xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/sta.h (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
37  * Copyright(c) 2015 - 2016 Intel Deutschland GmbH
38  * All rights reserved.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  *
44  *  * Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  *  * Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in
48  *    the documentation and/or other materials provided with the
49  *    distribution.
50  *  * Neither the name Intel Corporation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
55  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
56  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
57  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
58  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
60  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
61  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
62  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
63  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
64  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  *****************************************************************************/
67 
68 #ifndef __sta_h__
69 #define __sta_h__
70 
71 #include <linux/spinlock.h>
72 #include <net/mac80211.h>
73 #include <linux/wait.h>
74 
75 #include "iwl-trans.h" /* for IWL_MAX_TID_COUNT */
76 #include "fw-api.h" /* IWL_MVM_STATION_COUNT */
77 #include "rs.h"
78 
79 struct iwl_mvm;
80 struct iwl_mvm_vif;
81 
82 /**
83  * DOC: DQA - Dynamic Queue Allocation -introduction
84  *
85  * Dynamic Queue Allocation (AKA "DQA") is a feature implemented in iwlwifi
86  * driver to allow dynamic allocation of queues on-demand, rather than allocate
87  * them statically ahead of time. Ideally, we would like to allocate one queue
88  * per RA/TID, thus allowing an AP - for example - to send BE traffic to STA2
89  * even if it also needs to send traffic to a sleeping STA1, without being
90  * blocked by the sleeping station.
91  *
92  * Although the queues in DQA mode are dynamically allocated, there are still
93  * some queues that are statically allocated:
94  *	TXQ #0 - command queue
95  *	TXQ #1 - aux frames
96  *	TXQ #2 - P2P device frames
97  *	TXQ #3 - P2P GO/SoftAP GCAST/BCAST frames
98  *	TXQ #4 - BSS DATA frames queue
99  *	TXQ #5-8 - Non-QoS and MGMT frames queue pool
100  *	TXQ #9 - P2P GO/SoftAP probe responses
101  *	TXQ #10-31 - DATA frames queue pool
102  * The queues are dynamically taken from either the MGMT frames queue pool or
103  * the DATA frames one. See the %iwl_mvm_dqa_txq for more information on every
104  * queue.
105  *
106  * When a frame for a previously unseen RA/TID comes in, it needs to be deferred
107  * until a queue is allocated for it, and only then can be TXed. Therefore, it
108  * is placed into %iwl_mvm_tid_data.deferred_tx_frames, and a worker called
109  * %mvm->add_stream_wk later allocates the queues and TXes the deferred frames.
110  *
111  * For convenience, MGMT is considered as if it has TID=8, and go to the MGMT
112  * queues in the pool. If there is no longer a free MGMT queue to allocate, a
113  * queue will be allocated from the DATA pool instead. Since QoS NDPs can create
114  * a problem for aggregations, they too will use a MGMT queue.
115  *
116  * When adding a STA, a DATA queue is reserved for it so that it can TX from
117  * it. If no such free queue exists for reserving, the STA addition will fail.
118  *
119  * If the DATA queue pool gets exhausted, no new STA will be accepted, and if a
120  * new RA/TID comes in for an existing STA, one of the STA's queues will become
121  * shared and will serve more than the single TID (but always for the same RA!).
122  *
123  * When a RA/TID needs to become aggregated, no new queue is required to be
124  * allocated, only mark the queue as aggregated via the ADD_STA command. Note,
125  * however, that a shared queue cannot be aggregated, and only after the other
126  * TIDs become inactive and are removed - only then can the queue be
127  * reconfigured and become aggregated.
128  *
129  * When removing a station, its queues are returned to the pool for reuse. Here
130  * we also need to make sure that we are synced with the worker thread that TXes
131  * the deferred frames so we don't get into a situation where the queues are
132  * removed and then the worker puts deferred frames onto the released queues or
133  * tries to allocate new queues for a STA we don't need anymore.
134  */
135 
136 /**
137  * DOC: station table - introduction
138  *
139  * The station table is a list of data structure that reprensent the stations.
140  * In STA/P2P client mode, the driver will hold one station for the AP/ GO.
141  * In GO/AP mode, the driver will have as many stations as associated clients.
142  * All these stations are reflected in the fw's station table. The driver
143  * keeps the fw's station table up to date with the ADD_STA command. Stations
144  * can be removed by the REMOVE_STA command.
145  *
146  * All the data related to a station is held in the structure %iwl_mvm_sta
147  * which is embed in the mac80211's %ieee80211_sta (in the drv_priv) area.
148  * This data includes the index of the station in the fw, per tid information
149  * (sequence numbers, Block-ack state machine, etc...). The stations are
150  * created and deleted by the %sta_state callback from %ieee80211_ops.
151  *
152  * The driver holds a map: %fw_id_to_mac_id that allows to fetch a
153  * %ieee80211_sta (and the %iwl_mvm_sta embedded into it) based on a fw
154  * station index. That way, the driver is able to get the tid related data in
155  * O(1) in time sensitive paths (Tx / Tx response / BA notification). These
156  * paths are triggered by the fw, and the driver needs to get a pointer to the
157  * %ieee80211 structure. This map helps to get that pointer quickly.
158  */
159 
160 /**
161  * DOC: station table - locking
162  *
163  * As stated before, the station is created / deleted by mac80211's %sta_state
164  * callback from %ieee80211_ops which can sleep. The next paragraph explains
165  * the locking of a single stations, the next ones relates to the station
166  * table.
167  *
168  * The station holds the sequence number per tid. So this data needs to be
169  * accessed in the Tx path (which is softIRQ). It also holds the Block-Ack
170  * information (the state machine / and the logic that checks if the queues
171  * were drained), so it also needs to be accessible from the Tx response flow.
172  * In short, the station needs to be access from sleepable context as well as
173  * from tasklets, so the station itself needs a spinlock.
174  *
175  * The writers of %fw_id_to_mac_id map are serialized by the global mutex of
176  * the mvm op_mode. This is possible since %sta_state can sleep.
177  * The pointers in this map are RCU protected, hence we won't replace the
178  * station while we have Tx / Tx response / BA notification running.
179  *
180  * If a station is deleted while it still has packets in its A-MPDU queues,
181  * then the reclaim flow will notice that there is no station in the map for
182  * sta_id and it will dump the responses.
183  */
184 
185 /**
186  * DOC: station table - internal stations
187  *
188  * The FW needs a few internal stations that are not reflected in
189  * mac80211, such as broadcast station in AP / GO mode, or AUX sta for
190  * scanning and P2P device (during the GO negotiation).
191  * For these kind of stations we have %iwl_mvm_int_sta struct which holds the
192  * data relevant for them from both %iwl_mvm_sta and %ieee80211_sta.
193  * Usually the data for these stations is static, so no locking is required,
194  * and no TID data as this is also not needed.
195  * One thing to note, is that these stations have an ID in the fw, but not
196  * in mac80211. In order to "reserve" them a sta_id in %fw_id_to_mac_id
197  * we fill ERR_PTR(EINVAL) in this mapping and all other dereferencing of
198  * pointers from this mapping need to check that the value is not error
199  * or NULL.
200  *
201  * Currently there is only one auxiliary station for scanning, initialized
202  * on init.
203  */
204 
205 /**
206  * DOC: station table - AP Station in STA mode
207  *
208  * %iwl_mvm_vif includes the index of the AP station in the fw's STA table:
209  * %ap_sta_id. To get the point to the corresponding %ieee80211_sta,
210  * &fw_id_to_mac_id can be used. Due to the way the fw works, we must not remove
211  * the AP station from the fw before setting the MAC context as unassociated.
212  * Hence, %fw_id_to_mac_id[%ap_sta_id] will be NULLed when the AP station is
213  * removed by mac80211, but the station won't be removed in the fw until the
214  * VIF is set as unassociated. Then, %ap_sta_id will be invalidated.
215  */
216 
217 /**
218  * DOC: station table - Drain vs. Flush
219  *
220  * Flush means that all the frames in the SCD queue are dumped regardless the
221  * station to which they were sent. We do that when we disassociate and before
222  * we remove the STA of the AP. The flush can be done synchronously against the
223  * fw.
224  * Drain means that the fw will drop all the frames sent to a specific station.
225  * This is useful when a client (if we are IBSS / GO or AP) disassociates. In
226  * that case, we need to drain all the frames for that client from the AC queues
227  * that are shared with the other clients. Only then, we can remove the STA in
228  * the fw. In order to do so, we track the non-AMPDU packets for each station.
229  * If mac80211 removes a STA and if it still has non-AMPDU packets pending in
230  * the queues, we mark this station as %EBUSY in %fw_id_to_mac_id, and drop all
231  * the frames for this STA (%iwl_mvm_rm_sta). When the last frame is dropped
232  * (we know about it with its Tx response), we remove the station in fw and set
233  * it as %NULL in %fw_id_to_mac_id: this is the purpose of
234  * %iwl_mvm_sta_drained_wk.
235  */
236 
237 /**
238  * DOC: station table - fw restart
239  *
240  * When the fw asserts, or we have any other issue that requires to reset the
241  * driver, we require mac80211 to reconfigure the driver. Since the private
242  * data of the stations is embed in mac80211's %ieee80211_sta, that data will
243  * not be zeroed and needs to be reinitialized manually.
244  * %IWL_MVM_STATUS_IN_HW_RESTART is set during restart and that will hint us
245  * that we must not allocate a new sta_id but reuse the previous one. This
246  * means that the stations being re-added after the reset will have the same
247  * place in the fw as before the reset. We do need to zero the %fw_id_to_mac_id
248  * map, since the stations aren't in the fw any more. Internal stations that
249  * are not added by mac80211 will be re-added in the init flow that is called
250  * after the restart: mac80211 call's %iwl_mvm_mac_start which calls to
251  * %iwl_mvm_up.
252  */
253 
254 /**
255  * DOC: AP mode - PS
256  *
257  * When a station is asleep, the fw will set it as "asleep". All frames on
258  * shared queues (i.e. non-aggregation queues) to that station will be dropped
259  * by the fw (%TX_STATUS_FAIL_DEST_PS failure code).
260  *
261  * AMPDUs are in a separate queue that is stopped by the fw. We just need to
262  * let mac80211 know when there are frames in these queues so that it can
263  * properly handle trigger frames.
264  *
265  * When a trigger frame is received, mac80211 tells the driver to send frames
266  * from the AMPDU queues or sends frames to non-aggregation queues itself,
267  * depending on which ACs are delivery-enabled and what TID has frames to
268  * transmit. Note that mac80211 has all the knowledge since all the non-agg
269  * frames are buffered / filtered, and the driver tells mac80211 about agg
270  * frames). The driver needs to tell the fw to let frames out even if the
271  * station is asleep. This is done by %iwl_mvm_sta_modify_sleep_tx_count.
272  *
273  * When we receive a frame from that station with PM bit unset, the driver
274  * needs to let the fw know that this station isn't asleep any more. This is
275  * done by %iwl_mvm_sta_modify_ps_wake in response to mac80211 signaling the
276  * station's wakeup.
277  *
278  * For a GO, the Service Period might be cut short due to an absence period
279  * of the GO. In this (and all other cases) the firmware notifies us with the
280  * EOSP_NOTIFICATION, and we notify mac80211 of that. Further frames that we
281  * already sent to the device will be rejected again.
282  *
283  * See also "AP support for powersaving clients" in mac80211.h.
284  */
285 
286 /**
287  * enum iwl_mvm_agg_state
288  *
289  * The state machine of the BA agreement establishment / tear down.
290  * These states relate to a specific RA / TID.
291  *
292  * @IWL_AGG_OFF: aggregation is not used
293  * @IWL_AGG_STARTING: aggregation are starting (between start and oper)
294  * @IWL_AGG_ON: aggregation session is up
295  * @IWL_EMPTYING_HW_QUEUE_ADDBA: establishing a BA session - waiting for the
296  *	HW queue to be empty from packets for this RA /TID.
297  * @IWL_EMPTYING_HW_QUEUE_DELBA: tearing down a BA session - waiting for the
298  *	HW queue to be empty from packets for this RA /TID.
299  */
300 enum iwl_mvm_agg_state {
301 	IWL_AGG_OFF = 0,
302 	IWL_AGG_STARTING,
303 	IWL_AGG_ON,
304 	IWL_EMPTYING_HW_QUEUE_ADDBA,
305 	IWL_EMPTYING_HW_QUEUE_DELBA,
306 };
307 
308 /**
309  * struct iwl_mvm_tid_data - holds the states for each RA / TID
310  * @deferred_tx_frames: deferred TX frames for this RA/TID
311  * @seq_number: the next WiFi sequence number to use
312  * @next_reclaimed: the WiFi sequence number of the next packet to be acked.
313  *	This is basically (last acked packet++).
314  * @rate_n_flags: Rate at which Tx was attempted. Holds the data between the
315  *	Tx response (TX_CMD), and the block ack notification (COMPRESSED_BA).
316  * @amsdu_in_ampdu_allowed: true if A-MSDU in A-MPDU is allowed.
317  * @state: state of the BA agreement establishment / tear down.
318  * @txq_id: Tx queue used by the BA session / DQA
319  * @ssn: the first packet to be sent in AGG HW queue in Tx AGG start flow, or
320  *	the first packet to be sent in legacy HW queue in Tx AGG stop flow.
321  *	Basically when next_reclaimed reaches ssn, we can tell mac80211 that
322  *	we are ready to finish the Tx AGG stop / start flow.
323  * @tx_time: medium time consumed by this A-MPDU
324  * @is_tid_active: has this TID sent traffic in the last
325  *	%IWL_MVM_DQA_QUEUE_TIMEOUT time period. If %txq_id is invalid, this
326  *	field should be ignored.
327  */
328 struct iwl_mvm_tid_data {
329 	struct sk_buff_head deferred_tx_frames;
330 	u16 seq_number;
331 	u16 next_reclaimed;
332 	/* The rest is Tx AGG related */
333 	u32 rate_n_flags;
334 	bool amsdu_in_ampdu_allowed;
335 	enum iwl_mvm_agg_state state;
336 	u16 txq_id;
337 	u16 ssn;
338 	u16 tx_time;
339 	bool is_tid_active;
340 };
341 
342 static inline u16 iwl_mvm_tid_queued(struct iwl_mvm_tid_data *tid_data)
343 {
344 	return ieee80211_sn_sub(IEEE80211_SEQ_TO_SN(tid_data->seq_number),
345 				tid_data->next_reclaimed);
346 }
347 
348 struct iwl_mvm_key_pn {
349 	struct rcu_head rcu_head;
350 	struct {
351 		u8 pn[IWL_MAX_TID_COUNT][IEEE80211_CCMP_PN_LEN];
352 	} ____cacheline_aligned_in_smp q[];
353 };
354 
355 struct iwl_mvm_delba_data {
356 	u32 baid;
357 } __packed;
358 
359 struct iwl_mvm_delba_notif {
360 	struct iwl_mvm_internal_rxq_notif metadata;
361 	struct iwl_mvm_delba_data delba;
362 } __packed;
363 
364 /**
365  * struct iwl_mvm_rxq_dup_data - per station per rx queue data
366  * @last_seq: last sequence per tid for duplicate packet detection
367  * @last_sub_frame: last subframe packet
368  */
369 struct iwl_mvm_rxq_dup_data {
370 	__le16 last_seq[IWL_MAX_TID_COUNT + 1];
371 	u8 last_sub_frame[IWL_MAX_TID_COUNT + 1];
372 } ____cacheline_aligned_in_smp;
373 
374 /**
375  * struct iwl_mvm_sta - representation of a station in the driver
376  * @sta_id: the index of the station in the fw (will be replaced by id_n_color)
377  * @tfd_queue_msk: the tfd queues used by the station
378  * @hw_queue: per-AC mapping of the TFD queues used by station
379  * @mac_id_n_color: the MAC context this station is linked to
380  * @tid_disable_agg: bitmap: if bit(tid) is set, the fw won't send ampdus for
381  *	tid.
382  * @max_agg_bufsize: the maximal size of the AGG buffer for this station
383  * @bt_reduced_txpower: is reduced tx power enabled for this station
384  * @next_status_eosp: the next reclaimed packet is a PS-Poll response and
385  *	we need to signal the EOSP
386  * @lock: lock to protect the whole struct. Since %tid_data is access from Tx
387  * and from Tx response flow, it needs a spinlock.
388  * @tid_data: per tid data + mgmt. Look at %iwl_mvm_tid_data.
389  * @tid_to_baid: a simple map of TID to baid
390  * @reserved_queue: the queue reserved for this STA for DQA purposes
391  *	Every STA has is given one reserved queue to allow it to operate. If no
392  *	such queue can be guaranteed, the STA addition will fail.
393  * @tx_protection: reference counter for controlling the Tx protection.
394  * @tt_tx_protection: is thermal throttling enable Tx protection?
395  * @disable_tx: is tx to this STA disabled?
396  * @tlc_amsdu: true if A-MSDU is allowed
397  * @agg_tids: bitmap of tids whose status is operational aggregated (IWL_AGG_ON)
398  * @sleep_tx_count: the number of frames that we told the firmware to let out
399  *	even when that station is asleep. This is useful in case the queue
400  *	gets empty before all the frames were sent, which can happen when
401  *	we are sending frames from an AMPDU queue and there was a hole in
402  *	the BA window. To be used for UAPSD only.
403  * @ptk_pn: per-queue PTK PN data structures
404  * @dup_data: per queue duplicate packet detection data
405  * @deferred_traffic_tid_map: indication bitmap of deferred traffic per-TID
406  *
407  * When mac80211 creates a station it reserves some space (hw->sta_data_size)
408  * in the structure for use by driver. This structure is placed in that
409  * space.
410  *
411  */
412 struct iwl_mvm_sta {
413 	u32 sta_id;
414 	u32 tfd_queue_msk;
415 	u8 hw_queue[IEEE80211_NUM_ACS];
416 	u32 mac_id_n_color;
417 	u16 tid_disable_agg;
418 	u8 max_agg_bufsize;
419 	bool bt_reduced_txpower;
420 	bool next_status_eosp;
421 	spinlock_t lock;
422 	struct iwl_mvm_tid_data tid_data[IWL_MAX_TID_COUNT + 1];
423 	u8 tid_to_baid[IWL_MAX_TID_COUNT];
424 	struct iwl_lq_sta lq_sta;
425 	struct ieee80211_vif *vif;
426 	struct iwl_mvm_key_pn __rcu *ptk_pn[4];
427 	struct iwl_mvm_rxq_dup_data *dup_data;
428 
429 	u16 deferred_traffic_tid_map;
430 
431 	u8 reserved_queue;
432 
433 	/* Temporary, until the new TLC will control the Tx protection */
434 	s8 tx_protection;
435 	bool tt_tx_protection;
436 
437 	bool disable_tx;
438 	bool tlc_amsdu;
439 	u8 agg_tids;
440 	u8 sleep_tx_count;
441 	u8 avg_energy;
442 };
443 
444 static inline struct iwl_mvm_sta *
445 iwl_mvm_sta_from_mac80211(struct ieee80211_sta *sta)
446 {
447 	return (void *)sta->drv_priv;
448 }
449 
450 /**
451  * struct iwl_mvm_int_sta - representation of an internal station (auxiliary or
452  * broadcast)
453  * @sta_id: the index of the station in the fw (will be replaced by id_n_color)
454  * @tfd_queue_msk: the tfd queues used by the station
455  */
456 struct iwl_mvm_int_sta {
457 	u32 sta_id;
458 	u32 tfd_queue_msk;
459 };
460 
461 /**
462  * Send the STA info to the FW.
463  *
464  * @mvm: the iwl_mvm* to use
465  * @sta: the STA
466  * @update: this is true if the FW is being updated about a STA it already knows
467  *	about. Otherwise (if this is a new STA), this should be false.
468  * @flags: if update==true, this marks what is being changed via ORs of values
469  *	from enum iwl_sta_modify_flag. Otherwise, this is ignored.
470  */
471 int iwl_mvm_sta_send_to_fw(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
472 			   bool update, unsigned int flags);
473 int iwl_mvm_add_sta(struct iwl_mvm *mvm,
474 		    struct ieee80211_vif *vif,
475 		    struct ieee80211_sta *sta);
476 int iwl_mvm_update_sta(struct iwl_mvm *mvm,
477 		       struct ieee80211_vif *vif,
478 		       struct ieee80211_sta *sta);
479 int iwl_mvm_rm_sta(struct iwl_mvm *mvm,
480 		   struct ieee80211_vif *vif,
481 		   struct ieee80211_sta *sta);
482 int iwl_mvm_rm_sta_id(struct iwl_mvm *mvm,
483 		      struct ieee80211_vif *vif,
484 		      u8 sta_id);
485 int iwl_mvm_set_sta_key(struct iwl_mvm *mvm,
486 			struct ieee80211_vif *vif,
487 			struct ieee80211_sta *sta,
488 			struct ieee80211_key_conf *keyconf,
489 			u8 key_offset);
490 int iwl_mvm_remove_sta_key(struct iwl_mvm *mvm,
491 			   struct ieee80211_vif *vif,
492 			   struct ieee80211_sta *sta,
493 			   struct ieee80211_key_conf *keyconf);
494 
495 void iwl_mvm_update_tkip_key(struct iwl_mvm *mvm,
496 			     struct ieee80211_vif *vif,
497 			     struct ieee80211_key_conf *keyconf,
498 			     struct ieee80211_sta *sta, u32 iv32,
499 			     u16 *phase1key);
500 
501 void iwl_mvm_rx_eosp_notif(struct iwl_mvm *mvm,
502 			   struct iwl_rx_cmd_buffer *rxb);
503 
504 /* AMPDU */
505 int iwl_mvm_sta_rx_agg(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
506 		       int tid, u16 ssn, bool start, u8 buf_size, u16 timeout);
507 int iwl_mvm_sta_tx_agg_start(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
508 			struct ieee80211_sta *sta, u16 tid, u16 *ssn);
509 int iwl_mvm_sta_tx_agg_oper(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
510 			    struct ieee80211_sta *sta, u16 tid, u8 buf_size,
511 			    bool amsdu);
512 int iwl_mvm_sta_tx_agg_stop(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
513 			    struct ieee80211_sta *sta, u16 tid);
514 int iwl_mvm_sta_tx_agg_flush(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
515 			    struct ieee80211_sta *sta, u16 tid);
516 
517 int iwl_mvm_sta_tx_agg(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
518 		       int tid, u8 queue, bool start);
519 
520 int iwl_mvm_add_aux_sta(struct iwl_mvm *mvm);
521 void iwl_mvm_del_aux_sta(struct iwl_mvm *mvm);
522 
523 int iwl_mvm_alloc_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
524 int iwl_mvm_send_add_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
525 int iwl_mvm_add_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
526 int iwl_mvm_send_rm_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
527 int iwl_mvm_rm_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
528 int iwl_mvm_allocate_int_sta(struct iwl_mvm *mvm,
529 			     struct iwl_mvm_int_sta *sta,
530 				    u32 qmask, enum nl80211_iftype iftype);
531 void iwl_mvm_dealloc_bcast_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
532 int iwl_mvm_add_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
533 int iwl_mvm_rm_snif_sta(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
534 void iwl_mvm_dealloc_snif_sta(struct iwl_mvm *mvm);
535 
536 void iwl_mvm_sta_drained_wk(struct work_struct *wk);
537 void iwl_mvm_sta_modify_ps_wake(struct iwl_mvm *mvm,
538 				struct ieee80211_sta *sta);
539 void iwl_mvm_sta_modify_sleep_tx_count(struct iwl_mvm *mvm,
540 				       struct ieee80211_sta *sta,
541 				       enum ieee80211_frame_release_type reason,
542 				       u16 cnt, u16 tids, bool more_data,
543 				       bool agg);
544 int iwl_mvm_drain_sta(struct iwl_mvm *mvm, struct iwl_mvm_sta *mvmsta,
545 		      bool drain);
546 void iwl_mvm_sta_modify_disable_tx(struct iwl_mvm *mvm,
547 				   struct iwl_mvm_sta *mvmsta, bool disable);
548 void iwl_mvm_sta_modify_disable_tx_ap(struct iwl_mvm *mvm,
549 				      struct ieee80211_sta *sta,
550 				      bool disable);
551 void iwl_mvm_modify_all_sta_disable_tx(struct iwl_mvm *mvm,
552 				       struct iwl_mvm_vif *mvmvif,
553 				       bool disable);
554 void iwl_mvm_csa_client_absent(struct iwl_mvm *mvm, struct ieee80211_vif *vif);
555 void iwl_mvm_add_new_dqa_stream_wk(struct work_struct *wk);
556 
557 #endif /* __sta_h__ */
558