1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2024 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "pcie/iwl-context-info-v2.h" 16 #include "fw/dbg.h" 17 18 /****************************************************************************** 19 * 20 * RX path functions 21 * 22 ******************************************************************************/ 23 24 /* 25 * Rx theory of operation 26 * 27 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 28 * each of which point to Receive Buffers to be filled by the NIC. These get 29 * used not only for Rx frames, but for any command response or notification 30 * from the NIC. The driver and NIC manage the Rx buffers by means 31 * of indexes into the circular buffer. 32 * 33 * Rx Queue Indexes 34 * The host/firmware share two index registers for managing the Rx buffers. 35 * 36 * The READ index maps to the first position that the firmware may be writing 37 * to -- the driver can read up to (but not including) this position and get 38 * good data. 39 * The READ index is managed by the firmware once the card is enabled. 40 * 41 * The WRITE index maps to the last position the driver has read from -- the 42 * position preceding WRITE is the last slot the firmware can place a packet. 43 * 44 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 45 * WRITE = READ. 46 * 47 * During initialization, the host sets up the READ queue position to the first 48 * INDEX position, and WRITE to the last (READ - 1 wrapped) 49 * 50 * When the firmware places a packet in a buffer, it will advance the READ index 51 * and fire the RX interrupt. The driver can then query the READ index and 52 * process as many packets as possible, moving the WRITE index forward as it 53 * resets the Rx queue buffers with new memory. 54 * 55 * The management in the driver is as follows: 56 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 57 * When the interrupt handler is called, the request is processed. 58 * The page is either stolen - transferred to the upper layer 59 * or reused - added immediately to the iwl->rxq->rx_free list. 60 * + When the page is stolen - the driver updates the matching queue's used 61 * count, detaches the RBD and transfers it to the queue used list. 62 * When there are two used RBDs - they are transferred to the allocator empty 63 * list. Work is then scheduled for the allocator to start allocating 64 * eight buffers. 65 * When there are another 6 used RBDs - they are transferred to the allocator 66 * empty list and the driver tries to claim the pre-allocated buffers and 67 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 68 * until ready. 69 * When there are 8+ buffers in the free list - either from allocation or from 70 * 8 reused unstolen pages - restock is called to update the FW and indexes. 71 * + In order to make sure the allocator always has RBDs to use for allocation 72 * the allocator has initial pool in the size of num_queues*(8-2) - the 73 * maximum missing RBDs per allocation request (request posted with 2 74 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 75 * The queues supplies the recycle of the rest of the RBDs. 76 * + A received packet is processed and handed to the kernel network stack, 77 * detached from the iwl->rxq. The driver 'processed' index is updated. 78 * + If there are no allocated buffers in iwl->rxq->rx_free, 79 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 80 * If there were enough free buffers and RX_STALLED is set it is cleared. 81 * 82 * 83 * Driver sequence: 84 * 85 * iwl_rxq_alloc() Allocates rx_free 86 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 87 * iwl_pcie_rxq_restock. 88 * Used only during initialization. 89 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 90 * queue, updates firmware pointers, and updates 91 * the WRITE index. 92 * iwl_pcie_rx_allocator() Background work for allocating pages. 93 * 94 * -- enable interrupts -- 95 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 96 * READ INDEX, detaching the SKB from the pool. 97 * Moves the packet buffer from queue to rx_used. 98 * Posts and claims requests to the allocator. 99 * Calls iwl_pcie_rxq_restock to refill any empty 100 * slots. 101 * 102 * RBD life-cycle: 103 * 104 * Init: 105 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 106 * 107 * Regular Receive interrupt: 108 * Page Stolen: 109 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 110 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 111 * Page not Stolen: 112 * rxq.queue -> rxq.rx_free -> rxq.queue 113 * ... 114 * 115 */ 116 117 /* 118 * iwl_rxq_space - Return number of free slots available in queue. 119 */ 120 static int iwl_rxq_space(const struct iwl_rxq *rxq) 121 { 122 /* Make sure rx queue size is a power of 2 */ 123 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 124 125 /* 126 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 127 * between empty and completely full queues. 128 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 129 * defined for negative dividends. 130 */ 131 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 132 } 133 134 /* 135 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 136 */ 137 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 138 { 139 return cpu_to_le32((u32)(dma_addr >> 8)); 140 } 141 142 /* 143 * iwl_pcie_rx_stop - stops the Rx DMA 144 */ 145 int iwl_pcie_rx_stop(struct iwl_trans *trans) 146 { 147 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 148 /* TODO: remove this once fw does it */ 149 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_AX210, 0); 150 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_AX210, 151 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 152 } else if (trans->mac_cfg->mq_rx_supported) { 153 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 154 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 155 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 156 } else { 157 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 158 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 159 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 160 1000); 161 } 162 } 163 164 /* 165 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 166 */ 167 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 168 struct iwl_rxq *rxq) 169 { 170 u32 reg; 171 172 lockdep_assert_held(&rxq->lock); 173 174 /* 175 * explicitly wake up the NIC if: 176 * 1. shadow registers aren't enabled 177 * 2. there is a chance that the NIC is asleep 178 */ 179 if (!trans->mac_cfg->base->shadow_reg_enable && 180 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 181 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 182 183 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 184 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 185 reg); 186 iwl_set_bit(trans, CSR_GP_CNTRL, 187 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 188 rxq->need_update = true; 189 return; 190 } 191 } 192 193 rxq->write_actual = round_down(rxq->write, 8); 194 if (!trans->mac_cfg->mq_rx_supported) 195 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 196 else if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 197 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 198 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 199 else 200 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 201 rxq->write_actual); 202 } 203 204 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 205 { 206 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 207 int i; 208 209 for (i = 0; i < trans->info.num_rxqs; i++) { 210 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 211 212 if (!rxq->need_update) 213 continue; 214 spin_lock_bh(&rxq->lock); 215 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 216 rxq->need_update = false; 217 spin_unlock_bh(&rxq->lock); 218 } 219 } 220 221 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 222 struct iwl_rxq *rxq, 223 struct iwl_rx_mem_buffer *rxb) 224 { 225 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 226 struct iwl_rx_transfer_desc *bd = rxq->bd; 227 228 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 229 230 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 231 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 232 } else { 233 __le64 *bd = rxq->bd; 234 235 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 236 } 237 238 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 239 (u32)rxb->vid, rxq->id, rxq->write); 240 } 241 242 /* 243 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 244 */ 245 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 246 struct iwl_rxq *rxq) 247 { 248 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 249 struct iwl_rx_mem_buffer *rxb; 250 251 /* 252 * If the device isn't enabled - no need to try to add buffers... 253 * This can happen when we stop the device and still have an interrupt 254 * pending. We stop the APM before we sync the interrupts because we 255 * have to (see comment there). On the other hand, since the APM is 256 * stopped, we cannot access the HW (in particular not prph). 257 * So don't try to restock if the APM has been already stopped. 258 */ 259 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 260 return; 261 262 spin_lock_bh(&rxq->lock); 263 while (rxq->free_count) { 264 /* Get next free Rx buffer, remove from free list */ 265 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 266 list); 267 list_del(&rxb->list); 268 rxb->invalid = false; 269 /* some low bits are expected to be unset (depending on hw) */ 270 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 271 /* Point to Rx buffer via next RBD in circular buffer */ 272 iwl_pcie_restock_bd(trans, rxq, rxb); 273 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 274 rxq->free_count--; 275 } 276 spin_unlock_bh(&rxq->lock); 277 278 /* 279 * If we've added more space for the firmware to place data, tell it. 280 * Increment device's write pointer in multiples of 8. 281 */ 282 if (rxq->write_actual != (rxq->write & ~0x7)) { 283 spin_lock_bh(&rxq->lock); 284 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 285 spin_unlock_bh(&rxq->lock); 286 } 287 } 288 289 /* 290 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 291 */ 292 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 293 struct iwl_rxq *rxq) 294 { 295 struct iwl_rx_mem_buffer *rxb; 296 297 /* 298 * If the device isn't enabled - not need to try to add buffers... 299 * This can happen when we stop the device and still have an interrupt 300 * pending. We stop the APM before we sync the interrupts because we 301 * have to (see comment there). On the other hand, since the APM is 302 * stopped, we cannot access the HW (in particular not prph). 303 * So don't try to restock if the APM has been already stopped. 304 */ 305 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 306 return; 307 308 spin_lock_bh(&rxq->lock); 309 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 310 __le32 *bd = (__le32 *)rxq->bd; 311 /* The overwritten rxb must be a used one */ 312 rxb = rxq->queue[rxq->write]; 313 BUG_ON(rxb && rxb->page); 314 315 /* Get next free Rx buffer, remove from free list */ 316 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 317 list); 318 list_del(&rxb->list); 319 rxb->invalid = false; 320 321 /* Point to Rx buffer via next RBD in circular buffer */ 322 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 323 rxq->queue[rxq->write] = rxb; 324 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 325 rxq->free_count--; 326 } 327 spin_unlock_bh(&rxq->lock); 328 329 /* If we've added more space for the firmware to place data, tell it. 330 * Increment device's write pointer in multiples of 8. */ 331 if (rxq->write_actual != (rxq->write & ~0x7)) { 332 spin_lock_bh(&rxq->lock); 333 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 334 spin_unlock_bh(&rxq->lock); 335 } 336 } 337 338 /* 339 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 340 * 341 * If there are slots in the RX queue that need to be restocked, 342 * and we have free pre-allocated buffers, fill the ranks as much 343 * as we can, pulling from rx_free. 344 * 345 * This moves the 'write' index forward to catch up with 'processed', and 346 * also updates the memory address in the firmware to reference the new 347 * target buffer. 348 */ 349 static 350 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 351 { 352 if (trans->mac_cfg->mq_rx_supported) 353 iwl_pcie_rxmq_restock(trans, rxq); 354 else 355 iwl_pcie_rxsq_restock(trans, rxq); 356 } 357 358 /* 359 * iwl_pcie_rx_alloc_page - allocates and returns a page. 360 * 361 */ 362 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 363 u32 *offset, gfp_t priority) 364 { 365 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 366 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 367 unsigned int rbsize = trans_pcie->rx_buf_bytes; 368 struct page *page; 369 gfp_t gfp_mask = priority; 370 371 if (trans_pcie->rx_page_order > 0) 372 gfp_mask |= __GFP_COMP; 373 374 if (trans_pcie->alloc_page) { 375 spin_lock_bh(&trans_pcie->alloc_page_lock); 376 /* recheck */ 377 if (trans_pcie->alloc_page) { 378 *offset = trans_pcie->alloc_page_used; 379 page = trans_pcie->alloc_page; 380 trans_pcie->alloc_page_used += rbsize; 381 if (trans_pcie->alloc_page_used >= allocsize) 382 trans_pcie->alloc_page = NULL; 383 else 384 get_page(page); 385 spin_unlock_bh(&trans_pcie->alloc_page_lock); 386 return page; 387 } 388 spin_unlock_bh(&trans_pcie->alloc_page_lock); 389 } 390 391 /* Alloc a new receive buffer */ 392 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 393 if (!page) { 394 if (net_ratelimit()) 395 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 396 trans_pcie->rx_page_order); 397 /* 398 * Issue an error if we don't have enough pre-allocated 399 * buffers. 400 */ 401 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 402 IWL_CRIT(trans, 403 "Failed to alloc_pages\n"); 404 return NULL; 405 } 406 407 if (2 * rbsize <= allocsize) { 408 spin_lock_bh(&trans_pcie->alloc_page_lock); 409 if (!trans_pcie->alloc_page) { 410 get_page(page); 411 trans_pcie->alloc_page = page; 412 trans_pcie->alloc_page_used = rbsize; 413 } 414 spin_unlock_bh(&trans_pcie->alloc_page_lock); 415 } 416 417 *offset = 0; 418 return page; 419 } 420 421 /* 422 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 423 * 424 * A used RBD is an Rx buffer that has been given to the stack. To use it again 425 * a page must be allocated and the RBD must point to the page. This function 426 * doesn't change the HW pointer but handles the list of pages that is used by 427 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 428 * allocated buffers. 429 */ 430 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 431 struct iwl_rxq *rxq) 432 { 433 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 434 struct iwl_rx_mem_buffer *rxb; 435 struct page *page; 436 437 while (1) { 438 unsigned int offset; 439 440 spin_lock_bh(&rxq->lock); 441 if (list_empty(&rxq->rx_used)) { 442 spin_unlock_bh(&rxq->lock); 443 return; 444 } 445 spin_unlock_bh(&rxq->lock); 446 447 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 448 if (!page) 449 return; 450 451 spin_lock_bh(&rxq->lock); 452 453 if (list_empty(&rxq->rx_used)) { 454 spin_unlock_bh(&rxq->lock); 455 __free_pages(page, trans_pcie->rx_page_order); 456 return; 457 } 458 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 459 list); 460 list_del(&rxb->list); 461 spin_unlock_bh(&rxq->lock); 462 463 BUG_ON(rxb->page); 464 rxb->page = page; 465 rxb->offset = offset; 466 /* Get physical address of the RB */ 467 rxb->page_dma = 468 dma_map_page(trans->dev, page, rxb->offset, 469 trans_pcie->rx_buf_bytes, 470 DMA_FROM_DEVICE); 471 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 472 rxb->page = NULL; 473 spin_lock_bh(&rxq->lock); 474 list_add(&rxb->list, &rxq->rx_used); 475 spin_unlock_bh(&rxq->lock); 476 __free_pages(page, trans_pcie->rx_page_order); 477 return; 478 } 479 480 spin_lock_bh(&rxq->lock); 481 482 list_add_tail(&rxb->list, &rxq->rx_free); 483 rxq->free_count++; 484 485 spin_unlock_bh(&rxq->lock); 486 } 487 } 488 489 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 490 { 491 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 492 int i; 493 494 if (!trans_pcie->rx_pool) 495 return; 496 497 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 498 if (!trans_pcie->rx_pool[i].page) 499 continue; 500 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 501 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 502 __free_pages(trans_pcie->rx_pool[i].page, 503 trans_pcie->rx_page_order); 504 trans_pcie->rx_pool[i].page = NULL; 505 } 506 } 507 508 /* 509 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 510 * 511 * Allocates for each received request 8 pages 512 * Called as a scheduled work item. 513 */ 514 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 515 { 516 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 517 struct iwl_rb_allocator *rba = &trans_pcie->rba; 518 struct list_head local_empty; 519 int pending = atomic_read(&rba->req_pending); 520 521 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 522 523 /* If we were scheduled - there is at least one request */ 524 spin_lock_bh(&rba->lock); 525 /* swap out the rba->rbd_empty to a local list */ 526 list_replace_init(&rba->rbd_empty, &local_empty); 527 spin_unlock_bh(&rba->lock); 528 529 while (pending) { 530 int i; 531 LIST_HEAD(local_allocated); 532 gfp_t gfp_mask = GFP_KERNEL; 533 534 /* Do not post a warning if there are only a few requests */ 535 if (pending < RX_PENDING_WATERMARK) 536 gfp_mask |= __GFP_NOWARN; 537 538 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 539 struct iwl_rx_mem_buffer *rxb; 540 struct page *page; 541 542 /* List should never be empty - each reused RBD is 543 * returned to the list, and initial pool covers any 544 * possible gap between the time the page is allocated 545 * to the time the RBD is added. 546 */ 547 BUG_ON(list_empty(&local_empty)); 548 /* Get the first rxb from the rbd list */ 549 rxb = list_first_entry(&local_empty, 550 struct iwl_rx_mem_buffer, list); 551 BUG_ON(rxb->page); 552 553 /* Alloc a new receive buffer */ 554 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 555 gfp_mask); 556 if (!page) 557 continue; 558 rxb->page = page; 559 560 /* Get physical address of the RB */ 561 rxb->page_dma = dma_map_page(trans->dev, page, 562 rxb->offset, 563 trans_pcie->rx_buf_bytes, 564 DMA_FROM_DEVICE); 565 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 566 rxb->page = NULL; 567 __free_pages(page, trans_pcie->rx_page_order); 568 continue; 569 } 570 571 /* move the allocated entry to the out list */ 572 list_move(&rxb->list, &local_allocated); 573 i++; 574 } 575 576 atomic_dec(&rba->req_pending); 577 pending--; 578 579 if (!pending) { 580 pending = atomic_read(&rba->req_pending); 581 if (pending) 582 IWL_DEBUG_TPT(trans, 583 "Got more pending allocation requests = %d\n", 584 pending); 585 } 586 587 spin_lock_bh(&rba->lock); 588 /* add the allocated rbds to the allocator allocated list */ 589 list_splice_tail(&local_allocated, &rba->rbd_allocated); 590 /* get more empty RBDs for current pending requests */ 591 list_splice_tail_init(&rba->rbd_empty, &local_empty); 592 spin_unlock_bh(&rba->lock); 593 594 atomic_inc(&rba->req_ready); 595 596 } 597 598 spin_lock_bh(&rba->lock); 599 /* return unused rbds to the allocator empty list */ 600 list_splice_tail(&local_empty, &rba->rbd_empty); 601 spin_unlock_bh(&rba->lock); 602 603 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 604 } 605 606 /* 607 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 608 .* 609 .* Called by queue when the queue posted allocation request and 610 * has freed 8 RBDs in order to restock itself. 611 * This function directly moves the allocated RBs to the queue's ownership 612 * and updates the relevant counters. 613 */ 614 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 615 struct iwl_rxq *rxq) 616 { 617 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 618 struct iwl_rb_allocator *rba = &trans_pcie->rba; 619 int i; 620 621 lockdep_assert_held(&rxq->lock); 622 623 /* 624 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 625 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 626 * function will return early, as there are no ready requests. 627 * atomic_dec_if_positive will perofrm the *actual* decrement only if 628 * req_ready > 0, i.e. - there are ready requests and the function 629 * hands one request to the caller. 630 */ 631 if (atomic_dec_if_positive(&rba->req_ready) < 0) 632 return; 633 634 spin_lock(&rba->lock); 635 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 636 /* Get next free Rx buffer, remove it from free list */ 637 struct iwl_rx_mem_buffer *rxb = 638 list_first_entry(&rba->rbd_allocated, 639 struct iwl_rx_mem_buffer, list); 640 641 list_move(&rxb->list, &rxq->rx_free); 642 } 643 spin_unlock(&rba->lock); 644 645 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 646 rxq->free_count += RX_CLAIM_REQ_ALLOC; 647 } 648 649 void iwl_pcie_rx_allocator_work(struct work_struct *data) 650 { 651 struct iwl_rb_allocator *rba_p = 652 container_of(data, struct iwl_rb_allocator, rx_alloc); 653 struct iwl_trans_pcie *trans_pcie = 654 container_of(rba_p, struct iwl_trans_pcie, rba); 655 656 iwl_pcie_rx_allocator(trans_pcie->trans); 657 } 658 659 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 660 { 661 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 662 return sizeof(struct iwl_rx_transfer_desc); 663 664 return trans->mac_cfg->mq_rx_supported ? 665 sizeof(__le64) : sizeof(__le32); 666 } 667 668 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 669 { 670 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 671 return sizeof(struct iwl_rx_completion_desc_bz); 672 673 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 674 return sizeof(struct iwl_rx_completion_desc); 675 676 return sizeof(__le32); 677 } 678 679 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 680 struct iwl_rxq *rxq) 681 { 682 int free_size = iwl_pcie_free_bd_size(trans); 683 684 if (rxq->bd) 685 dma_free_coherent(trans->dev, 686 free_size * rxq->queue_size, 687 rxq->bd, rxq->bd_dma); 688 rxq->bd_dma = 0; 689 rxq->bd = NULL; 690 691 rxq->rb_stts_dma = 0; 692 rxq->rb_stts = NULL; 693 694 if (rxq->used_bd) 695 dma_free_coherent(trans->dev, 696 iwl_pcie_used_bd_size(trans) * 697 rxq->queue_size, 698 rxq->used_bd, rxq->used_bd_dma); 699 rxq->used_bd_dma = 0; 700 rxq->used_bd = NULL; 701 } 702 703 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) 704 { 705 bool use_rx_td = (trans->mac_cfg->device_family >= 706 IWL_DEVICE_FAMILY_AX210); 707 708 if (use_rx_td) 709 return sizeof(__le16); 710 711 return sizeof(struct iwl_rb_status); 712 } 713 714 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 715 struct iwl_rxq *rxq) 716 { 717 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 718 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 719 struct device *dev = trans->dev; 720 int i; 721 int free_size; 722 723 spin_lock_init(&rxq->lock); 724 if (trans->mac_cfg->mq_rx_supported) 725 rxq->queue_size = iwl_trans_get_num_rbds(trans); 726 else 727 rxq->queue_size = RX_QUEUE_SIZE; 728 729 free_size = iwl_pcie_free_bd_size(trans); 730 731 /* 732 * Allocate the circular buffer of Read Buffer Descriptors 733 * (RBDs) 734 */ 735 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 736 &rxq->bd_dma, GFP_KERNEL); 737 if (!rxq->bd) 738 goto err; 739 740 if (trans->mac_cfg->mq_rx_supported) { 741 rxq->used_bd = dma_alloc_coherent(dev, 742 iwl_pcie_used_bd_size(trans) * 743 rxq->queue_size, 744 &rxq->used_bd_dma, 745 GFP_KERNEL); 746 if (!rxq->used_bd) 747 goto err; 748 } 749 750 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 751 rxq->rb_stts_dma = 752 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 753 754 return 0; 755 756 err: 757 for (i = 0; i < trans->info.num_rxqs; i++) { 758 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 759 760 iwl_pcie_free_rxq_dma(trans, rxq); 761 } 762 763 return -ENOMEM; 764 } 765 766 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 767 { 768 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 769 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 770 struct iwl_rb_allocator *rba = &trans_pcie->rba; 771 int i, ret; 772 773 if (WARN_ON(trans_pcie->rxq)) 774 return -EINVAL; 775 776 trans_pcie->rxq = kcalloc(trans->info.num_rxqs, sizeof(struct iwl_rxq), 777 GFP_KERNEL); 778 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 779 sizeof(trans_pcie->rx_pool[0]), 780 GFP_KERNEL); 781 trans_pcie->global_table = 782 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 783 sizeof(trans_pcie->global_table[0]), 784 GFP_KERNEL); 785 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 786 !trans_pcie->global_table) { 787 ret = -ENOMEM; 788 goto err; 789 } 790 791 spin_lock_init(&rba->lock); 792 793 /* 794 * Allocate the driver's pointer to receive buffer status. 795 * Allocate for all queues continuously (HW requirement). 796 */ 797 trans_pcie->base_rb_stts = 798 dma_alloc_coherent(trans->dev, 799 rb_stts_size * trans->info.num_rxqs, 800 &trans_pcie->base_rb_stts_dma, 801 GFP_KERNEL); 802 if (!trans_pcie->base_rb_stts) { 803 ret = -ENOMEM; 804 goto err; 805 } 806 807 for (i = 0; i < trans->info.num_rxqs; i++) { 808 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 809 810 rxq->id = i; 811 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 812 if (ret) 813 goto err; 814 } 815 return 0; 816 817 err: 818 if (trans_pcie->base_rb_stts) { 819 dma_free_coherent(trans->dev, 820 rb_stts_size * trans->info.num_rxqs, 821 trans_pcie->base_rb_stts, 822 trans_pcie->base_rb_stts_dma); 823 trans_pcie->base_rb_stts = NULL; 824 trans_pcie->base_rb_stts_dma = 0; 825 } 826 kfree(trans_pcie->rx_pool); 827 trans_pcie->rx_pool = NULL; 828 kfree(trans_pcie->global_table); 829 trans_pcie->global_table = NULL; 830 kfree(trans_pcie->rxq); 831 trans_pcie->rxq = NULL; 832 833 return ret; 834 } 835 836 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 837 { 838 u32 rb_size; 839 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 840 841 switch (trans->conf.rx_buf_size) { 842 case IWL_AMSDU_4K: 843 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 844 break; 845 case IWL_AMSDU_8K: 846 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 847 break; 848 case IWL_AMSDU_12K: 849 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 850 break; 851 default: 852 WARN_ON(1); 853 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 854 } 855 856 if (!iwl_trans_grab_nic_access(trans)) 857 return; 858 859 /* Stop Rx DMA */ 860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 861 /* reset and flush pointers */ 862 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 863 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 864 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 865 866 /* Reset driver's Rx queue write index */ 867 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 868 869 /* Tell device where to find RBD circular buffer in DRAM */ 870 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 871 (u32)(rxq->bd_dma >> 8)); 872 873 /* Tell device where in DRAM to update its Rx status */ 874 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 875 rxq->rb_stts_dma >> 4); 876 877 /* Enable Rx DMA 878 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 879 * the credit mechanism in 5000 HW RX FIFO 880 * Direct rx interrupts to hosts 881 * Rx buffer size 4 or 8k or 12k 882 * RB timeout 0x10 883 * 256 RBDs 884 */ 885 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 886 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 887 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 888 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 889 rb_size | 890 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 891 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 892 893 iwl_trans_release_nic_access(trans); 894 895 /* Set interrupt coalescing timer to default (2048 usecs) */ 896 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 897 898 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 899 if (trans->cfg->host_interrupt_operation_mode) 900 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 901 } 902 903 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 904 { 905 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 906 u32 rb_size, enabled = 0; 907 int i; 908 909 switch (trans->conf.rx_buf_size) { 910 case IWL_AMSDU_2K: 911 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 912 break; 913 case IWL_AMSDU_4K: 914 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 915 break; 916 case IWL_AMSDU_8K: 917 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 918 break; 919 case IWL_AMSDU_12K: 920 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 921 break; 922 default: 923 WARN_ON(1); 924 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 925 } 926 927 if (!iwl_trans_grab_nic_access(trans)) 928 return; 929 930 /* Stop Rx DMA */ 931 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 932 /* disable free amd used rx queue operation */ 933 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 934 935 for (i = 0; i < trans->info.num_rxqs; i++) { 936 /* Tell device where to find RBD free table in DRAM */ 937 iwl_write_prph64_no_grab(trans, 938 RFH_Q_FRBDCB_BA_LSB(i), 939 trans_pcie->rxq[i].bd_dma); 940 /* Tell device where to find RBD used table in DRAM */ 941 iwl_write_prph64_no_grab(trans, 942 RFH_Q_URBDCB_BA_LSB(i), 943 trans_pcie->rxq[i].used_bd_dma); 944 /* Tell device where in DRAM to update its Rx status */ 945 iwl_write_prph64_no_grab(trans, 946 RFH_Q_URBD_STTS_WPTR_LSB(i), 947 trans_pcie->rxq[i].rb_stts_dma); 948 /* Reset device indice tables */ 949 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 950 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 951 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 952 953 enabled |= BIT(i) | BIT(i + 16); 954 } 955 956 /* 957 * Enable Rx DMA 958 * Rx buffer size 4 or 8k or 12k 959 * Min RB size 4 or 8 960 * Drop frames that exceed RB size 961 * 512 RBDs 962 */ 963 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 964 RFH_DMA_EN_ENABLE_VAL | rb_size | 965 RFH_RXF_DMA_MIN_RB_4_8 | 966 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 967 RFH_RXF_DMA_RBDCB_SIZE_512); 968 969 /* 970 * Activate DMA snooping. 971 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 972 * Default queue is 0 973 */ 974 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 975 RFH_GEN_CFG_RFH_DMA_SNOOP | 976 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 977 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 978 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 979 trans->mac_cfg->integrated ? 980 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 981 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 982 /* Enable the relevant rx queues */ 983 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 984 985 iwl_trans_release_nic_access(trans); 986 987 /* Set interrupt coalescing timer to default (2048 usecs) */ 988 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 989 } 990 991 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 992 { 993 lockdep_assert_held(&rxq->lock); 994 995 INIT_LIST_HEAD(&rxq->rx_free); 996 INIT_LIST_HEAD(&rxq->rx_used); 997 rxq->free_count = 0; 998 rxq->used_count = 0; 999 } 1000 1001 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1002 1003 static inline struct iwl_trans_pcie *iwl_netdev_to_trans_pcie(struct net_device *dev) 1004 { 1005 return *(struct iwl_trans_pcie **)netdev_priv(dev); 1006 } 1007 1008 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1009 { 1010 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1011 struct iwl_trans_pcie *trans_pcie; 1012 struct iwl_trans *trans; 1013 int ret; 1014 1015 trans_pcie = iwl_netdev_to_trans_pcie(napi->dev); 1016 trans = trans_pcie->trans; 1017 1018 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1019 1020 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1021 rxq->id, ret, budget); 1022 1023 if (ret < budget) { 1024 spin_lock(&trans_pcie->irq_lock); 1025 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1026 _iwl_enable_interrupts(trans); 1027 spin_unlock(&trans_pcie->irq_lock); 1028 1029 napi_complete_done(&rxq->napi, ret); 1030 } 1031 1032 return ret; 1033 } 1034 1035 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1036 { 1037 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1038 struct iwl_trans_pcie *trans_pcie; 1039 struct iwl_trans *trans; 1040 int ret; 1041 1042 trans_pcie = iwl_netdev_to_trans_pcie(napi->dev); 1043 trans = trans_pcie->trans; 1044 1045 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1046 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1047 budget); 1048 1049 if (ret < budget) { 1050 int irq_line = rxq->id; 1051 1052 /* FIRST_RSS is shared with line 0 */ 1053 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1054 rxq->id == 1) 1055 irq_line = 0; 1056 1057 spin_lock(&trans_pcie->irq_lock); 1058 iwl_pcie_clear_irq(trans, irq_line); 1059 spin_unlock(&trans_pcie->irq_lock); 1060 1061 napi_complete_done(&rxq->napi, ret); 1062 } 1063 1064 return ret; 1065 } 1066 1067 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) 1068 { 1069 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1070 int i; 1071 1072 if (unlikely(!trans_pcie->rxq)) 1073 return; 1074 1075 for (i = 0; i < trans->info.num_rxqs; i++) { 1076 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1077 1078 if (rxq && rxq->napi.poll) 1079 napi_synchronize(&rxq->napi); 1080 } 1081 } 1082 1083 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1084 { 1085 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1086 struct iwl_rxq *def_rxq; 1087 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1088 int i, err, queue_size, allocator_pool_size, num_alloc; 1089 1090 if (!trans_pcie->rxq) { 1091 err = iwl_pcie_rx_alloc(trans); 1092 if (err) 1093 return err; 1094 } 1095 def_rxq = trans_pcie->rxq; 1096 1097 cancel_work_sync(&rba->rx_alloc); 1098 1099 spin_lock_bh(&rba->lock); 1100 atomic_set(&rba->req_pending, 0); 1101 atomic_set(&rba->req_ready, 0); 1102 INIT_LIST_HEAD(&rba->rbd_allocated); 1103 INIT_LIST_HEAD(&rba->rbd_empty); 1104 spin_unlock_bh(&rba->lock); 1105 1106 /* free all first - we overwrite everything here */ 1107 iwl_pcie_free_rbs_pool(trans); 1108 1109 for (i = 0; i < RX_QUEUE_SIZE; i++) 1110 def_rxq->queue[i] = NULL; 1111 1112 for (i = 0; i < trans->info.num_rxqs; i++) { 1113 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1114 1115 spin_lock_bh(&rxq->lock); 1116 /* 1117 * Set read write pointer to reflect that we have processed 1118 * and used all buffers, but have not restocked the Rx queue 1119 * with fresh buffers 1120 */ 1121 rxq->read = 0; 1122 rxq->write = 0; 1123 rxq->write_actual = 0; 1124 memset(rxq->rb_stts, 0, 1125 (trans->mac_cfg->device_family >= 1126 IWL_DEVICE_FAMILY_AX210) ? 1127 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1128 1129 iwl_pcie_rx_init_rxb_lists(rxq); 1130 1131 spin_unlock_bh(&rxq->lock); 1132 1133 if (!rxq->napi.poll) { 1134 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1135 1136 if (trans_pcie->msix_enabled) 1137 poll = iwl_pcie_napi_poll_msix; 1138 1139 netif_napi_add(trans_pcie->napi_dev, &rxq->napi, 1140 poll); 1141 napi_enable(&rxq->napi); 1142 } 1143 1144 } 1145 1146 /* move the pool to the default queue and allocator ownerships */ 1147 queue_size = trans->mac_cfg->mq_rx_supported ? 1148 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1149 allocator_pool_size = trans->info.num_rxqs * 1150 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1151 num_alloc = queue_size + allocator_pool_size; 1152 1153 for (i = 0; i < num_alloc; i++) { 1154 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1155 1156 if (i < allocator_pool_size) 1157 list_add(&rxb->list, &rba->rbd_empty); 1158 else 1159 list_add(&rxb->list, &def_rxq->rx_used); 1160 trans_pcie->global_table[i] = rxb; 1161 rxb->vid = (u16)(i + 1); 1162 rxb->invalid = true; 1163 } 1164 1165 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1166 1167 return 0; 1168 } 1169 1170 int iwl_pcie_rx_init(struct iwl_trans *trans) 1171 { 1172 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1173 int ret = _iwl_pcie_rx_init(trans); 1174 1175 if (ret) 1176 return ret; 1177 1178 if (trans->mac_cfg->mq_rx_supported) 1179 iwl_pcie_rx_mq_hw_init(trans); 1180 else 1181 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1182 1183 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1184 1185 spin_lock_bh(&trans_pcie->rxq->lock); 1186 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1187 spin_unlock_bh(&trans_pcie->rxq->lock); 1188 1189 return 0; 1190 } 1191 1192 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1193 { 1194 /* Set interrupt coalescing timer to default (2048 usecs) */ 1195 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1196 1197 /* 1198 * We don't configure the RFH. 1199 * Restock will be done at alive, after firmware configured the RFH. 1200 */ 1201 return _iwl_pcie_rx_init(trans); 1202 } 1203 1204 void iwl_pcie_rx_free(struct iwl_trans *trans) 1205 { 1206 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1207 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 1208 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1209 int i; 1210 1211 /* 1212 * if rxq is NULL, it means that nothing has been allocated, 1213 * exit now 1214 */ 1215 if (!trans_pcie->rxq) { 1216 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1217 return; 1218 } 1219 1220 cancel_work_sync(&rba->rx_alloc); 1221 1222 iwl_pcie_free_rbs_pool(trans); 1223 1224 if (trans_pcie->base_rb_stts) { 1225 dma_free_coherent(trans->dev, 1226 rb_stts_size * trans->info.num_rxqs, 1227 trans_pcie->base_rb_stts, 1228 trans_pcie->base_rb_stts_dma); 1229 trans_pcie->base_rb_stts = NULL; 1230 trans_pcie->base_rb_stts_dma = 0; 1231 } 1232 1233 for (i = 0; i < trans->info.num_rxqs; i++) { 1234 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1235 1236 iwl_pcie_free_rxq_dma(trans, rxq); 1237 1238 if (rxq->napi.poll) { 1239 napi_disable(&rxq->napi); 1240 netif_napi_del(&rxq->napi); 1241 } 1242 } 1243 kfree(trans_pcie->rx_pool); 1244 kfree(trans_pcie->global_table); 1245 kfree(trans_pcie->rxq); 1246 1247 if (trans_pcie->alloc_page) 1248 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1249 } 1250 1251 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1252 struct iwl_rb_allocator *rba) 1253 { 1254 spin_lock(&rba->lock); 1255 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1256 spin_unlock(&rba->lock); 1257 } 1258 1259 /* 1260 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1261 * 1262 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1263 * When there are 2 empty RBDs - a request for allocation is posted 1264 */ 1265 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1266 struct iwl_rx_mem_buffer *rxb, 1267 struct iwl_rxq *rxq, bool emergency) 1268 { 1269 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1270 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1271 1272 /* Move the RBD to the used list, will be moved to allocator in batches 1273 * before claiming or posting a request*/ 1274 list_add_tail(&rxb->list, &rxq->rx_used); 1275 1276 if (unlikely(emergency)) 1277 return; 1278 1279 /* Count the allocator owned RBDs */ 1280 rxq->used_count++; 1281 1282 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1283 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1284 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1285 * after but we still need to post another request. 1286 */ 1287 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1288 /* Move the 2 RBDs to the allocator ownership. 1289 Allocator has another 6 from pool for the request completion*/ 1290 iwl_pcie_rx_move_to_allocator(rxq, rba); 1291 1292 atomic_inc(&rba->req_pending); 1293 queue_work(rba->alloc_wq, &rba->rx_alloc); 1294 } 1295 } 1296 1297 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1298 struct iwl_rxq *rxq, 1299 struct iwl_rx_mem_buffer *rxb, 1300 bool emergency, 1301 int i) 1302 { 1303 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1304 struct iwl_txq *txq = trans_pcie->txqs.txq[trans->conf.cmd_queue]; 1305 bool page_stolen = false; 1306 int max_len = trans_pcie->rx_buf_bytes; 1307 u32 offset = 0; 1308 1309 if (WARN_ON(!rxb)) 1310 return; 1311 1312 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1313 1314 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1315 struct iwl_rx_packet *pkt; 1316 bool reclaim; 1317 int len; 1318 struct iwl_rx_cmd_buffer rxcb = { 1319 ._offset = rxb->offset + offset, 1320 ._rx_page_order = trans_pcie->rx_page_order, 1321 ._page = rxb->page, 1322 ._page_stolen = false, 1323 .truesize = max_len, 1324 }; 1325 1326 pkt = rxb_addr(&rxcb); 1327 1328 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1329 IWL_DEBUG_RX(trans, 1330 "Q %d: RB end marker at offset %d\n", 1331 rxq->id, offset); 1332 break; 1333 } 1334 1335 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1336 FH_RSCSR_RXQ_POS != rxq->id, 1337 "frame on invalid queue - is on %d and indicates %d\n", 1338 rxq->id, 1339 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1340 FH_RSCSR_RXQ_POS); 1341 1342 IWL_DEBUG_RX(trans, 1343 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1344 rxq->id, offset, 1345 iwl_get_cmd_string(trans, 1346 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1347 pkt->hdr.group_id, pkt->hdr.cmd, 1348 le16_to_cpu(pkt->hdr.sequence)); 1349 1350 len = iwl_rx_packet_len(pkt); 1351 len += sizeof(u32); /* account for status word */ 1352 1353 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1354 1355 /* check that what the device tells us made sense */ 1356 if (len < sizeof(*pkt) || offset > max_len) 1357 break; 1358 1359 maybe_trace_iwlwifi_dev_rx(trans, pkt, len); 1360 1361 /* Reclaim a command buffer only if this packet is a response 1362 * to a (driver-originated) command. 1363 * If the packet (e.g. Rx frame) originated from uCode, 1364 * there is no command buffer to reclaim. 1365 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1366 * but apparently a few don't get set; catch them here. */ 1367 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1368 if (reclaim && !pkt->hdr.group_id) { 1369 int i; 1370 1371 for (i = 0; i < trans->conf.n_no_reclaim_cmds; i++) { 1372 if (trans->conf.no_reclaim_cmds[i] == 1373 pkt->hdr.cmd) { 1374 reclaim = false; 1375 break; 1376 } 1377 } 1378 } 1379 1380 if (rxq->id == IWL_DEFAULT_RX_QUEUE) 1381 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1382 &rxcb); 1383 else 1384 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1385 &rxcb, rxq->id); 1386 1387 /* 1388 * After here, we should always check rxcb._page_stolen, 1389 * if it is true then one of the handlers took the page. 1390 */ 1391 1392 if (reclaim && txq) { 1393 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1394 int index = SEQ_TO_INDEX(sequence); 1395 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1396 1397 kfree_sensitive(txq->entries[cmd_index].free_buf); 1398 txq->entries[cmd_index].free_buf = NULL; 1399 1400 /* Invoke any callbacks, transfer the buffer to caller, 1401 * and fire off the (possibly) blocking 1402 * iwl_trans_send_cmd() 1403 * as we reclaim the driver command queue */ 1404 if (!rxcb._page_stolen) 1405 iwl_pcie_hcmd_complete(trans, &rxcb); 1406 else 1407 IWL_WARN(trans, "Claim null rxb?\n"); 1408 } 1409 1410 page_stolen |= rxcb._page_stolen; 1411 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1412 break; 1413 } 1414 1415 /* page was stolen from us -- free our reference */ 1416 if (page_stolen) { 1417 __free_pages(rxb->page, trans_pcie->rx_page_order); 1418 rxb->page = NULL; 1419 } 1420 1421 /* Reuse the page if possible. For notification packets and 1422 * SKBs that fail to Rx correctly, add them back into the 1423 * rx_free list for reuse later. */ 1424 if (rxb->page != NULL) { 1425 rxb->page_dma = 1426 dma_map_page(trans->dev, rxb->page, rxb->offset, 1427 trans_pcie->rx_buf_bytes, 1428 DMA_FROM_DEVICE); 1429 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1430 /* 1431 * free the page(s) as well to not break 1432 * the invariant that the items on the used 1433 * list have no page(s) 1434 */ 1435 __free_pages(rxb->page, trans_pcie->rx_page_order); 1436 rxb->page = NULL; 1437 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1438 } else { 1439 list_add_tail(&rxb->list, &rxq->rx_free); 1440 rxq->free_count++; 1441 } 1442 } else 1443 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1444 } 1445 1446 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1447 struct iwl_rxq *rxq, int i, 1448 bool *join) 1449 { 1450 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1451 struct iwl_rx_mem_buffer *rxb; 1452 u16 vid; 1453 1454 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1455 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1456 1457 if (!trans->mac_cfg->mq_rx_supported) { 1458 rxb = rxq->queue[i]; 1459 rxq->queue[i] = NULL; 1460 return rxb; 1461 } 1462 1463 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1464 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1465 1466 vid = le16_to_cpu(cd[i].rbid); 1467 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1468 } else if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1469 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1470 1471 vid = le16_to_cpu(cd[i].rbid); 1472 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1473 } else { 1474 __le32 *cd = rxq->used_bd; 1475 1476 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1477 } 1478 1479 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1480 goto out_err; 1481 1482 rxb = trans_pcie->global_table[vid - 1]; 1483 if (rxb->invalid) 1484 goto out_err; 1485 1486 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1487 1488 rxb->invalid = true; 1489 1490 return rxb; 1491 1492 out_err: 1493 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1494 iwl_force_nmi(trans); 1495 return NULL; 1496 } 1497 1498 /* 1499 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1500 */ 1501 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1502 { 1503 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1504 struct iwl_rxq *rxq; 1505 u32 r, i, count = 0, handled = 0; 1506 bool emergency = false; 1507 1508 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1509 return budget; 1510 1511 rxq = &trans_pcie->rxq[queue]; 1512 1513 restart: 1514 spin_lock(&rxq->lock); 1515 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1516 * buffer that the driver may process (last buffer filled by ucode). */ 1517 r = iwl_get_closed_rb_stts(trans, rxq); 1518 i = rxq->read; 1519 1520 /* W/A 9000 device step A0 wrap-around bug */ 1521 r &= (rxq->queue_size - 1); 1522 1523 /* Rx interrupt, but nothing sent from uCode */ 1524 if (i == r) 1525 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1526 1527 while (i != r && ++handled < budget) { 1528 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1529 struct iwl_rx_mem_buffer *rxb; 1530 /* number of RBDs still waiting for page allocation */ 1531 u32 rb_pending_alloc = 1532 atomic_read(&trans_pcie->rba.req_pending) * 1533 RX_CLAIM_REQ_ALLOC; 1534 bool join = false; 1535 1536 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1537 !emergency)) { 1538 iwl_pcie_rx_move_to_allocator(rxq, rba); 1539 emergency = true; 1540 IWL_DEBUG_TPT(trans, 1541 "RX path is in emergency. Pending allocations %d\n", 1542 rb_pending_alloc); 1543 } 1544 1545 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1546 1547 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1548 if (!rxb) 1549 goto out; 1550 1551 if (unlikely(join || rxq->next_rb_is_fragment)) { 1552 rxq->next_rb_is_fragment = join; 1553 /* 1554 * We can only get a multi-RB in the following cases: 1555 * - firmware issue, sending a too big notification 1556 * - sniffer mode with a large A-MSDU 1557 * - large MTU frames (>2k) 1558 * since the multi-RB functionality is limited to newer 1559 * hardware that cannot put multiple entries into a 1560 * single RB. 1561 * 1562 * Right now, the higher layers aren't set up to deal 1563 * with that, so discard all of these. 1564 */ 1565 list_add_tail(&rxb->list, &rxq->rx_free); 1566 rxq->free_count++; 1567 } else { 1568 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1569 } 1570 1571 i = (i + 1) & (rxq->queue_size - 1); 1572 1573 /* 1574 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1575 * try to claim the pre-allocated buffers from the allocator. 1576 * If not ready - will try to reclaim next time. 1577 * There is no need to reschedule work - allocator exits only 1578 * on success 1579 */ 1580 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1581 iwl_pcie_rx_allocator_get(trans, rxq); 1582 1583 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1584 /* Add the remaining empty RBDs for allocator use */ 1585 iwl_pcie_rx_move_to_allocator(rxq, rba); 1586 } else if (emergency) { 1587 count++; 1588 if (count == 8) { 1589 count = 0; 1590 if (rb_pending_alloc < rxq->queue_size / 3) { 1591 IWL_DEBUG_TPT(trans, 1592 "RX path exited emergency. Pending allocations %d\n", 1593 rb_pending_alloc); 1594 emergency = false; 1595 } 1596 1597 rxq->read = i; 1598 spin_unlock(&rxq->lock); 1599 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1600 iwl_pcie_rxq_restock(trans, rxq); 1601 goto restart; 1602 } 1603 } 1604 } 1605 out: 1606 /* Backtrack one entry */ 1607 rxq->read = i; 1608 spin_unlock(&rxq->lock); 1609 1610 /* 1611 * handle a case where in emergency there are some unallocated RBDs. 1612 * those RBDs are in the used list, but are not tracked by the queue's 1613 * used_count which counts allocator owned RBDs. 1614 * unallocated emergency RBDs must be allocated on exit, otherwise 1615 * when called again the function may not be in emergency mode and 1616 * they will be handed to the allocator with no tracking in the RBD 1617 * allocator counters, which will lead to them never being claimed back 1618 * by the queue. 1619 * by allocating them here, they are now in the queue free list, and 1620 * will be restocked by the next call of iwl_pcie_rxq_restock. 1621 */ 1622 if (unlikely(emergency && count)) 1623 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1624 1625 iwl_pcie_rxq_restock(trans, rxq); 1626 1627 return handled; 1628 } 1629 1630 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1631 { 1632 u8 queue = entry->entry; 1633 struct msix_entry *entries = entry - queue; 1634 1635 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1636 } 1637 1638 /* 1639 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1640 * This interrupt handler should be used with RSS queue only. 1641 */ 1642 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1643 { 1644 struct msix_entry *entry = dev_id; 1645 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1646 struct iwl_trans *trans = trans_pcie->trans; 1647 struct iwl_rxq *rxq; 1648 1649 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1650 1651 if (WARN_ON(entry->entry >= trans->info.num_rxqs)) 1652 return IRQ_NONE; 1653 1654 if (!trans_pcie->rxq) { 1655 if (net_ratelimit()) 1656 IWL_ERR(trans, 1657 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1658 entry->entry); 1659 return IRQ_NONE; 1660 } 1661 1662 rxq = &trans_pcie->rxq[entry->entry]; 1663 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1664 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1665 1666 local_bh_disable(); 1667 if (!napi_schedule(&rxq->napi)) 1668 iwl_pcie_clear_irq(trans, entry->entry); 1669 local_bh_enable(); 1670 1671 lock_map_release(&trans->sync_cmd_lockdep_map); 1672 1673 return IRQ_HANDLED; 1674 } 1675 1676 /* 1677 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1678 */ 1679 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1680 { 1681 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1682 int i; 1683 1684 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1685 if (trans->cfg->internal_wimax_coex && 1686 !trans->mac_cfg->base->apmg_not_supported && 1687 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1688 APMS_CLK_VAL_MRB_FUNC_MODE) || 1689 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1690 APMG_PS_CTRL_VAL_RESET_REQ))) { 1691 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1692 iwl_op_mode_wimax_active(trans->op_mode); 1693 wake_up(&trans_pcie->wait_command_queue); 1694 return; 1695 } 1696 1697 for (i = 0; i < trans->mac_cfg->base->num_of_queues; i++) { 1698 if (!trans_pcie->txqs.txq[i]) 1699 continue; 1700 timer_delete(&trans_pcie->txqs.txq[i]->stuck_timer); 1701 } 1702 1703 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_SC) { 1704 u32 val = iwl_read32(trans, CSR_IPC_STATE); 1705 1706 if (val & CSR_IPC_STATE_TOP_RESET_REQ) { 1707 IWL_ERR(trans, "FW requested TOP reset for FSEQ\n"); 1708 trans->do_top_reset = 1; 1709 } 1710 } 1711 1712 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1713 * before we wake up the command caller, to ensure a proper cleanup. */ 1714 iwl_trans_fw_error(trans, IWL_ERR_TYPE_IRQ); 1715 1716 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1717 wake_up(&trans_pcie->wait_command_queue); 1718 } 1719 1720 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1721 { 1722 u32 inta; 1723 1724 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1725 1726 trace_iwlwifi_dev_irq(trans->dev); 1727 1728 /* Discover which interrupts are active/pending */ 1729 inta = iwl_read32(trans, CSR_INT); 1730 1731 /* the thread will service interrupts and re-enable them */ 1732 return inta; 1733 } 1734 1735 /* a device (PCI-E) page is 4096 bytes long */ 1736 #define ICT_SHIFT 12 1737 #define ICT_SIZE (1 << ICT_SHIFT) 1738 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1739 1740 /* interrupt handler using ict table, with this interrupt driver will 1741 * stop using INTA register to get device's interrupt, reading this register 1742 * is expensive, device will write interrupts in ICT dram table, increment 1743 * index then will fire interrupt to driver, driver will OR all ICT table 1744 * entries from current index up to table entry with 0 value. the result is 1745 * the interrupt we need to service, driver will set the entries back to 0 and 1746 * set index. 1747 */ 1748 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1749 { 1750 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1751 u32 inta; 1752 u32 val = 0; 1753 u32 read; 1754 1755 trace_iwlwifi_dev_irq(trans->dev); 1756 1757 /* Ignore interrupt if there's nothing in NIC to service. 1758 * This may be due to IRQ shared with another device, 1759 * or due to sporadic interrupts thrown from our NIC. */ 1760 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1761 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1762 if (!read) 1763 return 0; 1764 1765 /* 1766 * Collect all entries up to the first 0, starting from ict_index; 1767 * note we already read at ict_index. 1768 */ 1769 do { 1770 val |= read; 1771 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1772 trans_pcie->ict_index, read); 1773 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1774 trans_pcie->ict_index = 1775 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1776 1777 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1778 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1779 read); 1780 } while (read); 1781 1782 /* We should not get this value, just ignore it. */ 1783 if (val == 0xffffffff) 1784 val = 0; 1785 1786 /* 1787 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1788 * (bit 15 before shifting it to 31) to clear when using interrupt 1789 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1790 * so we use them to decide on the real state of the Rx bit. 1791 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1792 */ 1793 if (val & 0xC0000) 1794 val |= 0x8000; 1795 1796 inta = (0xff & val) | ((0xff00 & val) << 16); 1797 return inta; 1798 } 1799 1800 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq) 1801 { 1802 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1803 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1804 bool hw_rfkill, prev, report; 1805 1806 mutex_lock(&trans_pcie->mutex); 1807 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1808 hw_rfkill = iwl_is_rfkill_set(trans); 1809 if (hw_rfkill) { 1810 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1811 set_bit(STATUS_RFKILL_HW, &trans->status); 1812 } 1813 if (trans_pcie->opmode_down) 1814 report = hw_rfkill; 1815 else 1816 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1817 1818 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1819 hw_rfkill ? "disable radio" : "enable radio"); 1820 1821 isr_stats->rfkill++; 1822 1823 if (prev != report) 1824 iwl_trans_pcie_rf_kill(trans, report, from_irq); 1825 mutex_unlock(&trans_pcie->mutex); 1826 1827 if (hw_rfkill) { 1828 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1829 &trans->status)) 1830 IWL_DEBUG_RF_KILL(trans, 1831 "Rfkill while SYNC HCMD in flight\n"); 1832 wake_up(&trans_pcie->wait_command_queue); 1833 } else { 1834 clear_bit(STATUS_RFKILL_HW, &trans->status); 1835 if (trans_pcie->opmode_down) 1836 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1837 } 1838 } 1839 1840 static void iwl_trans_pcie_handle_reset_interrupt(struct iwl_trans *trans) 1841 { 1842 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1843 u32 state; 1844 1845 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_SC) { 1846 u32 val = iwl_read32(trans, CSR_IPC_STATE); 1847 1848 state = u32_get_bits(val, CSR_IPC_STATE_RESET); 1849 IWL_DEBUG_ISR(trans, "IPC state = 0x%x/%d\n", val, state); 1850 } else { 1851 state = CSR_IPC_STATE_RESET_SW_READY; 1852 } 1853 1854 switch (state) { 1855 case CSR_IPC_STATE_RESET_SW_READY: 1856 if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 1857 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 1858 trans_pcie->fw_reset_state = FW_RESET_OK; 1859 wake_up(&trans_pcie->fw_reset_waitq); 1860 break; 1861 } 1862 fallthrough; 1863 case CSR_IPC_STATE_RESET_TOP_READY: 1864 if (trans_pcie->fw_reset_state == FW_RESET_TOP_REQUESTED) { 1865 IWL_DEBUG_ISR(trans, "TOP Reset continues\n"); 1866 trans_pcie->fw_reset_state = FW_RESET_OK; 1867 wake_up(&trans_pcie->fw_reset_waitq); 1868 break; 1869 } 1870 fallthrough; 1871 case CSR_IPC_STATE_RESET_NONE: 1872 IWL_FW_CHECK_FAILED(trans, 1873 "Invalid reset interrupt (state=%d)!\n", 1874 state); 1875 break; 1876 case CSR_IPC_STATE_RESET_TOP_FOLLOWER: 1877 if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 1878 /* if we were in reset, wake that up */ 1879 IWL_INFO(trans, 1880 "TOP reset from BT while doing reset\n"); 1881 trans_pcie->fw_reset_state = FW_RESET_OK; 1882 wake_up(&trans_pcie->fw_reset_waitq); 1883 } else { 1884 IWL_INFO(trans, "TOP reset from BT\n"); 1885 trans->state = IWL_TRANS_NO_FW; 1886 iwl_trans_schedule_reset(trans, 1887 IWL_ERR_TYPE_TOP_RESET_BY_BT); 1888 } 1889 break; 1890 } 1891 } 1892 1893 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1894 { 1895 struct iwl_trans *trans = dev_id; 1896 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1897 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1898 u32 inta = 0; 1899 u32 handled = 0; 1900 bool polling = false; 1901 1902 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1903 1904 spin_lock_bh(&trans_pcie->irq_lock); 1905 1906 /* dram interrupt table not set yet, 1907 * use legacy interrupt. 1908 */ 1909 if (likely(trans_pcie->use_ict)) 1910 inta = iwl_pcie_int_cause_ict(trans); 1911 else 1912 inta = iwl_pcie_int_cause_non_ict(trans); 1913 1914 if (iwl_have_debug_level(IWL_DL_ISR)) { 1915 IWL_DEBUG_ISR(trans, 1916 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1917 inta, trans_pcie->inta_mask, 1918 iwl_read32(trans, CSR_INT_MASK), 1919 iwl_read32(trans, CSR_FH_INT_STATUS)); 1920 if (inta & (~trans_pcie->inta_mask)) 1921 IWL_DEBUG_ISR(trans, 1922 "We got a masked interrupt (0x%08x)\n", 1923 inta & (~trans_pcie->inta_mask)); 1924 } 1925 1926 inta &= trans_pcie->inta_mask; 1927 1928 /* 1929 * Ignore interrupt if there's nothing in NIC to service. 1930 * This may be due to IRQ shared with another device, 1931 * or due to sporadic interrupts thrown from our NIC. 1932 */ 1933 if (unlikely(!inta)) { 1934 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1935 /* 1936 * Re-enable interrupts here since we don't 1937 * have anything to service 1938 */ 1939 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1940 _iwl_enable_interrupts(trans); 1941 spin_unlock_bh(&trans_pcie->irq_lock); 1942 lock_map_release(&trans->sync_cmd_lockdep_map); 1943 return IRQ_NONE; 1944 } 1945 1946 if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { 1947 /* 1948 * Hardware disappeared. It might have 1949 * already raised an interrupt. 1950 */ 1951 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1952 spin_unlock_bh(&trans_pcie->irq_lock); 1953 goto out; 1954 } 1955 1956 /* Ack/clear/reset pending uCode interrupts. 1957 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1958 */ 1959 /* There is a hardware bug in the interrupt mask function that some 1960 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1961 * they are disabled in the CSR_INT_MASK register. Furthermore the 1962 * ICT interrupt handling mechanism has another bug that might cause 1963 * these unmasked interrupts fail to be detected. We workaround the 1964 * hardware bugs here by ACKing all the possible interrupts so that 1965 * interrupt coalescing can still be achieved. 1966 */ 1967 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1968 1969 if (iwl_have_debug_level(IWL_DL_ISR)) 1970 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1971 inta, iwl_read32(trans, CSR_INT_MASK)); 1972 1973 spin_unlock_bh(&trans_pcie->irq_lock); 1974 1975 /* Now service all interrupt bits discovered above. */ 1976 if (inta & CSR_INT_BIT_HW_ERR) { 1977 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1978 1979 /* Tell the device to stop sending interrupts */ 1980 iwl_disable_interrupts(trans); 1981 1982 isr_stats->hw++; 1983 iwl_pcie_irq_handle_error(trans); 1984 1985 handled |= CSR_INT_BIT_HW_ERR; 1986 1987 goto out; 1988 } 1989 1990 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1991 if (inta & CSR_INT_BIT_SCD) { 1992 IWL_DEBUG_ISR(trans, 1993 "Scheduler finished to transmit the frame/frames.\n"); 1994 isr_stats->sch++; 1995 } 1996 1997 /* Alive notification via Rx interrupt will do the real work */ 1998 if (inta & CSR_INT_BIT_ALIVE) { 1999 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2000 isr_stats->alive++; 2001 if (trans->mac_cfg->gen2) { 2002 /* 2003 * We can restock, since firmware configured 2004 * the RFH 2005 */ 2006 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2007 } 2008 2009 handled |= CSR_INT_BIT_ALIVE; 2010 } 2011 2012 if (inta & CSR_INT_BIT_RESET_DONE) { 2013 iwl_trans_pcie_handle_reset_interrupt(trans); 2014 handled |= CSR_INT_BIT_RESET_DONE; 2015 } 2016 2017 /* Safely ignore these bits for debug checks below */ 2018 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 2019 2020 /* HW RF KILL switch toggled */ 2021 if (inta & CSR_INT_BIT_RF_KILL) { 2022 iwl_pcie_handle_rfkill_irq(trans, true); 2023 handled |= CSR_INT_BIT_RF_KILL; 2024 } 2025 2026 /* Chip got too hot and stopped itself */ 2027 if (inta & CSR_INT_BIT_CT_KILL) { 2028 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2029 isr_stats->ctkill++; 2030 handled |= CSR_INT_BIT_CT_KILL; 2031 } 2032 2033 /* Error detected by uCode */ 2034 if (inta & CSR_INT_BIT_SW_ERR) { 2035 IWL_ERR(trans, "Microcode SW error detected. " 2036 " Restarting 0x%X.\n", inta); 2037 isr_stats->sw++; 2038 if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2039 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2040 wake_up(&trans_pcie->fw_reset_waitq); 2041 } else { 2042 iwl_pcie_irq_handle_error(trans); 2043 } 2044 handled |= CSR_INT_BIT_SW_ERR; 2045 } 2046 2047 /* uCode wakes up after power-down sleep */ 2048 if (inta & CSR_INT_BIT_WAKEUP) { 2049 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2050 iwl_pcie_rxq_check_wrptr(trans); 2051 iwl_pcie_txq_check_wrptrs(trans); 2052 2053 isr_stats->wakeup++; 2054 2055 handled |= CSR_INT_BIT_WAKEUP; 2056 } 2057 2058 /* All uCode command responses, including Tx command responses, 2059 * Rx "responses" (frame-received notification), and other 2060 * notifications from uCode come through here*/ 2061 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 2062 CSR_INT_BIT_RX_PERIODIC)) { 2063 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 2064 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 2065 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 2066 iwl_write32(trans, CSR_FH_INT_STATUS, 2067 CSR_FH_INT_RX_MASK); 2068 } 2069 if (inta & CSR_INT_BIT_RX_PERIODIC) { 2070 handled |= CSR_INT_BIT_RX_PERIODIC; 2071 iwl_write32(trans, 2072 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 2073 } 2074 /* Sending RX interrupt require many steps to be done in the 2075 * device: 2076 * 1- write interrupt to current index in ICT table. 2077 * 2- dma RX frame. 2078 * 3- update RX shared data to indicate last write index. 2079 * 4- send interrupt. 2080 * This could lead to RX race, driver could receive RX interrupt 2081 * but the shared data changes does not reflect this; 2082 * periodic interrupt will detect any dangling Rx activity. 2083 */ 2084 2085 /* Disable periodic interrupt; we use it as just a one-shot. */ 2086 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2087 CSR_INT_PERIODIC_DIS); 2088 2089 /* 2090 * Enable periodic interrupt in 8 msec only if we received 2091 * real RX interrupt (instead of just periodic int), to catch 2092 * any dangling Rx interrupt. If it was just the periodic 2093 * interrupt, there was no dangling Rx activity, and no need 2094 * to extend the periodic interrupt; one-shot is enough. 2095 */ 2096 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2097 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2098 CSR_INT_PERIODIC_ENA); 2099 2100 isr_stats->rx++; 2101 2102 local_bh_disable(); 2103 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2104 polling = true; 2105 __napi_schedule(&trans_pcie->rxq[0].napi); 2106 } 2107 local_bh_enable(); 2108 } 2109 2110 /* This "Tx" DMA channel is used only for loading uCode */ 2111 if (inta & CSR_INT_BIT_FH_TX) { 2112 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2113 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2114 isr_stats->tx++; 2115 handled |= CSR_INT_BIT_FH_TX; 2116 /* Wake up uCode load routine, now that load is complete */ 2117 trans_pcie->ucode_write_complete = true; 2118 wake_up(&trans_pcie->ucode_write_waitq); 2119 /* Wake up IMR write routine, now that write to SRAM is complete */ 2120 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2121 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2122 wake_up(&trans_pcie->ucode_write_waitq); 2123 } 2124 } 2125 2126 if (inta & ~handled) { 2127 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2128 isr_stats->unhandled++; 2129 } 2130 2131 if (inta & ~(trans_pcie->inta_mask)) { 2132 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2133 inta & ~trans_pcie->inta_mask); 2134 } 2135 2136 if (!polling) { 2137 spin_lock_bh(&trans_pcie->irq_lock); 2138 /* only Re-enable all interrupt if disabled by irq */ 2139 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2140 _iwl_enable_interrupts(trans); 2141 /* we are loading the firmware, enable FH_TX interrupt only */ 2142 else if (handled & CSR_INT_BIT_FH_TX) 2143 iwl_enable_fw_load_int(trans); 2144 /* Re-enable RF_KILL if it occurred */ 2145 else if (handled & CSR_INT_BIT_RF_KILL) 2146 iwl_enable_rfkill_int(trans); 2147 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2148 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2149 iwl_enable_fw_load_int_ctx_info(trans, false); 2150 spin_unlock_bh(&trans_pcie->irq_lock); 2151 } 2152 2153 out: 2154 lock_map_release(&trans->sync_cmd_lockdep_map); 2155 return IRQ_HANDLED; 2156 } 2157 2158 /****************************************************************************** 2159 * 2160 * ICT functions 2161 * 2162 ******************************************************************************/ 2163 2164 /* Free dram table */ 2165 void iwl_pcie_free_ict(struct iwl_trans *trans) 2166 { 2167 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2168 2169 if (trans_pcie->ict_tbl) { 2170 dma_free_coherent(trans->dev, ICT_SIZE, 2171 trans_pcie->ict_tbl, 2172 trans_pcie->ict_tbl_dma); 2173 trans_pcie->ict_tbl = NULL; 2174 trans_pcie->ict_tbl_dma = 0; 2175 } 2176 } 2177 2178 /* 2179 * allocate dram shared table, it is an aligned memory 2180 * block of ICT_SIZE. 2181 * also reset all data related to ICT table interrupt. 2182 */ 2183 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2184 { 2185 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2186 2187 trans_pcie->ict_tbl = 2188 dma_alloc_coherent(trans->dev, ICT_SIZE, 2189 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2190 if (!trans_pcie->ict_tbl) 2191 return -ENOMEM; 2192 2193 /* just an API sanity check ... it is guaranteed to be aligned */ 2194 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2195 iwl_pcie_free_ict(trans); 2196 return -EINVAL; 2197 } 2198 2199 return 0; 2200 } 2201 2202 /* Device is going up inform it about using ICT interrupt table, 2203 * also we need to tell the driver to start using ICT interrupt. 2204 */ 2205 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2206 { 2207 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2208 u32 val; 2209 2210 if (!trans_pcie->ict_tbl) 2211 return; 2212 2213 spin_lock_bh(&trans_pcie->irq_lock); 2214 _iwl_disable_interrupts(trans); 2215 2216 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2217 2218 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2219 2220 val |= CSR_DRAM_INT_TBL_ENABLE | 2221 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2222 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2223 2224 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2225 2226 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2227 trans_pcie->use_ict = true; 2228 trans_pcie->ict_index = 0; 2229 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2230 _iwl_enable_interrupts(trans); 2231 spin_unlock_bh(&trans_pcie->irq_lock); 2232 } 2233 2234 /* Device is going down disable ict interrupt usage */ 2235 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2236 { 2237 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2238 2239 spin_lock_bh(&trans_pcie->irq_lock); 2240 trans_pcie->use_ict = false; 2241 spin_unlock_bh(&trans_pcie->irq_lock); 2242 } 2243 2244 irqreturn_t iwl_pcie_isr(int irq, void *data) 2245 { 2246 struct iwl_trans *trans = data; 2247 2248 if (!trans) 2249 return IRQ_NONE; 2250 2251 /* Disable (but don't clear!) interrupts here to avoid 2252 * back-to-back ISRs and sporadic interrupts from our NIC. 2253 * If we have something to service, the tasklet will re-enable ints. 2254 * If we *don't* have something, we'll re-enable before leaving here. 2255 */ 2256 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2257 2258 return IRQ_WAKE_THREAD; 2259 } 2260 2261 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2262 { 2263 return IRQ_WAKE_THREAD; 2264 } 2265 2266 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2267 { 2268 struct msix_entry *entry = dev_id; 2269 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2270 struct iwl_trans *trans = trans_pcie->trans; 2271 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2272 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2273 u32 inta_fh, inta_hw; 2274 bool polling = false; 2275 bool sw_err; 2276 2277 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2278 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2279 2280 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2281 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2282 2283 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2284 2285 spin_lock_bh(&trans_pcie->irq_lock); 2286 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2287 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2288 /* 2289 * Clear causes registers to avoid being handling the same cause. 2290 */ 2291 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2292 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2293 spin_unlock_bh(&trans_pcie->irq_lock); 2294 2295 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2296 2297 if (unlikely(!(inta_fh | inta_hw))) { 2298 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2299 lock_map_release(&trans->sync_cmd_lockdep_map); 2300 return IRQ_NONE; 2301 } 2302 2303 if (iwl_have_debug_level(IWL_DL_ISR)) { 2304 IWL_DEBUG_ISR(trans, 2305 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2306 entry->entry, inta_fh, trans_pcie->fh_mask, 2307 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2308 if (inta_fh & ~trans_pcie->fh_mask) 2309 IWL_DEBUG_ISR(trans, 2310 "We got a masked interrupt (0x%08x)\n", 2311 inta_fh & ~trans_pcie->fh_mask); 2312 } 2313 2314 inta_fh &= trans_pcie->fh_mask; 2315 2316 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2317 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2318 local_bh_disable(); 2319 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2320 polling = true; 2321 __napi_schedule(&trans_pcie->rxq[0].napi); 2322 } 2323 local_bh_enable(); 2324 } 2325 2326 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2327 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2328 local_bh_disable(); 2329 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2330 polling = true; 2331 __napi_schedule(&trans_pcie->rxq[1].napi); 2332 } 2333 local_bh_enable(); 2334 } 2335 2336 /* This "Tx" DMA channel is used only for loading uCode */ 2337 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2338 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2339 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2340 isr_stats->tx++; 2341 2342 /* Wake up IMR routine once write to SRAM is complete */ 2343 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2344 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2345 wake_up(&trans_pcie->ucode_write_waitq); 2346 } 2347 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2348 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2349 isr_stats->tx++; 2350 /* 2351 * Wake up uCode load routine, 2352 * now that load is complete 2353 */ 2354 trans_pcie->ucode_write_complete = true; 2355 wake_up(&trans_pcie->ucode_write_waitq); 2356 2357 /* Wake up IMR routine once write to SRAM is complete */ 2358 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2359 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2360 wake_up(&trans_pcie->ucode_write_waitq); 2361 } 2362 } 2363 2364 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2365 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2366 else 2367 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2368 2369 if (inta_hw & MSIX_HW_INT_CAUSES_REG_TOP_FATAL_ERR) { 2370 IWL_ERR(trans, "TOP Fatal error detected, inta_hw=0x%x.\n", 2371 inta_hw); 2372 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 2373 trans->request_top_reset = 1; 2374 iwl_op_mode_nic_error(trans->op_mode, 2375 IWL_ERR_TYPE_TOP_FATAL_ERROR); 2376 iwl_trans_schedule_reset(trans, 2377 IWL_ERR_TYPE_TOP_FATAL_ERROR); 2378 } 2379 } 2380 2381 /* Error detected by uCode */ 2382 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2383 IWL_ERR(trans, 2384 "Microcode SW error detected. Restarting 0x%X.\n", 2385 inta_fh); 2386 isr_stats->sw++; 2387 /* during FW reset flow report errors from there */ 2388 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2389 trans_pcie->imr_status = IMR_D2S_ERROR; 2390 wake_up(&trans_pcie->imr_waitq); 2391 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2392 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2393 wake_up(&trans_pcie->fw_reset_waitq); 2394 } else { 2395 iwl_pcie_irq_handle_error(trans); 2396 } 2397 2398 if (trans_pcie->sx_state == IWL_SX_WAITING) { 2399 trans_pcie->sx_state = IWL_SX_ERROR; 2400 wake_up(&trans_pcie->sx_waitq); 2401 } 2402 } 2403 2404 /* After checking FH register check HW register */ 2405 if (iwl_have_debug_level(IWL_DL_ISR)) { 2406 IWL_DEBUG_ISR(trans, 2407 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2408 entry->entry, inta_hw, trans_pcie->hw_mask, 2409 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2410 if (inta_hw & ~trans_pcie->hw_mask) 2411 IWL_DEBUG_ISR(trans, 2412 "We got a masked interrupt 0x%08x\n", 2413 inta_hw & ~trans_pcie->hw_mask); 2414 } 2415 2416 inta_hw &= trans_pcie->hw_mask; 2417 2418 /* Alive notification via Rx interrupt will do the real work */ 2419 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2420 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2421 isr_stats->alive++; 2422 if (trans->mac_cfg->gen2) { 2423 /* We can restock, since firmware configured the RFH */ 2424 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2425 } 2426 } 2427 2428 /* 2429 * In some rare cases when the HW is in a bad state, we may 2430 * get this interrupt too early, when prph_info is still NULL. 2431 * So make sure that it's not NULL to prevent crashing. 2432 */ 2433 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2434 u32 sleep_notif = 2435 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2436 2437 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2438 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2439 IWL_DEBUG_ISR(trans, 2440 "Sx interrupt: sleep notification = 0x%x\n", 2441 sleep_notif); 2442 if (trans_pcie->sx_state == IWL_SX_WAITING) { 2443 trans_pcie->sx_state = IWL_SX_COMPLETE; 2444 wake_up(&trans_pcie->sx_waitq); 2445 } else { 2446 IWL_ERR(trans, 2447 "unexpected Sx interrupt (0x%x)\n", 2448 sleep_notif); 2449 } 2450 } else { 2451 /* uCode wakes up after power-down sleep */ 2452 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2453 iwl_pcie_rxq_check_wrptr(trans); 2454 iwl_pcie_txq_check_wrptrs(trans); 2455 2456 isr_stats->wakeup++; 2457 } 2458 } 2459 2460 /* Chip got too hot and stopped itself */ 2461 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2462 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2463 isr_stats->ctkill++; 2464 } 2465 2466 /* HW RF KILL switch toggled */ 2467 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2468 iwl_pcie_handle_rfkill_irq(trans, true); 2469 2470 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2471 IWL_ERR(trans, 2472 "Hardware error detected. Restarting.\n"); 2473 2474 isr_stats->hw++; 2475 trans->dbg.hw_error = true; 2476 iwl_pcie_irq_handle_error(trans); 2477 } 2478 2479 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) 2480 iwl_trans_pcie_handle_reset_interrupt(trans); 2481 2482 if (!polling) 2483 iwl_pcie_clear_irq(trans, entry->entry); 2484 2485 lock_map_release(&trans->sync_cmd_lockdep_map); 2486 2487 return IRQ_HANDLED; 2488 } 2489