xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision ccde82e909467abdf098a8ee6f63e1ecf9a47ce5)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2025 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->mac_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta)
240 {
241 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
242 		kfree_skb(skb);
243 		return;
244 	}
245 
246 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
247 }
248 
249 static bool iwl_mvm_used_average_energy(struct iwl_mvm *mvm,
250 					struct iwl_rx_mpdu_desc *desc,
251 					struct ieee80211_hdr *hdr,
252 					struct ieee80211_rx_status *rx_status)
253 {
254 	struct iwl_mvm_vif *mvm_vif;
255 	struct ieee80211_vif *vif;
256 	u32 id;
257 
258 	if (unlikely(!hdr || !desc))
259 		return false;
260 
261 	if (likely(!ieee80211_is_beacon(hdr->frame_control)))
262 		return false;
263 
264 	/* for the link conf lookup */
265 	guard(rcu)();
266 
267 	/* MAC or link ID depending on FW, but driver has them equal */
268 	id = u8_get_bits(desc->mac_phy_band,
269 			 IWL_RX_MPDU_MAC_PHY_BAND_MAC_MASK);
270 
271 	/* >= means AUX MAC/link ID, no energy correction needed then */
272 	if (id >= ARRAY_SIZE(mvm->vif_id_to_mac))
273 		return false;
274 
275 	vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, true);
276 	if (!vif)
277 		return false;
278 
279 	mvm_vif = iwl_mvm_vif_from_mac80211(vif);
280 
281 	/*
282 	 * If we know the MAC by MAC or link ID then the frame was
283 	 * received for the link, so by filtering it means it was
284 	 * from the AP the link is connected to.
285 	 */
286 
287 	/* skip also in case we don't have it (yet) */
288 	if (!mvm_vif->deflink.average_beacon_energy)
289 		return false;
290 
291 	IWL_DEBUG_STATS(mvm, "energy override by average %d\n",
292 			mvm_vif->deflink.average_beacon_energy);
293 	rx_status->signal = -mvm_vif->deflink.average_beacon_energy;
294 	return true;
295 }
296 
297 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
298 					struct iwl_rx_mpdu_desc *desc,
299 					struct ieee80211_hdr *hdr,
300 					struct ieee80211_rx_status *rx_status,
301 					u32 rate_n_flags, int energy_a,
302 					int energy_b)
303 {
304 	int max_energy;
305 
306 	energy_a = energy_a ? -energy_a : S8_MIN;
307 	energy_b = energy_b ? -energy_b : S8_MIN;
308 	max_energy = max(energy_a, energy_b);
309 
310 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
311 			energy_a, energy_b, max_energy);
312 
313 	if (iwl_mvm_used_average_energy(mvm, desc, hdr, rx_status))
314 		return;
315 
316 	rx_status->signal = max_energy;
317 	rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK);
318 	rx_status->chain_signal[0] = energy_a;
319 	rx_status->chain_signal[1] = energy_b;
320 }
321 
322 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
323 				struct ieee80211_hdr *hdr,
324 				struct iwl_rx_mpdu_desc *desc,
325 				u32 status,
326 				struct ieee80211_rx_status *stats)
327 {
328 	struct wireless_dev *wdev;
329 	struct iwl_mvm_sta *mvmsta;
330 	struct iwl_mvm_vif *mvmvif;
331 	u8 keyid;
332 	struct ieee80211_key_conf *key;
333 	u32 len = le16_to_cpu(desc->mpdu_len);
334 	const u8 *frame = (void *)hdr;
335 	const u8 *mmie;
336 
337 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
338 		return 0;
339 
340 	/*
341 	 * For non-beacon, we don't really care. But beacons may
342 	 * be filtered out, and we thus need the firmware's replay
343 	 * detection, otherwise beacons the firmware previously
344 	 * filtered could be replayed, or something like that, and
345 	 * it can filter a lot - though usually only if nothing has
346 	 * changed.
347 	 */
348 	if (!ieee80211_is_beacon(hdr->frame_control))
349 		return 0;
350 
351 	if (!sta)
352 		return -1;
353 
354 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
355 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
356 
357 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
358 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
359 		goto report;
360 
361 	/* good cases */
362 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
363 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
364 		stats->flag |= RX_FLAG_DECRYPTED;
365 		return 0;
366 	}
367 
368 	/*
369 	 * both keys will have the same cipher and MIC length, use
370 	 * whichever one is available
371 	 */
372 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
373 	if (!key) {
374 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
375 		if (!key)
376 			goto report;
377 	}
378 
379 	if (len < key->icv_len)
380 		goto report;
381 
382 	/* get the real key ID */
383 	mmie = frame + (len - key->icv_len);
384 
385 	/* the position of the key_id in ieee80211_mmie_16 is the same */
386 	keyid = le16_to_cpu(((const struct ieee80211_mmie *) mmie)->key_id);
387 
388 	/* and if that's the other key, look it up */
389 	if (keyid != key->keyidx) {
390 		/*
391 		 * shouldn't happen since firmware checked, but be safe
392 		 * in case the MIC length is wrong too, for example
393 		 */
394 		if (keyid != 6 && keyid != 7)
395 			return -1;
396 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
397 		if (!key)
398 			goto report;
399 	}
400 
401 	/* Report status to mac80211 */
402 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
403 		ieee80211_key_mic_failure(key);
404 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
405 		ieee80211_key_replay(key);
406 report:
407 	wdev = ieee80211_vif_to_wdev(mvmsta->vif);
408 	if (wdev->netdev)
409 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
410 
411 	return -1;
412 }
413 
414 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
415 			     struct ieee80211_hdr *hdr,
416 			     struct ieee80211_rx_status *stats, u16 phy_info,
417 			     struct iwl_rx_mpdu_desc *desc,
418 			     u32 pkt_flags, int queue, u8 *crypt_len)
419 {
420 	u32 status = le32_to_cpu(desc->status);
421 
422 	/*
423 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
424 	 * (where we don't have the keys).
425 	 * We limit this to aggregation because in TKIP this is a valid
426 	 * scenario, since we may not have the (correct) TTAK (phase 1
427 	 * key) in the firmware.
428 	 */
429 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
430 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
431 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
432 		IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
433 		return -1;
434 	}
435 
436 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
437 		     !ieee80211_has_protected(hdr->frame_control)))
438 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
439 
440 	if (!ieee80211_has_protected(hdr->frame_control) ||
441 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
442 	    IWL_RX_MPDU_STATUS_SEC_NONE)
443 		return 0;
444 
445 	/* TODO: handle packets encrypted with unknown alg */
446 
447 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
448 	case IWL_RX_MPDU_STATUS_SEC_CCM:
449 	case IWL_RX_MPDU_STATUS_SEC_GCM:
450 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
451 		/* alg is CCM: check MIC only */
452 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
453 			IWL_DEBUG_DROP(mvm,
454 				       "Dropping packet, bad MIC (CCM/GCM)\n");
455 			return -1;
456 		}
457 
458 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
459 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
460 		return 0;
461 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
462 		/* Don't drop the frame and decrypt it in SW */
463 		if (!fw_has_api(&mvm->fw->ucode_capa,
464 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
465 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
466 			return 0;
467 
468 		if (mvm->trans->mac_cfg->gen2 &&
469 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
470 			stats->flag |= RX_FLAG_MMIC_ERROR;
471 
472 		*crypt_len = IEEE80211_TKIP_IV_LEN;
473 		fallthrough;
474 	case IWL_RX_MPDU_STATUS_SEC_WEP:
475 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
476 			return -1;
477 
478 		stats->flag |= RX_FLAG_DECRYPTED;
479 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
480 				IWL_RX_MPDU_STATUS_SEC_WEP)
481 			*crypt_len = IEEE80211_WEP_IV_LEN;
482 
483 		if (pkt_flags & FH_RSCSR_RADA_EN) {
484 			stats->flag |= RX_FLAG_ICV_STRIPPED;
485 			if (mvm->trans->mac_cfg->gen2)
486 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
487 		}
488 
489 		return 0;
490 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
491 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
492 			return -1;
493 		stats->flag |= RX_FLAG_DECRYPTED;
494 		return 0;
495 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
496 		break;
497 	default:
498 		/*
499 		 * Sometimes we can get frames that were not decrypted
500 		 * because the firmware didn't have the keys yet. This can
501 		 * happen after connection where we can get multicast frames
502 		 * before the GTK is installed.
503 		 * Silently drop those frames.
504 		 * Also drop un-decrypted frames in monitor mode.
505 		 */
506 		if (!is_multicast_ether_addr(hdr->addr1) &&
507 		    !mvm->monitor_on && net_ratelimit())
508 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
509 	}
510 
511 	return 0;
512 }
513 
514 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
515 			    struct ieee80211_sta *sta,
516 			    struct sk_buff *skb,
517 			    struct iwl_rx_packet *pkt)
518 {
519 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
520 
521 	if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
522 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
523 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
524 
525 			skb->ip_summed = CHECKSUM_COMPLETE;
526 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
527 		}
528 	} else {
529 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
530 		struct iwl_mvm_vif *mvmvif;
531 		u16 flags = le16_to_cpu(desc->l3l4_flags);
532 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
533 				  IWL_RX_L3_PROTO_POS);
534 
535 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
536 
537 		if (mvmvif->features & NETIF_F_RXCSUM &&
538 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
539 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
540 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
541 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
542 			skb->ip_summed = CHECKSUM_UNNECESSARY;
543 	}
544 }
545 
546 /*
547  * returns true if a packet is a duplicate or invalid tid and should be dropped.
548  * Updates AMSDU PN tracking info
549  */
550 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
551 			   struct ieee80211_rx_status *rx_status,
552 			   struct ieee80211_hdr *hdr,
553 			   struct iwl_rx_mpdu_desc *desc)
554 {
555 	struct iwl_mvm_sta *mvm_sta;
556 	struct iwl_mvm_rxq_dup_data *dup_data;
557 	u8 tid, sub_frame_idx;
558 
559 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
560 		return false;
561 
562 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
563 
564 	if (WARN_ON_ONCE(!mvm_sta->dup_data))
565 		return false;
566 
567 	dup_data = &mvm_sta->dup_data[queue];
568 
569 	/*
570 	 * Drop duplicate 802.11 retransmissions
571 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
572 	 */
573 	if (ieee80211_is_ctl(hdr->frame_control) ||
574 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
575 	    is_multicast_ether_addr(hdr->addr1))
576 		return false;
577 
578 	if (ieee80211_is_data_qos(hdr->frame_control)) {
579 		/* frame has qos control */
580 		tid = ieee80211_get_tid(hdr);
581 		if (tid >= IWL_MAX_TID_COUNT)
582 			return true;
583 	} else {
584 		tid = IWL_MAX_TID_COUNT;
585 	}
586 
587 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
588 	sub_frame_idx = desc->amsdu_info &
589 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
590 
591 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
592 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
593 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
594 		return true;
595 
596 	/* Allow same PN as the first subframe for following sub frames */
597 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
598 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
599 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
600 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
601 
602 	dup_data->last_seq[tid] = hdr->seq_ctrl;
603 	dup_data->last_sub_frame[tid] = sub_frame_idx;
604 
605 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
606 
607 	return false;
608 }
609 
610 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
611 				   struct ieee80211_sta *sta,
612 				   struct napi_struct *napi,
613 				   struct iwl_mvm_baid_data *baid_data,
614 				   struct iwl_mvm_reorder_buffer *reorder_buf,
615 				   u16 nssn)
616 {
617 	struct iwl_mvm_reorder_buf_entry *entries =
618 		&baid_data->entries[reorder_buf->queue *
619 				    baid_data->entries_per_queue];
620 	u16 ssn = reorder_buf->head_sn;
621 
622 	lockdep_assert_held(&reorder_buf->lock);
623 
624 	while (ieee80211_sn_less(ssn, nssn)) {
625 		int index = ssn % baid_data->buf_size;
626 		struct sk_buff_head *skb_list = &entries[index].frames;
627 		struct sk_buff *skb;
628 
629 		ssn = ieee80211_sn_inc(ssn);
630 
631 		/*
632 		 * Empty the list. Will have more than one frame for A-MSDU.
633 		 * Empty list is valid as well since nssn indicates frames were
634 		 * received.
635 		 */
636 		while ((skb = __skb_dequeue(skb_list))) {
637 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
638 							reorder_buf->queue,
639 							sta);
640 			reorder_buf->num_stored--;
641 		}
642 	}
643 	reorder_buf->head_sn = nssn;
644 }
645 
646 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
647 			   struct iwl_mvm_delba_data *data)
648 {
649 	struct iwl_mvm_baid_data *ba_data;
650 	struct ieee80211_sta *sta;
651 	struct iwl_mvm_reorder_buffer *reorder_buf;
652 	u8 baid = data->baid;
653 	u32 sta_id;
654 
655 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
656 		return;
657 
658 	rcu_read_lock();
659 
660 	ba_data = rcu_dereference(mvm->baid_map[baid]);
661 	if (WARN_ON_ONCE(!ba_data))
662 		goto out;
663 
664 	/* pick any STA ID to find the pointer */
665 	sta_id = ffs(ba_data->sta_mask) - 1;
666 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
667 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
668 		goto out;
669 
670 	reorder_buf = &ba_data->reorder_buf[queue];
671 
672 	/* release all frames that are in the reorder buffer to the stack */
673 	spin_lock_bh(&reorder_buf->lock);
674 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
675 			       ieee80211_sn_add(reorder_buf->head_sn,
676 						ba_data->buf_size));
677 	spin_unlock_bh(&reorder_buf->lock);
678 
679 out:
680 	rcu_read_unlock();
681 }
682 
683 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
684 					      struct napi_struct *napi,
685 					      u8 baid, u16 nssn, int queue)
686 {
687 	struct ieee80211_sta *sta;
688 	struct iwl_mvm_reorder_buffer *reorder_buf;
689 	struct iwl_mvm_baid_data *ba_data;
690 	u32 sta_id;
691 
692 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
693 		     baid, nssn);
694 
695 	if (IWL_FW_CHECK(mvm,
696 			 baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
697 			 baid >= ARRAY_SIZE(mvm->baid_map),
698 			 "invalid BAID from FW: %d\n", baid))
699 		return;
700 
701 	rcu_read_lock();
702 
703 	ba_data = rcu_dereference(mvm->baid_map[baid]);
704 	if (!ba_data) {
705 		IWL_DEBUG_RX(mvm,
706 			     "Got valid BAID %d but not allocated, invalid frame release!\n",
707 			     baid);
708 		goto out;
709 	}
710 
711 	/* pick any STA ID to find the pointer */
712 	sta_id = ffs(ba_data->sta_mask) - 1;
713 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
714 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
715 		goto out;
716 
717 	reorder_buf = &ba_data->reorder_buf[queue];
718 
719 	spin_lock_bh(&reorder_buf->lock);
720 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
721 			       reorder_buf, nssn);
722 	spin_unlock_bh(&reorder_buf->lock);
723 
724 out:
725 	rcu_read_unlock();
726 }
727 
728 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
729 			    struct iwl_rx_cmd_buffer *rxb, int queue)
730 {
731 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
732 	struct iwl_rxq_sync_notification *notif;
733 	struct iwl_mvm_internal_rxq_notif *internal_notif;
734 	u32 len = iwl_rx_packet_payload_len(pkt);
735 
736 	notif = (void *)pkt->data;
737 	internal_notif = (void *)notif->payload;
738 
739 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
740 		      "invalid notification size %d (%d)",
741 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
742 		return;
743 	len -= sizeof(*notif) + sizeof(*internal_notif);
744 
745 	if (WARN_ONCE(internal_notif->sync &&
746 		      mvm->queue_sync_cookie != internal_notif->cookie,
747 		      "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n",
748 		      internal_notif->cookie, mvm->queue_sync_cookie, queue))
749 		return;
750 
751 	switch (internal_notif->type) {
752 	case IWL_MVM_RXQ_EMPTY:
753 		WARN_ONCE(len, "invalid empty notification size %d", len);
754 		break;
755 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
756 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
757 			      "invalid delba notification size %d (%d)",
758 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
759 			break;
760 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
761 		break;
762 	default:
763 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
764 	}
765 
766 	if (internal_notif->sync) {
767 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
768 			  "queue sync: queue %d responded a second time!\n",
769 			  queue);
770 		if (READ_ONCE(mvm->queue_sync_state) == 0)
771 			wake_up(&mvm->rx_sync_waitq);
772 	}
773 }
774 
775 /*
776  * Returns true if the MPDU was buffered\dropped, false if it should be passed
777  * to upper layer.
778  */
779 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
780 			    struct napi_struct *napi,
781 			    int queue,
782 			    struct ieee80211_sta *sta,
783 			    struct sk_buff *skb,
784 			    struct iwl_rx_mpdu_desc *desc)
785 {
786 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
787 	struct iwl_mvm_baid_data *baid_data;
788 	struct iwl_mvm_reorder_buffer *buffer;
789 	u32 reorder = le32_to_cpu(desc->reorder_data);
790 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
791 	bool last_subframe =
792 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
793 	u8 tid = ieee80211_get_tid(hdr);
794 	struct iwl_mvm_reorder_buf_entry *entries;
795 	u32 sta_mask;
796 	int index;
797 	u16 nssn, sn;
798 	u8 baid;
799 
800 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
801 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
802 
803 	if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000)
804 		return false;
805 
806 	/*
807 	 * This also covers the case of receiving a Block Ack Request
808 	 * outside a BA session; we'll pass it to mac80211 and that
809 	 * then sends a delBA action frame.
810 	 * This also covers pure monitor mode, in which case we won't
811 	 * have any BA sessions.
812 	 */
813 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
814 		return false;
815 
816 	/* no sta yet */
817 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
818 		      "Got valid BAID without a valid station assigned\n"))
819 		return false;
820 
821 	/* not a data packet or a bar */
822 	if (!ieee80211_is_back_req(hdr->frame_control) &&
823 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
824 	     is_multicast_ether_addr(hdr->addr1)))
825 		return false;
826 
827 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
828 		return false;
829 
830 	baid_data = rcu_dereference(mvm->baid_map[baid]);
831 	if (!baid_data) {
832 		IWL_DEBUG_RX(mvm,
833 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
834 			      baid, reorder);
835 		return false;
836 	}
837 
838 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
839 
840 	if (IWL_FW_CHECK(mvm,
841 			 tid != baid_data->tid ||
842 			 !(sta_mask & baid_data->sta_mask),
843 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
844 			 baid, baid_data->sta_mask, baid_data->tid,
845 			 sta_mask, tid))
846 		return false;
847 
848 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
849 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
850 		IWL_RX_MPDU_REORDER_SN_SHIFT;
851 
852 	buffer = &baid_data->reorder_buf[queue];
853 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
854 
855 	spin_lock_bh(&buffer->lock);
856 
857 	if (!buffer->valid) {
858 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
859 			spin_unlock_bh(&buffer->lock);
860 			return false;
861 		}
862 		buffer->valid = true;
863 	}
864 
865 	/* drop any duplicated packets */
866 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
867 		goto drop;
868 
869 	/* drop any oudated packets */
870 	if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
871 		goto drop;
872 
873 	/* release immediately if allowed by nssn and no stored frames */
874 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
875 		if (!amsdu || last_subframe)
876 			buffer->head_sn = nssn;
877 
878 		spin_unlock_bh(&buffer->lock);
879 		return false;
880 	}
881 
882 	/*
883 	 * release immediately if there are no stored frames, and the sn is
884 	 * equal to the head.
885 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
886 	 * When we released everything, and we got the next frame in the
887 	 * sequence, according to the NSSN we can't release immediately,
888 	 * while technically there is no hole and we can move forward.
889 	 */
890 	if (!buffer->num_stored && sn == buffer->head_sn) {
891 		if (!amsdu || last_subframe)
892 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
893 
894 		spin_unlock_bh(&buffer->lock);
895 		return false;
896 	}
897 
898 	/* put in reorder buffer */
899 	index = sn % baid_data->buf_size;
900 	__skb_queue_tail(&entries[index].frames, skb);
901 	buffer->num_stored++;
902 
903 	/*
904 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
905 	 * The reason is that NSSN advances on the first sub-frame, and may
906 	 * cause the reorder buffer to advance before all the sub-frames arrive.
907 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
908 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
909 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
910 	 * already ahead and it will be dropped.
911 	 * If the last sub-frame is not on this queue - we will get frame
912 	 * release notification with up to date NSSN.
913 	 * If this is the first frame that is stored in the buffer, the head_sn
914 	 * may be outdated. Update it based on the last NSSN to make sure it
915 	 * will be released when the frame release notification arrives.
916 	 */
917 	if (!amsdu || last_subframe)
918 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
919 				       buffer, nssn);
920 	else if (buffer->num_stored == 1)
921 		buffer->head_sn = nssn;
922 
923 	spin_unlock_bh(&buffer->lock);
924 	return true;
925 
926 drop:
927 	kfree_skb(skb);
928 	spin_unlock_bh(&buffer->lock);
929 	return true;
930 }
931 
932 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
933 				    u32 reorder_data, u8 baid)
934 {
935 	unsigned long now = jiffies;
936 	unsigned long timeout;
937 	struct iwl_mvm_baid_data *data;
938 
939 	rcu_read_lock();
940 
941 	data = rcu_dereference(mvm->baid_map[baid]);
942 	if (!data) {
943 		IWL_DEBUG_RX(mvm,
944 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
945 			      baid, reorder_data);
946 		goto out;
947 	}
948 
949 	if (!data->timeout)
950 		goto out;
951 
952 	timeout = data->timeout;
953 	/*
954 	 * Do not update last rx all the time to avoid cache bouncing
955 	 * between the rx queues.
956 	 * Update it every timeout. Worst case is the session will
957 	 * expire after ~ 2 * timeout, which doesn't matter that much.
958 	 */
959 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
960 		/* Update is atomic */
961 		data->last_rx = now;
962 
963 out:
964 	rcu_read_unlock();
965 }
966 
967 static void iwl_mvm_flip_address(u8 *addr)
968 {
969 	int i;
970 	u8 mac_addr[ETH_ALEN];
971 
972 	for (i = 0; i < ETH_ALEN; i++)
973 		mac_addr[i] = addr[ETH_ALEN - i - 1];
974 	ether_addr_copy(addr, mac_addr);
975 }
976 
977 struct iwl_mvm_rx_phy_data {
978 	enum iwl_rx_phy_info_type info_type;
979 	__le32 d0, d1, d2, d3, eht_d4, d5;
980 	__le16 d4;
981 	bool with_data;
982 	bool first_subframe;
983 	__le32 rx_vec[4];
984 
985 	u32 rate_n_flags;
986 	u32 gp2_on_air_rise;
987 	u16 phy_info;
988 	u8 energy_a, energy_b;
989 	u8 channel;
990 };
991 
992 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
993 				     struct iwl_mvm_rx_phy_data *phy_data,
994 				     struct ieee80211_radiotap_he_mu *he_mu)
995 {
996 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
997 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
998 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
999 	u32 rate_n_flags = phy_data->rate_n_flags;
1000 
1001 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1002 		he_mu->flags1 |=
1003 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1004 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1005 
1006 		he_mu->flags1 |=
1007 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1008 						   phy_data4),
1009 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1010 
1011 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1012 					     phy_data2);
1013 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1014 					     phy_data3);
1015 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1016 					     phy_data2);
1017 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1018 					     phy_data3);
1019 	}
1020 
1021 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1022 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1023 		he_mu->flags1 |=
1024 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1025 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1026 
1027 		he_mu->flags2 |=
1028 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1029 						   phy_data4),
1030 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1031 
1032 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1033 					     phy_data2);
1034 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1035 					     phy_data3);
1036 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1037 					     phy_data2);
1038 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1039 					     phy_data3);
1040 	}
1041 }
1042 
1043 static void
1044 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1045 			       struct ieee80211_radiotap_he *he,
1046 			       struct ieee80211_radiotap_he_mu *he_mu,
1047 			       struct ieee80211_rx_status *rx_status)
1048 {
1049 	/*
1050 	 * Unfortunately, we have to leave the mac80211 data
1051 	 * incorrect for the case that we receive an HE-MU
1052 	 * transmission and *don't* have the HE phy data (due
1053 	 * to the bits being used for TSF). This shouldn't
1054 	 * happen though as management frames where we need
1055 	 * the TSF/timers are not be transmitted in HE-MU.
1056 	 */
1057 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1058 	u32 rate_n_flags = phy_data->rate_n_flags;
1059 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1060 	u8 offs = 0;
1061 
1062 	rx_status->bw = RATE_INFO_BW_HE_RU;
1063 
1064 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1065 
1066 	switch (ru) {
1067 	case 0 ... 36:
1068 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1069 		offs = ru;
1070 		break;
1071 	case 37 ... 52:
1072 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1073 		offs = ru - 37;
1074 		break;
1075 	case 53 ... 60:
1076 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1077 		offs = ru - 53;
1078 		break;
1079 	case 61 ... 64:
1080 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1081 		offs = ru - 61;
1082 		break;
1083 	case 65 ... 66:
1084 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1085 		offs = ru - 65;
1086 		break;
1087 	case 67:
1088 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1089 		break;
1090 	case 68:
1091 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1092 		break;
1093 	}
1094 	he->data2 |= le16_encode_bits(offs,
1095 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1096 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1097 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1098 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1099 		he->data2 |=
1100 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1101 
1102 #define CHECK_BW(bw) \
1103 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1104 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1105 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1106 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1107 	CHECK_BW(20);
1108 	CHECK_BW(40);
1109 	CHECK_BW(80);
1110 	CHECK_BW(160);
1111 
1112 	if (he_mu)
1113 		he_mu->flags2 |=
1114 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1115 						   rate_n_flags),
1116 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1117 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1118 		he->data6 |=
1119 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1120 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1121 						   rate_n_flags),
1122 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1123 }
1124 
1125 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1126 				       struct iwl_mvm_rx_phy_data *phy_data,
1127 				       struct ieee80211_radiotap_he *he,
1128 				       struct ieee80211_radiotap_he_mu *he_mu,
1129 				       struct ieee80211_rx_status *rx_status,
1130 				       int queue)
1131 {
1132 	switch (phy_data->info_type) {
1133 	case IWL_RX_PHY_INFO_TYPE_NONE:
1134 	case IWL_RX_PHY_INFO_TYPE_CCK:
1135 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1136 	case IWL_RX_PHY_INFO_TYPE_HT:
1137 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1138 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1139 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1140 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1141 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1142 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1143 		return;
1144 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1145 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1146 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1147 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1148 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1149 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1150 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1151 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1152 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1153 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1154 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1155 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1156 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1157 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1158 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1159 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1160 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1161 		fallthrough;
1162 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1163 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1164 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1165 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1166 		/* HE common */
1167 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1168 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1169 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1170 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1171 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1172 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1173 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1174 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1175 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1176 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1177 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1178 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1179 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1180 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1181 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1182 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1183 		}
1184 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1185 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1186 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1187 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1188 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1189 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1190 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1191 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1192 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1193 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1194 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1195 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1196 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1197 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1198 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1199 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1200 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1201 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1202 		break;
1203 	}
1204 
1205 	switch (phy_data->info_type) {
1206 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1207 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1208 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1209 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1210 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1211 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1212 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1213 		break;
1214 	default:
1215 		/* nothing here */
1216 		break;
1217 	}
1218 
1219 	switch (phy_data->info_type) {
1220 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1221 		he_mu->flags1 |=
1222 			le16_encode_bits(le16_get_bits(phy_data->d4,
1223 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1224 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1225 		he_mu->flags1 |=
1226 			le16_encode_bits(le16_get_bits(phy_data->d4,
1227 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1228 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1229 		he_mu->flags2 |=
1230 			le16_encode_bits(le16_get_bits(phy_data->d4,
1231 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1232 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1233 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1234 		fallthrough;
1235 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1236 		he_mu->flags2 |=
1237 			le16_encode_bits(le32_get_bits(phy_data->d1,
1238 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1239 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1240 		he_mu->flags2 |=
1241 			le16_encode_bits(le32_get_bits(phy_data->d1,
1242 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1243 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1244 		fallthrough;
1245 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1246 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1247 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1248 		break;
1249 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1250 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1251 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1252 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1253 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1254 		break;
1255 	default:
1256 		/* nothing */
1257 		break;
1258 	}
1259 }
1260 
1261 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1262 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1263 
1264 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1265 	typeof(enc_bits) _enc_bits = enc_bits; \
1266 	typeof(usig) _usig = usig; \
1267 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1268 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1269 } while (0)
1270 
1271 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1272 	eht->data[(rt_data)] |= \
1273 		(cpu_to_le32 \
1274 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1275 		 LE32_DEC_ENC(data ## fw_data, \
1276 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1277 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1278 
1279 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1280 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1281 
1282 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1283 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1284 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1285 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1286 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1287 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1288 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1289 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1290 
1291 #define IWL_RX_RU_DATA_A1			2
1292 #define IWL_RX_RU_DATA_A2			2
1293 #define IWL_RX_RU_DATA_B1			2
1294 #define IWL_RX_RU_DATA_B2			4
1295 #define IWL_RX_RU_DATA_C1			3
1296 #define IWL_RX_RU_DATA_C2			3
1297 #define IWL_RX_RU_DATA_D1			4
1298 #define IWL_RX_RU_DATA_D2			4
1299 
1300 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1301 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1302 			    rt_ru,					\
1303 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1304 			    fw_ru)
1305 
1306 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1307 				      struct iwl_mvm_rx_phy_data *phy_data,
1308 				      struct ieee80211_rx_status *rx_status,
1309 				      struct ieee80211_radiotap_eht *eht,
1310 				      struct ieee80211_radiotap_eht_usig *usig)
1311 {
1312 	if (phy_data->with_data) {
1313 		__le32 data1 = phy_data->d1;
1314 		__le32 data2 = phy_data->d2;
1315 		__le32 data3 = phy_data->d3;
1316 		__le32 data4 = phy_data->eht_d4;
1317 		__le32 data5 = phy_data->d5;
1318 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1319 
1320 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1321 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1322 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1323 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1324 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1325 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1326 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1327 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1328 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1329 		IWL_MVM_ENC_USIG_VALUE_MASK
1330 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1331 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1332 
1333 		eht->user_info[0] |=
1334 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1335 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1336 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1337 
1338 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1339 		eht->data[7] |= LE32_DEC_ENC
1340 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1341 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1342 
1343 		/*
1344 		 * Hardware labels the content channels/RU allocation values
1345 		 * as follows:
1346 		 *           Content Channel 1		Content Channel 2
1347 		 *   20 MHz: A1
1348 		 *   40 MHz: A1				B1
1349 		 *   80 MHz: A1 C1			B1 D1
1350 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1351 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1352 		 *
1353 		 * However firmware can only give us A1-D2, so the higher
1354 		 * frequencies are missing.
1355 		 */
1356 
1357 		switch (phy_bw) {
1358 		case RATE_MCS_CHAN_WIDTH_320:
1359 			/* additional values are missing in RX metadata */
1360 		case RATE_MCS_CHAN_WIDTH_160:
1361 			/* content channel 1 */
1362 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1363 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1364 			/* content channel 2 */
1365 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1366 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1367 			fallthrough;
1368 		case RATE_MCS_CHAN_WIDTH_80:
1369 			/* content channel 1 */
1370 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1371 			/* content channel 2 */
1372 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1373 			fallthrough;
1374 		case RATE_MCS_CHAN_WIDTH_40:
1375 			/* content channel 2 */
1376 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1377 			fallthrough;
1378 		case RATE_MCS_CHAN_WIDTH_20:
1379 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1380 			break;
1381 		}
1382 	} else {
1383 		__le32 usig_a1 = phy_data->rx_vec[0];
1384 		__le32 usig_a2 = phy_data->rx_vec[1];
1385 
1386 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1387 					    IWL_RX_USIG_A1_DISREGARD,
1388 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1389 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1390 					    IWL_RX_USIG_A1_VALIDATE,
1391 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1392 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1393 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1394 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1395 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1396 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1397 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1398 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1399 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1400 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1401 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1402 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1403 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1404 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1405 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1406 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1407 		IWL_MVM_ENC_USIG_VALUE_MASK
1408 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1409 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1410 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1411 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1412 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1413 	}
1414 }
1415 
1416 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1417 				      struct iwl_mvm_rx_phy_data *phy_data,
1418 				      struct ieee80211_rx_status *rx_status,
1419 				      struct ieee80211_radiotap_eht *eht,
1420 				      struct ieee80211_radiotap_eht_usig *usig)
1421 {
1422 	if (phy_data->with_data) {
1423 		__le32 data5 = phy_data->d5;
1424 
1425 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1426 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1427 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1428 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1429 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1430 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1431 
1432 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1433 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1434 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1435 	} else {
1436 		__le32 usig_a1 = phy_data->rx_vec[0];
1437 		__le32 usig_a2 = phy_data->rx_vec[1];
1438 
1439 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1440 					    IWL_RX_USIG_A1_DISREGARD,
1441 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1442 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1443 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1444 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1445 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1446 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1447 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1448 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1449 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1450 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1451 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1452 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1453 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1454 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1455 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1456 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1457 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1458 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1459 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1460 	}
1461 }
1462 
1463 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1464 				  struct ieee80211_rx_status *rx_status,
1465 				  struct ieee80211_radiotap_eht *eht)
1466 {
1467 	u32 ru = le32_get_bits(eht->data[8],
1468 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1469 	enum nl80211_eht_ru_alloc nl_ru;
1470 
1471 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1472 	 * in an EHT variant User Info field
1473 	 */
1474 
1475 	switch (ru) {
1476 	case 0 ... 36:
1477 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1478 		break;
1479 	case 37 ... 52:
1480 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1481 		break;
1482 	case 53 ... 60:
1483 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1484 		break;
1485 	case 61 ... 64:
1486 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1487 		break;
1488 	case 65 ... 66:
1489 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1490 		break;
1491 	case 67:
1492 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1493 		break;
1494 	case 68:
1495 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1496 		break;
1497 	case 69:
1498 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1499 		break;
1500 	case 70 ... 81:
1501 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1502 		break;
1503 	case 82 ... 89:
1504 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1505 		break;
1506 	case 90 ... 93:
1507 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1508 		break;
1509 	case 94 ... 95:
1510 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1511 		break;
1512 	case 96 ... 99:
1513 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1514 		break;
1515 	case 100 ... 103:
1516 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1517 		break;
1518 	case 104:
1519 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1520 		break;
1521 	case 105 ... 106:
1522 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1523 		break;
1524 	default:
1525 		return;
1526 	}
1527 
1528 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1529 	rx_status->eht.ru = nl_ru;
1530 }
1531 
1532 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1533 					struct iwl_mvm_rx_phy_data *phy_data,
1534 					struct ieee80211_rx_status *rx_status,
1535 					struct ieee80211_radiotap_eht *eht,
1536 					struct ieee80211_radiotap_eht_usig *usig)
1537 
1538 {
1539 	__le32 data0 = phy_data->d0;
1540 	__le32 data1 = phy_data->d1;
1541 	__le32 usig_a1 = phy_data->rx_vec[0];
1542 	u8 info_type = phy_data->info_type;
1543 
1544 	/* Not in EHT range */
1545 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1546 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1547 		return;
1548 
1549 	usig->common |= cpu_to_le32
1550 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1551 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1552 	if (phy_data->with_data) {
1553 		usig->common |= LE32_DEC_ENC(data0,
1554 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1555 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1556 		usig->common |= LE32_DEC_ENC(data0,
1557 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1558 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1559 	} else {
1560 		usig->common |= LE32_DEC_ENC(usig_a1,
1561 					     IWL_RX_USIG_A1_UL_FLAG,
1562 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1563 		usig->common |= LE32_DEC_ENC(usig_a1,
1564 					     IWL_RX_USIG_A1_BSS_COLOR,
1565 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1566 	}
1567 
1568 	if (fw_has_capa(&mvm->fw->ucode_capa,
1569 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1570 		usig->common |=
1571 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1572 		usig->common |=
1573 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1574 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1575 	}
1576 
1577 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1578 	eht->data[0] |= LE32_DEC_ENC(data0,
1579 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1580 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1581 
1582 	/* All RU allocating size/index is in TB format */
1583 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1584 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1585 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1586 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1587 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1588 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1589 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1590 
1591 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1592 
1593 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1594 	 * which is on only in case of monitor mode so no need to check monitor
1595 	 * mode
1596 	 */
1597 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1598 	eht->data[1] |=
1599 		le32_encode_bits(mvm->monitor_p80,
1600 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1601 
1602 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1603 	if (phy_data->with_data)
1604 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1605 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1606 	else
1607 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1608 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1609 
1610 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1611 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1612 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1613 
1614 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1615 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1616 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1617 
1618 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1619 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1620 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1621 
1622 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1623 
1624 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1625 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1626 
1627 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1628 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1629 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1630 
1631 	/*
1632 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1633 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1634 	 */
1635 
1636 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1637 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1638 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1639 
1640 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1641 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1642 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1643 
1644 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1645 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1646 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1647 }
1648 
1649 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1650 			   struct iwl_mvm_rx_phy_data *phy_data,
1651 			   int queue)
1652 {
1653 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1654 
1655 	struct ieee80211_radiotap_eht *eht;
1656 	struct ieee80211_radiotap_eht_usig *usig;
1657 	size_t eht_len = sizeof(*eht);
1658 
1659 	u32 rate_n_flags = phy_data->rate_n_flags;
1660 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1661 	/* EHT and HE have the same valus for LTF */
1662 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1663 	u16 phy_info = phy_data->phy_info;
1664 	u32 bw;
1665 
1666 	/* u32 for 1 user_info */
1667 	if (phy_data->with_data)
1668 		eht_len += sizeof(u32);
1669 
1670 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1671 
1672 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1673 					sizeof(*usig));
1674 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1675 	usig->common |=
1676 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1677 
1678 	/* specific handling for 320MHz */
1679 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1680 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1681 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1682 				le32_to_cpu(phy_data->d0));
1683 
1684 	usig->common |= cpu_to_le32
1685 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1686 
1687 	/* report the AMPDU-EOF bit on single frames */
1688 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1689 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1690 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1691 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1692 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1693 	}
1694 
1695 	/* update aggregation data for monitor sake on default queue */
1696 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1697 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1698 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1699 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1700 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1701 	}
1702 
1703 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1704 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1705 
1706 #define CHECK_TYPE(F)							\
1707 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1708 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1709 
1710 	CHECK_TYPE(SU);
1711 	CHECK_TYPE(EXT_SU);
1712 	CHECK_TYPE(MU);
1713 	CHECK_TYPE(TRIG);
1714 
1715 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1716 	case 0:
1717 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1718 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1719 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1720 		} else {
1721 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1722 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1723 		}
1724 		break;
1725 	case 1:
1726 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1727 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1728 		break;
1729 	case 2:
1730 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1731 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1732 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1733 		else
1734 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1735 		break;
1736 	case 3:
1737 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1738 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1739 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1740 		}
1741 		break;
1742 	default:
1743 		/* nothing here */
1744 		break;
1745 	}
1746 
1747 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1748 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1749 		eht->data[0] |= cpu_to_le32
1750 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1751 				    ltf) |
1752 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1753 				    rx_status->eht.gi));
1754 	}
1755 
1756 
1757 	if (!phy_data->with_data) {
1758 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1759 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1760 		eht->data[7] |=
1761 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1762 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1763 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1764 		if (rate_n_flags & RATE_MCS_BF_MSK)
1765 			eht->data[7] |=
1766 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1767 	} else {
1768 		eht->user_info[0] |=
1769 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1770 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1771 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1772 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1773 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1774 
1775 		if (rate_n_flags & RATE_MCS_BF_MSK)
1776 			eht->user_info[0] |=
1777 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1778 
1779 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1780 			eht->user_info[0] |=
1781 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1782 
1783 		eht->user_info[0] |= cpu_to_le32
1784 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1785 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1786 					      rate_n_flags)) |
1787 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1788 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1789 	}
1790 }
1791 
1792 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1793 			  struct iwl_mvm_rx_phy_data *phy_data,
1794 			  int queue)
1795 {
1796 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1797 	struct ieee80211_radiotap_he *he = NULL;
1798 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1799 	u32 rate_n_flags = phy_data->rate_n_flags;
1800 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1801 	u8 ltf;
1802 	static const struct ieee80211_radiotap_he known = {
1803 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1804 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1805 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1806 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1807 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1808 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1809 	};
1810 	static const struct ieee80211_radiotap_he_mu mu_known = {
1811 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1812 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1813 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1814 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1815 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1816 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1817 	};
1818 	u16 phy_info = phy_data->phy_info;
1819 
1820 	he = skb_put_data(skb, &known, sizeof(known));
1821 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1822 
1823 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1824 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1825 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1826 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1827 	}
1828 
1829 	/* report the AMPDU-EOF bit on single frames */
1830 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1831 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1832 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1833 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1834 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1835 	}
1836 
1837 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1838 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1839 					   queue);
1840 
1841 	/* update aggregation data for monitor sake on default queue */
1842 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1843 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1844 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1845 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1846 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1847 	}
1848 
1849 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1850 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1851 		rx_status->bw = RATE_INFO_BW_HE_RU;
1852 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1853 	}
1854 
1855 	/* actually data is filled in mac80211 */
1856 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1857 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1858 		he->data1 |=
1859 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1860 
1861 #define CHECK_TYPE(F)							\
1862 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1863 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1864 
1865 	CHECK_TYPE(SU);
1866 	CHECK_TYPE(EXT_SU);
1867 	CHECK_TYPE(MU);
1868 	CHECK_TYPE(TRIG);
1869 
1870 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1871 
1872 	if (rate_n_flags & RATE_MCS_BF_MSK)
1873 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1874 
1875 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1876 		RATE_MCS_HE_GI_LTF_POS) {
1877 	case 0:
1878 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1879 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1880 		else
1881 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1882 		if (he_type == RATE_MCS_HE_TYPE_MU)
1883 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1884 		else
1885 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1886 		break;
1887 	case 1:
1888 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1889 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1890 		else
1891 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1892 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1893 		break;
1894 	case 2:
1895 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1896 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1897 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1898 		} else {
1899 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1900 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1901 		}
1902 		break;
1903 	case 3:
1904 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1905 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1906 		break;
1907 	case 4:
1908 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1909 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1910 		break;
1911 	default:
1912 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1913 	}
1914 
1915 	he->data5 |= le16_encode_bits(ltf,
1916 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1917 }
1918 
1919 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1920 				struct iwl_mvm_rx_phy_data *phy_data)
1921 {
1922 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1923 	struct ieee80211_radiotap_lsig *lsig;
1924 
1925 	switch (phy_data->info_type) {
1926 	case IWL_RX_PHY_INFO_TYPE_HT:
1927 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1928 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1929 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1930 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1931 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1932 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1933 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1934 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1935 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1936 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1937 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1938 		lsig = skb_put(skb, sizeof(*lsig));
1939 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1940 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1941 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1942 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1943 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1944 		break;
1945 	default:
1946 		break;
1947 	}
1948 }
1949 
1950 struct iwl_rx_sta_csa {
1951 	bool all_sta_unblocked;
1952 	struct ieee80211_vif *vif;
1953 };
1954 
1955 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1956 {
1957 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1958 	struct iwl_rx_sta_csa *rx_sta_csa = data;
1959 
1960 	if (mvmsta->vif != rx_sta_csa->vif)
1961 		return;
1962 
1963 	if (mvmsta->disable_tx)
1964 		rx_sta_csa->all_sta_unblocked = false;
1965 }
1966 
1967 /*
1968  * Note: requires also rx_status->band to be prefilled, as well
1969  * as phy_data (apart from phy_data->info_type)
1970  * Note: desc/hdr may be NULL
1971  */
1972 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1973 				   struct iwl_rx_mpdu_desc *desc,
1974 				   struct ieee80211_hdr *hdr,
1975 				   struct sk_buff *skb,
1976 				   struct iwl_mvm_rx_phy_data *phy_data,
1977 				   int queue)
1978 {
1979 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1980 	u32 rate_n_flags = phy_data->rate_n_flags;
1981 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1982 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1983 	bool is_sgi;
1984 
1985 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1986 
1987 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1988 		phy_data->info_type =
1989 			le32_get_bits(phy_data->d1,
1990 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1991 
1992 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1993 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1994 	case RATE_MCS_CHAN_WIDTH_20:
1995 		break;
1996 	case RATE_MCS_CHAN_WIDTH_40:
1997 		rx_status->bw = RATE_INFO_BW_40;
1998 		break;
1999 	case RATE_MCS_CHAN_WIDTH_80:
2000 		rx_status->bw = RATE_INFO_BW_80;
2001 		break;
2002 	case RATE_MCS_CHAN_WIDTH_160:
2003 		rx_status->bw = RATE_INFO_BW_160;
2004 		break;
2005 	case RATE_MCS_CHAN_WIDTH_320:
2006 		rx_status->bw = RATE_INFO_BW_320;
2007 		break;
2008 	}
2009 
2010 	/* must be before L-SIG data */
2011 	if (format == RATE_MCS_MOD_TYPE_HE)
2012 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2013 
2014 	iwl_mvm_decode_lsig(skb, phy_data);
2015 
2016 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2017 
2018 	if (mvm->rx_ts_ptp && mvm->monitor_on) {
2019 		u64 adj_time =
2020 			iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC);
2021 
2022 		rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
2023 		rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
2024 		rx_status->flag &= ~RX_FLAG_MACTIME;
2025 	}
2026 
2027 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2028 							 rx_status->band);
2029 	iwl_mvm_get_signal_strength(mvm, desc, hdr, rx_status, rate_n_flags,
2030 				    phy_data->energy_a, phy_data->energy_b);
2031 
2032 	/* using TLV format and must be after all fixed len fields */
2033 	if (format == RATE_MCS_MOD_TYPE_EHT)
2034 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2035 
2036 	if (unlikely(mvm->monitor_on))
2037 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2038 
2039 	is_sgi = format == RATE_MCS_MOD_TYPE_HE ?
2040 		iwl_he_is_sgi(rate_n_flags) :
2041 		rate_n_flags & RATE_MCS_SGI_MSK;
2042 
2043 	if (!(format == RATE_MCS_MOD_TYPE_CCK) && is_sgi)
2044 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2045 
2046 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2047 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2048 
2049 	switch (format) {
2050 	case RATE_MCS_MOD_TYPE_VHT:
2051 		rx_status->encoding = RX_ENC_VHT;
2052 		break;
2053 	case RATE_MCS_MOD_TYPE_HE:
2054 		rx_status->encoding = RX_ENC_HE;
2055 		rx_status->he_dcm =
2056 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2057 		break;
2058 	case RATE_MCS_MOD_TYPE_EHT:
2059 		rx_status->encoding = RX_ENC_EHT;
2060 		break;
2061 	}
2062 
2063 	switch (format) {
2064 	case RATE_MCS_MOD_TYPE_HT:
2065 		rx_status->encoding = RX_ENC_HT;
2066 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2067 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2068 		break;
2069 	case RATE_MCS_MOD_TYPE_VHT:
2070 	case RATE_MCS_MOD_TYPE_HE:
2071 	case RATE_MCS_MOD_TYPE_EHT:
2072 		rx_status->nss =
2073 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2074 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2075 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2076 		break;
2077 	default: {
2078 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2079 								 rx_status->band);
2080 
2081 		rx_status->rate_idx = rate;
2082 
2083 		if ((rate < 0 || rate > 0xFF)) {
2084 			rx_status->rate_idx = 0;
2085 			if (net_ratelimit())
2086 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2087 					rate_n_flags, rx_status->band);
2088 		}
2089 
2090 		break;
2091 		}
2092 	}
2093 }
2094 
2095 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2096 			struct iwl_rx_cmd_buffer *rxb, int queue)
2097 {
2098 	struct ieee80211_rx_status *rx_status;
2099 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2100 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2101 	struct ieee80211_hdr *hdr;
2102 	u32 len;
2103 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2104 	struct ieee80211_sta *sta = NULL;
2105 	struct sk_buff *skb;
2106 	u8 crypt_len = 0;
2107 	size_t desc_size;
2108 	struct iwl_mvm_rx_phy_data phy_data = {};
2109 	u32 format;
2110 
2111 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2112 		return;
2113 
2114 	if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2115 		desc_size = sizeof(*desc);
2116 	else
2117 		desc_size = IWL_RX_DESC_SIZE_V1;
2118 
2119 	if (unlikely(pkt_len < desc_size)) {
2120 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2121 		return;
2122 	}
2123 
2124 	if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2125 		phy_data.rate_n_flags =
2126 			iwl_mvm_v3_rate_from_fw(desc->v3.rate_n_flags,
2127 						mvm->fw_rates_ver);
2128 		phy_data.channel = desc->v3.channel;
2129 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2130 		phy_data.energy_a = desc->v3.energy_a;
2131 		phy_data.energy_b = desc->v3.energy_b;
2132 
2133 		phy_data.d0 = desc->v3.phy_data0;
2134 		phy_data.d1 = desc->v3.phy_data1;
2135 		phy_data.d2 = desc->v3.phy_data2;
2136 		phy_data.d3 = desc->v3.phy_data3;
2137 		phy_data.eht_d4 = desc->phy_eht_data4;
2138 		phy_data.d5 = desc->v3.phy_data5;
2139 	} else {
2140 		phy_data.rate_n_flags =
2141 			iwl_mvm_v3_rate_from_fw(desc->v1.rate_n_flags,
2142 						mvm->fw_rates_ver);
2143 		phy_data.channel = desc->v1.channel;
2144 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2145 		phy_data.energy_a = desc->v1.energy_a;
2146 		phy_data.energy_b = desc->v1.energy_b;
2147 
2148 		phy_data.d0 = desc->v1.phy_data0;
2149 		phy_data.d1 = desc->v1.phy_data1;
2150 		phy_data.d2 = desc->v1.phy_data2;
2151 		phy_data.d3 = desc->v1.phy_data3;
2152 	}
2153 
2154 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2155 
2156 	len = le16_to_cpu(desc->mpdu_len);
2157 
2158 	if (unlikely(len + desc_size > pkt_len)) {
2159 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2160 		return;
2161 	}
2162 
2163 	phy_data.with_data = true;
2164 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2165 	phy_data.d4 = desc->phy_data4;
2166 
2167 	hdr = (void *)(pkt->data + desc_size);
2168 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2169 	 * ieee80211_hdr pulled.
2170 	 */
2171 	skb = alloc_skb(128, GFP_ATOMIC);
2172 	if (!skb) {
2173 		IWL_ERR(mvm, "alloc_skb failed\n");
2174 		return;
2175 	}
2176 
2177 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2178 		/*
2179 		 * If the device inserted padding it means that (it thought)
2180 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2181 		 * this case, reserve two bytes at the start of the SKB to
2182 		 * align the payload properly in case we end up copying it.
2183 		 */
2184 		skb_reserve(skb, 2);
2185 	}
2186 
2187 	rx_status = IEEE80211_SKB_RXCB(skb);
2188 
2189 	/*
2190 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2191 	 * (otherwise the firmware discards them) but mark them as bad.
2192 	 */
2193 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2194 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2195 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2196 			     le32_to_cpu(desc->status));
2197 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2198 	}
2199 
2200 	/* set the preamble flag if appropriate */
2201 	if (format == RATE_MCS_MOD_TYPE_CCK &&
2202 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2203 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2204 
2205 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2206 		u64 tsf_on_air_rise;
2207 
2208 		if (mvm->trans->mac_cfg->device_family >=
2209 		    IWL_DEVICE_FAMILY_AX210)
2210 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2211 		else
2212 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2213 
2214 		rx_status->mactime = tsf_on_air_rise;
2215 		/* TSF as indicated by the firmware is at INA time */
2216 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2217 	}
2218 
2219 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2220 		u8 band = u8_get_bits(desc->mac_phy_band,
2221 				      IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK);
2222 
2223 		rx_status->band = iwl_mvm_nl80211_band_from_phy(band);
2224 	} else {
2225 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2226 			NL80211_BAND_2GHZ;
2227 	}
2228 
2229 	/* update aggregation data for monitor sake on default queue */
2230 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2231 		bool toggle_bit;
2232 
2233 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2234 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2235 		/*
2236 		 * Toggle is switched whenever new aggregation starts. Make
2237 		 * sure ampdu_reference is never 0 so we can later use it to
2238 		 * see if the frame was really part of an A-MPDU or not.
2239 		 */
2240 		if (toggle_bit != mvm->ampdu_toggle) {
2241 			mvm->ampdu_ref++;
2242 			if (mvm->ampdu_ref == 0)
2243 				mvm->ampdu_ref++;
2244 			mvm->ampdu_toggle = toggle_bit;
2245 			phy_data.first_subframe = true;
2246 		}
2247 		rx_status->ampdu_reference = mvm->ampdu_ref;
2248 	}
2249 
2250 	rcu_read_lock();
2251 
2252 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2253 		u8 sta_id = le32_get_bits(desc->status,
2254 					  IWL_RX_MPDU_STATUS_STA_ID);
2255 
2256 		if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) {
2257 			struct ieee80211_link_sta *link_sta;
2258 
2259 			sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
2260 			if (IS_ERR(sta))
2261 				sta = NULL;
2262 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]);
2263 
2264 			if (sta && sta->valid_links && link_sta) {
2265 				rx_status->link_valid = 1;
2266 				rx_status->link_id = link_sta->link_id;
2267 			}
2268 		}
2269 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2270 		/*
2271 		 * This is fine since we prevent two stations with the same
2272 		 * address from being added.
2273 		 */
2274 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2275 	}
2276 
2277 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2278 			      le32_to_cpu(pkt->len_n_flags), queue,
2279 			      &crypt_len)) {
2280 		kfree_skb(skb);
2281 		goto out;
2282 	}
2283 
2284 	iwl_mvm_rx_fill_status(mvm, desc, hdr, skb, &phy_data, queue);
2285 
2286 	if (sta) {
2287 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2288 		struct ieee80211_vif *tx_blocked_vif =
2289 			rcu_dereference(mvm->csa_tx_blocked_vif);
2290 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2291 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2292 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2293 		struct iwl_fw_dbg_trigger_tlv *trig;
2294 		struct ieee80211_vif *vif = mvmsta->vif;
2295 
2296 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2297 		    !is_multicast_ether_addr(hdr->addr1) &&
2298 		    ieee80211_is_data(hdr->frame_control) &&
2299 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2300 			schedule_delayed_work(&mvm->tcm.work, 0);
2301 
2302 		/*
2303 		 * We have tx blocked stations (with CS bit). If we heard
2304 		 * frames from a blocked station on a new channel we can
2305 		 * TX to it again.
2306 		 */
2307 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2308 			struct iwl_mvm_vif *mvmvif =
2309 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2310 			struct iwl_rx_sta_csa rx_sta_csa = {
2311 				.all_sta_unblocked = true,
2312 				.vif = tx_blocked_vif,
2313 			};
2314 
2315 			if (mvmvif->csa_target_freq == rx_status->freq)
2316 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2317 								 false);
2318 			ieee80211_iterate_stations_atomic(mvm->hw,
2319 							  iwl_mvm_rx_get_sta_block_tx,
2320 							  &rx_sta_csa);
2321 
2322 			if (rx_sta_csa.all_sta_unblocked) {
2323 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2324 				/* Unblock BCAST / MCAST station */
2325 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2326 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2327 			}
2328 		}
2329 
2330 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2331 
2332 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2333 					     ieee80211_vif_to_wdev(vif),
2334 					     FW_DBG_TRIGGER_RSSI);
2335 
2336 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2337 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2338 			s32 rssi;
2339 
2340 			rssi_trig = (void *)trig->data;
2341 			rssi = le32_to_cpu(rssi_trig->rssi);
2342 
2343 			if (rx_status->signal < rssi)
2344 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2345 							NULL);
2346 		}
2347 
2348 		if (ieee80211_is_data(hdr->frame_control))
2349 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2350 
2351 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2352 			IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2353 				       le16_to_cpu(hdr->seq_ctrl));
2354 			kfree_skb(skb);
2355 			goto out;
2356 		}
2357 
2358 		/*
2359 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2360 		 * as it to the de-aggregated MPDUs. We need to turn off the
2361 		 * AMSDU bit in the QoS control ourselves.
2362 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2363 		 */
2364 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2365 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2366 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2367 
2368 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2369 
2370 			if (mvm->trans->mac_cfg->device_family ==
2371 			    IWL_DEVICE_FAMILY_9000) {
2372 				iwl_mvm_flip_address(hdr->addr3);
2373 
2374 				if (ieee80211_has_a4(hdr->frame_control))
2375 					iwl_mvm_flip_address(hdr->addr4);
2376 			}
2377 		}
2378 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2379 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2380 
2381 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2382 		}
2383 	}
2384 
2385 	/* management stuff on default queue */
2386 	if (!queue) {
2387 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2388 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2389 			     mvm->sched_scan_pass_all ==
2390 			     SCHED_SCAN_PASS_ALL_ENABLED))
2391 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2392 
2393 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2394 			     ieee80211_is_probe_resp(hdr->frame_control)))
2395 			rx_status->boottime_ns = ktime_get_boottime_ns();
2396 	}
2397 
2398 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2399 		kfree_skb(skb);
2400 		goto out;
2401 	}
2402 
2403 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2404 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2405 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2406 		if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2407 		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2408 		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2409 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2410 
2411 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
2412 	}
2413 out:
2414 	rcu_read_unlock();
2415 }
2416 
2417 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2418 				struct iwl_rx_cmd_buffer *rxb, int queue)
2419 {
2420 	struct ieee80211_rx_status *rx_status;
2421 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2422 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2423 	u32 rssi;
2424 	struct ieee80211_sta *sta = NULL;
2425 	struct sk_buff *skb;
2426 	struct iwl_mvm_rx_phy_data phy_data;
2427 	u32 format;
2428 
2429 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2430 		return;
2431 
2432 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2433 		return;
2434 
2435 	rssi = le32_to_cpu(desc->rssi);
2436 	phy_data.d0 = desc->phy_info[0];
2437 	phy_data.d1 = desc->phy_info[1];
2438 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2439 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2440 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2441 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2442 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2443 	phy_data.with_data = false;
2444 	phy_data.rx_vec[0] = desc->rx_vec[0];
2445 	phy_data.rx_vec[1] = desc->rx_vec[1];
2446 
2447 	phy_data.rate_n_flags = iwl_mvm_v3_rate_from_fw(desc->rate,
2448 							mvm->fw_rates_ver);
2449 
2450 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2451 
2452 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2453 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2454 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2455 		    sizeof(struct iwl_rx_no_data_ver_3)))
2456 		/* invalid len for ver 3 */
2457 			return;
2458 		phy_data.rx_vec[2] = desc->rx_vec[2];
2459 		phy_data.rx_vec[3] = desc->rx_vec[3];
2460 	} else {
2461 		if (format == RATE_MCS_MOD_TYPE_EHT)
2462 			/* no support for EHT before version 3 API */
2463 			return;
2464 	}
2465 
2466 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2467 	 * ieee80211_hdr pulled.
2468 	 */
2469 	skb = alloc_skb(128, GFP_ATOMIC);
2470 	if (!skb) {
2471 		IWL_ERR(mvm, "alloc_skb failed\n");
2472 		return;
2473 	}
2474 
2475 	rx_status = IEEE80211_SKB_RXCB(skb);
2476 
2477 	/* 0-length PSDU */
2478 	rx_status->flag |= RX_FLAG_NO_PSDU;
2479 
2480 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
2481 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
2482 	    RX_NO_DATA_INFO_ERR_NONE)
2483 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
2484 
2485 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2486 	case RX_NO_DATA_INFO_TYPE_NDP:
2487 		rx_status->zero_length_psdu_type =
2488 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2489 		break;
2490 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2491 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2492 		rx_status->zero_length_psdu_type =
2493 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2494 		break;
2495 	default:
2496 		rx_status->zero_length_psdu_type =
2497 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2498 		break;
2499 	}
2500 
2501 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2502 		NL80211_BAND_2GHZ;
2503 
2504 	iwl_mvm_rx_fill_status(mvm, NULL, NULL, skb, &phy_data, queue);
2505 
2506 	/* no more radio tap info should be put after this point.
2507 	 *
2508 	 * We mark it as mac header, for upper layers to know where
2509 	 * all radio tap header ends.
2510 	 *
2511 	 * Since data doesn't move data while putting data on skb and that is
2512 	 * the only way we use, data + len is the next place that hdr would be put
2513 	 */
2514 	skb_set_mac_header(skb, skb->len);
2515 
2516 	/*
2517 	 * Override the nss from the rx_vec since the rate_n_flags has
2518 	 * only 2 bits for the nss which gives a max of 4 ss but there
2519 	 * may be up to 8 spatial streams.
2520 	 */
2521 	switch (format) {
2522 	case RATE_MCS_MOD_TYPE_VHT:
2523 		rx_status->nss =
2524 			le32_get_bits(desc->rx_vec[0],
2525 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2526 		break;
2527 	case RATE_MCS_MOD_TYPE_HE:
2528 		rx_status->nss =
2529 			le32_get_bits(desc->rx_vec[0],
2530 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2531 		break;
2532 	case RATE_MCS_MOD_TYPE_EHT:
2533 		rx_status->nss =
2534 			le32_get_bits(desc->rx_vec[2],
2535 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2536 	}
2537 
2538 	rcu_read_lock();
2539 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2540 	rcu_read_unlock();
2541 }
2542 
2543 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2544 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2545 {
2546 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2547 	struct iwl_frame_release *release = (void *)pkt->data;
2548 
2549 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2550 		return;
2551 
2552 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2553 					  le16_to_cpu(release->nssn),
2554 					  queue);
2555 }
2556 
2557 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2558 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2559 {
2560 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2561 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2562 	struct iwl_mvm_baid_data *baid_data;
2563 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2564 	unsigned int baid, nssn, sta_id, tid;
2565 
2566 	if (IWL_FW_CHECK(mvm, pkt_len < sizeof(*release),
2567 			 "Unexpected frame release notif size %d (expected %zu)\n",
2568 			 pkt_len, sizeof(*release)))
2569 		return;
2570 
2571 	baid = le32_get_bits(release->ba_info,
2572 			     IWL_BAR_FRAME_RELEASE_BAID_MASK);
2573 	nssn = le32_get_bits(release->ba_info,
2574 			     IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2575 	sta_id = le32_get_bits(release->sta_tid,
2576 			       IWL_BAR_FRAME_RELEASE_STA_MASK);
2577 	tid = le32_get_bits(release->sta_tid,
2578 			    IWL_BAR_FRAME_RELEASE_TID_MASK);
2579 
2580 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2581 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2582 		return;
2583 
2584 	rcu_read_lock();
2585 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2586 	if (!baid_data) {
2587 		IWL_DEBUG_RX(mvm,
2588 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2589 			      baid);
2590 		goto out;
2591 	}
2592 
2593 	if (WARN(tid != baid_data->tid || sta_id > IWL_STATION_COUNT_MAX ||
2594 		 !(baid_data->sta_mask & BIT(sta_id)),
2595 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2596 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2597 		 tid))
2598 		goto out;
2599 
2600 	IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2601 		       nssn);
2602 
2603 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2604 out:
2605 	rcu_read_unlock();
2606 }
2607 
2608 void iwl_mvm_rx_beacon_filter_notif(struct iwl_mvm *mvm,
2609 				    struct iwl_rx_cmd_buffer *rxb)
2610 {
2611 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2612 	/* MAC or link ID in v1/v2, but driver has the IDs equal */
2613 	struct iwl_beacon_filter_notif *notif = (void *)pkt->data;
2614 	u32 id = le32_to_cpu(notif->link_id);
2615 	struct iwl_mvm_vif *mvm_vif;
2616 	struct ieee80211_vif *vif;
2617 
2618 	/* >= means AUX MAC/link ID, no energy correction needed then */
2619 	if (IWL_FW_CHECK(mvm, id >= ARRAY_SIZE(mvm->vif_id_to_mac),
2620 			 "invalid link ID %d\n", id))
2621 		return;
2622 
2623 	vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, false);
2624 	if (!vif)
2625 		return;
2626 
2627 	mvm_vif = iwl_mvm_vif_from_mac80211(vif);
2628 
2629 	mvm_vif->deflink.average_beacon_energy =
2630 		le32_to_cpu(notif->average_energy);
2631 }
2632