1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2003-2015, 2018-2025 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #ifndef __iwl_trans_int_pcie_h__ 8 #define __iwl_trans_int_pcie_h__ 9 10 #include <linux/spinlock.h> 11 #include <linux/interrupt.h> 12 #include <linux/skbuff.h> 13 #include <linux/wait.h> 14 #include <linux/pci.h> 15 #include <linux/timer.h> 16 #include <linux/cpu.h> 17 18 #include "iwl-fh.h" 19 #include "iwl-csr.h" 20 #include "iwl-trans.h" 21 #include "iwl-debug.h" 22 #include "iwl-io.h" 23 #include "iwl-op-mode.h" 24 #include "iwl-drv.h" 25 #include "pcie/iwl-context-info.h" 26 27 /* 28 * RX related structures and functions 29 */ 30 #define RX_NUM_QUEUES 1 31 #define RX_POST_REQ_ALLOC 2 32 #define RX_CLAIM_REQ_ALLOC 8 33 #define RX_PENDING_WATERMARK 16 34 #define FIRST_RX_QUEUE 512 35 36 struct iwl_host_cmd; 37 38 /*This file includes the declaration that are internal to the 39 * trans_pcie layer */ 40 41 /** 42 * struct iwl_rx_mem_buffer - driver-side RX buffer descriptor 43 * @page_dma: bus address of rxb page 44 * @page: driver's pointer to the rxb page 45 * @list: list entry for the membuffer 46 * @invalid: rxb is in driver ownership - not owned by HW 47 * @vid: index of this rxb in the global table 48 * @offset: indicates which offset of the page (in bytes) 49 * this buffer uses (if multiple RBs fit into one page) 50 */ 51 struct iwl_rx_mem_buffer { 52 dma_addr_t page_dma; 53 struct page *page; 54 struct list_head list; 55 u32 offset; 56 u16 vid; 57 bool invalid; 58 }; 59 60 /* interrupt statistics */ 61 struct isr_statistics { 62 u32 hw; 63 u32 sw; 64 u32 err_code; 65 u32 sch; 66 u32 alive; 67 u32 rfkill; 68 u32 ctkill; 69 u32 wakeup; 70 u32 rx; 71 u32 tx; 72 u32 unhandled; 73 }; 74 75 /** 76 * struct iwl_rx_transfer_desc - transfer descriptor 77 * @addr: ptr to free buffer start address 78 * @rbid: unique tag of the buffer 79 * @reserved: reserved 80 */ 81 struct iwl_rx_transfer_desc { 82 __le16 rbid; 83 __le16 reserved[3]; 84 __le64 addr; 85 } __packed; 86 87 #define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0) 88 89 /** 90 * struct iwl_rx_completion_desc - completion descriptor 91 * @reserved1: reserved 92 * @rbid: unique tag of the received buffer 93 * @flags: flags (0: fragmented, all others: reserved) 94 * @reserved2: reserved 95 */ 96 struct iwl_rx_completion_desc { 97 __le32 reserved1; 98 __le16 rbid; 99 u8 flags; 100 u8 reserved2[25]; 101 } __packed; 102 103 /** 104 * struct iwl_rx_completion_desc_bz - Bz completion descriptor 105 * @rbid: unique tag of the received buffer 106 * @flags: flags (0: fragmented, all others: reserved) 107 * @reserved: reserved 108 */ 109 struct iwl_rx_completion_desc_bz { 110 __le16 rbid; 111 u8 flags; 112 u8 reserved[1]; 113 } __packed; 114 115 /** 116 * struct iwl_rxq - Rx queue 117 * @id: queue index 118 * @bd: driver's pointer to buffer of receive buffer descriptors (rbd). 119 * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices. 120 * In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's 121 * @bd_dma: bus address of buffer of receive buffer descriptors (rbd) 122 * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd) 123 * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd) 124 * @read: Shared index to newest available Rx buffer 125 * @write: Shared index to oldest written Rx packet 126 * @write_actual: actual write pointer written to device, since we update in 127 * blocks of 8 only 128 * @free_count: Number of pre-allocated buffers in rx_free 129 * @used_count: Number of RBDs handled to allocator to use for allocation 130 * @write_actual: 131 * @rx_free: list of RBDs with allocated RB ready for use 132 * @rx_used: list of RBDs with no RB attached 133 * @need_update: flag to indicate we need to update read/write index 134 * @rb_stts: driver's pointer to receive buffer status 135 * @rb_stts_dma: bus address of receive buffer status 136 * @lock: per-queue lock 137 * @queue: actual rx queue. Not used for multi-rx queue. 138 * @next_rb_is_fragment: indicates that the previous RB that we handled set 139 * the fragmented flag, so the next one is still another fragment 140 * @napi: NAPI struct for this queue 141 * @queue_size: size of this queue 142 * 143 * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers 144 */ 145 struct iwl_rxq { 146 int id; 147 void *bd; 148 dma_addr_t bd_dma; 149 void *used_bd; 150 dma_addr_t used_bd_dma; 151 u32 read; 152 u32 write; 153 u32 free_count; 154 u32 used_count; 155 u32 write_actual; 156 u32 queue_size; 157 struct list_head rx_free; 158 struct list_head rx_used; 159 bool need_update, next_rb_is_fragment; 160 void *rb_stts; 161 dma_addr_t rb_stts_dma; 162 spinlock_t lock; 163 struct napi_struct napi; 164 struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE]; 165 }; 166 167 /** 168 * struct iwl_rb_allocator - Rx allocator 169 * @req_pending: number of requests the allcator had not processed yet 170 * @req_ready: number of requests honored and ready for claiming 171 * @rbd_allocated: RBDs with pages allocated and ready to be handled to 172 * the queue. This is a list of &struct iwl_rx_mem_buffer 173 * @rbd_empty: RBDs with no page attached for allocator use. This is a list 174 * of &struct iwl_rx_mem_buffer 175 * @lock: protects the rbd_allocated and rbd_empty lists 176 * @alloc_wq: work queue for background calls 177 * @rx_alloc: work struct for background calls 178 */ 179 struct iwl_rb_allocator { 180 atomic_t req_pending; 181 atomic_t req_ready; 182 struct list_head rbd_allocated; 183 struct list_head rbd_empty; 184 spinlock_t lock; 185 struct workqueue_struct *alloc_wq; 186 struct work_struct rx_alloc; 187 }; 188 189 /** 190 * iwl_get_closed_rb_stts - get closed rb stts from different structs 191 * @trans: transport pointer (for configuration) 192 * @rxq: the rxq to get the rb stts from 193 * Return: last closed RB index 194 */ 195 static inline u16 iwl_get_closed_rb_stts(struct iwl_trans *trans, 196 struct iwl_rxq *rxq) 197 { 198 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 199 __le16 *rb_stts = rxq->rb_stts; 200 201 return le16_to_cpu(READ_ONCE(*rb_stts)); 202 } else { 203 struct iwl_rb_status *rb_stts = rxq->rb_stts; 204 205 return le16_to_cpu(READ_ONCE(rb_stts->closed_rb_num)) & 0xFFF; 206 } 207 } 208 209 #ifdef CONFIG_IWLWIFI_DEBUGFS 210 /** 211 * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data 212 * debugfs file 213 * 214 * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed. 215 * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open. 216 * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is 217 * set the file can no longer be used. 218 */ 219 enum iwl_fw_mon_dbgfs_state { 220 IWL_FW_MON_DBGFS_STATE_CLOSED, 221 IWL_FW_MON_DBGFS_STATE_OPEN, 222 IWL_FW_MON_DBGFS_STATE_DISABLED, 223 }; 224 #endif 225 226 /** 227 * enum iwl_shared_irq_flags - level of sharing for irq 228 * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes. 229 * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue. 230 */ 231 enum iwl_shared_irq_flags { 232 IWL_SHARED_IRQ_NON_RX = BIT(0), 233 IWL_SHARED_IRQ_FIRST_RSS = BIT(1), 234 }; 235 236 /** 237 * enum iwl_image_response_code - image response values 238 * @IWL_IMAGE_RESP_DEF: the default value of the register 239 * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully 240 * @IWL_IMAGE_RESP_FAIL: iml reading failed 241 */ 242 enum iwl_image_response_code { 243 IWL_IMAGE_RESP_DEF = 0, 244 IWL_IMAGE_RESP_SUCCESS = 1, 245 IWL_IMAGE_RESP_FAIL = 2, 246 }; 247 248 #ifdef CONFIG_IWLWIFI_DEBUGFS 249 /** 250 * struct cont_rec: continuous recording data structure 251 * @prev_wr_ptr: the last address that was read in monitor_data 252 * debugfs file 253 * @prev_wrap_cnt: the wrap count that was used during the last read in 254 * monitor_data debugfs file 255 * @state: the state of monitor_data debugfs file as described 256 * in &iwl_fw_mon_dbgfs_state enum 257 * @mutex: locked while reading from monitor_data debugfs file 258 */ 259 struct cont_rec { 260 u32 prev_wr_ptr; 261 u32 prev_wrap_cnt; 262 u8 state; 263 /* Used to sync monitor_data debugfs file with driver unload flow */ 264 struct mutex mutex; 265 }; 266 #endif 267 268 enum iwl_pcie_fw_reset_state { 269 FW_RESET_IDLE, 270 FW_RESET_REQUESTED, 271 FW_RESET_OK, 272 FW_RESET_ERROR, 273 FW_RESET_TOP_REQUESTED, 274 }; 275 276 /** 277 * enum iwl_pcie_imr_status - imr dma transfer state 278 * @IMR_D2S_IDLE: default value of the dma transfer 279 * @IMR_D2S_REQUESTED: dma transfer requested 280 * @IMR_D2S_COMPLETED: dma transfer completed 281 * @IMR_D2S_ERROR: dma transfer error 282 */ 283 enum iwl_pcie_imr_status { 284 IMR_D2S_IDLE, 285 IMR_D2S_REQUESTED, 286 IMR_D2S_COMPLETED, 287 IMR_D2S_ERROR, 288 }; 289 290 /** 291 * struct iwl_pcie_txqs - TX queues data 292 * 293 * @queue_used: bit mask of used queues 294 * @queue_stopped: bit mask of stopped queues 295 * @txq: array of TXQ data structures representing the TXQs 296 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler 297 * @bc_pool: bytecount DMA allocations pool 298 * @bc_tbl_size: bytecount table size 299 * @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO 300 * (and similar usage) 301 * @tfd: TFD data 302 * @tfd.max_tbs: max number of buffers per TFD 303 * @tfd.size: TFD size 304 * @tfd.addr_size: TFD/TB address size 305 */ 306 struct iwl_pcie_txqs { 307 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 308 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 309 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; 310 struct dma_pool *bc_pool; 311 size_t bc_tbl_size; 312 struct iwl_tso_hdr_page __percpu *tso_hdr_page; 313 314 struct { 315 u8 max_tbs; 316 u16 size; 317 u8 addr_size; 318 } tfd; 319 320 struct iwl_dma_ptr scd_bc_tbls; 321 }; 322 323 /** 324 * struct iwl_trans_pcie - PCIe transport specific data 325 * @rxq: all the RX queue data 326 * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues 327 * @global_table: table mapping received VID from hw to rxb 328 * @rba: allocator for RX replenishing 329 * @ctxt_info: context information for FW self init 330 * @ctxt_info_v2: context information for v1 devices 331 * @prph_info: prph info for self init 332 * @prph_scratch: prph scratch for self init 333 * @ctxt_info_dma_addr: dma addr of context information 334 * @prph_info_dma_addr: dma addr of prph info 335 * @prph_scratch_dma_addr: dma addr of prph scratch 336 * @ctxt_info_dma_addr: dma addr of context information 337 * @iml: image loader image virtual address 338 * @iml_len: image loader image size 339 * @iml_dma_addr: image loader image DMA address 340 * @trans: pointer to the generic transport area 341 * @scd_base_addr: scheduler sram base address in SRAM 342 * @kw: keep warm address 343 * @pnvm_data: holds info about pnvm payloads allocated in DRAM 344 * @reduced_tables_data: holds info about power reduced tablse 345 * payloads allocated in DRAM 346 * @pci_dev: basic pci-network driver stuff 347 * @hw_base: pci hardware address support 348 * @ucode_write_complete: indicates that the ucode has been copied. 349 * @ucode_write_waitq: wait queue for uCode load 350 * @rx_page_order: page order for receive buffer size 351 * @rx_buf_bytes: RX buffer (RB) size in bytes 352 * @reg_lock: protect hw register access 353 * @mutex: to protect stop_device / start_fw / start_hw 354 * @fw_mon_data: fw continuous recording data 355 * @cmd_hold_nic_awake: indicates NIC is held awake for APMG workaround 356 * during commands in flight 357 * @msix_entries: array of MSI-X entries 358 * @msix_enabled: true if managed to enable MSI-X 359 * @shared_vec_mask: the type of causes the shared vector handles 360 * (see iwl_shared_irq_flags). 361 * @alloc_vecs: the number of interrupt vectors allocated by the OS 362 * @def_irq: default irq for non rx causes 363 * @fh_init_mask: initial unmasked fh causes 364 * @hw_init_mask: initial unmasked hw causes 365 * @fh_mask: current unmasked fh causes 366 * @hw_mask: current unmasked hw causes 367 * @in_rescan: true if we have triggered a device rescan 368 * @base_rb_stts: base virtual address of receive buffer status for all queues 369 * @base_rb_stts_dma: base physical address of receive buffer status 370 * @supported_dma_mask: DMA mask to validate the actual address against, 371 * will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device 372 * @alloc_page_lock: spinlock for the page allocator 373 * @alloc_page: allocated page to still use parts of 374 * @alloc_page_used: how much of the allocated page was already used (bytes) 375 * @imr_status: imr dma state machine 376 * @imr_waitq: imr wait queue for dma completion 377 * @rf_name: name/version of the CRF, if any 378 * @use_ict: whether or not ICT (interrupt table) is used 379 * @ict_index: current ICT read index 380 * @ict_tbl: ICT table pointer 381 * @ict_tbl_dma: ICT table DMA address 382 * @inta_mask: interrupt (INT-A) mask 383 * @irq_lock: lock to synchronize IRQ handling 384 * @txq_memory: TXQ allocation array 385 * @sx_waitq: waitqueue for Sx transitions 386 * @sx_state: state tracking Sx transitions 387 * @opmode_down: indicates opmode went away 388 * @num_rx_bufs: number of RX buffers to allocate/use 389 * @affinity_mask: IRQ affinity mask for each RX queue 390 * @debug_rfkill: RF-kill debugging state, -1 for unset, 0/1 for radio 391 * enable/disable 392 * @fw_reset_state: state of FW reset handshake 393 * @fw_reset_waitq: waitqueue for FW reset handshake 394 * @is_down: indicates the NIC is down 395 * @isr_stats: interrupt statistics 396 * @napi_dev: (fake) netdev for NAPI registration 397 * @txqs: transport tx queues data. 398 * @me_present: WiAMT/CSME is detected as present (1), not present (0) 399 * or unknown (-1, so can still use it as a boolean safely) 400 * @me_recheck_wk: worker to recheck WiAMT/CSME presence 401 * @invalid_tx_cmd: invalid TX command buffer 402 * @wait_command_queue: wait queue for sync commands 403 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 404 * The user should use iwl_trans_{alloc,free}_tx_cmd. 405 * @dev_cmd_pool_name: name for the TX command allocation pool 406 * @pm_support: set to true in start_hw if link pm is supported 407 * @ltr_enabled: set to true if the LTR is enabled 408 */ 409 struct iwl_trans_pcie { 410 struct iwl_rxq *rxq; 411 struct iwl_rx_mem_buffer *rx_pool; 412 struct iwl_rx_mem_buffer **global_table; 413 struct iwl_rb_allocator rba; 414 union { 415 struct iwl_context_info *ctxt_info; 416 struct iwl_context_info_v2 *ctxt_info_v2; 417 }; 418 struct iwl_prph_info *prph_info; 419 struct iwl_prph_scratch *prph_scratch; 420 void *iml; 421 size_t iml_len; 422 dma_addr_t ctxt_info_dma_addr; 423 dma_addr_t prph_info_dma_addr; 424 dma_addr_t prph_scratch_dma_addr; 425 dma_addr_t iml_dma_addr; 426 struct iwl_trans *trans; 427 428 struct net_device *napi_dev; 429 430 /* INT ICT Table */ 431 __le32 *ict_tbl; 432 dma_addr_t ict_tbl_dma; 433 int ict_index; 434 bool use_ict; 435 bool is_down, opmode_down; 436 s8 debug_rfkill; 437 struct isr_statistics isr_stats; 438 439 spinlock_t irq_lock; 440 struct mutex mutex; 441 u32 inta_mask; 442 u32 scd_base_addr; 443 struct iwl_dma_ptr kw; 444 445 /* pnvm data */ 446 struct iwl_dram_regions pnvm_data; 447 struct iwl_dram_regions reduced_tables_data; 448 449 struct iwl_txq *txq_memory; 450 451 /* PCI bus related data */ 452 struct pci_dev *pci_dev; 453 u8 __iomem *hw_base; 454 455 bool ucode_write_complete; 456 enum { 457 IWL_SX_INVALID = 0, 458 IWL_SX_WAITING, 459 IWL_SX_ERROR, 460 IWL_SX_COMPLETE, 461 } sx_state; 462 wait_queue_head_t ucode_write_waitq; 463 wait_queue_head_t sx_waitq; 464 465 u16 num_rx_bufs; 466 467 u32 rx_page_order; 468 u32 rx_buf_bytes; 469 u32 supported_dma_mask; 470 471 /* allocator lock for the two values below */ 472 spinlock_t alloc_page_lock; 473 struct page *alloc_page; 474 u32 alloc_page_used; 475 476 /*protect hw register */ 477 spinlock_t reg_lock; 478 bool cmd_hold_nic_awake; 479 480 #ifdef CONFIG_IWLWIFI_DEBUGFS 481 struct cont_rec fw_mon_data; 482 #endif 483 484 struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES]; 485 bool msix_enabled; 486 u8 shared_vec_mask; 487 u32 alloc_vecs; 488 u32 def_irq; 489 u32 fh_init_mask; 490 u32 hw_init_mask; 491 u32 fh_mask; 492 u32 hw_mask; 493 cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES]; 494 u16 tx_cmd_queue_size; 495 bool in_rescan; 496 497 void *base_rb_stts; 498 dma_addr_t base_rb_stts_dma; 499 500 enum iwl_pcie_fw_reset_state fw_reset_state; 501 wait_queue_head_t fw_reset_waitq; 502 enum iwl_pcie_imr_status imr_status; 503 wait_queue_head_t imr_waitq; 504 char rf_name[32]; 505 506 struct iwl_pcie_txqs txqs; 507 508 s8 me_present; 509 struct delayed_work me_recheck_wk; 510 511 struct iwl_dma_ptr invalid_tx_cmd; 512 513 wait_queue_head_t wait_command_queue; 514 515 struct kmem_cache *dev_cmd_pool; 516 char dev_cmd_pool_name[50]; 517 518 bool pm_support; 519 bool ltr_enabled; 520 }; 521 522 static inline struct iwl_trans_pcie * 523 IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans) 524 { 525 return (void *)trans->trans_specific; 526 } 527 528 static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue) 529 { 530 /* 531 * Before sending the interrupt the HW disables it to prevent 532 * a nested interrupt. This is done by writing 1 to the corresponding 533 * bit in the mask register. After handling the interrupt, it should be 534 * re-enabled by clearing this bit. This register is defined as 535 * write 1 clear (W1C) register, meaning that it's being clear 536 * by writing 1 to the bit. 537 */ 538 iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue)); 539 } 540 541 static inline struct iwl_trans * 542 iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie) 543 { 544 return container_of((void *)trans_pcie, struct iwl_trans, 545 trans_specific); 546 } 547 548 /* 549 * Convention: trans API functions: iwl_trans_pcie_XXX 550 * Other functions: iwl_pcie_XXX 551 */ 552 void iwl_trans_pcie_free(struct iwl_trans *trans); 553 void iwl_trans_pcie_free_pnvm_dram_regions(struct iwl_dram_regions *dram_regions, 554 struct device *dev); 555 556 bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent); 557 #define _iwl_trans_pcie_grab_nic_access(trans, silent) \ 558 __cond_lock(nic_access_nobh, \ 559 likely(__iwl_trans_pcie_grab_nic_access(trans, silent))) 560 561 void iwl_trans_pcie_check_product_reset_status(struct pci_dev *pdev); 562 void iwl_trans_pcie_check_product_reset_mode(struct pci_dev *pdev); 563 564 /***************************************************** 565 * RX 566 ******************************************************/ 567 int iwl_pcie_rx_init(struct iwl_trans *trans); 568 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans); 569 irqreturn_t iwl_pcie_msix_isr(int irq, void *data); 570 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id); 571 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id); 572 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id); 573 int iwl_pcie_rx_stop(struct iwl_trans *trans); 574 void iwl_pcie_rx_free(struct iwl_trans *trans); 575 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans); 576 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq); 577 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans); 578 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 579 struct iwl_rxq *rxq); 580 581 /***************************************************** 582 * ICT - interrupt handling 583 ******************************************************/ 584 irqreturn_t iwl_pcie_isr(int irq, void *data); 585 int iwl_pcie_alloc_ict(struct iwl_trans *trans); 586 void iwl_pcie_free_ict(struct iwl_trans *trans); 587 void iwl_pcie_reset_ict(struct iwl_trans *trans); 588 void iwl_pcie_disable_ict(struct iwl_trans *trans); 589 590 /***************************************************** 591 * TX / HCMD 592 ******************************************************/ 593 /* We need 2 entries for the TX command and header, and another one might 594 * be needed for potential data in the SKB's head. The remaining ones can 595 * be used for frags. 596 */ 597 #define IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) ((trans_pcie)->txqs.tfd.max_tbs - 3) 598 599 struct iwl_tso_hdr_page { 600 struct page *page; 601 u8 *pos; 602 }; 603 604 /* 605 * Note that we put this struct *last* in the page. By doing that, we ensure 606 * that no TB referencing this page can trigger the 32-bit boundary hardware 607 * bug. 608 */ 609 struct iwl_tso_page_info { 610 dma_addr_t dma_addr; 611 struct page *next; 612 refcount_t use_count; 613 }; 614 615 #define IWL_TSO_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(struct iwl_tso_page_info)) 616 #define IWL_TSO_PAGE_INFO(addr) \ 617 ((struct iwl_tso_page_info *)(((unsigned long)addr & PAGE_MASK) + \ 618 IWL_TSO_PAGE_DATA_SIZE)) 619 620 int iwl_pcie_tx_init(struct iwl_trans *trans); 621 void iwl_pcie_tx_start(struct iwl_trans *trans); 622 int iwl_pcie_tx_stop(struct iwl_trans *trans); 623 void iwl_pcie_tx_free(struct iwl_trans *trans); 624 bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn, 625 const struct iwl_trans_txq_scd_cfg *cfg, 626 unsigned int wdg_timeout); 627 void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue, 628 bool configure_scd); 629 void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id, 630 bool shared_mode); 631 int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb, 632 struct iwl_device_tx_cmd *dev_cmd, int txq_id); 633 void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans); 634 void iwl_pcie_hcmd_complete(struct iwl_trans *trans, 635 struct iwl_rx_cmd_buffer *rxb); 636 void iwl_trans_pcie_tx_reset(struct iwl_trans *trans); 637 int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq, 638 int slots_num, bool cmd_queue); 639 640 dma_addr_t iwl_pcie_get_sgt_tb_phys(struct sg_table *sgt, unsigned int offset, 641 unsigned int len); 642 struct sg_table *iwl_pcie_prep_tso(struct iwl_trans *trans, struct sk_buff *skb, 643 struct iwl_cmd_meta *cmd_meta, 644 u8 **hdr, unsigned int hdr_room, 645 unsigned int offset); 646 647 void iwl_pcie_free_tso_pages(struct iwl_trans *trans, struct sk_buff *skb, 648 struct iwl_cmd_meta *cmd_meta); 649 650 static inline dma_addr_t iwl_pcie_get_tso_page_phys(void *addr) 651 { 652 dma_addr_t res; 653 654 res = IWL_TSO_PAGE_INFO(addr)->dma_addr; 655 res += (unsigned long)addr & ~PAGE_MASK; 656 657 return res; 658 } 659 660 static inline dma_addr_t 661 iwl_txq_get_first_tb_dma(struct iwl_txq *txq, int idx) 662 { 663 return txq->first_tb_dma + 664 sizeof(struct iwl_pcie_first_tb_buf) * idx; 665 } 666 667 static inline u16 iwl_txq_get_cmd_index(const struct iwl_txq *q, u32 index) 668 { 669 return index & (q->n_window - 1); 670 } 671 672 static inline void *iwl_txq_get_tfd(struct iwl_trans *trans, 673 struct iwl_txq *txq, int idx) 674 { 675 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 676 677 if (trans->mac_cfg->gen2) 678 idx = iwl_txq_get_cmd_index(txq, idx); 679 680 return (u8 *)txq->tfds + trans_pcie->txqs.tfd.size * idx; 681 } 682 683 /* 684 * We need this inline in case dma_addr_t is only 32-bits - since the 685 * hardware is always 64-bit, the issue can still occur in that case, 686 * so use u64 for 'phys' here to force the addition in 64-bit. 687 */ 688 static inline bool iwl_txq_crosses_4g_boundary(u64 phys, u16 len) 689 { 690 return upper_32_bits(phys) != upper_32_bits(phys + len); 691 } 692 693 int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q); 694 695 static inline void iwl_txq_stop(struct iwl_trans *trans, struct iwl_txq *txq) 696 { 697 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 698 699 if (!test_and_set_bit(txq->id, trans_pcie->txqs.queue_stopped)) { 700 iwl_op_mode_queue_full(trans->op_mode, txq->id); 701 IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id); 702 } else { 703 IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n", 704 txq->id); 705 } 706 } 707 708 /** 709 * iwl_txq_inc_wrap - increment queue index, wrap back to beginning 710 * @trans: the transport (for configuration data) 711 * @index: current index 712 * Return: the queue index incremented, subject to wrapping 713 */ 714 static inline int iwl_txq_inc_wrap(struct iwl_trans *trans, int index) 715 { 716 return ++index & 717 (trans->mac_cfg->base->max_tfd_queue_size - 1); 718 } 719 720 /** 721 * iwl_txq_dec_wrap - decrement queue index, wrap back to end 722 * @trans: the transport (for configuration data) 723 * @index: current index 724 * Return: the queue index decremented, subject to wrapping 725 */ 726 static inline int iwl_txq_dec_wrap(struct iwl_trans *trans, int index) 727 { 728 return --index & 729 (trans->mac_cfg->base->max_tfd_queue_size - 1); 730 } 731 732 void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq); 733 734 static inline void 735 iwl_trans_pcie_wake_queue(struct iwl_trans *trans, struct iwl_txq *txq) 736 { 737 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 738 739 if (test_and_clear_bit(txq->id, trans_pcie->txqs.queue_stopped)) { 740 IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id); 741 iwl_op_mode_queue_not_full(trans->op_mode, txq->id); 742 } 743 } 744 745 int iwl_txq_gen2_set_tb(struct iwl_trans *trans, 746 struct iwl_tfh_tfd *tfd, dma_addr_t addr, 747 u16 len); 748 749 static inline void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans, 750 struct iwl_tfh_tfd *tfd) 751 { 752 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 753 754 tfd->num_tbs = 0; 755 756 iwl_txq_gen2_set_tb(trans, tfd, trans_pcie->invalid_tx_cmd.dma, 757 trans_pcie->invalid_tx_cmd.size); 758 } 759 760 void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans, 761 struct iwl_cmd_meta *meta, 762 struct iwl_tfh_tfd *tfd); 763 764 int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, 765 u32 sta_mask, u8 tid, 766 int size, unsigned int timeout); 767 768 int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, 769 struct iwl_device_tx_cmd *dev_cmd, int txq_id); 770 771 void iwl_txq_dyn_free(struct iwl_trans *trans, int queue); 772 void iwl_txq_gen2_tx_free(struct iwl_trans *trans); 773 int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, 774 int slots_num, bool cmd_queue); 775 int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, 776 int queue_size); 777 778 static inline u16 iwl_txq_gen1_tfd_tb_get_len(struct iwl_trans *trans, 779 void *_tfd, u8 idx) 780 { 781 struct iwl_tfd *tfd; 782 struct iwl_tfd_tb *tb; 783 784 if (trans->mac_cfg->gen2) { 785 struct iwl_tfh_tfd *tfh_tfd = _tfd; 786 struct iwl_tfh_tb *tfh_tb = &tfh_tfd->tbs[idx]; 787 788 return le16_to_cpu(tfh_tb->tb_len); 789 } 790 791 tfd = (struct iwl_tfd *)_tfd; 792 tb = &tfd->tbs[idx]; 793 794 return le16_to_cpu(tb->hi_n_len) >> 4; 795 } 796 797 static inline struct iwl_device_tx_cmd * 798 iwl_pcie_gen1_2_alloc_tx_cmd(struct iwl_trans *trans) 799 { 800 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 801 802 return kmem_cache_zalloc(trans_pcie->dev_cmd_pool, GFP_ATOMIC); 803 } 804 805 static inline void 806 iwl_pcie_gen1_2_free_tx_cmd(struct iwl_trans *trans, 807 struct iwl_device_tx_cmd *dev_cmd) 808 { 809 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 810 811 kmem_cache_free(trans_pcie->dev_cmd_pool, dev_cmd); 812 } 813 814 void iwl_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn, 815 struct sk_buff_head *skbs, bool is_flush); 816 void iwl_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr); 817 void iwl_pcie_freeze_txq_timer(struct iwl_trans *trans, 818 unsigned long txqs, bool freeze); 819 int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx); 820 int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm); 821 822 /***************************************************** 823 * Error handling 824 ******************************************************/ 825 void iwl_pcie_dump_csr(struct iwl_trans *trans); 826 827 /***************************************************** 828 * Helpers 829 ******************************************************/ 830 static inline void _iwl_disable_interrupts(struct iwl_trans *trans) 831 { 832 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 833 834 clear_bit(STATUS_INT_ENABLED, &trans->status); 835 if (!trans_pcie->msix_enabled) { 836 /* disable interrupts from uCode/NIC to host */ 837 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 838 839 /* acknowledge/clear/reset any interrupts still pending 840 * from uCode or flow handler (Rx/Tx DMA) */ 841 iwl_write32(trans, CSR_INT, 0xffffffff); 842 iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff); 843 } else { 844 /* disable all the interrupt we might use */ 845 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, 846 trans_pcie->fh_init_mask); 847 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, 848 trans_pcie->hw_init_mask); 849 trans_pcie->fh_mask = 0; 850 trans_pcie->hw_mask = 0; 851 } 852 IWL_DEBUG_ISR(trans, "Disabled interrupts\n"); 853 } 854 855 static inline int iwl_pcie_get_num_sections(const struct fw_img *fw, 856 int start) 857 { 858 int i = 0; 859 860 while (start < fw->num_sec && 861 fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION && 862 fw->sec[start].offset != PAGING_SEPARATOR_SECTION) { 863 start++; 864 i++; 865 } 866 867 return i; 868 } 869 870 static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans) 871 { 872 struct iwl_self_init_dram *dram = &trans->init_dram; 873 int i; 874 875 if (!dram->fw) { 876 WARN_ON(dram->fw_cnt); 877 return; 878 } 879 880 for (i = 0; i < dram->fw_cnt; i++) 881 dma_free_coherent(trans->dev, dram->fw[i].size, 882 dram->fw[i].block, dram->fw[i].physical); 883 884 kfree(dram->fw); 885 dram->fw_cnt = 0; 886 dram->fw = NULL; 887 } 888 889 static inline void iwl_disable_interrupts(struct iwl_trans *trans) 890 { 891 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 892 893 spin_lock_bh(&trans_pcie->irq_lock); 894 _iwl_disable_interrupts(trans); 895 spin_unlock_bh(&trans_pcie->irq_lock); 896 } 897 898 static inline void _iwl_enable_interrupts(struct iwl_trans *trans) 899 { 900 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 901 902 IWL_DEBUG_ISR(trans, "Enabling interrupts\n"); 903 set_bit(STATUS_INT_ENABLED, &trans->status); 904 if (!trans_pcie->msix_enabled) { 905 trans_pcie->inta_mask = CSR_INI_SET_MASK; 906 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); 907 } else { 908 /* 909 * fh/hw_mask keeps all the unmasked causes. 910 * Unlike msi, in msix cause is enabled when it is unset. 911 */ 912 trans_pcie->hw_mask = trans_pcie->hw_init_mask; 913 trans_pcie->fh_mask = trans_pcie->fh_init_mask; 914 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, 915 ~trans_pcie->fh_mask); 916 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, 917 ~trans_pcie->hw_mask); 918 } 919 } 920 921 static inline void iwl_enable_interrupts(struct iwl_trans *trans) 922 { 923 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 924 925 spin_lock_bh(&trans_pcie->irq_lock); 926 _iwl_enable_interrupts(trans); 927 spin_unlock_bh(&trans_pcie->irq_lock); 928 } 929 static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk) 930 { 931 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 932 933 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk); 934 trans_pcie->hw_mask = msk; 935 } 936 937 static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk) 938 { 939 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 940 941 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk); 942 trans_pcie->fh_mask = msk; 943 } 944 945 static inline void iwl_enable_fw_load_int(struct iwl_trans *trans) 946 { 947 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 948 949 IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n"); 950 if (!trans_pcie->msix_enabled) { 951 trans_pcie->inta_mask = CSR_INT_BIT_FH_TX; 952 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); 953 } else { 954 iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, 955 trans_pcie->hw_init_mask); 956 iwl_enable_fh_int_msk_msix(trans, 957 MSIX_FH_INT_CAUSES_D2S_CH0_NUM); 958 } 959 } 960 961 static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans, 962 bool top_reset) 963 { 964 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 965 966 IWL_DEBUG_ISR(trans, "Enabling %s interrupt only\n", 967 top_reset ? "RESET" : "ALIVE"); 968 969 if (!trans_pcie->msix_enabled) { 970 /* 971 * When we'll receive the ALIVE interrupt, the ISR will call 972 * iwl_enable_fw_load_int_ctx_info again to set the ALIVE 973 * interrupt (which is not really needed anymore) but also the 974 * RX interrupt which will allow us to receive the ALIVE 975 * notification (which is Rx) and continue the flow. 976 */ 977 if (top_reset) 978 trans_pcie->inta_mask = CSR_INT_BIT_RESET_DONE; 979 else 980 trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | 981 CSR_INT_BIT_FH_RX; 982 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); 983 } else { 984 u32 val = top_reset ? MSIX_HW_INT_CAUSES_REG_RESET_DONE 985 : MSIX_HW_INT_CAUSES_REG_ALIVE; 986 987 iwl_enable_hw_int_msk_msix(trans, val); 988 989 if (top_reset) 990 return; 991 /* 992 * Leave all the FH causes enabled to get the ALIVE 993 * notification. 994 */ 995 iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask); 996 } 997 } 998 999 static inline const char *queue_name(struct device *dev, 1000 struct iwl_trans_pcie *trans_p, int i) 1001 { 1002 if (trans_p->shared_vec_mask) { 1003 int vec = trans_p->shared_vec_mask & 1004 IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; 1005 1006 if (i == 0) 1007 return DRV_NAME ":shared_IRQ"; 1008 1009 return devm_kasprintf(dev, GFP_KERNEL, 1010 DRV_NAME ":queue_%d", i + vec); 1011 } 1012 if (i == 0) 1013 return DRV_NAME ":default_queue"; 1014 1015 if (i == trans_p->alloc_vecs - 1) 1016 return DRV_NAME ":exception"; 1017 1018 return devm_kasprintf(dev, GFP_KERNEL, 1019 DRV_NAME ":queue_%d", i); 1020 } 1021 1022 static inline void iwl_enable_rfkill_int(struct iwl_trans *trans) 1023 { 1024 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1025 1026 IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n"); 1027 if (!trans_pcie->msix_enabled) { 1028 trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL; 1029 iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); 1030 } else { 1031 iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, 1032 trans_pcie->fh_init_mask); 1033 trans_pcie->fh_mask = 0; 1034 iwl_enable_hw_int_msk_msix(trans, 1035 MSIX_HW_INT_CAUSES_REG_RF_KILL); 1036 } 1037 1038 if (trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_9000) { 1039 /* 1040 * On 9000-series devices this bit isn't enabled by default, so 1041 * when we power down the device we need set the bit to allow it 1042 * to wake up the PCI-E bus for RF-kill interrupts. 1043 */ 1044 iwl_set_bit(trans, CSR_GP_CNTRL, 1045 CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN); 1046 } 1047 } 1048 1049 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq); 1050 1051 static inline bool iwl_is_rfkill_set(struct iwl_trans *trans) 1052 { 1053 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1054 1055 lockdep_assert_held(&trans_pcie->mutex); 1056 1057 if (trans_pcie->debug_rfkill == 1) 1058 return true; 1059 1060 return !(iwl_read32(trans, CSR_GP_CNTRL) & 1061 CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW); 1062 } 1063 1064 static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans) 1065 { 1066 return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans)); 1067 } 1068 1069 void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state, bool from_irq); 1070 1071 #ifdef CONFIG_IWLWIFI_DEBUGFS 1072 void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans); 1073 void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans); 1074 #else 1075 static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { } 1076 #endif 1077 1078 void iwl_pcie_rx_allocator_work(struct work_struct *data); 1079 1080 /* common trans ops for all generations transports */ 1081 void iwl_pcie_gen1_2_op_mode_enter(struct iwl_trans *trans); 1082 int _iwl_trans_pcie_start_hw(struct iwl_trans *trans); 1083 int iwl_trans_pcie_start_hw(struct iwl_trans *trans); 1084 void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans); 1085 void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val); 1086 void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val); 1087 u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs); 1088 u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg); 1089 void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val); 1090 int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, 1091 void *buf, int dwords); 1092 int iwl_trans_pcie_sw_reset(struct iwl_trans *trans, bool retake_ownership); 1093 struct iwl_trans_dump_data * 1094 iwl_trans_pcie_dump_data(struct iwl_trans *trans, u32 dump_mask, 1095 const struct iwl_dump_sanitize_ops *sanitize_ops, 1096 void *sanitize_ctx); 1097 int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, 1098 bool reset); 1099 int iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool reset); 1100 void iwl_trans_pci_interrupts(struct iwl_trans *trans, bool enable); 1101 void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans); 1102 void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, 1103 u32 mask, u32 value); 1104 int iwl_trans_pcie_read_config32(struct iwl_trans *trans, u32 ofs, 1105 u32 *val); 1106 bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans); 1107 void __releases(nic_access_nobh) 1108 iwl_trans_pcie_release_nic_access(struct iwl_trans *trans); 1109 void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power); 1110 int iwl_pci_gen1_2_probe(struct pci_dev *pdev, 1111 const struct pci_device_id *ent, 1112 const struct iwl_mac_cfg *mac_cfg, 1113 u8 __iomem *hw_base, u32 hw_rev); 1114 void iwl_pcie_gen1_2_remove(struct iwl_trans *trans); 1115 1116 /* transport gen 1 exported functions */ 1117 void iwl_trans_pcie_fw_alive(struct iwl_trans *trans); 1118 int iwl_trans_pcie_start_fw(struct iwl_trans *trans, 1119 const struct iwl_fw *fw, 1120 const struct fw_img *img, 1121 bool run_in_rfkill); 1122 void iwl_trans_pcie_stop_device(struct iwl_trans *trans); 1123 1124 /* common functions that are used by gen2 transport */ 1125 void iwl_trans_pcie_gen2_op_mode_leave(struct iwl_trans *trans); 1126 int iwl_pcie_gen2_apm_init(struct iwl_trans *trans); 1127 void iwl_pcie_apm_config(struct iwl_trans *trans); 1128 int iwl_pcie_prepare_card_hw(struct iwl_trans *trans); 1129 void iwl_pcie_synchronize_irqs(struct iwl_trans *trans); 1130 bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans); 1131 void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans, 1132 bool was_in_rfkill); 1133 void iwl_pcie_apm_stop_master(struct iwl_trans *trans); 1134 void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie); 1135 int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans, 1136 struct iwl_dma_ptr *ptr, size_t size); 1137 void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr); 1138 void iwl_pcie_apply_destination(struct iwl_trans *trans); 1139 int iwl_pcie_gen1_2_activate_nic(struct iwl_trans *trans); 1140 1141 /* transport gen 2 exported functions */ 1142 int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans, 1143 const struct iwl_fw *fw, 1144 const struct fw_img *img, 1145 bool run_in_rfkill); 1146 void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans); 1147 void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans); 1148 int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans, 1149 struct iwl_host_cmd *cmd); 1150 int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans, 1151 struct iwl_host_cmd *cmd); 1152 void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans, 1153 u32 dst_addr, u64 src_addr, u32 byte_cnt); 1154 int iwl_trans_pcie_copy_imr(struct iwl_trans *trans, 1155 u32 dst_addr, u64 src_addr, u32 byte_cnt); 1156 int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue, 1157 struct iwl_trans_rxq_dma_data *data); 1158 1159 static inline bool iwl_pcie_gen1_is_pm_supported(struct iwl_trans *trans) 1160 { 1161 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1162 1163 return trans_pcie->pm_support; 1164 } 1165 1166 static inline bool iwl_pcie_gen1_2_is_ltr_enabled(struct iwl_trans *trans) 1167 { 1168 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1169 1170 return trans_pcie->ltr_enabled; 1171 } 1172 #endif /* __iwl_trans_int_pcie_h__ */ 1173