if (trans_pcie->base_rb_stts) {
1225 		dma_free_coherent(trans->dev,
1226 				  rb_stts_size * trans->num_rx_queues,
1227 				  trans_pcie->base_rb_stts,
1228 				  trans_pcie->base_rb_stts_dma);
1229 		trans_pcie->base_rb_stts = NULL;
1230 		trans_pcie->base_rb_stts_dma = 0;
1231 	}
1232 
1233 	for (i = 0; i < trans->num_rx_queues; i++) {
1234 		struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1235 
1236 		iwl_pcie_free_rxq_dma(trans, rxq);
1237 
1238 		if (rxq->napi.poll) {
1239 			napi_disable(&rxq->napi);
1240 			netif_napi_del(&rxq->napi);
1241 		}
1242 	}
1243 	kfree(trans_pcie->rx_pool);
1244 	kfree(trans_pcie->global_table);
1245 	kfree(trans_pcie->rxq);
1246 
1247 	if (trans_pcie->alloc_page)
1248 		__free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order);
1249 }
1250 
1251 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1252 					  struct iwl_rb_allocator *rba)
1253 {
1254 	spin_lock(&rba->lock);
1255 	list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1256 	spin_unlock(&rba->lock);
1257 }
1258 
1259 /*
1260  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1261  *
1262  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1263  * When there are 2 empty RBDs - a request for allocation is posted
1264  */
1265 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1266 				  struct iwl_rx_mem_buffer *rxb,
1267 				  struct iwl_rxq *rxq, bool emergency)
1268 {
1269 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1270 	struct iwl_rb_allocator *rba = &trans_pcie->rba;
1271 
1272 	/* Move the RBD to the used list, will be moved to allocator in batches
1273 	 * before claiming or posting a request*/
1274 	list_add_tail(&rxb->list, &rxq->rx_used);
1275 
1276 	if (unlikely(emergency))
1277 		return;
1278 
1279 	/* Count the allocator owned RBDs */
1280 	rxq->used_count++;
1281 
1282 	/* If we have RX_POST_REQ_ALLOC new released rx buffers -
1283 	 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1284 	 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1285 	 * after but we still need to post another request.
1286 	 */
1287 	if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1288 		/* Move the 2 RBDs to the allocator ownership.
1289 		 Allocator has another 6 from pool for the request completion*/
1290 		iwl_pcie_rx_move_to_allocator(rxq, rba);
1291 
1292 		atomic_inc(&rba->req_pending);
1293 		queue_work(rba->alloc_wq, &rba->rx_alloc);
1294 	}
1295 }
1296 
1297 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1298 				struct iwl_rxq *rxq,
1299 				struct iwl_rx_mem_buffer *rxb,
1300 				bool emergency,
1301 				int i)
1302 {
1303 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1304 	struct iwl_txq *txq = trans_pcie->txqs.txq[trans_pcie->txqs.cmd.q_id];
1305 	bool page_stolen = false;
1306 	int max_len = trans_pcie->rx_buf_bytes;
1307 	u32 offset = 0;
1308 
1309 	if (WARN_ON(!rxb))
1310 		return;
1311 
1312 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1313 
1314 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1315 		struct iwl_rx_packet *pkt;
1316 		bool reclaim;
1317 		int len;
1318 		struct iwl_rx_cmd_buffer rxcb = {
1319 			._offset = rxb->offset + offset,
1320 			._rx_page_order = trans_pcie->rx_page_order,
1321 			._page = rxb->page,
1322 			._page_stolen = false,
1323 			.truesize = max_len,
1324 		};
1325 
1326 		pkt = rxb_addr(&rxcb);
1327 
1328 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1329 			IWL_DEBUG_RX(trans,
1330 				     "Q %d: RB end marker at offset %d\n",
1331 				     rxq->id, offset);
1332 			break;
1333 		}
1334 
1335 		WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1336 			FH_RSCSR_RXQ_POS != rxq->id,
1337 		     "frame on invalid queue - is on %d and indicates %d\n",
1338 		     rxq->id,
1339 		     (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1340 			FH_RSCSR_RXQ_POS);
1341 
1342 		IWL_DEBUG_RX(trans,
1343 			     "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1344 			     rxq->id, offset,
1345 			     iwl_get_cmd_string(trans,
1346 						WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)),
1347 			     pkt->hdr.group_id, pkt->hdr.cmd,
1348 			     le16_to_cpu(pkt->hdr.sequence));
1349 
1350 		len = iwl_rx_packet_len(pkt);
1351 		len += sizeof(u32); /* account for status word */
1352 
1353 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1354 
1355 		/* check that what the device tells us made sense */
1356 		if (len < sizeof(*pkt) || offset > max_len)
1357 			break;
1358 
1359 		maybe_trace_iwlwifi_dev_rx(trans, pkt, len);
1360 
1361 		/* Reclaim a command buffer only if this packet is a response
1362 		 *   to a (driver-originated) command.
1363 		 * If the packet (e.g. Rx frame) originated from uCode,
1364 		 *   there is no command buffer to reclaim.
1365 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1366 		 *   but apparently a few don't get set; catch them here. */
1367 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1368 		if (reclaim && !pkt->hdr.group_id) {
1369 			int i;
1370 
1371 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1372 				if (trans_pcie->no_reclaim_cmds[i] ==
1373 							pkt->hdr.cmd) {
1374 					reclaim = false;
1375 					break;
1376 				}
1377 			}
1378 		}
1379 
1380 		if (rxq->id == IWL_DEFAULT_RX_QUEUE)
1381 			iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1382 				       &rxcb);
1383 		else
1384 			iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1385 					   &rxcb, rxq->id);
1386 
1387 		/*
1388 		 * After here, we should always check rxcb._page_stolen,
1389 		 * if it is true then one of the handlers took the page.
1390 		 */
1391 
1392 		if (reclaim && txq) {
1393 			u16 sequence = le16_to_cpu(pkt->hdr.sequence);
1394 			int index = SEQ_TO_INDEX(sequence);
1395 			int cmd_index = iwl_txq_get_cmd_index(txq, index);
1396 
1397 			kfree_sensitive(txq->entries[cmd_index].free_buf);
1398 			txq->entries[cmd_index].free_buf = NULL;
1399 
1400 			/* Invoke any callbacks, transfer the buffer to caller,
1401 			 * and fire off the (possibly) blocking
1402 			 * iwl_trans_send_cmd()
1403 			 * as we reclaim the driver command queue */
1404 			if (!rxcb._page_stolen)
1405 				iwl_pcie_hcmd_complete(trans, &rxcb);
1406 			else
1407 				IWL_WARN(trans, "Claim null rxb?\n");
1408 		}
1409 
1410 		page_stolen |= rxcb._page_stolen;
1411 		if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1412 			break;
1413 	}
1414 
1415 	/* page was stolen from us -- free our reference */
1416 	if (page_stolen) {
1417 		__free_pages(rxb->page, trans_pcie->rx_page_order);
1418 		rxb->page = NULL;
1419 	}
1420 
1421 	/* Reuse the page if possible. For notification packets and
1422 	 * SKBs that fail to Rx correctly, add them back into the
1423 	 * rx_free list for reuse later. */
1424 	if (rxb->page != NULL) {
1425 		rxb->page_dma =
1426 			dma_map_page(trans->dev, rxb->page, rxb->offset,
1427 				     trans_pcie->rx_buf_bytes,
1428 				     DMA_FROM_DEVICE);
1429 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1430 			/*
1431 			 * free the page(s) as well to not break
1432 			 * the invariant that the items on the used
1433 			 * list have no page(s)
1434 			 */
1435 			__free_pages(rxb->page, trans_pcie->rx_page_order);
1436 			rxb->page = NULL;
1437 			iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1438 		} else {
1439 			list_add_tail(&rxb->list, &rxq->rx_free);
1440 			rxq->free_count++;
1441 		}
1442 	} else
1443 		iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1444 }
1445 
1446 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1447 						  struct iwl_rxq *rxq, int i,
1448 						  bool *join)
1449 {
1450 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1451 	struct iwl_rx_mem_buffer *rxb;
1452 	u16 vid;
1453 
1454 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32);
1455 	BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4);
1456 
1457 	if (!trans->trans_cfg->mq_rx_supported) {
1458 		rxb = rxq->queue[i];
1459 		rxq->queue[i] = NULL;
1460 		return rxb;
1461 	}
1462 
1463 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) {
1464 		struct iwl_rx_completion_desc_bz *cd = rxq->used_bd;
1465 
1466 		vid = le16_to_cpu(cd[i].rbid);
1467 		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1468 	} else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1469 		struct iwl_rx_completion_desc *cd = rxq->used_bd;
1470 
1471 		vid = le16_to_cpu(cd[i].rbid);
1472 		*join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED;
1473 	} else {
1474 		__le32 *cd = rxq->used_bd;
1475 
1476 		vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */
1477 	}
1478 
1479 	if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs))
1480 		goto out_err;
1481 
1482 	rxb = trans_pcie->global_table[vid - 1];
1483 	if (rxb->invalid)
1484 		goto out_err;
1485 
1486 	IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1487 
1488 	rxb->invalid = true;
1489 
1490 	return rxb;
1491 
1492 out_err:
1493 	WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1494 	iwl_force_nmi(trans);
1495 	return NULL;
1496 }
1497 
1498 /*
1499  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1500  */
1501 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget)
1502 {
1503 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1504 	struct iwl_rxq *rxq;
1505 	u32 r, i, count = 0, handled = 0;
1506 	bool emergency = false;
1507 
1508 	if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd))
1509 		return budget;
1510 
1511 	rxq = &trans_pcie->rxq[queue];
1512 
1513 restart:
1514 	spin_lock(&rxq->lock);
1515 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
1516 	 * buffer that the driver may process (last buffer filled by ucode). */
1517 	r = iwl_get_closed_rb_stts(trans, rxq);
1518 	i = rxq->read;
1519 
1520 	/* W/A 9000 device step A0 wrap-around bug */
1521 	r &= (rxq->queue_size - 1);
1522 
1523 	/* Rx interrupt, but nothing sent from uCode */
1524 	if (i == r)
1525 		IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1526 
1527 	while (i != r && ++handled < budget) {
1528 		struct iwl_rb_allocator *rba = &trans_pcie->rba;
1529 		struct iwl_rx_mem_buffer *rxb;
1530 		/* number of RBDs still waiting for page allocation */
1531 		u32 rb_pending_alloc =
1532 			atomic_read(&trans_pcie->rba.req_pending) *
1533 			RX_CLAIM_REQ_ALLOC;
1534 		bool join = false;
1535 
1536 		if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1537 			     !emergency)) {
1538 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1539 			emergency = true;
1540 			IWL_DEBUG_TPT(trans,
1541 				      "RX path is in emergency. Pending allocations %d\n",
1542 				      rb_pending_alloc);
1543 		}
1544 
1545 		IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1546 
1547 		rxb = iwl_pcie_get_rxb(trans, rxq, i, &join);
1548 		if (!rxb)
1549 			goto out;
1550 
1551 		if (unlikely(join || rxq->next_rb_is_fragment)) {
1552 			rxq->next_rb_is_fragment = join;
1553 			/*
1554 			 * We can only get a multi-RB in the following cases:
1555 			 *  - firmware issue, sending a too big notification
1556 			 *  - sniffer mode with a large A-MSDU
1557 			 *  - large MTU frames (>2k)
1558 			 * since the multi-RB functionality is limited to newer
1559 			 * hardware that cannot put multiple entries into a
1560 			 * single RB.
1561 			 *
1562 			 * Right now, the higher layers aren't set up to deal
1563 			 * with that, so discard all of these.
1564 			 */
1565 			list_add_tail(&rxb->list, &rxq->rx_free);
1566 			rxq->free_count++;
1567 		} else {
1568 			iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1569 		}
1570 
1571 		i = (i + 1) & (rxq->queue_size - 1);
1572 
1573 		/*
1574 		 * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1575 		 * try to claim the pre-allocated buffers from the allocator.
1576 		 * If not ready - will try to reclaim next time.
1577 		 * There is no need to reschedule work - allocator exits only
1578 		 * on success
1579 		 */
1580 		if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1581 			iwl_pcie_rx_allocator_get(trans, rxq);
1582 
1583 		if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1584 			/* Add the remaining empty RBDs for allocator use */
1585 			iwl_pcie_rx_move_to_allocator(rxq, rba);
1586 		} else if (emergency) {
1587 			count++;
1588 			if (count == 8) {
1589 				count = 0;
1590 				if (rb_pending_alloc < rxq->queue_size / 3) {
1591 					IWL_DEBUG_TPT(trans,
1592 						      "RX path exited emergency. Pending allocations %d\n",
1593 						      rb_pending_alloc);
1594 					emergency = false;
1595 				}
1596 
1597 				rxq->read = i;
1598 				spin_unlock(&rxq->lock);
1599 				iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1600 				iwl_pcie_rxq_restock(trans, rxq);
1601 				goto restart;
1602 			}
1603 		}
1604 	}
1605 out:
1606 	/* Backtrack one entry */
1607 	rxq->read = i;
1608 	spin_unlock(&rxq->lock);
1609 
1610 	/*
1611 	 * handle a case where in emergency there are some unallocated RBDs.
1612 	 * those RBDs are in the used list, but are not tracked by the queue's
1613 	 * used_count which counts allocator owned RBDs.
1614 	 * unallocated emergency RBDs must be allocated on exit, otherwise
1615 	 * when called again the function may not be in emergency mode and
1616 	 * they will be handed to the allocator with no tracking in the RBD
1617 	 * allocator counters, which will lead to them never being claimed back
1618 	 * by the queue.
1619 	 * by allocating them here, they are now in the queue free list, and
1620 	 * will be restocked by the next call of iwl_pcie_rxq_restock.
1621 	 */
1622 	if (unlikely(emergency && count))
1623 		iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1624 
1625 	iwl_pcie_rxq_restock(trans, rxq);
1626 
1627 	return handled;
1628 }
1629 
1630 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1631 {
1632 	u8 queue = entry->entry;
1633 	struct msix_entry *entries = entry - queue;
1634 
1635 	return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1636 }
1637 
1638 /*
1639  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1640  * This interrupt handler should be used with RSS queue only.
1641  */
1642 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1643 {
1644 	struct msix_entry *entry = dev_id;
1645 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1646 	struct iwl_trans *trans = trans_pcie->trans;
1647 	struct iwl_rxq *rxq;
1648 
1649 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1650 
1651 	if (WARN_ON(entry->entry >= trans->num_rx_queues))
1652 		return IRQ_NONE;
1653 
1654 	if (!trans_pcie->rxq) {
1655 		if (net_ratelimit())
1656 			IWL_ERR(trans,
1657 				"[%d] Got MSI-X interrupt before we have Rx queues\n",
1658 				entry->entry);
1659 		return IRQ_NONE;
1660 	}
1661 
1662 	rxq = &trans_pcie->rxq[entry->entry];
1663 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1664 	IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry);
1665 
1666 	local_bh_disable();
1667 	if (!napi_schedule(&rxq->napi))
1668 		iwl_pcie_clear_irq(trans, entry->entry);
1669 	local_bh_enable();
1670 
1671 	lock_map_release(&trans->sync_cmd_lockdep_map);
1672 
1673 	return IRQ_HANDLED;
1674 }
1675 
1676 /*
1677  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1678  */
1679 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1680 {
1681 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1682 	int i;
1683 
1684 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1685 	if (trans->cfg->internal_wimax_coex &&
1686 	    !trans->cfg->apmg_not_supported &&
1687 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1688 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
1689 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1690 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
1691 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1692 		iwl_op_mode_wimax_active(trans->op_mode);
1693 		wake_up(&trans->wait_command_queue);
1694 		return;
1695 	}
1696 
1697 	for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) {
1698 		if (!trans_pcie->txqs.txq[i])
1699 			continue;
1700 		del_timer(&trans_pcie->txqs.txq[i]->stuck_timer);
1701 	}
1702 
1703 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
1704 	 * before we wake up the command caller, to ensure a proper cleanup. */
1705 	iwl_trans_fw_error(trans, false);
1706 
1707 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1708 	wake_up(&trans->wait_command_queue);
1709 }
1710 
1711 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1712 {
1713 	u32 inta;
1714 
1715 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1716 
1717 	trace_iwlwifi_dev_irq(trans->dev);
1718 
1719 	/* Discover which interrupts are active/pending */
1720 	inta = iwl_read32(trans, CSR_INT);
1721 
1722 	/* the thread will service interrupts and re-enable them */
1723 	return inta;
1724 }
1725 
1726 /* a device (PCI-E) page is 4096 bytes long */
1727 #define ICT_SHIFT	12
1728 #define ICT_SIZE	(1 << ICT_SHIFT)
1729 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
1730 
1731 /* interrupt handler using ict table, with this interrupt driver will
1732  * stop using INTA register to get device's interrupt, reading this register
1733  * is expensive, device will write interrupts in ICT dram table, increment
1734  * index then will fire interrupt to driver, driver will OR all ICT table
1735  * entries from current index up to table entry with 0 value. the result is
1736  * the interrupt we need to service, driver will set the entries back to 0 and
1737  * set index.
1738  */
1739 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1740 {
1741 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1742 	u32 inta;
1743 	u32 val = 0;
1744 	u32 read;
1745 
1746 	trace_iwlwifi_dev_irq(trans->dev);
1747 
1748 	/* Ignore interrupt if there's nothing in NIC to service.
1749 	 * This may be due to IRQ shared with another device,
1750 	 * or due to sporadic interrupts thrown from our NIC. */
1751 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1752 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1753 	if (!read)
1754 		return 0;
1755 
1756 	/*
1757 	 * Collect all entries up to the first 0, starting from ict_index;
1758 	 * note we already read at ict_index.
1759 	 */
1760 	do {
1761 		val |= read;
1762 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1763 				trans_pcie->ict_index, read);
1764 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1765 		trans_pcie->ict_index =
1766 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1767 
1768 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1769 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1770 					   read);
1771 	} while (read);
1772 
1773 	/* We should not get this value, just ignore it. */
1774 	if (val == 0xffffffff)
1775 		val = 0;
1776 
1777 	/*
1778 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1779 	 * (bit 15 before shifting it to 31) to clear when using interrupt
1780 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
1781 	 * so we use them to decide on the real state of the Rx bit.
1782 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
1783 	 */
1784 	if (val & 0xC0000)
1785 		val |= 0x8000;
1786 
1787 	inta = (0xff & val) | ((0xff00 & val) << 16);
1788 	return inta;
1789 }
1790 
1791 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq)
1792 {
1793 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1794 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1795 	bool hw_rfkill, prev, report;
1796 
1797 	mutex_lock(&trans_pcie->mutex);
1798 	prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1799 	hw_rfkill = iwl_is_rfkill_set(trans);
1800 	if (hw_rfkill) {
1801 		set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1802 		set_bit(STATUS_RFKILL_HW, &trans->status);
1803 	}
1804 	if (trans_pcie->opmode_down)
1805 		report = hw_rfkill;
1806 	else
1807 		report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1808 
1809 	IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1810 		 hw_rfkill ? "disable radio" : "enable radio");
1811 
1812 	isr_stats->rfkill++;
1813 
1814 	if (prev != report)
1815 		iwl_trans_pcie_rf_kill(trans, report, from_irq);
1816 	mutex_unlock(&trans_pcie->mutex);
1817 
1818 	if (hw_rfkill) {
1819 		if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1820 				       &trans->status))
1821 			IWL_DEBUG_RF_KILL(trans,
1822 					  "Rfkill while SYNC HCMD in flight\n");
1823 		wake_up(&trans->wait_command_queue);
1824 	} else {
1825 		clear_bit(STATUS_RFKILL_HW, &trans->status);
1826 		if (trans_pcie->opmode_down)
1827 			clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1828 	}
1829 }
1830 
1831 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1832 {
1833 	struct iwl_trans *trans = dev_id;
1834 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1835 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1836 	u32 inta = 0;
1837 	u32 handled = 0;
1838 	bool polling = false;
1839 
1840 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
1841 
1842 	spin_lock_bh(&trans_pcie->irq_lock);
1843 
1844 	/* dram interrupt table not set yet,
1845 	 * use legacy interrupt.
1846 	 */
1847 	if (likely(trans_pcie->use_ict))
1848 		inta = iwl_pcie_int_cause_ict(trans);
1849 	else
1850 		inta = iwl_pcie_int_cause_non_ict(trans);
1851 
1852 	if (iwl_have_debug_level(IWL_DL_ISR)) {
1853 		IWL_DEBUG_ISR(trans,
1854 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1855 			      inta, trans_pcie->inta_mask,
1856 			      iwl_read32(trans, CSR_INT_MASK),
1857 			      iwl_read32(trans, CSR_FH_INT_STATUS));
1858 		if (inta & (~trans_pcie->inta_mask))
1859 			IWL_DEBUG_ISR(trans,
1860 				      "We got a masked interrupt (0x%08x)\n",
1861 				      inta & (~trans_pcie->inta_mask));
1862 	}
1863 
1864 	inta &= trans_pcie->inta_mask;
1865 
1866 	/*
1867 	 * Ignore interrupt if there's nothing in NIC to service.
1868 	 * This may be due to IRQ shared with another device,
1869 	 * or due to sporadic interrupts thrown from our NIC.
1870 	 */
1871 	if (unlikely(!inta)) {
1872 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1873 		/*
1874 		 * Re-enable interrupts here since we don't
1875 		 * have anything to service
1876 		 */
1877 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
1878 			_iwl_enable_interrupts(trans);
1879 		spin_unlock_bh(&trans_pcie->irq_lock);
1880 		lock_map_release(&trans->sync_cmd_lockdep_map);
1881 		return IRQ_NONE;
1882 	}
1883 
1884 	if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) {
1885 		/*
1886 		 * Hardware disappeared. It might have
1887 		 * already raised an interrupt.
1888 		 */
1889 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1890 		spin_unlock_bh(&trans_pcie->irq_lock);
1891 		goto out;
1892 	}
1893 
1894 	/* Ack/clear/reset pending uCode interrupts.
1895 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1896 	 */
1897 	/* There is a hardware bug in the interrupt mask function that some
1898 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1899 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
1900 	 * ICT interrupt handling mechanism has another bug that might cause
1901 	 * these unmasked interrupts fail to be detected. We workaround the
1902 	 * hardware bugs here by ACKing all the possible interrupts so that
1903 	 * interrupt coalescing can still be achieved.
1904 	 */
1905 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1906 
1907 	if (iwl_have_debug_level(IWL_DL_ISR))
1908 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1909 			      inta, iwl_read32(trans, CSR_INT_MASK));
1910 
1911 	spin_unlock_bh(&trans_pcie->irq_lock);
1912 
1913 	/* Now service all interrupt bits discovered above. */
1914 	if (inta & CSR_INT_BIT_HW_ERR) {
1915 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1916 
1917 		/* Tell the device to stop sending interrupts */
1918 		iwl_disable_interrupts(trans);
1919 
1920 		isr_stats->hw++;
1921 		iwl_pcie_irq_handle_error(trans);
1922 
1923 		handled |= CSR_INT_BIT_HW_ERR;
1924 
1925 		goto out;
1926 	}
1927 
1928 	/* NIC fires this, but we don't use it, redundant with WAKEUP */
1929 	if (inta & CSR_INT_BIT_SCD) {
1930 		IWL_DEBUG_ISR(trans,
1931 			      "Scheduler finished to transmit the frame/frames.\n");
1932 		isr_stats->sch++;
1933 	}
1934 
1935 	/* Alive notification via Rx interrupt will do the real work */
1936 	if (inta & CSR_INT_BIT_ALIVE) {
1937 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1938 		isr_stats->alive++;
1939 		if (trans->trans_cfg->gen2) {
1940 			/*
1941 			 * We can restock, since firmware configured
1942 			 * the RFH
1943 			 */
1944 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1945 		}
1946 
1947 		handled |= CSR_INT_BIT_ALIVE;
1948 	}
1949 
1950 	/* Safely ignore these bits for debug checks below */
1951 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1952 
1953 	/* HW RF KILL switch toggled */
1954 	if (inta & CSR_INT_BIT_RF_KILL) {
1955 		iwl_pcie_handle_rfkill_irq(trans, true);
1956 		handled |= CSR_INT_BIT_RF_KILL;
1957 	}
1958 
1959 	/* Chip got too hot and stopped itself */
1960 	if (inta & CSR_INT_BIT_CT_KILL) {
1961 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1962 		isr_stats->ctkill++;
1963 		handled |= CSR_INT_BIT_CT_KILL;
1964 	}
1965 
1966 	/* Error detected by uCode */
1967 	if (inta & CSR_INT_BIT_SW_ERR) {
1968 		IWL_ERR(trans, "Microcode SW error detected. "
1969 			" Restarting 0x%X.\n", inta);
1970 		isr_stats->sw++;
1971 		iwl_pcie_irq_handle_error(trans);
1972 		handled |= CSR_INT_BIT_SW_ERR;
1973 	}
1974 
1975 	/* uCode wakes up after power-down sleep */
1976 	if (inta & CSR_INT_BIT_WAKEUP) {
1977 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1978 		iwl_pcie_rxq_check_wrptr(trans);
1979 		iwl_pcie_txq_check_wrptrs(trans);
1980 
1981 		isr_stats->wakeup++;
1982 
1983 		handled |= CSR_INT_BIT_WAKEUP;
1984 	}
1985 
1986 	/* All uCode command responses, including Tx command responses,
1987 	 * Rx "responses" (frame-received notification), and other
1988 	 * notifications from uCode come through here*/
1989 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1990 		    CSR_INT_BIT_RX_PERIODIC)) {
1991 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1992 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1993 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1994 			iwl_write32(trans, CSR_FH_INT_STATUS,
1995 					CSR_FH_INT_RX_MASK);
1996 		}
1997 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1998 			handled |= CSR_INT_BIT_RX_PERIODIC;
1999 			iwl_write32(trans,
2000 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
2001 		}
2002 		/* Sending RX interrupt require many steps to be done in the
2003 		 * device:
2004 		 * 1- write interrupt to current index in ICT table.
2005 		 * 2- dma RX frame.
2006 		 * 3- update RX shared data to indicate last write index.
2007 		 * 4- send interrupt.
2008 		 * This could lead to RX race, driver could receive RX interrupt
2009 		 * but the shared data changes does not reflect this;
2010 		 * periodic interrupt will detect any dangling Rx activity.
2011 		 */
2012 
2013 		/* Disable periodic interrupt; we use it as just a one-shot. */
2014 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
2015 			    CSR_INT_PERIODIC_DIS);
2016 
2017 		/*
2018 		 * Enable periodic interrupt in 8 msec only if we received
2019 		 * real RX interrupt (instead of just periodic int), to catch
2020 		 * any dangling Rx interrupt.  If it was just the periodic
2021 		 * interrupt, there was no dangling Rx activity, and no need
2022 		 * to extend the periodic interrupt; one-shot is enough.
2023 		 */
2024 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
2025 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
2026 				   CSR_INT_PERIODIC_ENA);
2027 
2028 		isr_stats->rx++;
2029 
2030 		local_bh_disable();
2031 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2032 			polling = true;
2033 			__napi_schedule(&trans_pcie->rxq[0].napi);
2034 		}
2035 		local_bh_enable();
2036 	}
2037 
2038 	/* This "Tx" DMA channel is used only for loading uCode */
2039 	if (inta & CSR_INT_BIT_FH_TX) {
2040 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
2041 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2042 		isr_stats->tx++;
2043 		handled |= CSR_INT_BIT_FH_TX;
2044 		/* Wake up uCode load routine, now that load is complete */
2045 		trans_pcie->ucode_write_complete = true;
2046 		wake_up(&trans_pcie->ucode_write_waitq);
2047 		/* Wake up IMR write routine, now that write to SRAM is complete */
2048 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2049 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2050 			wake_up(&trans_pcie->ucode_write_waitq);
2051 		}
2052 	}
2053 
2054 	if (inta & ~handled) {
2055 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
2056 		isr_stats->unhandled++;
2057 	}
2058 
2059 	if (inta & ~(trans_pcie->inta_mask)) {
2060 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
2061 			 inta & ~trans_pcie->inta_mask);
2062 	}
2063 
2064 	if (!polling) {
2065 		spin_lock_bh(&trans_pcie->irq_lock);
2066 		/* only Re-enable all interrupt if disabled by irq */
2067 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
2068 			_iwl_enable_interrupts(trans);
2069 		/* we are loading the firmware, enable FH_TX interrupt only */
2070 		else if (handled & CSR_INT_BIT_FH_TX)
2071 			iwl_enable_fw_load_int(trans);
2072 		/* Re-enable RF_KILL if it occurred */
2073 		else if (handled & CSR_INT_BIT_RF_KILL)
2074 			iwl_enable_rfkill_int(trans);
2075 		/* Re-enable the ALIVE / Rx interrupt if it occurred */
2076 		else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX))
2077 			iwl_enable_fw_load_int_ctx_info(trans);
2078 		spin_unlock_bh(&trans_pcie->irq_lock);
2079 	}
2080 
2081 out:
2082 	lock_map_release(&trans->sync_cmd_lockdep_map);
2083 	return IRQ_HANDLED;
2084 }
2085 
2086 /******************************************************************************
2087  *
2088  * ICT functions
2089  *
2090  ******************************************************************************/
2091 
2092 /* Free dram table */
2093 void iwl_pcie_free_ict(struct iwl_trans *trans)
2094 {
2095 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2096 
2097 	if (trans_pcie->ict_tbl) {
2098 		dma_free_coherent(trans->dev, ICT_SIZE,
2099 				  trans_pcie->ict_tbl,
2100 				  trans_pcie->ict_tbl_dma);
2101 		trans_pcie->ict_tbl = NULL;
2102 		trans_pcie->ict_tbl_dma = 0;
2103 	}
2104 }
2105 
2106 /*
2107  * allocate dram shared table, it is an aligned memory
2108  * block of ICT_SIZE.
2109  * also reset all data related to ICT table interrupt.
2110  */
2111 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
2112 {
2113 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2114 
2115 	trans_pcie->ict_tbl =
2116 		dma_alloc_coherent(trans->dev, ICT_SIZE,
2117 				   &trans_pcie->ict_tbl_dma, GFP_KERNEL);
2118 	if (!trans_pcie->ict_tbl)
2119 		return -ENOMEM;
2120 
2121 	/* just an API sanity check ... it is guaranteed to be aligned */
2122 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
2123 		iwl_pcie_free_ict(trans);
2124 		return -EINVAL;
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 /* Device is going up inform it about using ICT interrupt table,
2131  * also we need to tell the driver to start using ICT interrupt.
2132  */
2133 void iwl_pcie_reset_ict(struct iwl_trans *trans)
2134 {
2135 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2136 	u32 val;
2137 
2138 	if (!trans_pcie->ict_tbl)
2139 		return;
2140 
2141 	spin_lock_bh(&trans_pcie->irq_lock);
2142 	_iwl_disable_interrupts(trans);
2143 
2144 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2145 
2146 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2147 
2148 	val |= CSR_DRAM_INT_TBL_ENABLE |
2149 	       CSR_DRAM_INIT_TBL_WRAP_CHECK |
2150 	       CSR_DRAM_INIT_TBL_WRITE_POINTER;
2151 
2152 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2153 
2154 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2155 	trans_pcie->use_ict = true;
2156 	trans_pcie->ict_index = 0;
2157 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2158 	_iwl_enable_interrupts(trans);
2159 	spin_unlock_bh(&trans_pcie->irq_lock);
2160 }
2161 
2162 /* Device is going down disable ict interrupt usage */
2163 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2164 {
2165 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2166 
2167 	spin_lock_bh(&trans_pcie->irq_lock);
2168 	trans_pcie->use_ict = false;
2169 	spin_unlock_bh(&trans_pcie->irq_lock);
2170 }
2171 
2172 irqreturn_t iwl_pcie_isr(int irq, void *data)
2173 {
2174 	struct iwl_trans *trans = data;
2175 
2176 	if (!trans)
2177 		return IRQ_NONE;
2178 
2179 	/* Disable (but don't clear!) interrupts here to avoid
2180 	 * back-to-back ISRs and sporadic interrupts from our NIC.
2181 	 * If we have something to service, the tasklet will re-enable ints.
2182 	 * If we *don't* have something, we'll re-enable before leaving here.
2183 	 */
2184 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2185 
2186 	return IRQ_WAKE_THREAD;
2187 }
2188 
2189 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2190 {
2191 	return IRQ_WAKE_THREAD;
2192 }
2193 
2194 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2195 {
2196 	struct msix_entry *entry = dev_id;
2197 	struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2198 	struct iwl_trans *trans = trans_pcie->trans;
2199 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2200 	u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE;
2201 	u32 inta_fh, inta_hw;
2202 	bool polling = false;
2203 	bool sw_err;
2204 
2205 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX)
2206 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0;
2207 
2208 	if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS)
2209 		inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1;
2210 
2211 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
2212 
2213 	spin_lock_bh(&trans_pcie->irq_lock);
2214 	inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2215 	inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2216 	/*
2217 	 * Clear causes registers to avoid being handling the same cause.
2218 	 */
2219 	iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk);
2220 	iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2221 	spin_unlock_bh(&trans_pcie->irq_lock);
2222 
2223 	trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2224 
2225 	if (unlikely(!(inta_fh | inta_hw))) {
2226 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2227 		lock_map_release(&trans->sync_cmd_lockdep_map);
2228 		return IRQ_NONE;
2229 	}
2230 
2231 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2232 		IWL_DEBUG_ISR(trans,
2233 			      "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2234 			      entry->entry, inta_fh, trans_pcie->fh_mask,
2235 			      iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2236 		if (inta_fh & ~trans_pcie->fh_mask)
2237 			IWL_DEBUG_ISR(trans,
2238 				      "We got a masked interrupt (0x%08x)\n",
2239 				      inta_fh & ~trans_pcie->fh_mask);
2240 	}
2241 
2242 	inta_fh &= trans_pcie->fh_mask;
2243 
2244 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2245 	    inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2246 		local_bh_disable();
2247 		if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) {
2248 			polling = true;
2249 			__napi_schedule(&trans_pcie->rxq[0].napi);
2250 		}
2251 		local_bh_enable();
2252 	}
2253 
2254 	if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2255 	    inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2256 		local_bh_disable();
2257 		if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) {
2258 			polling = true;
2259 			__napi_schedule(&trans_pcie->rxq[1].napi);
2260 		}
2261 		local_bh_enable();
2262 	}
2263 
2264 	/* This "Tx" DMA channel is used only for loading uCode */
2265 	if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM &&
2266 	    trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2267 		IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n");
2268 		isr_stats->tx++;
2269 
2270 		/* Wake up IMR routine once write to SRAM is complete */
2271 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2272 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2273 			wake_up(&trans_pcie->ucode_write_waitq);
2274 		}
2275 	} else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2276 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2277 		isr_stats->tx++;
2278 		/*
2279 		 * Wake up uCode load routine,
2280 		 * now that load is complete
2281 		 */
2282 		trans_pcie->ucode_write_complete = true;
2283 		wake_up(&trans_pcie->ucode_write_waitq);
2284 
2285 		/* Wake up IMR routine once write to SRAM is complete */
2286 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2287 			trans_pcie->imr_status = IMR_D2S_COMPLETED;
2288 			wake_up(&trans_pcie->ucode_write_waitq);
2289 		}
2290 	}
2291 
2292 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ)
2293 		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ;
2294 	else
2295 		sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR;
2296 
2297 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) {
2298 		IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n",
2299 			inta_hw);
2300 		/* TODO: PLDR flow required here for >= Bz */
2301 	}
2302 
2303 	/* Error detected by uCode */
2304 	if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) {
2305 		IWL_ERR(trans,
2306 			"Microcode SW error detected. Restarting 0x%X.\n",
2307 			inta_fh);
2308 		isr_stats->sw++;
2309 		/* during FW reset flow report errors from there */
2310 		if (trans_pcie->imr_status == IMR_D2S_REQUESTED) {
2311 			trans_pcie->imr_status = IMR_D2S_ERROR;
2312 			wake_up(&trans_pcie->imr_waitq);
2313 		} else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) {
2314 			trans_pcie->fw_reset_state = FW_RESET_ERROR;
2315 			wake_up(&trans_pcie->fw_reset_waitq);
2316 		} else {
2317 			iwl_pcie_irq_handle_error(trans);
2318 		}
2319 	}
2320 
2321 	/* After checking FH register check HW register */
2322 	if (iwl_have_debug_level(IWL_DL_ISR)) {
2323 		IWL_DEBUG_ISR(trans,
2324 			      "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n",
2325 			      entry->entry, inta_hw, trans_pcie->hw_mask,
2326 			      iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2327 		if (inta_hw & ~trans_pcie->hw_mask)
2328 			IWL_DEBUG_ISR(trans,
2329 				      "We got a masked interrupt 0x%08x\n",
2330 				      inta_hw & ~trans_pcie->hw_mask);
2331 	}
2332 
2333 	inta_hw &= trans_pcie->hw_mask;
2334 
2335 	/* Alive notification via Rx interrupt will do the real work */
2336 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2337 		IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2338 		isr_stats->alive++;
2339 		if (trans->trans_cfg->gen2) {
2340 			/* We can restock, since firmware configured the RFH */
2341 			iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2342 		}
2343 	}
2344 
2345 	/*
2346 	 * In some rare cases when the HW is in a bad state, we may
2347 	 * get this interrupt too early, when prph_info is still NULL.
2348 	 * So make sure that it's not NULL to prevent crashing.
2349 	 */
2350 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) {
2351 		u32 sleep_notif =
2352 			le32_to_cpu(trans_pcie->prph_info->sleep_notif);
2353 		if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND ||
2354 		    sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) {
2355 			IWL_DEBUG_ISR(trans,
2356 				      "Sx interrupt: sleep notification = 0x%x\n",
2357 				      sleep_notif);
2358 			trans_pcie->sx_complete = true;
2359 			wake_up(&trans_pcie->sx_waitq);
2360 		} else {
2361 			/* uCode wakes up after power-down sleep */
2362 			IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2363 			iwl_pcie_rxq_check_wrptr(trans);
2364 			iwl_pcie_txq_check_wrptrs(trans);
2365 
2366 			isr_stats->wakeup++;
2367 		}
2368 	}
2369 
2370 	/* Chip got too hot and stopped itself */
2371 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2372 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
2373 		isr_stats->ctkill++;
2374 	}
2375 
2376 	/* HW RF KILL switch toggled */
2377 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2378 		iwl_pcie_handle_rfkill_irq(trans, true);
2379 
2380 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2381 		IWL_ERR(trans,
2382 			"Hardware error detected. Restarting.\n");
2383 
2384 		isr_stats->hw++;
2385 		trans->dbg.hw_error = true;
2386 		iwl_pcie_irq_handle_error(trans);
2387 	}
2388 
2389 	if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) {
2390 		IWL_DEBUG_ISR(trans, "Reset flow completed\n");
2391 		trans_pcie->fw_reset_state = FW_RESET_OK;
2392 		wake_up(&trans_pcie->fw_reset_waitq);
2393 	}
2394 
2395 	if (!polling)
2396 		iwl_pcie_clear_irq(trans, entry->entry);
2397 
2398 	lock_map_release(&trans->sync_cmd_lockdep_map);
2399 
2400 	return IRQ_HANDLED;
2401 }
2402