1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014, 2018 - 2020 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH 10 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * The full GNU General Public License is included in this distribution 22 * in the file called COPYING. 23 * 24 * Contact Information: 25 * Intel Linux Wireless <linuxwifi@intel.com> 26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 27 * 28 * BSD LICENSE 29 * 30 * Copyright(c) 2012 - 2014, 2018 - 2020 Intel Corporation. All rights reserved. 31 * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH 32 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 39 * * Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * * Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in 43 * the documentation and/or other materials provided with the 44 * distribution. 45 * * Neither the name Intel Corporation nor the names of its 46 * contributors may be used to endorse or promote products derived 47 * from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 50 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 51 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 52 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 53 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 55 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 56 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 57 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 58 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 59 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 60 * 61 *****************************************************************************/ 62 #include <net/mac80211.h> 63 64 #include "iwl-debug.h" 65 #include "iwl-io.h" 66 #include "iwl-prph.h" 67 #include "iwl-csr.h" 68 #include "mvm.h" 69 #include "fw/api/rs.h" 70 #include "fw/img.h" 71 72 /* 73 * Will return 0 even if the cmd failed when RFKILL is asserted unless 74 * CMD_WANT_SKB is set in cmd->flags. 75 */ 76 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 77 { 78 int ret; 79 80 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 81 if (WARN_ON(mvm->d3_test_active)) 82 return -EIO; 83 #endif 84 85 /* 86 * Synchronous commands from this op-mode must hold 87 * the mutex, this ensures we don't try to send two 88 * (or more) synchronous commands at a time. 89 */ 90 if (!(cmd->flags & CMD_ASYNC)) 91 lockdep_assert_held(&mvm->mutex); 92 93 ret = iwl_trans_send_cmd(mvm->trans, cmd); 94 95 /* 96 * If the caller wants the SKB, then don't hide any problems, the 97 * caller might access the response buffer which will be NULL if 98 * the command failed. 99 */ 100 if (cmd->flags & CMD_WANT_SKB) 101 return ret; 102 103 /* Silently ignore failures if RFKILL is asserted */ 104 if (!ret || ret == -ERFKILL) 105 return 0; 106 return ret; 107 } 108 109 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 110 u32 flags, u16 len, const void *data) 111 { 112 struct iwl_host_cmd cmd = { 113 .id = id, 114 .len = { len, }, 115 .data = { data, }, 116 .flags = flags, 117 }; 118 119 return iwl_mvm_send_cmd(mvm, &cmd); 120 } 121 122 /* 123 * We assume that the caller set the status to the success value 124 */ 125 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 126 u32 *status) 127 { 128 struct iwl_rx_packet *pkt; 129 struct iwl_cmd_response *resp; 130 int ret, resp_len; 131 132 lockdep_assert_held(&mvm->mutex); 133 134 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 135 if (WARN_ON(mvm->d3_test_active)) 136 return -EIO; 137 #endif 138 139 /* 140 * Only synchronous commands can wait for status, 141 * we use WANT_SKB so the caller can't. 142 */ 143 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 144 "cmd flags %x", cmd->flags)) 145 return -EINVAL; 146 147 cmd->flags |= CMD_WANT_SKB; 148 149 ret = iwl_trans_send_cmd(mvm->trans, cmd); 150 if (ret == -ERFKILL) { 151 /* 152 * The command failed because of RFKILL, don't update 153 * the status, leave it as success and return 0. 154 */ 155 return 0; 156 } else if (ret) { 157 return ret; 158 } 159 160 pkt = cmd->resp_pkt; 161 162 resp_len = iwl_rx_packet_payload_len(pkt); 163 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 164 ret = -EIO; 165 goto out_free_resp; 166 } 167 168 resp = (void *)pkt->data; 169 *status = le32_to_cpu(resp->status); 170 out_free_resp: 171 iwl_free_resp(cmd); 172 return ret; 173 } 174 175 /* 176 * We assume that the caller set the status to the sucess value 177 */ 178 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 179 const void *data, u32 *status) 180 { 181 struct iwl_host_cmd cmd = { 182 .id = id, 183 .len = { len, }, 184 .data = { data, }, 185 }; 186 187 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 188 } 189 190 #define IWL_DECLARE_RATE_INFO(r) \ 191 [IWL_RATE_##r##M_INDEX] = IWL_RATE_##r##M_PLCP 192 193 /* 194 * Translate from fw_rate_index (IWL_RATE_XXM_INDEX) to PLCP 195 */ 196 static const u8 fw_rate_idx_to_plcp[IWL_RATE_COUNT] = { 197 IWL_DECLARE_RATE_INFO(1), 198 IWL_DECLARE_RATE_INFO(2), 199 IWL_DECLARE_RATE_INFO(5), 200 IWL_DECLARE_RATE_INFO(11), 201 IWL_DECLARE_RATE_INFO(6), 202 IWL_DECLARE_RATE_INFO(9), 203 IWL_DECLARE_RATE_INFO(12), 204 IWL_DECLARE_RATE_INFO(18), 205 IWL_DECLARE_RATE_INFO(24), 206 IWL_DECLARE_RATE_INFO(36), 207 IWL_DECLARE_RATE_INFO(48), 208 IWL_DECLARE_RATE_INFO(54), 209 }; 210 211 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 212 enum nl80211_band band) 213 { 214 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 215 int idx; 216 int band_offset = 0; 217 218 /* Legacy rate format, search for match in table */ 219 if (band != NL80211_BAND_2GHZ) 220 band_offset = IWL_FIRST_OFDM_RATE; 221 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 222 if (fw_rate_idx_to_plcp[idx] == rate) 223 return idx - band_offset; 224 225 return -1; 226 } 227 228 u8 iwl_mvm_mac80211_idx_to_hwrate(int rate_idx) 229 { 230 /* Get PLCP rate for tx_cmd->rate_n_flags */ 231 return fw_rate_idx_to_plcp[rate_idx]; 232 } 233 234 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 235 { 236 static const u8 mac80211_ac_to_ucode_ac[] = { 237 AC_VO, 238 AC_VI, 239 AC_BE, 240 AC_BK 241 }; 242 243 return mac80211_ac_to_ucode_ac[ac]; 244 } 245 246 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 247 { 248 struct iwl_rx_packet *pkt = rxb_addr(rxb); 249 struct iwl_error_resp *err_resp = (void *)pkt->data; 250 251 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 252 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 253 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 254 le16_to_cpu(err_resp->bad_cmd_seq_num), 255 le32_to_cpu(err_resp->error_service)); 256 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 257 le64_to_cpu(err_resp->timestamp)); 258 } 259 260 /* 261 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 262 * The parameter should also be a combination of ANT_[ABC]. 263 */ 264 u8 first_antenna(u8 mask) 265 { 266 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 267 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 268 return BIT(0); 269 return BIT(ffs(mask) - 1); 270 } 271 272 /* 273 * Toggles between TX antennas to send the probe request on. 274 * Receives the bitmask of valid TX antennas and the *index* used 275 * for the last TX, and returns the next valid *index* to use. 276 * In order to set it in the tx_cmd, must do BIT(idx). 277 */ 278 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 279 { 280 u8 ind = last_idx; 281 int i; 282 283 for (i = 0; i < MAX_ANT_NUM; i++) { 284 ind = (ind + 1) % MAX_ANT_NUM; 285 if (valid & BIT(ind)) 286 return ind; 287 } 288 289 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 290 return last_idx; 291 } 292 293 /* 294 * Note: This structure is read from the device with IO accesses, 295 * and the reading already does the endian conversion. As it is 296 * read with u32-sized accesses, any members with a different size 297 * need to be ordered correctly though! 298 */ 299 struct iwl_error_event_table_v1 { 300 u32 valid; /* (nonzero) valid, (0) log is empty */ 301 u32 error_id; /* type of error */ 302 u32 pc; /* program counter */ 303 u32 blink1; /* branch link */ 304 u32 blink2; /* branch link */ 305 u32 ilink1; /* interrupt link */ 306 u32 ilink2; /* interrupt link */ 307 u32 data1; /* error-specific data */ 308 u32 data2; /* error-specific data */ 309 u32 data3; /* error-specific data */ 310 u32 bcon_time; /* beacon timer */ 311 u32 tsf_low; /* network timestamp function timer */ 312 u32 tsf_hi; /* network timestamp function timer */ 313 u32 gp1; /* GP1 timer register */ 314 u32 gp2; /* GP2 timer register */ 315 u32 gp3; /* GP3 timer register */ 316 u32 ucode_ver; /* uCode version */ 317 u32 hw_ver; /* HW Silicon version */ 318 u32 brd_ver; /* HW board version */ 319 u32 log_pc; /* log program counter */ 320 u32 frame_ptr; /* frame pointer */ 321 u32 stack_ptr; /* stack pointer */ 322 u32 hcmd; /* last host command header */ 323 u32 isr0; /* isr status register LMPM_NIC_ISR0: 324 * rxtx_flag */ 325 u32 isr1; /* isr status register LMPM_NIC_ISR1: 326 * host_flag */ 327 u32 isr2; /* isr status register LMPM_NIC_ISR2: 328 * enc_flag */ 329 u32 isr3; /* isr status register LMPM_NIC_ISR3: 330 * time_flag */ 331 u32 isr4; /* isr status register LMPM_NIC_ISR4: 332 * wico interrupt */ 333 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ 334 u32 wait_event; /* wait event() caller address */ 335 u32 l2p_control; /* L2pControlField */ 336 u32 l2p_duration; /* L2pDurationField */ 337 u32 l2p_mhvalid; /* L2pMhValidBits */ 338 u32 l2p_addr_match; /* L2pAddrMatchStat */ 339 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 340 * (LMPM_PMG_SEL) */ 341 u32 u_timestamp; /* indicate when the date and time of the 342 * compilation */ 343 u32 flow_handler; /* FH read/write pointers, RX credit */ 344 } __packed /* LOG_ERROR_TABLE_API_S_VER_1 */; 345 346 struct iwl_error_event_table { 347 u32 valid; /* (nonzero) valid, (0) log is empty */ 348 u32 error_id; /* type of error */ 349 u32 trm_hw_status0; /* TRM HW status */ 350 u32 trm_hw_status1; /* TRM HW status */ 351 u32 blink2; /* branch link */ 352 u32 ilink1; /* interrupt link */ 353 u32 ilink2; /* interrupt link */ 354 u32 data1; /* error-specific data */ 355 u32 data2; /* error-specific data */ 356 u32 data3; /* error-specific data */ 357 u32 bcon_time; /* beacon timer */ 358 u32 tsf_low; /* network timestamp function timer */ 359 u32 tsf_hi; /* network timestamp function timer */ 360 u32 gp1; /* GP1 timer register */ 361 u32 gp2; /* GP2 timer register */ 362 u32 fw_rev_type; /* firmware revision type */ 363 u32 major; /* uCode version major */ 364 u32 minor; /* uCode version minor */ 365 u32 hw_ver; /* HW Silicon version */ 366 u32 brd_ver; /* HW board version */ 367 u32 log_pc; /* log program counter */ 368 u32 frame_ptr; /* frame pointer */ 369 u32 stack_ptr; /* stack pointer */ 370 u32 hcmd; /* last host command header */ 371 u32 isr0; /* isr status register LMPM_NIC_ISR0: 372 * rxtx_flag */ 373 u32 isr1; /* isr status register LMPM_NIC_ISR1: 374 * host_flag */ 375 u32 isr2; /* isr status register LMPM_NIC_ISR2: 376 * enc_flag */ 377 u32 isr3; /* isr status register LMPM_NIC_ISR3: 378 * time_flag */ 379 u32 isr4; /* isr status register LMPM_NIC_ISR4: 380 * wico interrupt */ 381 u32 last_cmd_id; /* last HCMD id handled by the firmware */ 382 u32 wait_event; /* wait event() caller address */ 383 u32 l2p_control; /* L2pControlField */ 384 u32 l2p_duration; /* L2pDurationField */ 385 u32 l2p_mhvalid; /* L2pMhValidBits */ 386 u32 l2p_addr_match; /* L2pAddrMatchStat */ 387 u32 lmpm_pmg_sel; /* indicate which clocks are turned on 388 * (LMPM_PMG_SEL) */ 389 u32 u_timestamp; /* indicate when the date and time of the 390 * compilation */ 391 u32 flow_handler; /* FH read/write pointers, RX credit */ 392 } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; 393 394 /* 395 * UMAC error struct - relevant starting from family 8000 chip. 396 * Note: This structure is read from the device with IO accesses, 397 * and the reading already does the endian conversion. As it is 398 * read with u32-sized accesses, any members with a different size 399 * need to be ordered correctly though! 400 */ 401 struct iwl_umac_error_event_table { 402 u32 valid; /* (nonzero) valid, (0) log is empty */ 403 u32 error_id; /* type of error */ 404 u32 blink1; /* branch link */ 405 u32 blink2; /* branch link */ 406 u32 ilink1; /* interrupt link */ 407 u32 ilink2; /* interrupt link */ 408 u32 data1; /* error-specific data */ 409 u32 data2; /* error-specific data */ 410 u32 data3; /* error-specific data */ 411 u32 umac_major; 412 u32 umac_minor; 413 u32 frame_pointer; /* core register 27*/ 414 u32 stack_pointer; /* core register 28 */ 415 u32 cmd_header; /* latest host cmd sent to UMAC */ 416 u32 nic_isr_pref; /* ISR status register */ 417 } __packed; 418 419 #define ERROR_START_OFFSET (1 * sizeof(u32)) 420 #define ERROR_ELEM_SIZE (7 * sizeof(u32)) 421 422 static void iwl_mvm_dump_umac_error_log(struct iwl_mvm *mvm) 423 { 424 struct iwl_trans *trans = mvm->trans; 425 struct iwl_umac_error_event_table table; 426 u32 base = mvm->trans->dbg.umac_error_event_table; 427 428 if (!base && 429 !(mvm->trans->dbg.error_event_table_tlv_status & 430 IWL_ERROR_EVENT_TABLE_UMAC)) 431 return; 432 433 iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table)); 434 435 if (table.valid) 436 mvm->fwrt.dump.umac_err_id = table.error_id; 437 438 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 439 IWL_ERR(trans, "Start IWL Error Log Dump:\n"); 440 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n", 441 mvm->status, table.valid); 442 } 443 444 IWL_ERR(mvm, "0x%08X | %s\n", table.error_id, 445 iwl_fw_lookup_assert_desc(table.error_id)); 446 IWL_ERR(mvm, "0x%08X | umac branchlink1\n", table.blink1); 447 IWL_ERR(mvm, "0x%08X | umac branchlink2\n", table.blink2); 448 IWL_ERR(mvm, "0x%08X | umac interruptlink1\n", table.ilink1); 449 IWL_ERR(mvm, "0x%08X | umac interruptlink2\n", table.ilink2); 450 IWL_ERR(mvm, "0x%08X | umac data1\n", table.data1); 451 IWL_ERR(mvm, "0x%08X | umac data2\n", table.data2); 452 IWL_ERR(mvm, "0x%08X | umac data3\n", table.data3); 453 IWL_ERR(mvm, "0x%08X | umac major\n", table.umac_major); 454 IWL_ERR(mvm, "0x%08X | umac minor\n", table.umac_minor); 455 IWL_ERR(mvm, "0x%08X | frame pointer\n", table.frame_pointer); 456 IWL_ERR(mvm, "0x%08X | stack pointer\n", table.stack_pointer); 457 IWL_ERR(mvm, "0x%08X | last host cmd\n", table.cmd_header); 458 IWL_ERR(mvm, "0x%08X | isr status reg\n", table.nic_isr_pref); 459 } 460 461 static void iwl_mvm_dump_lmac_error_log(struct iwl_mvm *mvm, u8 lmac_num) 462 { 463 struct iwl_trans *trans = mvm->trans; 464 struct iwl_error_event_table table; 465 u32 val, base = mvm->trans->dbg.lmac_error_event_table[lmac_num]; 466 467 if (mvm->fwrt.cur_fw_img == IWL_UCODE_INIT) { 468 if (!base) 469 base = mvm->fw->init_errlog_ptr; 470 } else { 471 if (!base) 472 base = mvm->fw->inst_errlog_ptr; 473 } 474 475 if (base < 0x400000) { 476 IWL_ERR(mvm, 477 "Not valid error log pointer 0x%08X for %s uCode\n", 478 base, 479 (mvm->fwrt.cur_fw_img == IWL_UCODE_INIT) 480 ? "Init" : "RT"); 481 return; 482 } 483 484 /* check if there is a HW error */ 485 val = iwl_trans_read_mem32(trans, base); 486 if (((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50)) { 487 int err; 488 489 IWL_ERR(trans, "HW error, resetting before reading\n"); 490 491 /* reset the device */ 492 iwl_trans_sw_reset(trans); 493 494 err = iwl_finish_nic_init(trans, trans->trans_cfg); 495 if (err) 496 return; 497 } 498 499 iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table)); 500 501 if (table.valid) 502 mvm->fwrt.dump.lmac_err_id[lmac_num] = table.error_id; 503 504 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { 505 IWL_ERR(trans, "Start IWL Error Log Dump:\n"); 506 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n", 507 mvm->status, table.valid); 508 } 509 510 /* Do not change this output - scripts rely on it */ 511 512 IWL_ERR(mvm, "Loaded firmware version: %s\n", mvm->fw->fw_version); 513 514 IWL_ERR(mvm, "0x%08X | %-28s\n", table.error_id, 515 iwl_fw_lookup_assert_desc(table.error_id)); 516 IWL_ERR(mvm, "0x%08X | trm_hw_status0\n", table.trm_hw_status0); 517 IWL_ERR(mvm, "0x%08X | trm_hw_status1\n", table.trm_hw_status1); 518 IWL_ERR(mvm, "0x%08X | branchlink2\n", table.blink2); 519 IWL_ERR(mvm, "0x%08X | interruptlink1\n", table.ilink1); 520 IWL_ERR(mvm, "0x%08X | interruptlink2\n", table.ilink2); 521 IWL_ERR(mvm, "0x%08X | data1\n", table.data1); 522 IWL_ERR(mvm, "0x%08X | data2\n", table.data2); 523 IWL_ERR(mvm, "0x%08X | data3\n", table.data3); 524 IWL_ERR(mvm, "0x%08X | beacon time\n", table.bcon_time); 525 IWL_ERR(mvm, "0x%08X | tsf low\n", table.tsf_low); 526 IWL_ERR(mvm, "0x%08X | tsf hi\n", table.tsf_hi); 527 IWL_ERR(mvm, "0x%08X | time gp1\n", table.gp1); 528 IWL_ERR(mvm, "0x%08X | time gp2\n", table.gp2); 529 IWL_ERR(mvm, "0x%08X | uCode revision type\n", table.fw_rev_type); 530 IWL_ERR(mvm, "0x%08X | uCode version major\n", table.major); 531 IWL_ERR(mvm, "0x%08X | uCode version minor\n", table.minor); 532 IWL_ERR(mvm, "0x%08X | hw version\n", table.hw_ver); 533 IWL_ERR(mvm, "0x%08X | board version\n", table.brd_ver); 534 IWL_ERR(mvm, "0x%08X | hcmd\n", table.hcmd); 535 IWL_ERR(mvm, "0x%08X | isr0\n", table.isr0); 536 IWL_ERR(mvm, "0x%08X | isr1\n", table.isr1); 537 IWL_ERR(mvm, "0x%08X | isr2\n", table.isr2); 538 IWL_ERR(mvm, "0x%08X | isr3\n", table.isr3); 539 IWL_ERR(mvm, "0x%08X | isr4\n", table.isr4); 540 IWL_ERR(mvm, "0x%08X | last cmd Id\n", table.last_cmd_id); 541 IWL_ERR(mvm, "0x%08X | wait_event\n", table.wait_event); 542 IWL_ERR(mvm, "0x%08X | l2p_control\n", table.l2p_control); 543 IWL_ERR(mvm, "0x%08X | l2p_duration\n", table.l2p_duration); 544 IWL_ERR(mvm, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid); 545 IWL_ERR(mvm, "0x%08X | l2p_addr_match\n", table.l2p_addr_match); 546 IWL_ERR(mvm, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel); 547 IWL_ERR(mvm, "0x%08X | timestamp\n", table.u_timestamp); 548 IWL_ERR(mvm, "0x%08X | flow_handler\n", table.flow_handler); 549 } 550 551 static void iwl_mvm_dump_iml_error_log(struct iwl_mvm *mvm) 552 { 553 struct iwl_trans *trans = mvm->trans; 554 u32 error; 555 556 error = iwl_read_umac_prph(trans, UMAG_SB_CPU_2_STATUS); 557 558 IWL_ERR(trans, "IML/ROM dump:\n"); 559 560 if (error & 0xFFFF0000) 561 IWL_ERR(trans, "IML/ROM SYSASSERT:\n"); 562 563 IWL_ERR(mvm, "0x%08X | IML/ROM error/state\n", error); 564 IWL_ERR(mvm, "0x%08X | IML/ROM data1\n", 565 iwl_read_umac_prph(trans, UMAG_SB_CPU_1_STATUS)); 566 } 567 568 void iwl_mvm_dump_nic_error_log(struct iwl_mvm *mvm) 569 { 570 if (!test_bit(STATUS_DEVICE_ENABLED, &mvm->trans->status)) { 571 IWL_ERR(mvm, 572 "DEVICE_ENABLED bit is not set. Aborting dump.\n"); 573 return; 574 } 575 576 iwl_mvm_dump_lmac_error_log(mvm, 0); 577 578 if (mvm->trans->dbg.lmac_error_event_table[1]) 579 iwl_mvm_dump_lmac_error_log(mvm, 1); 580 581 iwl_mvm_dump_umac_error_log(mvm); 582 583 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 584 iwl_mvm_dump_iml_error_log(mvm); 585 586 iwl_fw_error_print_fseq_regs(&mvm->fwrt); 587 } 588 589 int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, 590 int tid, int frame_limit, u16 ssn) 591 { 592 struct iwl_scd_txq_cfg_cmd cmd = { 593 .scd_queue = queue, 594 .action = SCD_CFG_ENABLE_QUEUE, 595 .window = frame_limit, 596 .sta_id = sta_id, 597 .ssn = cpu_to_le16(ssn), 598 .tx_fifo = fifo, 599 .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || 600 queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), 601 .tid = tid, 602 }; 603 int ret; 604 605 if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) 606 return -EINVAL; 607 608 if (WARN(mvm->queue_info[queue].tid_bitmap == 0, 609 "Trying to reconfig unallocated queue %d\n", queue)) 610 return -ENXIO; 611 612 IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); 613 614 ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); 615 WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", 616 queue, fifo, ret); 617 618 return ret; 619 } 620 621 /** 622 * iwl_mvm_send_lq_cmd() - Send link quality command 623 * @sync: This command can be sent synchronously. 624 * 625 * The link quality command is sent as the last step of station creation. 626 * This is the special case in which init is set and we call a callback in 627 * this case to clear the state indicating that station creation is in 628 * progress. 629 */ 630 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 631 { 632 struct iwl_host_cmd cmd = { 633 .id = LQ_CMD, 634 .len = { sizeof(struct iwl_lq_cmd), }, 635 .flags = CMD_ASYNC, 636 .data = { lq, }, 637 }; 638 639 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 640 iwl_mvm_has_tlc_offload(mvm))) 641 return -EINVAL; 642 643 return iwl_mvm_send_cmd(mvm, &cmd); 644 } 645 646 /** 647 * iwl_mvm_update_smps - Get a request to change the SMPS mode 648 * @req_type: The part of the driver who call for a change. 649 * @smps_requests: The request to change the SMPS mode. 650 * 651 * Get a requst to change the SMPS mode, 652 * and change it according to all other requests in the driver. 653 */ 654 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 655 enum iwl_mvm_smps_type_request req_type, 656 enum ieee80211_smps_mode smps_request) 657 { 658 struct iwl_mvm_vif *mvmvif; 659 enum ieee80211_smps_mode smps_mode; 660 int i; 661 662 lockdep_assert_held(&mvm->mutex); 663 664 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 665 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 666 return; 667 668 if (vif->type == NL80211_IFTYPE_AP) 669 smps_mode = IEEE80211_SMPS_OFF; 670 else 671 smps_mode = IEEE80211_SMPS_AUTOMATIC; 672 673 mvmvif = iwl_mvm_vif_from_mac80211(vif); 674 mvmvif->smps_requests[req_type] = smps_request; 675 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 676 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 677 smps_mode = IEEE80211_SMPS_STATIC; 678 break; 679 } 680 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 681 smps_mode = IEEE80211_SMPS_DYNAMIC; 682 } 683 684 ieee80211_request_smps(vif, smps_mode); 685 } 686 687 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 688 { 689 struct iwl_statistics_cmd scmd = { 690 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 691 }; 692 struct iwl_host_cmd cmd = { 693 .id = STATISTICS_CMD, 694 .len[0] = sizeof(scmd), 695 .data[0] = &scmd, 696 .flags = CMD_WANT_SKB, 697 }; 698 int ret; 699 700 ret = iwl_mvm_send_cmd(mvm, &cmd); 701 if (ret) 702 return ret; 703 704 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 705 iwl_free_resp(&cmd); 706 707 if (clear) 708 iwl_mvm_accu_radio_stats(mvm); 709 710 return 0; 711 } 712 713 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 714 { 715 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 716 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 717 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 718 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 719 } 720 721 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 722 struct ieee80211_vif *vif) 723 { 724 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 725 bool *result = _data; 726 int i; 727 728 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 729 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 730 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 731 *result = false; 732 } 733 } 734 735 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm) 736 { 737 bool result = true; 738 739 lockdep_assert_held(&mvm->mutex); 740 741 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 742 return false; 743 744 if (mvm->cfg->rx_with_siso_diversity) 745 return false; 746 747 ieee80211_iterate_active_interfaces_atomic( 748 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 749 iwl_mvm_diversity_iter, &result); 750 751 return result; 752 } 753 754 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 755 bool low_latency, u16 mac_id) 756 { 757 struct iwl_mac_low_latency_cmd cmd = { 758 .mac_id = cpu_to_le32(mac_id) 759 }; 760 761 if (!fw_has_capa(&mvm->fw->ucode_capa, 762 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 763 return; 764 765 if (low_latency) { 766 /* currently we don't care about the direction */ 767 cmd.low_latency_rx = 1; 768 cmd.low_latency_tx = 1; 769 } 770 771 if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, 772 MAC_CONF_GROUP, 0), 773 0, sizeof(cmd), &cmd)) 774 IWL_ERR(mvm, "Failed to send low latency command\n"); 775 } 776 777 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 778 bool low_latency, 779 enum iwl_mvm_low_latency_cause cause) 780 { 781 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 782 int res; 783 bool prev; 784 785 lockdep_assert_held(&mvm->mutex); 786 787 prev = iwl_mvm_vif_low_latency(mvmvif); 788 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 789 790 low_latency = iwl_mvm_vif_low_latency(mvmvif); 791 792 if (low_latency == prev) 793 return 0; 794 795 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 796 797 res = iwl_mvm_update_quotas(mvm, false, NULL); 798 if (res) 799 return res; 800 801 iwl_mvm_bt_coex_vif_change(mvm); 802 803 return iwl_mvm_power_update_mac(mvm); 804 } 805 806 struct iwl_mvm_low_latency_iter { 807 bool result; 808 bool result_per_band[NUM_NL80211_BANDS]; 809 }; 810 811 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 812 { 813 struct iwl_mvm_low_latency_iter *result = _data; 814 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 815 enum nl80211_band band; 816 817 if (iwl_mvm_vif_low_latency(mvmvif)) { 818 result->result = true; 819 820 if (!mvmvif->phy_ctxt) 821 return; 822 823 band = mvmvif->phy_ctxt->channel->band; 824 result->result_per_band[band] = true; 825 } 826 } 827 828 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 829 { 830 struct iwl_mvm_low_latency_iter data = {}; 831 832 ieee80211_iterate_active_interfaces_atomic( 833 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 834 iwl_mvm_ll_iter, &data); 835 836 return data.result; 837 } 838 839 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 840 { 841 struct iwl_mvm_low_latency_iter data = {}; 842 843 ieee80211_iterate_active_interfaces_atomic( 844 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 845 iwl_mvm_ll_iter, &data); 846 847 return data.result_per_band[band]; 848 } 849 850 struct iwl_bss_iter_data { 851 struct ieee80211_vif *vif; 852 bool error; 853 }; 854 855 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 856 struct ieee80211_vif *vif) 857 { 858 struct iwl_bss_iter_data *data = _data; 859 860 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 861 return; 862 863 if (data->vif) { 864 data->error = true; 865 return; 866 } 867 868 data->vif = vif; 869 } 870 871 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 872 { 873 struct iwl_bss_iter_data bss_iter_data = {}; 874 875 ieee80211_iterate_active_interfaces_atomic( 876 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 877 iwl_mvm_bss_iface_iterator, &bss_iter_data); 878 879 if (bss_iter_data.error) { 880 IWL_ERR(mvm, "More than one managed interface active!\n"); 881 return ERR_PTR(-EINVAL); 882 } 883 884 return bss_iter_data.vif; 885 } 886 887 struct iwl_sta_iter_data { 888 bool assoc; 889 }; 890 891 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 892 struct ieee80211_vif *vif) 893 { 894 struct iwl_sta_iter_data *data = _data; 895 896 if (vif->type != NL80211_IFTYPE_STATION) 897 return; 898 899 if (vif->bss_conf.assoc) 900 data->assoc = true; 901 } 902 903 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 904 { 905 struct iwl_sta_iter_data data = { 906 .assoc = false, 907 }; 908 909 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 910 IEEE80211_IFACE_ITER_NORMAL, 911 iwl_mvm_sta_iface_iterator, 912 &data); 913 return data.assoc; 914 } 915 916 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 917 struct ieee80211_vif *vif, 918 bool tdls, bool cmd_q) 919 { 920 struct iwl_fw_dbg_trigger_tlv *trigger; 921 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 922 unsigned int default_timeout = cmd_q ? 923 IWL_DEF_WD_TIMEOUT : 924 mvm->trans->trans_cfg->base_params->wd_timeout; 925 926 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 927 /* 928 * We can't know when the station is asleep or awake, so we 929 * must disable the queue hang detection. 930 */ 931 if (fw_has_capa(&mvm->fw->ucode_capa, 932 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 933 vif && vif->type == NL80211_IFTYPE_AP) 934 return IWL_WATCHDOG_DISABLED; 935 return default_timeout; 936 } 937 938 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 939 txq_timer = (void *)trigger->data; 940 941 if (tdls) 942 return le32_to_cpu(txq_timer->tdls); 943 944 if (cmd_q) 945 return le32_to_cpu(txq_timer->command_queue); 946 947 if (WARN_ON(!vif)) 948 return default_timeout; 949 950 switch (ieee80211_vif_type_p2p(vif)) { 951 case NL80211_IFTYPE_ADHOC: 952 return le32_to_cpu(txq_timer->ibss); 953 case NL80211_IFTYPE_STATION: 954 return le32_to_cpu(txq_timer->bss); 955 case NL80211_IFTYPE_AP: 956 return le32_to_cpu(txq_timer->softap); 957 case NL80211_IFTYPE_P2P_CLIENT: 958 return le32_to_cpu(txq_timer->p2p_client); 959 case NL80211_IFTYPE_P2P_GO: 960 return le32_to_cpu(txq_timer->p2p_go); 961 case NL80211_IFTYPE_P2P_DEVICE: 962 return le32_to_cpu(txq_timer->p2p_device); 963 case NL80211_IFTYPE_MONITOR: 964 return default_timeout; 965 default: 966 WARN_ON(1); 967 return mvm->trans->trans_cfg->base_params->wd_timeout; 968 } 969 } 970 971 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 972 const char *errmsg) 973 { 974 struct iwl_fw_dbg_trigger_tlv *trig; 975 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 976 977 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 978 FW_DBG_TRIGGER_MLME); 979 if (!trig) 980 goto out; 981 982 trig_mlme = (void *)trig->data; 983 984 if (trig_mlme->stop_connection_loss && 985 --trig_mlme->stop_connection_loss) 986 goto out; 987 988 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 989 990 out: 991 ieee80211_connection_loss(vif); 992 } 993 994 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 995 struct ieee80211_vif *vif, 996 const struct ieee80211_sta *sta, 997 u16 tid) 998 { 999 struct iwl_fw_dbg_trigger_tlv *trig; 1000 struct iwl_fw_dbg_trigger_ba *ba_trig; 1001 1002 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 1003 FW_DBG_TRIGGER_BA); 1004 if (!trig) 1005 return; 1006 1007 ba_trig = (void *)trig->data; 1008 1009 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 1010 return; 1011 1012 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1013 "Frame from %pM timed out, tid %d", 1014 sta->addr, tid); 1015 } 1016 1017 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 1018 { 1019 if (!elapsed) 1020 return 0; 1021 1022 return (100 * airtime / elapsed) / USEC_PER_MSEC; 1023 } 1024 1025 static enum iwl_mvm_traffic_load 1026 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 1027 { 1028 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 1029 1030 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 1031 return IWL_MVM_TRAFFIC_HIGH; 1032 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 1033 return IWL_MVM_TRAFFIC_MEDIUM; 1034 1035 return IWL_MVM_TRAFFIC_LOW; 1036 } 1037 1038 struct iwl_mvm_tcm_iter_data { 1039 struct iwl_mvm *mvm; 1040 bool any_sent; 1041 }; 1042 1043 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 1044 { 1045 struct iwl_mvm_tcm_iter_data *data = _data; 1046 struct iwl_mvm *mvm = data->mvm; 1047 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1048 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 1049 1050 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 1051 return; 1052 1053 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 1054 1055 if (!mvm->tcm.result.change[mvmvif->id] && 1056 prev == low_latency) { 1057 iwl_mvm_update_quotas(mvm, false, NULL); 1058 return; 1059 } 1060 1061 if (prev != low_latency) { 1062 /* this sends traffic load and updates quota as well */ 1063 iwl_mvm_update_low_latency(mvm, vif, low_latency, 1064 LOW_LATENCY_TRAFFIC); 1065 } else { 1066 iwl_mvm_update_quotas(mvm, false, NULL); 1067 } 1068 1069 data->any_sent = true; 1070 } 1071 1072 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 1073 { 1074 struct iwl_mvm_tcm_iter_data data = { 1075 .mvm = mvm, 1076 .any_sent = false, 1077 }; 1078 1079 mutex_lock(&mvm->mutex); 1080 1081 ieee80211_iterate_active_interfaces( 1082 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 1083 iwl_mvm_tcm_iter, &data); 1084 1085 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 1086 iwl_mvm_config_scan(mvm); 1087 1088 mutex_unlock(&mvm->mutex); 1089 } 1090 1091 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 1092 { 1093 struct iwl_mvm *mvm; 1094 struct iwl_mvm_vif *mvmvif; 1095 struct ieee80211_vif *vif; 1096 1097 mvmvif = container_of(wk, struct iwl_mvm_vif, 1098 uapsd_nonagg_detected_wk.work); 1099 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 1100 mvm = mvmvif->mvm; 1101 1102 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 1103 return; 1104 1105 /* remember that this AP is broken */ 1106 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 1107 vif->bss_conf.bssid, ETH_ALEN); 1108 mvm->uapsd_noagg_bssid_write_idx++; 1109 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 1110 mvm->uapsd_noagg_bssid_write_idx = 0; 1111 1112 iwl_mvm_connection_loss(mvm, vif, 1113 "AP isn't using AMPDU with uAPSD enabled"); 1114 } 1115 1116 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 1117 struct ieee80211_vif *vif) 1118 { 1119 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1120 1121 if (vif->type != NL80211_IFTYPE_STATION) 1122 return; 1123 1124 if (!vif->bss_conf.assoc) 1125 return; 1126 1127 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 1128 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 1129 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 1130 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 1131 return; 1132 1133 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 1134 return; 1135 1136 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 1137 IWL_INFO(mvm, 1138 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 1139 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 1140 } 1141 1142 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 1143 unsigned int elapsed, 1144 int mac) 1145 { 1146 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 1147 u64 tpt; 1148 unsigned long rate; 1149 struct ieee80211_vif *vif; 1150 1151 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 1152 1153 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 1154 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 1155 return; 1156 1157 if (iwl_mvm_has_new_rx_api(mvm)) { 1158 tpt = 8 * bytes; /* kbps */ 1159 do_div(tpt, elapsed); 1160 rate *= 1000; /* kbps */ 1161 if (tpt < 22 * rate / 100) 1162 return; 1163 } else { 1164 /* 1165 * the rate here is actually the threshold, in 100Kbps units, 1166 * so do the needed conversion from bytes to 100Kbps: 1167 * 100kb = bits / (100 * 1000), 1168 * 100kbps = 100kb / (msecs / 1000) == 1169 * (bits / (100 * 1000)) / (msecs / 1000) == 1170 * bits / (100 * msecs) 1171 */ 1172 tpt = (8 * bytes); 1173 do_div(tpt, elapsed * 100); 1174 if (tpt < rate) 1175 return; 1176 } 1177 1178 rcu_read_lock(); 1179 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 1180 if (vif) 1181 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 1182 rcu_read_unlock(); 1183 } 1184 1185 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 1186 struct ieee80211_vif *vif) 1187 { 1188 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1189 u32 *band = _data; 1190 1191 if (!mvmvif->phy_ctxt) 1192 return; 1193 1194 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 1195 } 1196 1197 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 1198 unsigned long ts, 1199 bool handle_uapsd) 1200 { 1201 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 1202 unsigned int uapsd_elapsed = 1203 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 1204 u32 total_airtime = 0; 1205 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 1206 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 1207 int ac, mac, i; 1208 bool low_latency = false; 1209 enum iwl_mvm_traffic_load load, band_load; 1210 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 1211 1212 if (handle_ll) 1213 mvm->tcm.ll_ts = ts; 1214 if (handle_uapsd) 1215 mvm->tcm.uapsd_nonagg_ts = ts; 1216 1217 mvm->tcm.result.elapsed = elapsed; 1218 1219 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 1220 IEEE80211_IFACE_ITER_NORMAL, 1221 iwl_mvm_tcm_iterator, 1222 &band); 1223 1224 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1225 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1226 u32 vo_vi_pkts = 0; 1227 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 1228 1229 total_airtime += airtime; 1230 band_airtime[band[mac]] += airtime; 1231 1232 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 1233 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 1234 mvm->tcm.result.load[mac] = load; 1235 mvm->tcm.result.airtime[mac] = airtime; 1236 1237 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 1238 vo_vi_pkts += mdata->rx.pkts[ac] + 1239 mdata->tx.pkts[ac]; 1240 1241 /* enable immediately with enough packets but defer disabling */ 1242 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 1243 mvm->tcm.result.low_latency[mac] = true; 1244 else if (handle_ll) 1245 mvm->tcm.result.low_latency[mac] = false; 1246 1247 if (handle_ll) { 1248 /* clear old data */ 1249 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1250 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1251 } 1252 low_latency |= mvm->tcm.result.low_latency[mac]; 1253 1254 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 1255 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 1256 mac); 1257 /* clear old data */ 1258 if (handle_uapsd) 1259 mdata->uapsd_nonagg_detect.rx_bytes = 0; 1260 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1261 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1262 } 1263 1264 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 1265 mvm->tcm.result.global_change = load != mvm->tcm.result.global_load; 1266 mvm->tcm.result.global_load = load; 1267 1268 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1269 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 1270 mvm->tcm.result.band_load[i] = band_load; 1271 } 1272 1273 /* 1274 * If the current load isn't low we need to force re-evaluation 1275 * in the TCM period, so that we can return to low load if there 1276 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 1277 * triggered by traffic). 1278 */ 1279 if (load != IWL_MVM_TRAFFIC_LOW) 1280 return MVM_TCM_PERIOD; 1281 /* 1282 * If low-latency is active we need to force re-evaluation after 1283 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 1284 * when there's no traffic at all. 1285 */ 1286 if (low_latency) 1287 return MVM_LL_PERIOD; 1288 /* 1289 * Otherwise, we don't need to run the work struct because we're 1290 * in the default "idle" state - traffic indication is low (which 1291 * also covers the "no traffic" case) and low-latency is disabled 1292 * so there's no state that may need to be disabled when there's 1293 * no traffic at all. 1294 * 1295 * Note that this has no impact on the regular scheduling of the 1296 * updates triggered by traffic - those happen whenever one of the 1297 * two timeouts expire (if there's traffic at all.) 1298 */ 1299 return 0; 1300 } 1301 1302 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 1303 { 1304 unsigned long ts = jiffies; 1305 bool handle_uapsd = 1306 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 1307 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 1308 1309 spin_lock(&mvm->tcm.lock); 1310 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1311 spin_unlock(&mvm->tcm.lock); 1312 return; 1313 } 1314 spin_unlock(&mvm->tcm.lock); 1315 1316 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1317 mutex_lock(&mvm->mutex); 1318 if (iwl_mvm_request_statistics(mvm, true)) 1319 handle_uapsd = false; 1320 mutex_unlock(&mvm->mutex); 1321 } 1322 1323 spin_lock(&mvm->tcm.lock); 1324 /* re-check if somebody else won the recheck race */ 1325 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1326 /* calculate statistics */ 1327 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1328 handle_uapsd); 1329 1330 /* the memset needs to be visible before the timestamp */ 1331 smp_mb(); 1332 mvm->tcm.ts = ts; 1333 if (work_delay) 1334 schedule_delayed_work(&mvm->tcm.work, work_delay); 1335 } 1336 spin_unlock(&mvm->tcm.lock); 1337 1338 iwl_mvm_tcm_results(mvm); 1339 } 1340 1341 void iwl_mvm_tcm_work(struct work_struct *work) 1342 { 1343 struct delayed_work *delayed_work = to_delayed_work(work); 1344 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1345 tcm.work); 1346 1347 iwl_mvm_recalc_tcm(mvm); 1348 } 1349 1350 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1351 { 1352 spin_lock_bh(&mvm->tcm.lock); 1353 mvm->tcm.paused = true; 1354 spin_unlock_bh(&mvm->tcm.lock); 1355 if (with_cancel) 1356 cancel_delayed_work_sync(&mvm->tcm.work); 1357 } 1358 1359 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1360 { 1361 int mac; 1362 bool low_latency = false; 1363 1364 spin_lock_bh(&mvm->tcm.lock); 1365 mvm->tcm.ts = jiffies; 1366 mvm->tcm.ll_ts = jiffies; 1367 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1368 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1369 1370 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1371 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1372 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1373 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1374 1375 if (mvm->tcm.result.low_latency[mac]) 1376 low_latency = true; 1377 } 1378 /* The TCM data needs to be reset before "paused" flag changes */ 1379 smp_mb(); 1380 mvm->tcm.paused = false; 1381 1382 /* 1383 * if the current load is not low or low latency is active, force 1384 * re-evaluation to cover the case of no traffic. 1385 */ 1386 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1387 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1388 else if (low_latency) 1389 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1390 1391 spin_unlock_bh(&mvm->tcm.lock); 1392 } 1393 1394 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1395 { 1396 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1397 1398 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1399 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1400 } 1401 1402 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1403 { 1404 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1405 1406 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1407 } 1408 1409 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1410 { 1411 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1412 1413 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1414 mvm->trans->cfg->gp2_reg_addr) 1415 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1416 1417 return iwl_read_prph(mvm->trans, reg_addr); 1418 } 1419 1420 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, u32 *gp2, u64 *boottime) 1421 { 1422 bool ps_disabled; 1423 1424 lockdep_assert_held(&mvm->mutex); 1425 1426 /* Disable power save when reading GP2 */ 1427 ps_disabled = mvm->ps_disabled; 1428 if (!ps_disabled) { 1429 mvm->ps_disabled = true; 1430 iwl_mvm_power_update_device(mvm); 1431 } 1432 1433 *gp2 = iwl_mvm_get_systime(mvm); 1434 *boottime = ktime_get_boottime_ns(); 1435 1436 if (!ps_disabled) { 1437 mvm->ps_disabled = ps_disabled; 1438 iwl_mvm_power_update_device(mvm); 1439 } 1440 } 1441