1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "iwl-context-info-gen3.h" 16 17 /****************************************************************************** 18 * 19 * RX path functions 20 * 21 ******************************************************************************/ 22 23 /* 24 * Rx theory of operation 25 * 26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27 * each of which point to Receive Buffers to be filled by the NIC. These get 28 * used not only for Rx frames, but for any command response or notification 29 * from the NIC. The driver and NIC manage the Rx buffers by means 30 * of indexes into the circular buffer. 31 * 32 * Rx Queue Indexes 33 * The host/firmware share two index registers for managing the Rx buffers. 34 * 35 * The READ index maps to the first position that the firmware may be writing 36 * to -- the driver can read up to (but not including) this position and get 37 * good data. 38 * The READ index is managed by the firmware once the card is enabled. 39 * 40 * The WRITE index maps to the last position the driver has read from -- the 41 * position preceding WRITE is the last slot the firmware can place a packet. 42 * 43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44 * WRITE = READ. 45 * 46 * During initialization, the host sets up the READ queue position to the first 47 * INDEX position, and WRITE to the last (READ - 1 wrapped) 48 * 49 * When the firmware places a packet in a buffer, it will advance the READ index 50 * and fire the RX interrupt. The driver can then query the READ index and 51 * process as many packets as possible, moving the WRITE index forward as it 52 * resets the Rx queue buffers with new memory. 53 * 54 * The management in the driver is as follows: 55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56 * When the interrupt handler is called, the request is processed. 57 * The page is either stolen - transferred to the upper layer 58 * or reused - added immediately to the iwl->rxq->rx_free list. 59 * + When the page is stolen - the driver updates the matching queue's used 60 * count, detaches the RBD and transfers it to the queue used list. 61 * When there are two used RBDs - they are transferred to the allocator empty 62 * list. Work is then scheduled for the allocator to start allocating 63 * eight buffers. 64 * When there are another 6 used RBDs - they are transferred to the allocator 65 * empty list and the driver tries to claim the pre-allocated buffers and 66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67 * until ready. 68 * When there are 8+ buffers in the free list - either from allocation or from 69 * 8 reused unstolen pages - restock is called to update the FW and indexes. 70 * + In order to make sure the allocator always has RBDs to use for allocation 71 * the allocator has initial pool in the size of num_queues*(8-2) - the 72 * maximum missing RBDs per allocation request (request posted with 2 73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74 * The queues supplies the recycle of the rest of the RBDs. 75 * + A received packet is processed and handed to the kernel network stack, 76 * detached from the iwl->rxq. The driver 'processed' index is updated. 77 * + If there are no allocated buffers in iwl->rxq->rx_free, 78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79 * If there were enough free buffers and RX_STALLED is set it is cleared. 80 * 81 * 82 * Driver sequence: 83 * 84 * iwl_rxq_alloc() Allocates rx_free 85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86 * iwl_pcie_rxq_restock. 87 * Used only during initialization. 88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89 * queue, updates firmware pointers, and updates 90 * the WRITE index. 91 * iwl_pcie_rx_allocator() Background work for allocating pages. 92 * 93 * -- enable interrupts -- 94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95 * READ INDEX, detaching the SKB from the pool. 96 * Moves the packet buffer from queue to rx_used. 97 * Posts and claims requests to the allocator. 98 * Calls iwl_pcie_rxq_restock to refill any empty 99 * slots. 100 * 101 * RBD life-cycle: 102 * 103 * Init: 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105 * 106 * Regular Receive interrupt: 107 * Page Stolen: 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110 * Page not Stolen: 111 * rxq.queue -> rxq.rx_free -> rxq.queue 112 * ... 113 * 114 */ 115 116 /* 117 * iwl_rxq_space - Return number of free slots available in queue. 118 */ 119 static int iwl_rxq_space(const struct iwl_rxq *rxq) 120 { 121 /* Make sure rx queue size is a power of 2 */ 122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123 124 /* 125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126 * between empty and completely full queues. 127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128 * defined for negative dividends. 129 */ 130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131 } 132 133 /* 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135 */ 136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137 { 138 return cpu_to_le32((u32)(dma_addr >> 8)); 139 } 140 141 /* 142 * iwl_pcie_rx_stop - stops the Rx DMA 143 */ 144 int iwl_pcie_rx_stop(struct iwl_trans *trans) 145 { 146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147 /* TODO: remove this once fw does it */ 148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151 } else if (trans->trans_cfg->mq_rx_supported) { 152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155 } else { 156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159 1000); 160 } 161 } 162 163 /* 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165 */ 166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167 struct iwl_rxq *rxq) 168 { 169 u32 reg; 170 171 lockdep_assert_held(&rxq->lock); 172 173 /* 174 * explicitly wake up the NIC if: 175 * 1. shadow registers aren't enabled 176 * 2. there is a chance that the NIC is asleep 177 */ 178 if (!trans->trans_cfg->base_params->shadow_reg_enable && 179 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181 182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184 reg); 185 iwl_set_bit(trans, CSR_GP_CNTRL, 186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187 rxq->need_update = true; 188 return; 189 } 190 } 191 192 rxq->write_actual = round_down(rxq->write, 8); 193 if (!trans->trans_cfg->mq_rx_supported) 194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198 else 199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200 rxq->write_actual); 201 } 202 203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204 { 205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206 int i; 207 208 for (i = 0; i < trans->num_rx_queues; i++) { 209 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210 211 if (!rxq->need_update) 212 continue; 213 spin_lock_bh(&rxq->lock); 214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215 rxq->need_update = false; 216 spin_unlock_bh(&rxq->lock); 217 } 218 } 219 220 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221 struct iwl_rxq *rxq, 222 struct iwl_rx_mem_buffer *rxb) 223 { 224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225 struct iwl_rx_transfer_desc *bd = rxq->bd; 226 227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228 229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231 } else { 232 __le64 *bd = rxq->bd; 233 234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235 } 236 237 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 238 (u32)rxb->vid, rxq->id, rxq->write); 239 } 240 241 /* 242 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 243 */ 244 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 245 struct iwl_rxq *rxq) 246 { 247 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 248 struct iwl_rx_mem_buffer *rxb; 249 250 /* 251 * If the device isn't enabled - no need to try to add buffers... 252 * This can happen when we stop the device and still have an interrupt 253 * pending. We stop the APM before we sync the interrupts because we 254 * have to (see comment there). On the other hand, since the APM is 255 * stopped, we cannot access the HW (in particular not prph). 256 * So don't try to restock if the APM has been already stopped. 257 */ 258 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 259 return; 260 261 spin_lock_bh(&rxq->lock); 262 while (rxq->free_count) { 263 /* Get next free Rx buffer, remove from free list */ 264 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 265 list); 266 list_del(&rxb->list); 267 rxb->invalid = false; 268 /* some low bits are expected to be unset (depending on hw) */ 269 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 270 /* Point to Rx buffer via next RBD in circular buffer */ 271 iwl_pcie_restock_bd(trans, rxq, rxb); 272 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 273 rxq->free_count--; 274 } 275 spin_unlock_bh(&rxq->lock); 276 277 /* 278 * If we've added more space for the firmware to place data, tell it. 279 * Increment device's write pointer in multiples of 8. 280 */ 281 if (rxq->write_actual != (rxq->write & ~0x7)) { 282 spin_lock_bh(&rxq->lock); 283 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 284 spin_unlock_bh(&rxq->lock); 285 } 286 } 287 288 /* 289 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 290 */ 291 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 292 struct iwl_rxq *rxq) 293 { 294 struct iwl_rx_mem_buffer *rxb; 295 296 /* 297 * If the device isn't enabled - not need to try to add buffers... 298 * This can happen when we stop the device and still have an interrupt 299 * pending. We stop the APM before we sync the interrupts because we 300 * have to (see comment there). On the other hand, since the APM is 301 * stopped, we cannot access the HW (in particular not prph). 302 * So don't try to restock if the APM has been already stopped. 303 */ 304 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 305 return; 306 307 spin_lock_bh(&rxq->lock); 308 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 309 __le32 *bd = (__le32 *)rxq->bd; 310 /* The overwritten rxb must be a used one */ 311 rxb = rxq->queue[rxq->write]; 312 BUG_ON(rxb && rxb->page); 313 314 /* Get next free Rx buffer, remove from free list */ 315 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 316 list); 317 list_del(&rxb->list); 318 rxb->invalid = false; 319 320 /* Point to Rx buffer via next RBD in circular buffer */ 321 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 322 rxq->queue[rxq->write] = rxb; 323 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 324 rxq->free_count--; 325 } 326 spin_unlock_bh(&rxq->lock); 327 328 /* If we've added more space for the firmware to place data, tell it. 329 * Increment device's write pointer in multiples of 8. */ 330 if (rxq->write_actual != (rxq->write & ~0x7)) { 331 spin_lock_bh(&rxq->lock); 332 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 333 spin_unlock_bh(&rxq->lock); 334 } 335 } 336 337 /* 338 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 339 * 340 * If there are slots in the RX queue that need to be restocked, 341 * and we have free pre-allocated buffers, fill the ranks as much 342 * as we can, pulling from rx_free. 343 * 344 * This moves the 'write' index forward to catch up with 'processed', and 345 * also updates the memory address in the firmware to reference the new 346 * target buffer. 347 */ 348 static 349 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 350 { 351 if (trans->trans_cfg->mq_rx_supported) 352 iwl_pcie_rxmq_restock(trans, rxq); 353 else 354 iwl_pcie_rxsq_restock(trans, rxq); 355 } 356 357 /* 358 * iwl_pcie_rx_alloc_page - allocates and returns a page. 359 * 360 */ 361 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 362 u32 *offset, gfp_t priority) 363 { 364 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 365 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 366 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 367 struct page *page; 368 gfp_t gfp_mask = priority; 369 370 if (trans_pcie->rx_page_order > 0) 371 gfp_mask |= __GFP_COMP; 372 373 if (trans_pcie->alloc_page) { 374 spin_lock_bh(&trans_pcie->alloc_page_lock); 375 /* recheck */ 376 if (trans_pcie->alloc_page) { 377 *offset = trans_pcie->alloc_page_used; 378 page = trans_pcie->alloc_page; 379 trans_pcie->alloc_page_used += rbsize; 380 if (trans_pcie->alloc_page_used >= allocsize) 381 trans_pcie->alloc_page = NULL; 382 else 383 get_page(page); 384 spin_unlock_bh(&trans_pcie->alloc_page_lock); 385 return page; 386 } 387 spin_unlock_bh(&trans_pcie->alloc_page_lock); 388 } 389 390 /* Alloc a new receive buffer */ 391 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 392 if (!page) { 393 if (net_ratelimit()) 394 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 395 trans_pcie->rx_page_order); 396 /* 397 * Issue an error if we don't have enough pre-allocated 398 * buffers. 399 */ 400 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 401 IWL_CRIT(trans, 402 "Failed to alloc_pages\n"); 403 return NULL; 404 } 405 406 if (2 * rbsize <= allocsize) { 407 spin_lock_bh(&trans_pcie->alloc_page_lock); 408 if (!trans_pcie->alloc_page) { 409 get_page(page); 410 trans_pcie->alloc_page = page; 411 trans_pcie->alloc_page_used = rbsize; 412 } 413 spin_unlock_bh(&trans_pcie->alloc_page_lock); 414 } 415 416 *offset = 0; 417 return page; 418 } 419 420 /* 421 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 422 * 423 * A used RBD is an Rx buffer that has been given to the stack. To use it again 424 * a page must be allocated and the RBD must point to the page. This function 425 * doesn't change the HW pointer but handles the list of pages that is used by 426 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 427 * allocated buffers. 428 */ 429 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 430 struct iwl_rxq *rxq) 431 { 432 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 433 struct iwl_rx_mem_buffer *rxb; 434 struct page *page; 435 436 while (1) { 437 unsigned int offset; 438 439 spin_lock_bh(&rxq->lock); 440 if (list_empty(&rxq->rx_used)) { 441 spin_unlock_bh(&rxq->lock); 442 return; 443 } 444 spin_unlock_bh(&rxq->lock); 445 446 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 447 if (!page) 448 return; 449 450 spin_lock_bh(&rxq->lock); 451 452 if (list_empty(&rxq->rx_used)) { 453 spin_unlock_bh(&rxq->lock); 454 __free_pages(page, trans_pcie->rx_page_order); 455 return; 456 } 457 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 458 list); 459 list_del(&rxb->list); 460 spin_unlock_bh(&rxq->lock); 461 462 BUG_ON(rxb->page); 463 rxb->page = page; 464 rxb->offset = offset; 465 /* Get physical address of the RB */ 466 rxb->page_dma = 467 dma_map_page(trans->dev, page, rxb->offset, 468 trans_pcie->rx_buf_bytes, 469 DMA_FROM_DEVICE); 470 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 471 rxb->page = NULL; 472 spin_lock_bh(&rxq->lock); 473 list_add(&rxb->list, &rxq->rx_used); 474 spin_unlock_bh(&rxq->lock); 475 __free_pages(page, trans_pcie->rx_page_order); 476 return; 477 } 478 479 spin_lock_bh(&rxq->lock); 480 481 list_add_tail(&rxb->list, &rxq->rx_free); 482 rxq->free_count++; 483 484 spin_unlock_bh(&rxq->lock); 485 } 486 } 487 488 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 489 { 490 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 491 int i; 492 493 if (!trans_pcie->rx_pool) 494 return; 495 496 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 497 if (!trans_pcie->rx_pool[i].page) 498 continue; 499 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 500 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 501 __free_pages(trans_pcie->rx_pool[i].page, 502 trans_pcie->rx_page_order); 503 trans_pcie->rx_pool[i].page = NULL; 504 } 505 } 506 507 /* 508 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 509 * 510 * Allocates for each received request 8 pages 511 * Called as a scheduled work item. 512 */ 513 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 514 { 515 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 516 struct iwl_rb_allocator *rba = &trans_pcie->rba; 517 struct list_head local_empty; 518 int pending = atomic_read(&rba->req_pending); 519 520 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 521 522 /* If we were scheduled - there is at least one request */ 523 spin_lock_bh(&rba->lock); 524 /* swap out the rba->rbd_empty to a local list */ 525 list_replace_init(&rba->rbd_empty, &local_empty); 526 spin_unlock_bh(&rba->lock); 527 528 while (pending) { 529 int i; 530 LIST_HEAD(local_allocated); 531 gfp_t gfp_mask = GFP_KERNEL; 532 533 /* Do not post a warning if there are only a few requests */ 534 if (pending < RX_PENDING_WATERMARK) 535 gfp_mask |= __GFP_NOWARN; 536 537 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 538 struct iwl_rx_mem_buffer *rxb; 539 struct page *page; 540 541 /* List should never be empty - each reused RBD is 542 * returned to the list, and initial pool covers any 543 * possible gap between the time the page is allocated 544 * to the time the RBD is added. 545 */ 546 BUG_ON(list_empty(&local_empty)); 547 /* Get the first rxb from the rbd list */ 548 rxb = list_first_entry(&local_empty, 549 struct iwl_rx_mem_buffer, list); 550 BUG_ON(rxb->page); 551 552 /* Alloc a new receive buffer */ 553 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 554 gfp_mask); 555 if (!page) 556 continue; 557 rxb->page = page; 558 559 /* Get physical address of the RB */ 560 rxb->page_dma = dma_map_page(trans->dev, page, 561 rxb->offset, 562 trans_pcie->rx_buf_bytes, 563 DMA_FROM_DEVICE); 564 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 565 rxb->page = NULL; 566 __free_pages(page, trans_pcie->rx_page_order); 567 continue; 568 } 569 570 /* move the allocated entry to the out list */ 571 list_move(&rxb->list, &local_allocated); 572 i++; 573 } 574 575 atomic_dec(&rba->req_pending); 576 pending--; 577 578 if (!pending) { 579 pending = atomic_read(&rba->req_pending); 580 if (pending) 581 IWL_DEBUG_TPT(trans, 582 "Got more pending allocation requests = %d\n", 583 pending); 584 } 585 586 spin_lock_bh(&rba->lock); 587 /* add the allocated rbds to the allocator allocated list */ 588 list_splice_tail(&local_allocated, &rba->rbd_allocated); 589 /* get more empty RBDs for current pending requests */ 590 list_splice_tail_init(&rba->rbd_empty, &local_empty); 591 spin_unlock_bh(&rba->lock); 592 593 atomic_inc(&rba->req_ready); 594 595 } 596 597 spin_lock_bh(&rba->lock); 598 /* return unused rbds to the allocator empty list */ 599 list_splice_tail(&local_empty, &rba->rbd_empty); 600 spin_unlock_bh(&rba->lock); 601 602 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 603 } 604 605 /* 606 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 607 .* 608 .* Called by queue when the queue posted allocation request and 609 * has freed 8 RBDs in order to restock itself. 610 * This function directly moves the allocated RBs to the queue's ownership 611 * and updates the relevant counters. 612 */ 613 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 614 struct iwl_rxq *rxq) 615 { 616 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 617 struct iwl_rb_allocator *rba = &trans_pcie->rba; 618 int i; 619 620 lockdep_assert_held(&rxq->lock); 621 622 /* 623 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 624 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 625 * function will return early, as there are no ready requests. 626 * atomic_dec_if_positive will perofrm the *actual* decrement only if 627 * req_ready > 0, i.e. - there are ready requests and the function 628 * hands one request to the caller. 629 */ 630 if (atomic_dec_if_positive(&rba->req_ready) < 0) 631 return; 632 633 spin_lock(&rba->lock); 634 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 635 /* Get next free Rx buffer, remove it from free list */ 636 struct iwl_rx_mem_buffer *rxb = 637 list_first_entry(&rba->rbd_allocated, 638 struct iwl_rx_mem_buffer, list); 639 640 list_move(&rxb->list, &rxq->rx_free); 641 } 642 spin_unlock(&rba->lock); 643 644 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 645 rxq->free_count += RX_CLAIM_REQ_ALLOC; 646 } 647 648 void iwl_pcie_rx_allocator_work(struct work_struct *data) 649 { 650 struct iwl_rb_allocator *rba_p = 651 container_of(data, struct iwl_rb_allocator, rx_alloc); 652 struct iwl_trans_pcie *trans_pcie = 653 container_of(rba_p, struct iwl_trans_pcie, rba); 654 655 iwl_pcie_rx_allocator(trans_pcie->trans); 656 } 657 658 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 659 { 660 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 661 return sizeof(struct iwl_rx_transfer_desc); 662 663 return trans->trans_cfg->mq_rx_supported ? 664 sizeof(__le64) : sizeof(__le32); 665 } 666 667 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 668 { 669 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 670 return sizeof(struct iwl_rx_completion_desc_bz); 671 672 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 673 return sizeof(struct iwl_rx_completion_desc); 674 675 return sizeof(__le32); 676 } 677 678 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 679 struct iwl_rxq *rxq) 680 { 681 int free_size = iwl_pcie_free_bd_size(trans); 682 683 if (rxq->bd) 684 dma_free_coherent(trans->dev, 685 free_size * rxq->queue_size, 686 rxq->bd, rxq->bd_dma); 687 rxq->bd_dma = 0; 688 rxq->bd = NULL; 689 690 rxq->rb_stts_dma = 0; 691 rxq->rb_stts = NULL; 692 693 if (rxq->used_bd) 694 dma_free_coherent(trans->dev, 695 iwl_pcie_used_bd_size(trans) * 696 rxq->queue_size, 697 rxq->used_bd, rxq->used_bd_dma); 698 rxq->used_bd_dma = 0; 699 rxq->used_bd = NULL; 700 } 701 702 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) 703 { 704 bool use_rx_td = (trans->trans_cfg->device_family >= 705 IWL_DEVICE_FAMILY_AX210); 706 707 if (use_rx_td) 708 return sizeof(__le16); 709 710 return sizeof(struct iwl_rb_status); 711 } 712 713 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 714 struct iwl_rxq *rxq) 715 { 716 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 717 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 718 struct device *dev = trans->dev; 719 int i; 720 int free_size; 721 722 spin_lock_init(&rxq->lock); 723 if (trans->trans_cfg->mq_rx_supported) 724 rxq->queue_size = trans->cfg->num_rbds; 725 else 726 rxq->queue_size = RX_QUEUE_SIZE; 727 728 free_size = iwl_pcie_free_bd_size(trans); 729 730 /* 731 * Allocate the circular buffer of Read Buffer Descriptors 732 * (RBDs) 733 */ 734 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 735 &rxq->bd_dma, GFP_KERNEL); 736 if (!rxq->bd) 737 goto err; 738 739 if (trans->trans_cfg->mq_rx_supported) { 740 rxq->used_bd = dma_alloc_coherent(dev, 741 iwl_pcie_used_bd_size(trans) * 742 rxq->queue_size, 743 &rxq->used_bd_dma, 744 GFP_KERNEL); 745 if (!rxq->used_bd) 746 goto err; 747 } 748 749 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 750 rxq->rb_stts_dma = 751 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 752 753 return 0; 754 755 err: 756 for (i = 0; i < trans->num_rx_queues; i++) { 757 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 758 759 iwl_pcie_free_rxq_dma(trans, rxq); 760 } 761 762 return -ENOMEM; 763 } 764 765 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 766 { 767 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 768 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 769 struct iwl_rb_allocator *rba = &trans_pcie->rba; 770 int i, ret; 771 772 if (WARN_ON(trans_pcie->rxq)) 773 return -EINVAL; 774 775 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 776 GFP_KERNEL); 777 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 778 sizeof(trans_pcie->rx_pool[0]), 779 GFP_KERNEL); 780 trans_pcie->global_table = 781 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 782 sizeof(trans_pcie->global_table[0]), 783 GFP_KERNEL); 784 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 785 !trans_pcie->global_table) { 786 ret = -ENOMEM; 787 goto err; 788 } 789 790 spin_lock_init(&rba->lock); 791 792 /* 793 * Allocate the driver's pointer to receive buffer status. 794 * Allocate for all queues continuously (HW requirement). 795 */ 796 trans_pcie->base_rb_stts = 797 dma_alloc_coherent(trans->dev, 798 rb_stts_size * trans->num_rx_queues, 799 &trans_pcie->base_rb_stts_dma, 800 GFP_KERNEL); 801 if (!trans_pcie->base_rb_stts) { 802 ret = -ENOMEM; 803 goto err; 804 } 805 806 for (i = 0; i < trans->num_rx_queues; i++) { 807 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 808 809 rxq->id = i; 810 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 811 if (ret) 812 goto err; 813 } 814 return 0; 815 816 err: 817 if (trans_pcie->base_rb_stts) { 818 dma_free_coherent(trans->dev, 819 rb_stts_size * trans->num_rx_queues, 820 trans_pcie->base_rb_stts, 821 trans_pcie->base_rb_stts_dma); 822 trans_pcie->base_rb_stts = NULL; 823 trans_pcie->base_rb_stts_dma = 0; 824 } 825 kfree(trans_pcie->rx_pool); 826 trans_pcie->rx_pool = NULL; 827 kfree(trans_pcie->global_table); 828 trans_pcie->global_table = NULL; 829 kfree(trans_pcie->rxq); 830 trans_pcie->rxq = NULL; 831 832 return ret; 833 } 834 835 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 836 { 837 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 838 u32 rb_size; 839 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 840 841 switch (trans_pcie->rx_buf_size) { 842 case IWL_AMSDU_4K: 843 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 844 break; 845 case IWL_AMSDU_8K: 846 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 847 break; 848 case IWL_AMSDU_12K: 849 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 850 break; 851 default: 852 WARN_ON(1); 853 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 854 } 855 856 if (!iwl_trans_grab_nic_access(trans)) 857 return; 858 859 /* Stop Rx DMA */ 860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 861 /* reset and flush pointers */ 862 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 863 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 864 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 865 866 /* Reset driver's Rx queue write index */ 867 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 868 869 /* Tell device where to find RBD circular buffer in DRAM */ 870 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 871 (u32)(rxq->bd_dma >> 8)); 872 873 /* Tell device where in DRAM to update its Rx status */ 874 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 875 rxq->rb_stts_dma >> 4); 876 877 /* Enable Rx DMA 878 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 879 * the credit mechanism in 5000 HW RX FIFO 880 * Direct rx interrupts to hosts 881 * Rx buffer size 4 or 8k or 12k 882 * RB timeout 0x10 883 * 256 RBDs 884 */ 885 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 886 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 887 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 888 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 889 rb_size | 890 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 891 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 892 893 iwl_trans_release_nic_access(trans); 894 895 /* Set interrupt coalescing timer to default (2048 usecs) */ 896 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 897 898 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 899 if (trans->cfg->host_interrupt_operation_mode) 900 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 901 } 902 903 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 904 { 905 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 906 u32 rb_size, enabled = 0; 907 int i; 908 909 switch (trans_pcie->rx_buf_size) { 910 case IWL_AMSDU_2K: 911 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 912 break; 913 case IWL_AMSDU_4K: 914 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 915 break; 916 case IWL_AMSDU_8K: 917 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 918 break; 919 case IWL_AMSDU_12K: 920 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 921 break; 922 default: 923 WARN_ON(1); 924 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 925 } 926 927 if (!iwl_trans_grab_nic_access(trans)) 928 return; 929 930 /* Stop Rx DMA */ 931 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 932 /* disable free amd used rx queue operation */ 933 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 934 935 for (i = 0; i < trans->num_rx_queues; i++) { 936 /* Tell device where to find RBD free table in DRAM */ 937 iwl_write_prph64_no_grab(trans, 938 RFH_Q_FRBDCB_BA_LSB(i), 939 trans_pcie->rxq[i].bd_dma); 940 /* Tell device where to find RBD used table in DRAM */ 941 iwl_write_prph64_no_grab(trans, 942 RFH_Q_URBDCB_BA_LSB(i), 943 trans_pcie->rxq[i].used_bd_dma); 944 /* Tell device where in DRAM to update its Rx status */ 945 iwl_write_prph64_no_grab(trans, 946 RFH_Q_URBD_STTS_WPTR_LSB(i), 947 trans_pcie->rxq[i].rb_stts_dma); 948 /* Reset device indice tables */ 949 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 950 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 951 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 952 953 enabled |= BIT(i) | BIT(i + 16); 954 } 955 956 /* 957 * Enable Rx DMA 958 * Rx buffer size 4 or 8k or 12k 959 * Min RB size 4 or 8 960 * Drop frames that exceed RB size 961 * 512 RBDs 962 */ 963 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 964 RFH_DMA_EN_ENABLE_VAL | rb_size | 965 RFH_RXF_DMA_MIN_RB_4_8 | 966 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 967 RFH_RXF_DMA_RBDCB_SIZE_512); 968 969 /* 970 * Activate DMA snooping. 971 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 972 * Default queue is 0 973 */ 974 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 975 RFH_GEN_CFG_RFH_DMA_SNOOP | 976 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 977 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 978 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 979 trans->trans_cfg->integrated ? 980 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 981 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 982 /* Enable the relevant rx queues */ 983 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 984 985 iwl_trans_release_nic_access(trans); 986 987 /* Set interrupt coalescing timer to default (2048 usecs) */ 988 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 989 } 990 991 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 992 { 993 lockdep_assert_held(&rxq->lock); 994 995 INIT_LIST_HEAD(&rxq->rx_free); 996 INIT_LIST_HEAD(&rxq->rx_used); 997 rxq->free_count = 0; 998 rxq->used_count = 0; 999 } 1000 1001 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1002 1003 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1004 { 1005 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1006 struct iwl_trans_pcie *trans_pcie; 1007 struct iwl_trans *trans; 1008 int ret; 1009 1010 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1011 trans = trans_pcie->trans; 1012 1013 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1014 1015 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1016 rxq->id, ret, budget); 1017 1018 if (ret < budget) { 1019 spin_lock(&trans_pcie->irq_lock); 1020 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1021 _iwl_enable_interrupts(trans); 1022 spin_unlock(&trans_pcie->irq_lock); 1023 1024 napi_complete_done(&rxq->napi, ret); 1025 } 1026 1027 return ret; 1028 } 1029 1030 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1031 { 1032 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1033 struct iwl_trans_pcie *trans_pcie; 1034 struct iwl_trans *trans; 1035 int ret; 1036 1037 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1038 trans = trans_pcie->trans; 1039 1040 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1041 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1042 budget); 1043 1044 if (ret < budget) { 1045 int irq_line = rxq->id; 1046 1047 /* FIRST_RSS is shared with line 0 */ 1048 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1049 rxq->id == 1) 1050 irq_line = 0; 1051 1052 spin_lock(&trans_pcie->irq_lock); 1053 iwl_pcie_clear_irq(trans, irq_line); 1054 spin_unlock(&trans_pcie->irq_lock); 1055 1056 napi_complete_done(&rxq->napi, ret); 1057 } 1058 1059 return ret; 1060 } 1061 1062 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) 1063 { 1064 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1065 int i; 1066 1067 if (unlikely(!trans_pcie->rxq)) 1068 return; 1069 1070 for (i = 0; i < trans->num_rx_queues; i++) { 1071 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1072 1073 if (rxq && rxq->napi.poll) 1074 napi_synchronize(&rxq->napi); 1075 } 1076 } 1077 1078 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1079 { 1080 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1081 struct iwl_rxq *def_rxq; 1082 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1083 int i, err, queue_size, allocator_pool_size, num_alloc; 1084 1085 if (!trans_pcie->rxq) { 1086 err = iwl_pcie_rx_alloc(trans); 1087 if (err) 1088 return err; 1089 } 1090 def_rxq = trans_pcie->rxq; 1091 1092 cancel_work_sync(&rba->rx_alloc); 1093 1094 spin_lock_bh(&rba->lock); 1095 atomic_set(&rba->req_pending, 0); 1096 atomic_set(&rba->req_ready, 0); 1097 INIT_LIST_HEAD(&rba->rbd_allocated); 1098 INIT_LIST_HEAD(&rba->rbd_empty); 1099 spin_unlock_bh(&rba->lock); 1100 1101 /* free all first - we overwrite everything here */ 1102 iwl_pcie_free_rbs_pool(trans); 1103 1104 for (i = 0; i < RX_QUEUE_SIZE; i++) 1105 def_rxq->queue[i] = NULL; 1106 1107 for (i = 0; i < trans->num_rx_queues; i++) { 1108 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1109 1110 spin_lock_bh(&rxq->lock); 1111 /* 1112 * Set read write pointer to reflect that we have processed 1113 * and used all buffers, but have not restocked the Rx queue 1114 * with fresh buffers 1115 */ 1116 rxq->read = 0; 1117 rxq->write = 0; 1118 rxq->write_actual = 0; 1119 memset(rxq->rb_stts, 0, 1120 (trans->trans_cfg->device_family >= 1121 IWL_DEVICE_FAMILY_AX210) ? 1122 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1123 1124 iwl_pcie_rx_init_rxb_lists(rxq); 1125 1126 spin_unlock_bh(&rxq->lock); 1127 1128 if (!rxq->napi.poll) { 1129 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1130 1131 if (trans_pcie->msix_enabled) 1132 poll = iwl_pcie_napi_poll_msix; 1133 1134 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1135 poll); 1136 napi_enable(&rxq->napi); 1137 } 1138 1139 } 1140 1141 /* move the pool to the default queue and allocator ownerships */ 1142 queue_size = trans->trans_cfg->mq_rx_supported ? 1143 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1144 allocator_pool_size = trans->num_rx_queues * 1145 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1146 num_alloc = queue_size + allocator_pool_size; 1147 1148 for (i = 0; i < num_alloc; i++) { 1149 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1150 1151 if (i < allocator_pool_size) 1152 list_add(&rxb->list, &rba->rbd_empty); 1153 else 1154 list_add(&rxb->list, &def_rxq->rx_used); 1155 trans_pcie->global_table[i] = rxb; 1156 rxb->vid = (u16)(i + 1); 1157 rxb->invalid = true; 1158 } 1159 1160 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1161 1162 return 0; 1163 } 1164 1165 int iwl_pcie_rx_init(struct iwl_trans *trans) 1166 { 1167 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1168 int ret = _iwl_pcie_rx_init(trans); 1169 1170 if (ret) 1171 return ret; 1172 1173 if (trans->trans_cfg->mq_rx_supported) 1174 iwl_pcie_rx_mq_hw_init(trans); 1175 else 1176 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1177 1178 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1179 1180 spin_lock_bh(&trans_pcie->rxq->lock); 1181 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1182 spin_unlock_bh(&trans_pcie->rxq->lock); 1183 1184 return 0; 1185 } 1186 1187 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1188 { 1189 /* Set interrupt coalescing timer to default (2048 usecs) */ 1190 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1191 1192 /* 1193 * We don't configure the RFH. 1194 * Restock will be done at alive, after firmware configured the RFH. 1195 */ 1196 return _iwl_pcie_rx_init(trans); 1197 } 1198 1199 void iwl_pcie_rx_free(struct iwl_trans *trans) 1200 { 1201 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1202 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 1203 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1204 int i; 1205 1206 /* 1207 * if rxq is NULL, it means that nothing has been allocated, 1208 * exit now 1209 */ 1210 if (!trans_pcie->rxq) { 1211 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1212 return; 1213 } 1214 1215 cancel_work_sync(&rba->rx_alloc); 1216 1217 iwl_pcie_free_rbs_pool(trans); 1218 1219 if (trans_pcie->base_rb_stts) { 1220 dma_free_coherent(trans->dev, 1221 rb_stts_size * trans->num_rx_queues, 1222 trans_pcie->base_rb_stts, 1223 trans_pcie->base_rb_stts_dma); 1224 trans_pcie->base_rb_stts = NULL; 1225 trans_pcie->base_rb_stts_dma = 0; 1226 } 1227 1228 for (i = 0; i < trans->num_rx_queues; i++) { 1229 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1230 1231 iwl_pcie_free_rxq_dma(trans, rxq); 1232 1233 if (rxq->napi.poll) { 1234 napi_disable(&rxq->napi); 1235 netif_napi_del(&rxq->napi); 1236 } 1237 } 1238 kfree(trans_pcie->rx_pool); 1239 kfree(trans_pcie->global_table); 1240 kfree(trans_pcie->rxq); 1241 1242 if (trans_pcie->alloc_page) 1243 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1244 } 1245 1246 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1247 struct iwl_rb_allocator *rba) 1248 { 1249 spin_lock(&rba->lock); 1250 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1251 spin_unlock(&rba->lock); 1252 } 1253 1254 /* 1255 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1256 * 1257 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1258 * When there are 2 empty RBDs - a request for allocation is posted 1259 */ 1260 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1261 struct iwl_rx_mem_buffer *rxb, 1262 struct iwl_rxq *rxq, bool emergency) 1263 { 1264 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1265 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1266 1267 /* Move the RBD to the used list, will be moved to allocator in batches 1268 * before claiming or posting a request*/ 1269 list_add_tail(&rxb->list, &rxq->rx_used); 1270 1271 if (unlikely(emergency)) 1272 return; 1273 1274 /* Count the allocator owned RBDs */ 1275 rxq->used_count++; 1276 1277 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1278 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1279 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1280 * after but we still need to post another request. 1281 */ 1282 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1283 /* Move the 2 RBDs to the allocator ownership. 1284 Allocator has another 6 from pool for the request completion*/ 1285 iwl_pcie_rx_move_to_allocator(rxq, rba); 1286 1287 atomic_inc(&rba->req_pending); 1288 queue_work(rba->alloc_wq, &rba->rx_alloc); 1289 } 1290 } 1291 1292 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1293 struct iwl_rxq *rxq, 1294 struct iwl_rx_mem_buffer *rxb, 1295 bool emergency, 1296 int i) 1297 { 1298 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1299 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; 1300 bool page_stolen = false; 1301 int max_len = trans_pcie->rx_buf_bytes; 1302 u32 offset = 0; 1303 1304 if (WARN_ON(!rxb)) 1305 return; 1306 1307 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1308 1309 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1310 struct iwl_rx_packet *pkt; 1311 bool reclaim; 1312 int len; 1313 struct iwl_rx_cmd_buffer rxcb = { 1314 ._offset = rxb->offset + offset, 1315 ._rx_page_order = trans_pcie->rx_page_order, 1316 ._page = rxb->page, 1317 ._page_stolen = false, 1318 .truesize = max_len, 1319 }; 1320 1321 pkt = rxb_addr(&rxcb); 1322 1323 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1324 IWL_DEBUG_RX(trans, 1325 "Q %d: RB end marker at offset %d\n", 1326 rxq->id, offset); 1327 break; 1328 } 1329 1330 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1331 FH_RSCSR_RXQ_POS != rxq->id, 1332 "frame on invalid queue - is on %d and indicates %d\n", 1333 rxq->id, 1334 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1335 FH_RSCSR_RXQ_POS); 1336 1337 IWL_DEBUG_RX(trans, 1338 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1339 rxq->id, offset, 1340 iwl_get_cmd_string(trans, 1341 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1342 pkt->hdr.group_id, pkt->hdr.cmd, 1343 le16_to_cpu(pkt->hdr.sequence)); 1344 1345 len = iwl_rx_packet_len(pkt); 1346 len += sizeof(u32); /* account for status word */ 1347 1348 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1349 1350 /* check that what the device tells us made sense */ 1351 if (len < sizeof(*pkt) || offset > max_len) 1352 break; 1353 1354 maybe_trace_iwlwifi_dev_rx(trans, pkt, len); 1355 1356 /* Reclaim a command buffer only if this packet is a response 1357 * to a (driver-originated) command. 1358 * If the packet (e.g. Rx frame) originated from uCode, 1359 * there is no command buffer to reclaim. 1360 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1361 * but apparently a few don't get set; catch them here. */ 1362 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1363 if (reclaim && !pkt->hdr.group_id) { 1364 int i; 1365 1366 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1367 if (trans_pcie->no_reclaim_cmds[i] == 1368 pkt->hdr.cmd) { 1369 reclaim = false; 1370 break; 1371 } 1372 } 1373 } 1374 1375 if (rxq->id == IWL_DEFAULT_RX_QUEUE) 1376 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1377 &rxcb); 1378 else 1379 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1380 &rxcb, rxq->id); 1381 1382 /* 1383 * After here, we should always check rxcb._page_stolen, 1384 * if it is true then one of the handlers took the page. 1385 */ 1386 1387 if (reclaim && txq) { 1388 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1389 int index = SEQ_TO_INDEX(sequence); 1390 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1391 1392 kfree_sensitive(txq->entries[cmd_index].free_buf); 1393 txq->entries[cmd_index].free_buf = NULL; 1394 1395 /* Invoke any callbacks, transfer the buffer to caller, 1396 * and fire off the (possibly) blocking 1397 * iwl_trans_send_cmd() 1398 * as we reclaim the driver command queue */ 1399 if (!rxcb._page_stolen) 1400 iwl_pcie_hcmd_complete(trans, &rxcb); 1401 else 1402 IWL_WARN(trans, "Claim null rxb?\n"); 1403 } 1404 1405 page_stolen |= rxcb._page_stolen; 1406 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1407 break; 1408 } 1409 1410 /* page was stolen from us -- free our reference */ 1411 if (page_stolen) { 1412 __free_pages(rxb->page, trans_pcie->rx_page_order); 1413 rxb->page = NULL; 1414 } 1415 1416 /* Reuse the page if possible. For notification packets and 1417 * SKBs that fail to Rx correctly, add them back into the 1418 * rx_free list for reuse later. */ 1419 if (rxb->page != NULL) { 1420 rxb->page_dma = 1421 dma_map_page(trans->dev, rxb->page, rxb->offset, 1422 trans_pcie->rx_buf_bytes, 1423 DMA_FROM_DEVICE); 1424 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1425 /* 1426 * free the page(s) as well to not break 1427 * the invariant that the items on the used 1428 * list have no page(s) 1429 */ 1430 __free_pages(rxb->page, trans_pcie->rx_page_order); 1431 rxb->page = NULL; 1432 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1433 } else { 1434 list_add_tail(&rxb->list, &rxq->rx_free); 1435 rxq->free_count++; 1436 } 1437 } else 1438 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1439 } 1440 1441 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1442 struct iwl_rxq *rxq, int i, 1443 bool *join) 1444 { 1445 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1446 struct iwl_rx_mem_buffer *rxb; 1447 u16 vid; 1448 1449 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1450 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1451 1452 if (!trans->trans_cfg->mq_rx_supported) { 1453 rxb = rxq->queue[i]; 1454 rxq->queue[i] = NULL; 1455 return rxb; 1456 } 1457 1458 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1459 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1460 1461 vid = le16_to_cpu(cd[i].rbid); 1462 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1463 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1464 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1465 1466 vid = le16_to_cpu(cd[i].rbid); 1467 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1468 } else { 1469 __le32 *cd = rxq->used_bd; 1470 1471 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1472 } 1473 1474 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1475 goto out_err; 1476 1477 rxb = trans_pcie->global_table[vid - 1]; 1478 if (rxb->invalid) 1479 goto out_err; 1480 1481 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1482 1483 rxb->invalid = true; 1484 1485 return rxb; 1486 1487 out_err: 1488 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1489 iwl_force_nmi(trans); 1490 return NULL; 1491 } 1492 1493 /* 1494 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1495 */ 1496 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1497 { 1498 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1499 struct iwl_rxq *rxq; 1500 u32 r, i, count = 0, handled = 0; 1501 bool emergency = false; 1502 1503 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1504 return budget; 1505 1506 rxq = &trans_pcie->rxq[queue]; 1507 1508 restart: 1509 spin_lock(&rxq->lock); 1510 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1511 * buffer that the driver may process (last buffer filled by ucode). */ 1512 r = iwl_get_closed_rb_stts(trans, rxq); 1513 i = rxq->read; 1514 1515 /* W/A 9000 device step A0 wrap-around bug */ 1516 r &= (rxq->queue_size - 1); 1517 1518 /* Rx interrupt, but nothing sent from uCode */ 1519 if (i == r) 1520 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1521 1522 while (i != r && ++handled < budget) { 1523 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1524 struct iwl_rx_mem_buffer *rxb; 1525 /* number of RBDs still waiting for page allocation */ 1526 u32 rb_pending_alloc = 1527 atomic_read(&trans_pcie->rba.req_pending) * 1528 RX_CLAIM_REQ_ALLOC; 1529 bool join = false; 1530 1531 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1532 !emergency)) { 1533 iwl_pcie_rx_move_to_allocator(rxq, rba); 1534 emergency = true; 1535 IWL_DEBUG_TPT(trans, 1536 "RX path is in emergency. Pending allocations %d\n", 1537 rb_pending_alloc); 1538 } 1539 1540 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1541 1542 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1543 if (!rxb) 1544 goto out; 1545 1546 if (unlikely(join || rxq->next_rb_is_fragment)) { 1547 rxq->next_rb_is_fragment = join; 1548 /* 1549 * We can only get a multi-RB in the following cases: 1550 * - firmware issue, sending a too big notification 1551 * - sniffer mode with a large A-MSDU 1552 * - large MTU frames (>2k) 1553 * since the multi-RB functionality is limited to newer 1554 * hardware that cannot put multiple entries into a 1555 * single RB. 1556 * 1557 * Right now, the higher layers aren't set up to deal 1558 * with that, so discard all of these. 1559 */ 1560 list_add_tail(&rxb->list, &rxq->rx_free); 1561 rxq->free_count++; 1562 } else { 1563 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1564 } 1565 1566 i = (i + 1) & (rxq->queue_size - 1); 1567 1568 /* 1569 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1570 * try to claim the pre-allocated buffers from the allocator. 1571 * If not ready - will try to reclaim next time. 1572 * There is no need to reschedule work - allocator exits only 1573 * on success 1574 */ 1575 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1576 iwl_pcie_rx_allocator_get(trans, rxq); 1577 1578 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1579 /* Add the remaining empty RBDs for allocator use */ 1580 iwl_pcie_rx_move_to_allocator(rxq, rba); 1581 } else if (emergency) { 1582 count++; 1583 if (count == 8) { 1584 count = 0; 1585 if (rb_pending_alloc < rxq->queue_size / 3) { 1586 IWL_DEBUG_TPT(trans, 1587 "RX path exited emergency. Pending allocations %d\n", 1588 rb_pending_alloc); 1589 emergency = false; 1590 } 1591 1592 rxq->read = i; 1593 spin_unlock(&rxq->lock); 1594 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1595 iwl_pcie_rxq_restock(trans, rxq); 1596 goto restart; 1597 } 1598 } 1599 } 1600 out: 1601 /* Backtrack one entry */ 1602 rxq->read = i; 1603 spin_unlock(&rxq->lock); 1604 1605 /* 1606 * handle a case where in emergency there are some unallocated RBDs. 1607 * those RBDs are in the used list, but are not tracked by the queue's 1608 * used_count which counts allocator owned RBDs. 1609 * unallocated emergency RBDs must be allocated on exit, otherwise 1610 * when called again the function may not be in emergency mode and 1611 * they will be handed to the allocator with no tracking in the RBD 1612 * allocator counters, which will lead to them never being claimed back 1613 * by the queue. 1614 * by allocating them here, they are now in the queue free list, and 1615 * will be restocked by the next call of iwl_pcie_rxq_restock. 1616 */ 1617 if (unlikely(emergency && count)) 1618 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1619 1620 iwl_pcie_rxq_restock(trans, rxq); 1621 1622 return handled; 1623 } 1624 1625 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1626 { 1627 u8 queue = entry->entry; 1628 struct msix_entry *entries = entry - queue; 1629 1630 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1631 } 1632 1633 /* 1634 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1635 * This interrupt handler should be used with RSS queue only. 1636 */ 1637 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1638 { 1639 struct msix_entry *entry = dev_id; 1640 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1641 struct iwl_trans *trans = trans_pcie->trans; 1642 struct iwl_rxq *rxq; 1643 1644 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1645 1646 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1647 return IRQ_NONE; 1648 1649 if (!trans_pcie->rxq) { 1650 if (net_ratelimit()) 1651 IWL_ERR(trans, 1652 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1653 entry->entry); 1654 return IRQ_NONE; 1655 } 1656 1657 rxq = &trans_pcie->rxq[entry->entry]; 1658 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1659 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1660 1661 local_bh_disable(); 1662 if (!napi_schedule(&rxq->napi)) 1663 iwl_pcie_clear_irq(trans, entry->entry); 1664 local_bh_enable(); 1665 1666 lock_map_release(&trans->sync_cmd_lockdep_map); 1667 1668 return IRQ_HANDLED; 1669 } 1670 1671 /* 1672 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1673 */ 1674 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1675 { 1676 int i; 1677 1678 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1679 if (trans->cfg->internal_wimax_coex && 1680 !trans->cfg->apmg_not_supported && 1681 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1682 APMS_CLK_VAL_MRB_FUNC_MODE) || 1683 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1684 APMG_PS_CTRL_VAL_RESET_REQ))) { 1685 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1686 iwl_op_mode_wimax_active(trans->op_mode); 1687 wake_up(&trans->wait_command_queue); 1688 return; 1689 } 1690 1691 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1692 if (!trans->txqs.txq[i]) 1693 continue; 1694 del_timer(&trans->txqs.txq[i]->stuck_timer); 1695 } 1696 1697 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1698 * before we wake up the command caller, to ensure a proper cleanup. */ 1699 iwl_trans_fw_error(trans, false); 1700 1701 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1702 wake_up(&trans->wait_command_queue); 1703 } 1704 1705 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1706 { 1707 u32 inta; 1708 1709 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1710 1711 trace_iwlwifi_dev_irq(trans->dev); 1712 1713 /* Discover which interrupts are active/pending */ 1714 inta = iwl_read32(trans, CSR_INT); 1715 1716 /* the thread will service interrupts and re-enable them */ 1717 return inta; 1718 } 1719 1720 /* a device (PCI-E) page is 4096 bytes long */ 1721 #define ICT_SHIFT 12 1722 #define ICT_SIZE (1 << ICT_SHIFT) 1723 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1724 1725 /* interrupt handler using ict table, with this interrupt driver will 1726 * stop using INTA register to get device's interrupt, reading this register 1727 * is expensive, device will write interrupts in ICT dram table, increment 1728 * index then will fire interrupt to driver, driver will OR all ICT table 1729 * entries from current index up to table entry with 0 value. the result is 1730 * the interrupt we need to service, driver will set the entries back to 0 and 1731 * set index. 1732 */ 1733 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1734 { 1735 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1736 u32 inta; 1737 u32 val = 0; 1738 u32 read; 1739 1740 trace_iwlwifi_dev_irq(trans->dev); 1741 1742 /* Ignore interrupt if there's nothing in NIC to service. 1743 * This may be due to IRQ shared with another device, 1744 * or due to sporadic interrupts thrown from our NIC. */ 1745 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1746 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1747 if (!read) 1748 return 0; 1749 1750 /* 1751 * Collect all entries up to the first 0, starting from ict_index; 1752 * note we already read at ict_index. 1753 */ 1754 do { 1755 val |= read; 1756 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1757 trans_pcie->ict_index, read); 1758 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1759 trans_pcie->ict_index = 1760 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1761 1762 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1763 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1764 read); 1765 } while (read); 1766 1767 /* We should not get this value, just ignore it. */ 1768 if (val == 0xffffffff) 1769 val = 0; 1770 1771 /* 1772 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1773 * (bit 15 before shifting it to 31) to clear when using interrupt 1774 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1775 * so we use them to decide on the real state of the Rx bit. 1776 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1777 */ 1778 if (val & 0xC0000) 1779 val |= 0x8000; 1780 1781 inta = (0xff & val) | ((0xff00 & val) << 16); 1782 return inta; 1783 } 1784 1785 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq) 1786 { 1787 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1788 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1789 bool hw_rfkill, prev, report; 1790 1791 mutex_lock(&trans_pcie->mutex); 1792 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1793 hw_rfkill = iwl_is_rfkill_set(trans); 1794 if (hw_rfkill) { 1795 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1796 set_bit(STATUS_RFKILL_HW, &trans->status); 1797 } 1798 if (trans_pcie->opmode_down) 1799 report = hw_rfkill; 1800 else 1801 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1802 1803 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1804 hw_rfkill ? "disable radio" : "enable radio"); 1805 1806 isr_stats->rfkill++; 1807 1808 if (prev != report) 1809 iwl_trans_pcie_rf_kill(trans, report, from_irq); 1810 mutex_unlock(&trans_pcie->mutex); 1811 1812 if (hw_rfkill) { 1813 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1814 &trans->status)) 1815 IWL_DEBUG_RF_KILL(trans, 1816 "Rfkill while SYNC HCMD in flight\n"); 1817 wake_up(&trans->wait_command_queue); 1818 } else { 1819 clear_bit(STATUS_RFKILL_HW, &trans->status); 1820 if (trans_pcie->opmode_down) 1821 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1822 } 1823 } 1824 1825 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1826 { 1827 struct iwl_trans *trans = dev_id; 1828 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1829 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1830 u32 inta = 0; 1831 u32 handled = 0; 1832 bool polling = false; 1833 1834 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1835 1836 spin_lock_bh(&trans_pcie->irq_lock); 1837 1838 /* dram interrupt table not set yet, 1839 * use legacy interrupt. 1840 */ 1841 if (likely(trans_pcie->use_ict)) 1842 inta = iwl_pcie_int_cause_ict(trans); 1843 else 1844 inta = iwl_pcie_int_cause_non_ict(trans); 1845 1846 if (iwl_have_debug_level(IWL_DL_ISR)) { 1847 IWL_DEBUG_ISR(trans, 1848 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1849 inta, trans_pcie->inta_mask, 1850 iwl_read32(trans, CSR_INT_MASK), 1851 iwl_read32(trans, CSR_FH_INT_STATUS)); 1852 if (inta & (~trans_pcie->inta_mask)) 1853 IWL_DEBUG_ISR(trans, 1854 "We got a masked interrupt (0x%08x)\n", 1855 inta & (~trans_pcie->inta_mask)); 1856 } 1857 1858 inta &= trans_pcie->inta_mask; 1859 1860 /* 1861 * Ignore interrupt if there's nothing in NIC to service. 1862 * This may be due to IRQ shared with another device, 1863 * or due to sporadic interrupts thrown from our NIC. 1864 */ 1865 if (unlikely(!inta)) { 1866 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1867 /* 1868 * Re-enable interrupts here since we don't 1869 * have anything to service 1870 */ 1871 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1872 _iwl_enable_interrupts(trans); 1873 spin_unlock_bh(&trans_pcie->irq_lock); 1874 lock_map_release(&trans->sync_cmd_lockdep_map); 1875 return IRQ_NONE; 1876 } 1877 1878 if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { 1879 /* 1880 * Hardware disappeared. It might have 1881 * already raised an interrupt. 1882 */ 1883 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1884 spin_unlock_bh(&trans_pcie->irq_lock); 1885 goto out; 1886 } 1887 1888 /* Ack/clear/reset pending uCode interrupts. 1889 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1890 */ 1891 /* There is a hardware bug in the interrupt mask function that some 1892 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1893 * they are disabled in the CSR_INT_MASK register. Furthermore the 1894 * ICT interrupt handling mechanism has another bug that might cause 1895 * these unmasked interrupts fail to be detected. We workaround the 1896 * hardware bugs here by ACKing all the possible interrupts so that 1897 * interrupt coalescing can still be achieved. 1898 */ 1899 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1900 1901 if (iwl_have_debug_level(IWL_DL_ISR)) 1902 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1903 inta, iwl_read32(trans, CSR_INT_MASK)); 1904 1905 spin_unlock_bh(&trans_pcie->irq_lock); 1906 1907 /* Now service all interrupt bits discovered above. */ 1908 if (inta & CSR_INT_BIT_HW_ERR) { 1909 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1910 1911 /* Tell the device to stop sending interrupts */ 1912 iwl_disable_interrupts(trans); 1913 1914 isr_stats->hw++; 1915 iwl_pcie_irq_handle_error(trans); 1916 1917 handled |= CSR_INT_BIT_HW_ERR; 1918 1919 goto out; 1920 } 1921 1922 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1923 if (inta & CSR_INT_BIT_SCD) { 1924 IWL_DEBUG_ISR(trans, 1925 "Scheduler finished to transmit the frame/frames.\n"); 1926 isr_stats->sch++; 1927 } 1928 1929 /* Alive notification via Rx interrupt will do the real work */ 1930 if (inta & CSR_INT_BIT_ALIVE) { 1931 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1932 isr_stats->alive++; 1933 if (trans->trans_cfg->gen2) { 1934 /* 1935 * We can restock, since firmware configured 1936 * the RFH 1937 */ 1938 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1939 } 1940 1941 handled |= CSR_INT_BIT_ALIVE; 1942 } 1943 1944 /* Safely ignore these bits for debug checks below */ 1945 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1946 1947 /* HW RF KILL switch toggled */ 1948 if (inta & CSR_INT_BIT_RF_KILL) { 1949 iwl_pcie_handle_rfkill_irq(trans, true); 1950 handled |= CSR_INT_BIT_RF_KILL; 1951 } 1952 1953 /* Chip got too hot and stopped itself */ 1954 if (inta & CSR_INT_BIT_CT_KILL) { 1955 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1956 isr_stats->ctkill++; 1957 handled |= CSR_INT_BIT_CT_KILL; 1958 } 1959 1960 /* Error detected by uCode */ 1961 if (inta & CSR_INT_BIT_SW_ERR) { 1962 IWL_ERR(trans, "Microcode SW error detected. " 1963 " Restarting 0x%X.\n", inta); 1964 isr_stats->sw++; 1965 iwl_pcie_irq_handle_error(trans); 1966 handled |= CSR_INT_BIT_SW_ERR; 1967 } 1968 1969 /* uCode wakes up after power-down sleep */ 1970 if (inta & CSR_INT_BIT_WAKEUP) { 1971 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1972 iwl_pcie_rxq_check_wrptr(trans); 1973 iwl_pcie_txq_check_wrptrs(trans); 1974 1975 isr_stats->wakeup++; 1976 1977 handled |= CSR_INT_BIT_WAKEUP; 1978 } 1979 1980 /* All uCode command responses, including Tx command responses, 1981 * Rx "responses" (frame-received notification), and other 1982 * notifications from uCode come through here*/ 1983 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1984 CSR_INT_BIT_RX_PERIODIC)) { 1985 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1986 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1987 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1988 iwl_write32(trans, CSR_FH_INT_STATUS, 1989 CSR_FH_INT_RX_MASK); 1990 } 1991 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1992 handled |= CSR_INT_BIT_RX_PERIODIC; 1993 iwl_write32(trans, 1994 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1995 } 1996 /* Sending RX interrupt require many steps to be done in the 1997 * device: 1998 * 1- write interrupt to current index in ICT table. 1999 * 2- dma RX frame. 2000 * 3- update RX shared data to indicate last write index. 2001 * 4- send interrupt. 2002 * This could lead to RX race, driver could receive RX interrupt 2003 * but the shared data changes does not reflect this; 2004 * periodic interrupt will detect any dangling Rx activity. 2005 */ 2006 2007 /* Disable periodic interrupt; we use it as just a one-shot. */ 2008 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2009 CSR_INT_PERIODIC_DIS); 2010 2011 /* 2012 * Enable periodic interrupt in 8 msec only if we received 2013 * real RX interrupt (instead of just periodic int), to catch 2014 * any dangling Rx interrupt. If it was just the periodic 2015 * interrupt, there was no dangling Rx activity, and no need 2016 * to extend the periodic interrupt; one-shot is enough. 2017 */ 2018 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2019 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2020 CSR_INT_PERIODIC_ENA); 2021 2022 isr_stats->rx++; 2023 2024 local_bh_disable(); 2025 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2026 polling = true; 2027 __napi_schedule(&trans_pcie->rxq[0].napi); 2028 } 2029 local_bh_enable(); 2030 } 2031 2032 /* This "Tx" DMA channel is used only for loading uCode */ 2033 if (inta & CSR_INT_BIT_FH_TX) { 2034 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2035 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2036 isr_stats->tx++; 2037 handled |= CSR_INT_BIT_FH_TX; 2038 /* Wake up uCode load routine, now that load is complete */ 2039 trans_pcie->ucode_write_complete = true; 2040 wake_up(&trans_pcie->ucode_write_waitq); 2041 /* Wake up IMR write routine, now that write to SRAM is complete */ 2042 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2043 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2044 wake_up(&trans_pcie->ucode_write_waitq); 2045 } 2046 } 2047 2048 if (inta & ~handled) { 2049 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2050 isr_stats->unhandled++; 2051 } 2052 2053 if (inta & ~(trans_pcie->inta_mask)) { 2054 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2055 inta & ~trans_pcie->inta_mask); 2056 } 2057 2058 if (!polling) { 2059 spin_lock_bh(&trans_pcie->irq_lock); 2060 /* only Re-enable all interrupt if disabled by irq */ 2061 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2062 _iwl_enable_interrupts(trans); 2063 /* we are loading the firmware, enable FH_TX interrupt only */ 2064 else if (handled & CSR_INT_BIT_FH_TX) 2065 iwl_enable_fw_load_int(trans); 2066 /* Re-enable RF_KILL if it occurred */ 2067 else if (handled & CSR_INT_BIT_RF_KILL) 2068 iwl_enable_rfkill_int(trans); 2069 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2070 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2071 iwl_enable_fw_load_int_ctx_info(trans); 2072 spin_unlock_bh(&trans_pcie->irq_lock); 2073 } 2074 2075 out: 2076 lock_map_release(&trans->sync_cmd_lockdep_map); 2077 return IRQ_HANDLED; 2078 } 2079 2080 /****************************************************************************** 2081 * 2082 * ICT functions 2083 * 2084 ******************************************************************************/ 2085 2086 /* Free dram table */ 2087 void iwl_pcie_free_ict(struct iwl_trans *trans) 2088 { 2089 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2090 2091 if (trans_pcie->ict_tbl) { 2092 dma_free_coherent(trans->dev, ICT_SIZE, 2093 trans_pcie->ict_tbl, 2094 trans_pcie->ict_tbl_dma); 2095 trans_pcie->ict_tbl = NULL; 2096 trans_pcie->ict_tbl_dma = 0; 2097 } 2098 } 2099 2100 /* 2101 * allocate dram shared table, it is an aligned memory 2102 * block of ICT_SIZE. 2103 * also reset all data related to ICT table interrupt. 2104 */ 2105 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2106 { 2107 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2108 2109 trans_pcie->ict_tbl = 2110 dma_alloc_coherent(trans->dev, ICT_SIZE, 2111 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2112 if (!trans_pcie->ict_tbl) 2113 return -ENOMEM; 2114 2115 /* just an API sanity check ... it is guaranteed to be aligned */ 2116 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2117 iwl_pcie_free_ict(trans); 2118 return -EINVAL; 2119 } 2120 2121 return 0; 2122 } 2123 2124 /* Device is going up inform it about using ICT interrupt table, 2125 * also we need to tell the driver to start using ICT interrupt. 2126 */ 2127 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2128 { 2129 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2130 u32 val; 2131 2132 if (!trans_pcie->ict_tbl) 2133 return; 2134 2135 spin_lock_bh(&trans_pcie->irq_lock); 2136 _iwl_disable_interrupts(trans); 2137 2138 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2139 2140 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2141 2142 val |= CSR_DRAM_INT_TBL_ENABLE | 2143 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2144 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2145 2146 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2147 2148 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2149 trans_pcie->use_ict = true; 2150 trans_pcie->ict_index = 0; 2151 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2152 _iwl_enable_interrupts(trans); 2153 spin_unlock_bh(&trans_pcie->irq_lock); 2154 } 2155 2156 /* Device is going down disable ict interrupt usage */ 2157 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2158 { 2159 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2160 2161 spin_lock_bh(&trans_pcie->irq_lock); 2162 trans_pcie->use_ict = false; 2163 spin_unlock_bh(&trans_pcie->irq_lock); 2164 } 2165 2166 irqreturn_t iwl_pcie_isr(int irq, void *data) 2167 { 2168 struct iwl_trans *trans = data; 2169 2170 if (!trans) 2171 return IRQ_NONE; 2172 2173 /* Disable (but don't clear!) interrupts here to avoid 2174 * back-to-back ISRs and sporadic interrupts from our NIC. 2175 * If we have something to service, the tasklet will re-enable ints. 2176 * If we *don't* have something, we'll re-enable before leaving here. 2177 */ 2178 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2179 2180 return IRQ_WAKE_THREAD; 2181 } 2182 2183 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2184 { 2185 return IRQ_WAKE_THREAD; 2186 } 2187 2188 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2189 { 2190 struct msix_entry *entry = dev_id; 2191 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2192 struct iwl_trans *trans = trans_pcie->trans; 2193 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2194 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2195 u32 inta_fh, inta_hw; 2196 bool polling = false; 2197 bool sw_err; 2198 2199 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2200 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2201 2202 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2203 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2204 2205 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2206 2207 spin_lock_bh(&trans_pcie->irq_lock); 2208 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2209 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2210 /* 2211 * Clear causes registers to avoid being handling the same cause. 2212 */ 2213 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2214 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2215 spin_unlock_bh(&trans_pcie->irq_lock); 2216 2217 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2218 2219 if (unlikely(!(inta_fh | inta_hw))) { 2220 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2221 lock_map_release(&trans->sync_cmd_lockdep_map); 2222 return IRQ_NONE; 2223 } 2224 2225 if (iwl_have_debug_level(IWL_DL_ISR)) { 2226 IWL_DEBUG_ISR(trans, 2227 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2228 entry->entry, inta_fh, trans_pcie->fh_mask, 2229 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2230 if (inta_fh & ~trans_pcie->fh_mask) 2231 IWL_DEBUG_ISR(trans, 2232 "We got a masked interrupt (0x%08x)\n", 2233 inta_fh & ~trans_pcie->fh_mask); 2234 } 2235 2236 inta_fh &= trans_pcie->fh_mask; 2237 2238 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2239 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2240 local_bh_disable(); 2241 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2242 polling = true; 2243 __napi_schedule(&trans_pcie->rxq[0].napi); 2244 } 2245 local_bh_enable(); 2246 } 2247 2248 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2249 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2250 local_bh_disable(); 2251 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2252 polling = true; 2253 __napi_schedule(&trans_pcie->rxq[1].napi); 2254 } 2255 local_bh_enable(); 2256 } 2257 2258 /* This "Tx" DMA channel is used only for loading uCode */ 2259 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2260 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2261 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2262 isr_stats->tx++; 2263 2264 /* Wake up IMR routine once write to SRAM is complete */ 2265 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2266 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2267 wake_up(&trans_pcie->ucode_write_waitq); 2268 } 2269 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2270 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2271 isr_stats->tx++; 2272 /* 2273 * Wake up uCode load routine, 2274 * now that load is complete 2275 */ 2276 trans_pcie->ucode_write_complete = true; 2277 wake_up(&trans_pcie->ucode_write_waitq); 2278 2279 /* Wake up IMR routine once write to SRAM is complete */ 2280 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2281 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2282 wake_up(&trans_pcie->ucode_write_waitq); 2283 } 2284 } 2285 2286 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2287 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2288 else 2289 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2290 2291 if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) { 2292 IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n", 2293 inta_hw); 2294 /* TODO: PLDR flow required here for >= Bz */ 2295 } 2296 2297 /* Error detected by uCode */ 2298 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2299 IWL_ERR(trans, 2300 "Microcode SW error detected. Restarting 0x%X.\n", 2301 inta_fh); 2302 isr_stats->sw++; 2303 /* during FW reset flow report errors from there */ 2304 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2305 trans_pcie->imr_status = IMR_D2S_ERROR; 2306 wake_up(&trans_pcie->imr_waitq); 2307 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2308 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2309 wake_up(&trans_pcie->fw_reset_waitq); 2310 } else { 2311 iwl_pcie_irq_handle_error(trans); 2312 } 2313 } 2314 2315 /* After checking FH register check HW register */ 2316 if (iwl_have_debug_level(IWL_DL_ISR)) { 2317 IWL_DEBUG_ISR(trans, 2318 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2319 entry->entry, inta_hw, trans_pcie->hw_mask, 2320 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2321 if (inta_hw & ~trans_pcie->hw_mask) 2322 IWL_DEBUG_ISR(trans, 2323 "We got a masked interrupt 0x%08x\n", 2324 inta_hw & ~trans_pcie->hw_mask); 2325 } 2326 2327 inta_hw &= trans_pcie->hw_mask; 2328 2329 /* Alive notification via Rx interrupt will do the real work */ 2330 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2331 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2332 isr_stats->alive++; 2333 if (trans->trans_cfg->gen2) { 2334 /* We can restock, since firmware configured the RFH */ 2335 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2336 } 2337 } 2338 2339 /* 2340 * In some rare cases when the HW is in a bad state, we may 2341 * get this interrupt too early, when prph_info is still NULL. 2342 * So make sure that it's not NULL to prevent crashing. 2343 */ 2344 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2345 u32 sleep_notif = 2346 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2347 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2348 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2349 IWL_DEBUG_ISR(trans, 2350 "Sx interrupt: sleep notification = 0x%x\n", 2351 sleep_notif); 2352 trans_pcie->sx_complete = true; 2353 wake_up(&trans_pcie->sx_waitq); 2354 } else { 2355 /* uCode wakes up after power-down sleep */ 2356 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2357 iwl_pcie_rxq_check_wrptr(trans); 2358 iwl_pcie_txq_check_wrptrs(trans); 2359 2360 isr_stats->wakeup++; 2361 } 2362 } 2363 2364 /* Chip got too hot and stopped itself */ 2365 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2366 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2367 isr_stats->ctkill++; 2368 } 2369 2370 /* HW RF KILL switch toggled */ 2371 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2372 iwl_pcie_handle_rfkill_irq(trans, true); 2373 2374 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2375 IWL_ERR(trans, 2376 "Hardware error detected. Restarting.\n"); 2377 2378 isr_stats->hw++; 2379 trans->dbg.hw_error = true; 2380 iwl_pcie_irq_handle_error(trans); 2381 } 2382 2383 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2384 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2385 trans_pcie->fw_reset_state = FW_RESET_OK; 2386 wake_up(&trans_pcie->fw_reset_waitq); 2387 } 2388 2389 if (!polling) 2390 iwl_pcie_clear_irq(trans, entry->entry); 2391 2392 lock_map_release(&trans->sync_cmd_lockdep_map); 2393 2394 return IRQ_HANDLED; 2395 } 2396