1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta, 240 struct ieee80211_link_sta *link_sta) 241 { 242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 243 kfree_skb(skb); 244 return; 245 } 246 247 if (sta && sta->valid_links && link_sta) { 248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 249 250 rx_status->link_valid = 1; 251 rx_status->link_id = link_sta->link_id; 252 } 253 254 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 255 } 256 257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 258 struct ieee80211_rx_status *rx_status, 259 u32 rate_n_flags, int energy_a, 260 int energy_b) 261 { 262 int max_energy; 263 u32 rate_flags = rate_n_flags; 264 265 energy_a = energy_a ? -energy_a : S8_MIN; 266 energy_b = energy_b ? -energy_b : S8_MIN; 267 max_energy = max(energy_a, energy_b); 268 269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 270 energy_a, energy_b, max_energy); 271 272 rx_status->signal = max_energy; 273 rx_status->chains = 274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 275 rx_status->chain_signal[0] = energy_a; 276 rx_status->chain_signal[1] = energy_b; 277 } 278 279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 280 struct ieee80211_hdr *hdr, 281 struct iwl_rx_mpdu_desc *desc, 282 u32 status, 283 struct ieee80211_rx_status *stats) 284 { 285 struct iwl_mvm_sta *mvmsta; 286 struct iwl_mvm_vif *mvmvif; 287 u8 keyid; 288 struct ieee80211_key_conf *key; 289 u32 len = le16_to_cpu(desc->mpdu_len); 290 const u8 *frame = (void *)hdr; 291 292 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 293 return 0; 294 295 /* 296 * For non-beacon, we don't really care. But beacons may 297 * be filtered out, and we thus need the firmware's replay 298 * detection, otherwise beacons the firmware previously 299 * filtered could be replayed, or something like that, and 300 * it can filter a lot - though usually only if nothing has 301 * changed. 302 */ 303 if (!ieee80211_is_beacon(hdr->frame_control)) 304 return 0; 305 306 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 307 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 308 return -1; 309 310 /* good cases */ 311 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 312 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 313 stats->flag |= RX_FLAG_DECRYPTED; 314 return 0; 315 } 316 317 if (!sta) 318 return -1; 319 320 mvmsta = iwl_mvm_sta_from_mac80211(sta); 321 322 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 323 324 /* 325 * both keys will have the same cipher and MIC length, use 326 * whichever one is available 327 */ 328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 329 if (!key) { 330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 331 if (!key) 332 return -1; 333 } 334 335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 336 return -1; 337 338 /* get the real key ID */ 339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 340 /* and if that's the other key, look it up */ 341 if (keyid != key->keyidx) { 342 /* 343 * shouldn't happen since firmware checked, but be safe 344 * in case the MIC length is wrong too, for example 345 */ 346 if (keyid != 6 && keyid != 7) 347 return -1; 348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 349 if (!key) 350 return -1; 351 } 352 353 /* Report status to mac80211 */ 354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 355 ieee80211_key_mic_failure(key); 356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 357 ieee80211_key_replay(key); 358 359 return -1; 360 } 361 362 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 363 struct ieee80211_hdr *hdr, 364 struct ieee80211_rx_status *stats, u16 phy_info, 365 struct iwl_rx_mpdu_desc *desc, 366 u32 pkt_flags, int queue, u8 *crypt_len) 367 { 368 u32 status = le32_to_cpu(desc->status); 369 370 /* 371 * Drop UNKNOWN frames in aggregation, unless in monitor mode 372 * (where we don't have the keys). 373 * We limit this to aggregation because in TKIP this is a valid 374 * scenario, since we may not have the (correct) TTAK (phase 1 375 * key) in the firmware. 376 */ 377 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 379 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { 380 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); 381 return -1; 382 } 383 384 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 385 !ieee80211_has_protected(hdr->frame_control))) 386 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 387 388 if (!ieee80211_has_protected(hdr->frame_control) || 389 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 390 IWL_RX_MPDU_STATUS_SEC_NONE) 391 return 0; 392 393 /* TODO: handle packets encrypted with unknown alg */ 394 395 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 396 case IWL_RX_MPDU_STATUS_SEC_CCM: 397 case IWL_RX_MPDU_STATUS_SEC_GCM: 398 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 399 /* alg is CCM: check MIC only */ 400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 401 return -1; 402 403 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 404 *crypt_len = IEEE80211_CCMP_HDR_LEN; 405 return 0; 406 case IWL_RX_MPDU_STATUS_SEC_TKIP: 407 /* Don't drop the frame and decrypt it in SW */ 408 if (!fw_has_api(&mvm->fw->ucode_capa, 409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 411 return 0; 412 413 if (mvm->trans->trans_cfg->gen2 && 414 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 415 stats->flag |= RX_FLAG_MMIC_ERROR; 416 417 *crypt_len = IEEE80211_TKIP_IV_LEN; 418 fallthrough; 419 case IWL_RX_MPDU_STATUS_SEC_WEP: 420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 421 return -1; 422 423 stats->flag |= RX_FLAG_DECRYPTED; 424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 425 IWL_RX_MPDU_STATUS_SEC_WEP) 426 *crypt_len = IEEE80211_WEP_IV_LEN; 427 428 if (pkt_flags & FH_RSCSR_RADA_EN) { 429 stats->flag |= RX_FLAG_ICV_STRIPPED; 430 if (mvm->trans->trans_cfg->gen2) 431 stats->flag |= RX_FLAG_MMIC_STRIPPED; 432 } 433 434 return 0; 435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 437 return -1; 438 stats->flag |= RX_FLAG_DECRYPTED; 439 return 0; 440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 441 break; 442 default: 443 /* 444 * Sometimes we can get frames that were not decrypted 445 * because the firmware didn't have the keys yet. This can 446 * happen after connection where we can get multicast frames 447 * before the GTK is installed. 448 * Silently drop those frames. 449 * Also drop un-decrypted frames in monitor mode. 450 */ 451 if (!is_multicast_ether_addr(hdr->addr1) && 452 !mvm->monitor_on && net_ratelimit()) 453 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 454 } 455 456 return 0; 457 } 458 459 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 460 struct ieee80211_sta *sta, 461 struct sk_buff *skb, 462 struct iwl_rx_packet *pkt) 463 { 464 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 465 466 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 467 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 468 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 469 470 skb->ip_summed = CHECKSUM_COMPLETE; 471 skb->csum = csum_unfold(~(__force __sum16)hwsum); 472 } 473 } else { 474 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 475 struct iwl_mvm_vif *mvmvif; 476 u16 flags = le16_to_cpu(desc->l3l4_flags); 477 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 478 IWL_RX_L3_PROTO_POS); 479 480 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 481 482 if (mvmvif->features & NETIF_F_RXCSUM && 483 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 484 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 485 l3_prot == IWL_RX_L3_TYPE_IPV6 || 486 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 487 skb->ip_summed = CHECKSUM_UNNECESSARY; 488 } 489 } 490 491 /* 492 * returns true if a packet is a duplicate or invalid tid and should be dropped. 493 * Updates AMSDU PN tracking info 494 */ 495 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 496 struct ieee80211_rx_status *rx_status, 497 struct ieee80211_hdr *hdr, 498 struct iwl_rx_mpdu_desc *desc) 499 { 500 struct iwl_mvm_sta *mvm_sta; 501 struct iwl_mvm_rxq_dup_data *dup_data; 502 u8 tid, sub_frame_idx; 503 504 if (WARN_ON(IS_ERR_OR_NULL(sta))) 505 return false; 506 507 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 508 509 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 510 return false; 511 512 dup_data = &mvm_sta->dup_data[queue]; 513 514 /* 515 * Drop duplicate 802.11 retransmissions 516 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 517 */ 518 if (ieee80211_is_ctl(hdr->frame_control) || 519 ieee80211_is_qos_nullfunc(hdr->frame_control) || 520 is_multicast_ether_addr(hdr->addr1)) { 521 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 522 return false; 523 } 524 525 if (ieee80211_is_data_qos(hdr->frame_control)) { 526 /* frame has qos control */ 527 tid = ieee80211_get_tid(hdr); 528 if (tid >= IWL_MAX_TID_COUNT) 529 return true; 530 } else { 531 tid = IWL_MAX_TID_COUNT; 532 } 533 534 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 535 sub_frame_idx = desc->amsdu_info & 536 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 537 538 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 539 dup_data->last_seq[tid] == hdr->seq_ctrl && 540 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 541 return true; 542 543 /* Allow same PN as the first subframe for following sub frames */ 544 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 545 sub_frame_idx > dup_data->last_sub_frame[tid] && 546 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 547 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 548 549 dup_data->last_seq[tid] = hdr->seq_ctrl; 550 dup_data->last_sub_frame[tid] = sub_frame_idx; 551 552 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 553 554 return false; 555 } 556 557 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 558 struct ieee80211_sta *sta, 559 struct napi_struct *napi, 560 struct iwl_mvm_baid_data *baid_data, 561 struct iwl_mvm_reorder_buffer *reorder_buf, 562 u16 nssn) 563 { 564 struct iwl_mvm_reorder_buf_entry *entries = 565 &baid_data->entries[reorder_buf->queue * 566 baid_data->entries_per_queue]; 567 u16 ssn = reorder_buf->head_sn; 568 569 lockdep_assert_held(&reorder_buf->lock); 570 571 while (ieee80211_sn_less(ssn, nssn)) { 572 int index = ssn % reorder_buf->buf_size; 573 struct sk_buff_head *skb_list = &entries[index].frames; 574 struct sk_buff *skb; 575 576 ssn = ieee80211_sn_inc(ssn); 577 578 /* 579 * Empty the list. Will have more than one frame for A-MSDU. 580 * Empty list is valid as well since nssn indicates frames were 581 * received. 582 */ 583 while ((skb = __skb_dequeue(skb_list))) { 584 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 585 reorder_buf->queue, 586 sta, NULL /* FIXME */); 587 reorder_buf->num_stored--; 588 } 589 } 590 reorder_buf->head_sn = nssn; 591 } 592 593 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 594 struct iwl_mvm_delba_data *data) 595 { 596 struct iwl_mvm_baid_data *ba_data; 597 struct ieee80211_sta *sta; 598 struct iwl_mvm_reorder_buffer *reorder_buf; 599 u8 baid = data->baid; 600 u32 sta_id; 601 602 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 603 return; 604 605 rcu_read_lock(); 606 607 ba_data = rcu_dereference(mvm->baid_map[baid]); 608 if (WARN_ON_ONCE(!ba_data)) 609 goto out; 610 611 /* pick any STA ID to find the pointer */ 612 sta_id = ffs(ba_data->sta_mask) - 1; 613 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 614 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 615 goto out; 616 617 reorder_buf = &ba_data->reorder_buf[queue]; 618 619 /* release all frames that are in the reorder buffer to the stack */ 620 spin_lock_bh(&reorder_buf->lock); 621 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 622 ieee80211_sn_add(reorder_buf->head_sn, 623 reorder_buf->buf_size)); 624 spin_unlock_bh(&reorder_buf->lock); 625 626 out: 627 rcu_read_unlock(); 628 } 629 630 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 631 struct napi_struct *napi, 632 u8 baid, u16 nssn, int queue) 633 { 634 struct ieee80211_sta *sta; 635 struct iwl_mvm_reorder_buffer *reorder_buf; 636 struct iwl_mvm_baid_data *ba_data; 637 u32 sta_id; 638 639 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 640 baid, nssn); 641 642 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 643 baid >= ARRAY_SIZE(mvm->baid_map))) 644 return; 645 646 rcu_read_lock(); 647 648 ba_data = rcu_dereference(mvm->baid_map[baid]); 649 if (!ba_data) { 650 WARN(true, "BAID %d not found in map\n", baid); 651 goto out; 652 } 653 654 /* pick any STA ID to find the pointer */ 655 sta_id = ffs(ba_data->sta_mask) - 1; 656 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 657 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 658 goto out; 659 660 reorder_buf = &ba_data->reorder_buf[queue]; 661 662 spin_lock_bh(&reorder_buf->lock); 663 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 664 reorder_buf, nssn); 665 spin_unlock_bh(&reorder_buf->lock); 666 667 out: 668 rcu_read_unlock(); 669 } 670 671 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 672 struct iwl_rx_cmd_buffer *rxb, int queue) 673 { 674 struct iwl_rx_packet *pkt = rxb_addr(rxb); 675 struct iwl_rxq_sync_notification *notif; 676 struct iwl_mvm_internal_rxq_notif *internal_notif; 677 u32 len = iwl_rx_packet_payload_len(pkt); 678 679 notif = (void *)pkt->data; 680 internal_notif = (void *)notif->payload; 681 682 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 683 "invalid notification size %d (%d)", 684 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 685 return; 686 len -= sizeof(*notif) + sizeof(*internal_notif); 687 688 if (internal_notif->sync && 689 mvm->queue_sync_cookie != internal_notif->cookie) { 690 WARN_ONCE(1, "Received expired RX queue sync message\n"); 691 return; 692 } 693 694 switch (internal_notif->type) { 695 case IWL_MVM_RXQ_EMPTY: 696 WARN_ONCE(len, "invalid empty notification size %d", len); 697 break; 698 case IWL_MVM_RXQ_NOTIF_DEL_BA: 699 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 700 "invalid delba notification size %d (%d)", 701 len, (int)sizeof(struct iwl_mvm_delba_data))) 702 break; 703 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 704 break; 705 default: 706 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 707 } 708 709 if (internal_notif->sync) { 710 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 711 "queue sync: queue %d responded a second time!\n", 712 queue); 713 if (READ_ONCE(mvm->queue_sync_state) == 0) 714 wake_up(&mvm->rx_sync_waitq); 715 } 716 } 717 718 /* 719 * Returns true if the MPDU was buffered\dropped, false if it should be passed 720 * to upper layer. 721 */ 722 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 723 struct napi_struct *napi, 724 int queue, 725 struct ieee80211_sta *sta, 726 struct sk_buff *skb, 727 struct iwl_rx_mpdu_desc *desc) 728 { 729 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 730 struct iwl_mvm_baid_data *baid_data; 731 struct iwl_mvm_reorder_buffer *buffer; 732 u32 reorder = le32_to_cpu(desc->reorder_data); 733 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 734 bool last_subframe = 735 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 736 u8 tid = ieee80211_get_tid(hdr); 737 u8 sub_frame_idx = desc->amsdu_info & 738 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 739 struct iwl_mvm_reorder_buf_entry *entries; 740 u32 sta_mask; 741 int index; 742 u16 nssn, sn; 743 u8 baid; 744 745 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 746 IWL_RX_MPDU_REORDER_BAID_SHIFT; 747 748 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) 749 return false; 750 751 /* 752 * This also covers the case of receiving a Block Ack Request 753 * outside a BA session; we'll pass it to mac80211 and that 754 * then sends a delBA action frame. 755 * This also covers pure monitor mode, in which case we won't 756 * have any BA sessions. 757 */ 758 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 759 return false; 760 761 /* no sta yet */ 762 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 763 "Got valid BAID without a valid station assigned\n")) 764 return false; 765 766 /* not a data packet or a bar */ 767 if (!ieee80211_is_back_req(hdr->frame_control) && 768 (!ieee80211_is_data_qos(hdr->frame_control) || 769 is_multicast_ether_addr(hdr->addr1))) 770 return false; 771 772 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 773 return false; 774 775 baid_data = rcu_dereference(mvm->baid_map[baid]); 776 if (!baid_data) { 777 IWL_DEBUG_RX(mvm, 778 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 779 baid, reorder); 780 return false; 781 } 782 783 rcu_read_lock(); 784 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 785 rcu_read_unlock(); 786 787 if (IWL_FW_CHECK(mvm, 788 tid != baid_data->tid || 789 !(sta_mask & baid_data->sta_mask), 790 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 791 baid, baid_data->sta_mask, baid_data->tid, 792 sta_mask, tid)) 793 return false; 794 795 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 796 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 797 IWL_RX_MPDU_REORDER_SN_SHIFT; 798 799 buffer = &baid_data->reorder_buf[queue]; 800 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 801 802 spin_lock_bh(&buffer->lock); 803 804 if (!buffer->valid) { 805 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 806 spin_unlock_bh(&buffer->lock); 807 return false; 808 } 809 buffer->valid = true; 810 } 811 812 /* drop any duplicated packets */ 813 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) 814 goto drop; 815 816 /* drop any oudated packets */ 817 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) 818 goto drop; 819 820 /* release immediately if allowed by nssn and no stored frames */ 821 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 822 if (!amsdu || last_subframe) 823 buffer->head_sn = nssn; 824 /* No need to update AMSDU last SN - we are moving the head */ 825 spin_unlock_bh(&buffer->lock); 826 return false; 827 } 828 829 /* 830 * release immediately if there are no stored frames, and the sn is 831 * equal to the head. 832 * This can happen due to reorder timer, where NSSN is behind head_sn. 833 * When we released everything, and we got the next frame in the 834 * sequence, according to the NSSN we can't release immediately, 835 * while technically there is no hole and we can move forward. 836 */ 837 if (!buffer->num_stored && sn == buffer->head_sn) { 838 if (!amsdu || last_subframe) 839 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 840 841 /* No need to update AMSDU last SN - we are moving the head */ 842 spin_unlock_bh(&buffer->lock); 843 return false; 844 } 845 846 /* put in reorder buffer */ 847 index = sn % buffer->buf_size; 848 __skb_queue_tail(&entries[index].frames, skb); 849 buffer->num_stored++; 850 851 if (amsdu) { 852 buffer->last_amsdu = sn; 853 buffer->last_sub_index = sub_frame_idx; 854 } 855 856 /* 857 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 858 * The reason is that NSSN advances on the first sub-frame, and may 859 * cause the reorder buffer to advance before all the sub-frames arrive. 860 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 861 * SN 1. NSSN for first sub frame will be 3 with the result of driver 862 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 863 * already ahead and it will be dropped. 864 * If the last sub-frame is not on this queue - we will get frame 865 * release notification with up to date NSSN. 866 */ 867 if (!amsdu || last_subframe) 868 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 869 buffer, nssn); 870 871 spin_unlock_bh(&buffer->lock); 872 return true; 873 874 drop: 875 kfree_skb(skb); 876 spin_unlock_bh(&buffer->lock); 877 return true; 878 } 879 880 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 881 u32 reorder_data, u8 baid) 882 { 883 unsigned long now = jiffies; 884 unsigned long timeout; 885 struct iwl_mvm_baid_data *data; 886 887 rcu_read_lock(); 888 889 data = rcu_dereference(mvm->baid_map[baid]); 890 if (!data) { 891 IWL_DEBUG_RX(mvm, 892 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 893 baid, reorder_data); 894 goto out; 895 } 896 897 if (!data->timeout) 898 goto out; 899 900 timeout = data->timeout; 901 /* 902 * Do not update last rx all the time to avoid cache bouncing 903 * between the rx queues. 904 * Update it every timeout. Worst case is the session will 905 * expire after ~ 2 * timeout, which doesn't matter that much. 906 */ 907 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 908 /* Update is atomic */ 909 data->last_rx = now; 910 911 out: 912 rcu_read_unlock(); 913 } 914 915 static void iwl_mvm_flip_address(u8 *addr) 916 { 917 int i; 918 u8 mac_addr[ETH_ALEN]; 919 920 for (i = 0; i < ETH_ALEN; i++) 921 mac_addr[i] = addr[ETH_ALEN - i - 1]; 922 ether_addr_copy(addr, mac_addr); 923 } 924 925 struct iwl_mvm_rx_phy_data { 926 enum iwl_rx_phy_info_type info_type; 927 __le32 d0, d1, d2, d3, eht_d4, d5; 928 __le16 d4; 929 bool with_data; 930 bool first_subframe; 931 __le32 rx_vec[4]; 932 933 u32 rate_n_flags; 934 u32 gp2_on_air_rise; 935 u16 phy_info; 936 u8 energy_a, energy_b; 937 u8 channel; 938 }; 939 940 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 941 struct iwl_mvm_rx_phy_data *phy_data, 942 struct ieee80211_radiotap_he_mu *he_mu) 943 { 944 u32 phy_data2 = le32_to_cpu(phy_data->d2); 945 u32 phy_data3 = le32_to_cpu(phy_data->d3); 946 u16 phy_data4 = le16_to_cpu(phy_data->d4); 947 u32 rate_n_flags = phy_data->rate_n_flags; 948 949 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 950 he_mu->flags1 |= 951 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 952 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 953 954 he_mu->flags1 |= 955 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 956 phy_data4), 957 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 958 959 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 960 phy_data2); 961 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 962 phy_data3); 963 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 964 phy_data2); 965 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 966 phy_data3); 967 } 968 969 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 970 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 971 he_mu->flags1 |= 972 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 973 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 974 975 he_mu->flags2 |= 976 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 977 phy_data4), 978 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 979 980 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 981 phy_data2); 982 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 983 phy_data3); 984 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 985 phy_data2); 986 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 987 phy_data3); 988 } 989 } 990 991 static void 992 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 993 struct ieee80211_radiotap_he *he, 994 struct ieee80211_radiotap_he_mu *he_mu, 995 struct ieee80211_rx_status *rx_status) 996 { 997 /* 998 * Unfortunately, we have to leave the mac80211 data 999 * incorrect for the case that we receive an HE-MU 1000 * transmission and *don't* have the HE phy data (due 1001 * to the bits being used for TSF). This shouldn't 1002 * happen though as management frames where we need 1003 * the TSF/timers are not be transmitted in HE-MU. 1004 */ 1005 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1006 u32 rate_n_flags = phy_data->rate_n_flags; 1007 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1008 u8 offs = 0; 1009 1010 rx_status->bw = RATE_INFO_BW_HE_RU; 1011 1012 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1013 1014 switch (ru) { 1015 case 0 ... 36: 1016 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1017 offs = ru; 1018 break; 1019 case 37 ... 52: 1020 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1021 offs = ru - 37; 1022 break; 1023 case 53 ... 60: 1024 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1025 offs = ru - 53; 1026 break; 1027 case 61 ... 64: 1028 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1029 offs = ru - 61; 1030 break; 1031 case 65 ... 66: 1032 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1033 offs = ru - 65; 1034 break; 1035 case 67: 1036 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1037 break; 1038 case 68: 1039 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1040 break; 1041 } 1042 he->data2 |= le16_encode_bits(offs, 1043 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1044 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1045 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1046 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1047 he->data2 |= 1048 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1049 1050 #define CHECK_BW(bw) \ 1051 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1052 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1053 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1054 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1055 CHECK_BW(20); 1056 CHECK_BW(40); 1057 CHECK_BW(80); 1058 CHECK_BW(160); 1059 1060 if (he_mu) 1061 he_mu->flags2 |= 1062 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1063 rate_n_flags), 1064 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1065 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1066 he->data6 |= 1067 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1068 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1069 rate_n_flags), 1070 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1071 } 1072 1073 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1074 struct iwl_mvm_rx_phy_data *phy_data, 1075 struct ieee80211_radiotap_he *he, 1076 struct ieee80211_radiotap_he_mu *he_mu, 1077 struct ieee80211_rx_status *rx_status, 1078 int queue) 1079 { 1080 switch (phy_data->info_type) { 1081 case IWL_RX_PHY_INFO_TYPE_NONE: 1082 case IWL_RX_PHY_INFO_TYPE_CCK: 1083 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1084 case IWL_RX_PHY_INFO_TYPE_HT: 1085 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1086 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1087 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1088 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1089 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1090 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1091 return; 1092 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1093 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1094 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1095 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1096 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1097 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1098 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1099 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1100 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1101 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1102 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1103 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1104 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1105 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1106 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1107 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1108 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1109 fallthrough; 1110 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1111 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1112 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1113 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1114 /* HE common */ 1115 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1116 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1117 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1118 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1119 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1120 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1121 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1122 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1123 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1124 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1125 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1126 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1127 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1128 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1129 IWL_RX_PHY_DATA0_HE_UPLINK), 1130 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1131 } 1132 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1133 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1134 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1135 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1136 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1137 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1138 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1139 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1140 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1141 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1142 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1143 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1144 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1145 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1146 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1147 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1148 IWL_RX_PHY_DATA0_HE_DOPPLER), 1149 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1150 break; 1151 } 1152 1153 switch (phy_data->info_type) { 1154 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1155 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1156 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1157 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1158 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1159 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1160 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1161 break; 1162 default: 1163 /* nothing here */ 1164 break; 1165 } 1166 1167 switch (phy_data->info_type) { 1168 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1169 he_mu->flags1 |= 1170 le16_encode_bits(le16_get_bits(phy_data->d4, 1171 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1172 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1173 he_mu->flags1 |= 1174 le16_encode_bits(le16_get_bits(phy_data->d4, 1175 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1176 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1177 he_mu->flags2 |= 1178 le16_encode_bits(le16_get_bits(phy_data->d4, 1179 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1180 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1181 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1182 fallthrough; 1183 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1184 he_mu->flags2 |= 1185 le16_encode_bits(le32_get_bits(phy_data->d1, 1186 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1187 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1188 he_mu->flags2 |= 1189 le16_encode_bits(le32_get_bits(phy_data->d1, 1190 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1191 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1192 fallthrough; 1193 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1194 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1195 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1196 break; 1197 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1198 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1199 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1200 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1201 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1202 break; 1203 default: 1204 /* nothing */ 1205 break; 1206 } 1207 } 1208 1209 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1210 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1211 1212 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1213 typeof(enc_bits) _enc_bits = enc_bits; \ 1214 typeof(usig) _usig = usig; \ 1215 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1216 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1217 } while (0) 1218 1219 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1220 eht->data[(rt_data)] |= \ 1221 (cpu_to_le32 \ 1222 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1223 LE32_DEC_ENC(data ## fw_data, \ 1224 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1225 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1226 1227 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1228 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1229 1230 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1231 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1232 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1233 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1234 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1235 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1236 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1237 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1238 1239 #define IWL_RX_RU_DATA_A1 2 1240 #define IWL_RX_RU_DATA_A2 2 1241 #define IWL_RX_RU_DATA_B1 2 1242 #define IWL_RX_RU_DATA_B2 4 1243 #define IWL_RX_RU_DATA_C1 3 1244 #define IWL_RX_RU_DATA_C2 3 1245 #define IWL_RX_RU_DATA_D1 4 1246 #define IWL_RX_RU_DATA_D2 4 1247 1248 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1249 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1250 rt_ru, \ 1251 IWL_RX_RU_DATA_ ## fw_ru, \ 1252 fw_ru) 1253 1254 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1255 struct iwl_mvm_rx_phy_data *phy_data, 1256 struct ieee80211_rx_status *rx_status, 1257 struct ieee80211_radiotap_eht *eht, 1258 struct ieee80211_radiotap_eht_usig *usig) 1259 { 1260 if (phy_data->with_data) { 1261 __le32 data1 = phy_data->d1; 1262 __le32 data2 = phy_data->d2; 1263 __le32 data3 = phy_data->d3; 1264 __le32 data4 = phy_data->eht_d4; 1265 __le32 data5 = phy_data->d5; 1266 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1267 1268 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1269 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1270 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1271 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1272 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1273 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1274 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1275 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1276 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1277 IWL_MVM_ENC_USIG_VALUE_MASK 1278 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1279 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1280 1281 eht->user_info[0] |= 1282 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1283 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1284 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1285 1286 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1287 eht->data[7] |= LE32_DEC_ENC 1288 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1289 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1290 1291 /* 1292 * Hardware labels the content channels/RU allocation values 1293 * as follows: 1294 * Content Channel 1 Content Channel 2 1295 * 20 MHz: A1 1296 * 40 MHz: A1 B1 1297 * 80 MHz: A1 C1 B1 D1 1298 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1299 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1300 * 1301 * However firmware can only give us A1-D2, so the higher 1302 * frequencies are missing. 1303 */ 1304 1305 switch (phy_bw) { 1306 case RATE_MCS_CHAN_WIDTH_320: 1307 /* additional values are missing in RX metadata */ 1308 case RATE_MCS_CHAN_WIDTH_160: 1309 /* content channel 1 */ 1310 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1311 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1312 /* content channel 2 */ 1313 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1314 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1315 fallthrough; 1316 case RATE_MCS_CHAN_WIDTH_80: 1317 /* content channel 1 */ 1318 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1319 /* content channel 2 */ 1320 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1321 fallthrough; 1322 case RATE_MCS_CHAN_WIDTH_40: 1323 /* content channel 2 */ 1324 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1325 fallthrough; 1326 case RATE_MCS_CHAN_WIDTH_20: 1327 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1328 break; 1329 } 1330 } else { 1331 __le32 usig_a1 = phy_data->rx_vec[0]; 1332 __le32 usig_a2 = phy_data->rx_vec[1]; 1333 1334 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1335 IWL_RX_USIG_A1_DISREGARD, 1336 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1337 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1338 IWL_RX_USIG_A1_VALIDATE, 1339 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1340 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1341 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1342 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1343 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1344 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1345 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1346 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1347 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1348 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1349 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1350 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1351 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1352 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1353 IWL_RX_USIG_A2_EHT_SIG_MCS, 1354 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1355 IWL_MVM_ENC_USIG_VALUE_MASK 1356 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1357 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1358 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1359 IWL_RX_USIG_A2_EHT_CRC_OK, 1360 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1361 } 1362 } 1363 1364 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1365 struct iwl_mvm_rx_phy_data *phy_data, 1366 struct ieee80211_rx_status *rx_status, 1367 struct ieee80211_radiotap_eht *eht, 1368 struct ieee80211_radiotap_eht_usig *usig) 1369 { 1370 if (phy_data->with_data) { 1371 __le32 data5 = phy_data->d5; 1372 1373 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1374 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1375 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1376 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1377 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1378 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1379 1380 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1381 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1382 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1383 } else { 1384 __le32 usig_a1 = phy_data->rx_vec[0]; 1385 __le32 usig_a2 = phy_data->rx_vec[1]; 1386 1387 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1388 IWL_RX_USIG_A1_DISREGARD, 1389 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1390 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1391 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1392 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1393 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1394 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1395 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1396 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1397 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1398 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1399 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1400 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1401 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1402 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1403 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1404 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1405 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1406 IWL_RX_USIG_A2_EHT_CRC_OK, 1407 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1408 } 1409 } 1410 1411 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1412 struct ieee80211_rx_status *rx_status, 1413 struct ieee80211_radiotap_eht *eht) 1414 { 1415 u32 ru = le32_get_bits(eht->data[8], 1416 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1417 enum nl80211_eht_ru_alloc nl_ru; 1418 1419 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1420 * in an EHT variant User Info field 1421 */ 1422 1423 switch (ru) { 1424 case 0 ... 36: 1425 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1426 break; 1427 case 37 ... 52: 1428 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1429 break; 1430 case 53 ... 60: 1431 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1432 break; 1433 case 61 ... 64: 1434 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1435 break; 1436 case 65 ... 66: 1437 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1438 break; 1439 case 67: 1440 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1441 break; 1442 case 68: 1443 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1444 break; 1445 case 69: 1446 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1447 break; 1448 case 70 ... 81: 1449 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1450 break; 1451 case 82 ... 89: 1452 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1453 break; 1454 case 90 ... 93: 1455 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1456 break; 1457 case 94 ... 95: 1458 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1459 break; 1460 case 96 ... 99: 1461 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1462 break; 1463 case 100 ... 103: 1464 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1465 break; 1466 case 104: 1467 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1468 break; 1469 case 105 ... 106: 1470 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1471 break; 1472 default: 1473 return; 1474 } 1475 1476 rx_status->bw = RATE_INFO_BW_EHT_RU; 1477 rx_status->eht.ru = nl_ru; 1478 } 1479 1480 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1481 struct iwl_mvm_rx_phy_data *phy_data, 1482 struct ieee80211_rx_status *rx_status, 1483 struct ieee80211_radiotap_eht *eht, 1484 struct ieee80211_radiotap_eht_usig *usig) 1485 1486 { 1487 __le32 data0 = phy_data->d0; 1488 __le32 data1 = phy_data->d1; 1489 __le32 usig_a1 = phy_data->rx_vec[0]; 1490 u8 info_type = phy_data->info_type; 1491 1492 /* Not in EHT range */ 1493 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1494 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1495 return; 1496 1497 usig->common |= cpu_to_le32 1498 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1499 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1500 if (phy_data->with_data) { 1501 usig->common |= LE32_DEC_ENC(data0, 1502 IWL_RX_PHY_DATA0_EHT_UPLINK, 1503 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1504 usig->common |= LE32_DEC_ENC(data0, 1505 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1506 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1507 } else { 1508 usig->common |= LE32_DEC_ENC(usig_a1, 1509 IWL_RX_USIG_A1_UL_FLAG, 1510 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1511 usig->common |= LE32_DEC_ENC(usig_a1, 1512 IWL_RX_USIG_A1_BSS_COLOR, 1513 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1514 } 1515 1516 if (fw_has_capa(&mvm->fw->ucode_capa, 1517 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1518 usig->common |= 1519 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1520 usig->common |= 1521 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1522 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1523 } 1524 1525 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1526 eht->data[0] |= LE32_DEC_ENC(data0, 1527 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1528 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1529 1530 /* All RU allocating size/index is in TB format */ 1531 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1532 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1533 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1534 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1535 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1536 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1537 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1538 1539 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1540 1541 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1542 * which is on only in case of monitor mode so no need to check monitor 1543 * mode 1544 */ 1545 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1546 eht->data[1] |= 1547 le32_encode_bits(mvm->monitor_p80, 1548 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1549 1550 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1551 if (phy_data->with_data) 1552 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1553 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1554 else 1555 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1556 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1557 1558 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1559 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1560 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1561 1562 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1563 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1564 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1565 1566 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1567 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1568 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1569 1570 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1571 1572 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1573 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1574 1575 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1576 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1577 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1578 1579 /* 1580 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1581 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1582 */ 1583 1584 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1585 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1586 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1587 1588 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1589 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1590 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1591 1592 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1593 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1594 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1595 } 1596 1597 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1598 struct iwl_mvm_rx_phy_data *phy_data, 1599 int queue) 1600 { 1601 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1602 1603 struct ieee80211_radiotap_eht *eht; 1604 struct ieee80211_radiotap_eht_usig *usig; 1605 size_t eht_len = sizeof(*eht); 1606 1607 u32 rate_n_flags = phy_data->rate_n_flags; 1608 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1609 /* EHT and HE have the same valus for LTF */ 1610 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1611 u16 phy_info = phy_data->phy_info; 1612 u32 bw; 1613 1614 /* u32 for 1 user_info */ 1615 if (phy_data->with_data) 1616 eht_len += sizeof(u32); 1617 1618 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1619 1620 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1621 sizeof(*usig)); 1622 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1623 usig->common |= 1624 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1625 1626 /* specific handling for 320MHz */ 1627 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1628 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1629 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1630 le32_to_cpu(phy_data->d0)); 1631 1632 usig->common |= cpu_to_le32 1633 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1634 1635 /* report the AMPDU-EOF bit on single frames */ 1636 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1637 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1638 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1639 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1640 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1641 } 1642 1643 /* update aggregation data for monitor sake on default queue */ 1644 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1645 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1646 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1647 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1648 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1649 } 1650 1651 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1652 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1653 1654 #define CHECK_TYPE(F) \ 1655 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1656 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1657 1658 CHECK_TYPE(SU); 1659 CHECK_TYPE(EXT_SU); 1660 CHECK_TYPE(MU); 1661 CHECK_TYPE(TRIG); 1662 1663 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1664 case 0: 1665 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1666 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1667 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1668 } else { 1669 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1670 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1671 } 1672 break; 1673 case 1: 1674 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1675 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1676 break; 1677 case 2: 1678 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1679 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1680 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1681 else 1682 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1683 break; 1684 case 3: 1685 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1686 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1687 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1688 } 1689 break; 1690 default: 1691 /* nothing here */ 1692 break; 1693 } 1694 1695 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1696 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1697 eht->data[0] |= cpu_to_le32 1698 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1699 ltf) | 1700 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1701 rx_status->eht.gi)); 1702 } 1703 1704 1705 if (!phy_data->with_data) { 1706 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1707 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1708 eht->data[7] |= 1709 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1710 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1711 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1712 if (rate_n_flags & RATE_MCS_BF_MSK) 1713 eht->data[7] |= 1714 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1715 } else { 1716 eht->user_info[0] |= 1717 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1718 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1719 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1720 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1721 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1722 1723 if (rate_n_flags & RATE_MCS_BF_MSK) 1724 eht->user_info[0] |= 1725 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1726 1727 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1728 eht->user_info[0] |= 1729 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1730 1731 eht->user_info[0] |= cpu_to_le32 1732 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1733 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1734 rate_n_flags)) | 1735 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1736 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1737 } 1738 } 1739 1740 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1741 struct iwl_mvm_rx_phy_data *phy_data, 1742 int queue) 1743 { 1744 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1745 struct ieee80211_radiotap_he *he = NULL; 1746 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1747 u32 rate_n_flags = phy_data->rate_n_flags; 1748 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1749 u8 ltf; 1750 static const struct ieee80211_radiotap_he known = { 1751 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1752 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1753 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1754 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1755 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1756 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1757 }; 1758 static const struct ieee80211_radiotap_he_mu mu_known = { 1759 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1760 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1761 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1762 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1763 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1764 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1765 }; 1766 u16 phy_info = phy_data->phy_info; 1767 1768 he = skb_put_data(skb, &known, sizeof(known)); 1769 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1770 1771 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1772 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1773 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1774 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1775 } 1776 1777 /* report the AMPDU-EOF bit on single frames */ 1778 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1779 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1780 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1781 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1782 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1783 } 1784 1785 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1786 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1787 queue); 1788 1789 /* update aggregation data for monitor sake on default queue */ 1790 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1791 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1792 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1793 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1794 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1795 } 1796 1797 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1798 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1799 rx_status->bw = RATE_INFO_BW_HE_RU; 1800 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1801 } 1802 1803 /* actually data is filled in mac80211 */ 1804 if (he_type == RATE_MCS_HE_TYPE_SU || 1805 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1806 he->data1 |= 1807 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1808 1809 #define CHECK_TYPE(F) \ 1810 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1811 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1812 1813 CHECK_TYPE(SU); 1814 CHECK_TYPE(EXT_SU); 1815 CHECK_TYPE(MU); 1816 CHECK_TYPE(TRIG); 1817 1818 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1819 1820 if (rate_n_flags & RATE_MCS_BF_MSK) 1821 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1822 1823 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1824 RATE_MCS_HE_GI_LTF_POS) { 1825 case 0: 1826 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1827 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1828 else 1829 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1830 if (he_type == RATE_MCS_HE_TYPE_MU) 1831 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1832 else 1833 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1834 break; 1835 case 1: 1836 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1837 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1838 else 1839 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1840 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1841 break; 1842 case 2: 1843 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1844 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1845 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1846 } else { 1847 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1848 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1849 } 1850 break; 1851 case 3: 1852 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1853 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1854 break; 1855 case 4: 1856 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1857 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1858 break; 1859 default: 1860 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1861 } 1862 1863 he->data5 |= le16_encode_bits(ltf, 1864 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1865 } 1866 1867 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1868 struct iwl_mvm_rx_phy_data *phy_data) 1869 { 1870 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1871 struct ieee80211_radiotap_lsig *lsig; 1872 1873 switch (phy_data->info_type) { 1874 case IWL_RX_PHY_INFO_TYPE_HT: 1875 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1876 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1877 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1878 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1879 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1880 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1881 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1882 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1883 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1884 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1885 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1886 lsig = skb_put(skb, sizeof(*lsig)); 1887 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1888 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1889 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1890 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1891 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1892 break; 1893 default: 1894 break; 1895 } 1896 } 1897 1898 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1899 { 1900 switch (phy_band) { 1901 case PHY_BAND_24: 1902 return NL80211_BAND_2GHZ; 1903 case PHY_BAND_5: 1904 return NL80211_BAND_5GHZ; 1905 case PHY_BAND_6: 1906 return NL80211_BAND_6GHZ; 1907 default: 1908 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1909 return NL80211_BAND_5GHZ; 1910 } 1911 } 1912 1913 struct iwl_rx_sta_csa { 1914 bool all_sta_unblocked; 1915 struct ieee80211_vif *vif; 1916 }; 1917 1918 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1919 { 1920 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1921 struct iwl_rx_sta_csa *rx_sta_csa = data; 1922 1923 if (mvmsta->vif != rx_sta_csa->vif) 1924 return; 1925 1926 if (mvmsta->disable_tx) 1927 rx_sta_csa->all_sta_unblocked = false; 1928 } 1929 1930 /* 1931 * Note: requires also rx_status->band to be prefilled, as well 1932 * as phy_data (apart from phy_data->info_type) 1933 */ 1934 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 1935 struct sk_buff *skb, 1936 struct iwl_mvm_rx_phy_data *phy_data, 1937 int queue) 1938 { 1939 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1940 u32 rate_n_flags = phy_data->rate_n_flags; 1941 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1942 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1943 bool is_sgi; 1944 1945 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 1946 1947 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1948 phy_data->info_type = 1949 le32_get_bits(phy_data->d1, 1950 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1951 1952 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1953 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1954 case RATE_MCS_CHAN_WIDTH_20: 1955 break; 1956 case RATE_MCS_CHAN_WIDTH_40: 1957 rx_status->bw = RATE_INFO_BW_40; 1958 break; 1959 case RATE_MCS_CHAN_WIDTH_80: 1960 rx_status->bw = RATE_INFO_BW_80; 1961 break; 1962 case RATE_MCS_CHAN_WIDTH_160: 1963 rx_status->bw = RATE_INFO_BW_160; 1964 break; 1965 case RATE_MCS_CHAN_WIDTH_320: 1966 rx_status->bw = RATE_INFO_BW_320; 1967 break; 1968 } 1969 1970 /* must be before L-SIG data */ 1971 if (format == RATE_MCS_HE_MSK) 1972 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 1973 1974 iwl_mvm_decode_lsig(skb, phy_data); 1975 1976 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 1977 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 1978 rx_status->band); 1979 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 1980 phy_data->energy_a, phy_data->energy_b); 1981 1982 /* using TLV format and must be after all fixed len fields */ 1983 if (format == RATE_MCS_EHT_MSK) 1984 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 1985 1986 if (unlikely(mvm->monitor_on)) 1987 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1988 1989 is_sgi = format == RATE_MCS_HE_MSK ? 1990 iwl_he_is_sgi(rate_n_flags) : 1991 rate_n_flags & RATE_MCS_SGI_MSK; 1992 1993 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1994 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1995 1996 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1997 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1998 1999 switch (format) { 2000 case RATE_MCS_VHT_MSK: 2001 rx_status->encoding = RX_ENC_VHT; 2002 break; 2003 case RATE_MCS_HE_MSK: 2004 rx_status->encoding = RX_ENC_HE; 2005 rx_status->he_dcm = 2006 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2007 break; 2008 case RATE_MCS_EHT_MSK: 2009 rx_status->encoding = RX_ENC_EHT; 2010 break; 2011 } 2012 2013 switch (format) { 2014 case RATE_MCS_HT_MSK: 2015 rx_status->encoding = RX_ENC_HT; 2016 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2017 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2018 break; 2019 case RATE_MCS_VHT_MSK: 2020 case RATE_MCS_HE_MSK: 2021 case RATE_MCS_EHT_MSK: 2022 rx_status->nss = 2023 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2024 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2025 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2026 break; 2027 default: { 2028 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2029 rx_status->band); 2030 2031 rx_status->rate_idx = rate; 2032 2033 if ((rate < 0 || rate > 0xFF)) { 2034 rx_status->rate_idx = 0; 2035 if (net_ratelimit()) 2036 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2037 rate_n_flags, rx_status->band); 2038 } 2039 2040 break; 2041 } 2042 } 2043 } 2044 2045 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2046 struct iwl_rx_cmd_buffer *rxb, int queue) 2047 { 2048 struct ieee80211_rx_status *rx_status; 2049 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2050 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2051 struct ieee80211_hdr *hdr; 2052 u32 len; 2053 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2054 struct ieee80211_sta *sta = NULL; 2055 struct ieee80211_link_sta *link_sta = NULL; 2056 struct sk_buff *skb; 2057 u8 crypt_len = 0; 2058 size_t desc_size; 2059 struct iwl_mvm_rx_phy_data phy_data = {}; 2060 u32 format; 2061 2062 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2063 return; 2064 2065 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2066 desc_size = sizeof(*desc); 2067 else 2068 desc_size = IWL_RX_DESC_SIZE_V1; 2069 2070 if (unlikely(pkt_len < desc_size)) { 2071 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2072 return; 2073 } 2074 2075 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2076 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2077 phy_data.channel = desc->v3.channel; 2078 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2079 phy_data.energy_a = desc->v3.energy_a; 2080 phy_data.energy_b = desc->v3.energy_b; 2081 2082 phy_data.d0 = desc->v3.phy_data0; 2083 phy_data.d1 = desc->v3.phy_data1; 2084 phy_data.d2 = desc->v3.phy_data2; 2085 phy_data.d3 = desc->v3.phy_data3; 2086 phy_data.eht_d4 = desc->phy_eht_data4; 2087 phy_data.d5 = desc->v3.phy_data5; 2088 } else { 2089 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2090 phy_data.channel = desc->v1.channel; 2091 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2092 phy_data.energy_a = desc->v1.energy_a; 2093 phy_data.energy_b = desc->v1.energy_b; 2094 2095 phy_data.d0 = desc->v1.phy_data0; 2096 phy_data.d1 = desc->v1.phy_data1; 2097 phy_data.d2 = desc->v1.phy_data2; 2098 phy_data.d3 = desc->v1.phy_data3; 2099 } 2100 2101 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2102 REPLY_RX_MPDU_CMD, 0) < 4) { 2103 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2104 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2105 phy_data.rate_n_flags); 2106 } 2107 2108 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2109 2110 len = le16_to_cpu(desc->mpdu_len); 2111 2112 if (unlikely(len + desc_size > pkt_len)) { 2113 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2114 return; 2115 } 2116 2117 phy_data.with_data = true; 2118 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2119 phy_data.d4 = desc->phy_data4; 2120 2121 hdr = (void *)(pkt->data + desc_size); 2122 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2123 * ieee80211_hdr pulled. 2124 */ 2125 skb = alloc_skb(128, GFP_ATOMIC); 2126 if (!skb) { 2127 IWL_ERR(mvm, "alloc_skb failed\n"); 2128 return; 2129 } 2130 2131 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2132 /* 2133 * If the device inserted padding it means that (it thought) 2134 * the 802.11 header wasn't a multiple of 4 bytes long. In 2135 * this case, reserve two bytes at the start of the SKB to 2136 * align the payload properly in case we end up copying it. 2137 */ 2138 skb_reserve(skb, 2); 2139 } 2140 2141 rx_status = IEEE80211_SKB_RXCB(skb); 2142 2143 /* 2144 * Keep packets with CRC errors (and with overrun) for monitor mode 2145 * (otherwise the firmware discards them) but mark them as bad. 2146 */ 2147 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2148 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2149 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2150 le32_to_cpu(desc->status)); 2151 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2152 } 2153 2154 /* set the preamble flag if appropriate */ 2155 if (format == RATE_MCS_CCK_MSK && 2156 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2157 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2158 2159 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2160 u64 tsf_on_air_rise; 2161 2162 if (mvm->trans->trans_cfg->device_family >= 2163 IWL_DEVICE_FAMILY_AX210) 2164 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2165 else 2166 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2167 2168 rx_status->mactime = tsf_on_air_rise; 2169 /* TSF as indicated by the firmware is at INA time */ 2170 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2171 } 2172 2173 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2174 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2175 2176 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2177 } else { 2178 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2179 NL80211_BAND_2GHZ; 2180 } 2181 2182 /* update aggregation data for monitor sake on default queue */ 2183 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2184 bool toggle_bit; 2185 2186 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2187 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2188 /* 2189 * Toggle is switched whenever new aggregation starts. Make 2190 * sure ampdu_reference is never 0 so we can later use it to 2191 * see if the frame was really part of an A-MPDU or not. 2192 */ 2193 if (toggle_bit != mvm->ampdu_toggle) { 2194 mvm->ampdu_ref++; 2195 if (mvm->ampdu_ref == 0) 2196 mvm->ampdu_ref++; 2197 mvm->ampdu_toggle = toggle_bit; 2198 phy_data.first_subframe = true; 2199 } 2200 rx_status->ampdu_reference = mvm->ampdu_ref; 2201 } 2202 2203 rcu_read_lock(); 2204 2205 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2206 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2207 2208 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2209 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2210 if (IS_ERR(sta)) 2211 sta = NULL; 2212 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2213 } 2214 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2215 /* 2216 * This is fine since we prevent two stations with the same 2217 * address from being added. 2218 */ 2219 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2220 } 2221 2222 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2223 le32_to_cpu(pkt->len_n_flags), queue, 2224 &crypt_len)) { 2225 kfree_skb(skb); 2226 goto out; 2227 } 2228 2229 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2230 2231 if (sta) { 2232 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2233 struct ieee80211_vif *tx_blocked_vif = 2234 rcu_dereference(mvm->csa_tx_blocked_vif); 2235 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2236 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2237 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2238 struct iwl_fw_dbg_trigger_tlv *trig; 2239 struct ieee80211_vif *vif = mvmsta->vif; 2240 2241 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2242 !is_multicast_ether_addr(hdr->addr1) && 2243 ieee80211_is_data(hdr->frame_control) && 2244 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2245 schedule_delayed_work(&mvm->tcm.work, 0); 2246 2247 /* 2248 * We have tx blocked stations (with CS bit). If we heard 2249 * frames from a blocked station on a new channel we can 2250 * TX to it again. 2251 */ 2252 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2253 struct iwl_mvm_vif *mvmvif = 2254 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2255 struct iwl_rx_sta_csa rx_sta_csa = { 2256 .all_sta_unblocked = true, 2257 .vif = tx_blocked_vif, 2258 }; 2259 2260 if (mvmvif->csa_target_freq == rx_status->freq) 2261 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2262 false); 2263 ieee80211_iterate_stations_atomic(mvm->hw, 2264 iwl_mvm_rx_get_sta_block_tx, 2265 &rx_sta_csa); 2266 2267 if (rx_sta_csa.all_sta_unblocked) { 2268 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2269 /* Unblock BCAST / MCAST station */ 2270 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2271 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2272 } 2273 } 2274 2275 rs_update_last_rssi(mvm, mvmsta, rx_status); 2276 2277 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2278 ieee80211_vif_to_wdev(vif), 2279 FW_DBG_TRIGGER_RSSI); 2280 2281 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2282 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2283 s32 rssi; 2284 2285 rssi_trig = (void *)trig->data; 2286 rssi = le32_to_cpu(rssi_trig->rssi); 2287 2288 if (rx_status->signal < rssi) 2289 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2290 NULL); 2291 } 2292 2293 if (ieee80211_is_data(hdr->frame_control)) 2294 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2295 2296 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2297 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", 2298 le16_to_cpu(hdr->seq_ctrl)); 2299 kfree_skb(skb); 2300 goto out; 2301 } 2302 2303 /* 2304 * Our hardware de-aggregates AMSDUs but copies the mac header 2305 * as it to the de-aggregated MPDUs. We need to turn off the 2306 * AMSDU bit in the QoS control ourselves. 2307 * In addition, HW reverses addr3 and addr4 - reverse it back. 2308 */ 2309 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2310 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2311 u8 *qc = ieee80211_get_qos_ctl(hdr); 2312 2313 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2314 2315 if (mvm->trans->trans_cfg->device_family == 2316 IWL_DEVICE_FAMILY_9000) { 2317 iwl_mvm_flip_address(hdr->addr3); 2318 2319 if (ieee80211_has_a4(hdr->frame_control)) 2320 iwl_mvm_flip_address(hdr->addr4); 2321 } 2322 } 2323 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2324 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2325 2326 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2327 } 2328 } 2329 2330 /* management stuff on default queue */ 2331 if (!queue) { 2332 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2333 ieee80211_is_probe_resp(hdr->frame_control)) && 2334 mvm->sched_scan_pass_all == 2335 SCHED_SCAN_PASS_ALL_ENABLED)) 2336 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2337 2338 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2339 ieee80211_is_probe_resp(hdr->frame_control))) 2340 rx_status->boottime_ns = ktime_get_boottime_ns(); 2341 } 2342 2343 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2344 kfree_skb(skb); 2345 goto out; 2346 } 2347 2348 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2349 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2350 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2351 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2352 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2353 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2354 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2355 2356 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, 2357 link_sta); 2358 } 2359 out: 2360 rcu_read_unlock(); 2361 } 2362 2363 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2364 struct iwl_rx_cmd_buffer *rxb, int queue) 2365 { 2366 struct ieee80211_rx_status *rx_status; 2367 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2368 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2369 u32 rssi; 2370 u32 info_type; 2371 struct ieee80211_sta *sta = NULL; 2372 struct sk_buff *skb; 2373 struct iwl_mvm_rx_phy_data phy_data; 2374 u32 format; 2375 2376 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2377 return; 2378 2379 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2380 return; 2381 2382 rssi = le32_to_cpu(desc->rssi); 2383 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2384 phy_data.d0 = desc->phy_info[0]; 2385 phy_data.d1 = desc->phy_info[1]; 2386 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2387 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2388 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2389 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2390 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2391 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2392 phy_data.with_data = false; 2393 phy_data.rx_vec[0] = desc->rx_vec[0]; 2394 phy_data.rx_vec[1] = desc->rx_vec[1]; 2395 2396 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2397 RX_NO_DATA_NOTIF, 0) < 2) { 2398 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2399 phy_data.rate_n_flags); 2400 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2401 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2402 phy_data.rate_n_flags); 2403 } 2404 2405 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2406 2407 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2408 RX_NO_DATA_NOTIF, 0) >= 3) { 2409 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2410 sizeof(struct iwl_rx_no_data_ver_3))) 2411 /* invalid len for ver 3 */ 2412 return; 2413 phy_data.rx_vec[2] = desc->rx_vec[2]; 2414 phy_data.rx_vec[3] = desc->rx_vec[3]; 2415 } else { 2416 if (format == RATE_MCS_EHT_MSK) 2417 /* no support for EHT before version 3 API */ 2418 return; 2419 } 2420 2421 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2422 * ieee80211_hdr pulled. 2423 */ 2424 skb = alloc_skb(128, GFP_ATOMIC); 2425 if (!skb) { 2426 IWL_ERR(mvm, "alloc_skb failed\n"); 2427 return; 2428 } 2429 2430 rx_status = IEEE80211_SKB_RXCB(skb); 2431 2432 /* 0-length PSDU */ 2433 rx_status->flag |= RX_FLAG_NO_PSDU; 2434 2435 switch (info_type) { 2436 case RX_NO_DATA_INFO_TYPE_NDP: 2437 rx_status->zero_length_psdu_type = 2438 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2439 break; 2440 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2441 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2442 rx_status->zero_length_psdu_type = 2443 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2444 break; 2445 default: 2446 rx_status->zero_length_psdu_type = 2447 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2448 break; 2449 } 2450 2451 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2452 NL80211_BAND_2GHZ; 2453 2454 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2455 2456 /* no more radio tap info should be put after this point. 2457 * 2458 * We mark it as mac header, for upper layers to know where 2459 * all radio tap header ends. 2460 */ 2461 skb_reset_mac_header(skb); 2462 2463 /* 2464 * Override the nss from the rx_vec since the rate_n_flags has 2465 * only 2 bits for the nss which gives a max of 4 ss but there 2466 * may be up to 8 spatial streams. 2467 */ 2468 switch (format) { 2469 case RATE_MCS_VHT_MSK: 2470 rx_status->nss = 2471 le32_get_bits(desc->rx_vec[0], 2472 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2473 break; 2474 case RATE_MCS_HE_MSK: 2475 rx_status->nss = 2476 le32_get_bits(desc->rx_vec[0], 2477 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2478 break; 2479 case RATE_MCS_EHT_MSK: 2480 rx_status->nss = 2481 le32_get_bits(desc->rx_vec[2], 2482 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2483 } 2484 2485 rcu_read_lock(); 2486 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2487 rcu_read_unlock(); 2488 } 2489 2490 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2491 struct iwl_rx_cmd_buffer *rxb, int queue) 2492 { 2493 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2494 struct iwl_frame_release *release = (void *)pkt->data; 2495 2496 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2497 return; 2498 2499 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2500 le16_to_cpu(release->nssn), 2501 queue); 2502 } 2503 2504 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2505 struct iwl_rx_cmd_buffer *rxb, int queue) 2506 { 2507 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2508 struct iwl_bar_frame_release *release = (void *)pkt->data; 2509 unsigned int baid = le32_get_bits(release->ba_info, 2510 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2511 unsigned int nssn = le32_get_bits(release->ba_info, 2512 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2513 unsigned int sta_id = le32_get_bits(release->sta_tid, 2514 IWL_BAR_FRAME_RELEASE_STA_MASK); 2515 unsigned int tid = le32_get_bits(release->sta_tid, 2516 IWL_BAR_FRAME_RELEASE_TID_MASK); 2517 struct iwl_mvm_baid_data *baid_data; 2518 2519 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2520 return; 2521 2522 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2523 baid >= ARRAY_SIZE(mvm->baid_map))) 2524 return; 2525 2526 rcu_read_lock(); 2527 baid_data = rcu_dereference(mvm->baid_map[baid]); 2528 if (!baid_data) { 2529 IWL_DEBUG_RX(mvm, 2530 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2531 baid); 2532 goto out; 2533 } 2534 2535 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2536 !(baid_data->sta_mask & BIT(sta_id)), 2537 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2538 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2539 tid)) 2540 goto out; 2541 2542 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", 2543 nssn); 2544 2545 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); 2546 out: 2547 rcu_read_unlock(); 2548 } 2549