xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 - 2019 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * The full GNU General Public License is included in this distribution
23  * in the file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 - 2019 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *****************************************************************************/
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include "iwl-trans.h"
66 #include "mvm.h"
67 #include "fw-api.h"
68 
69 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
70 {
71 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
72 	u8 *data = skb->data;
73 
74 	/* Alignment concerns */
75 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
76 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
77 	BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
78 	BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
79 
80 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
81 		data += sizeof(struct ieee80211_radiotap_he);
82 	if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
83 		data += sizeof(struct ieee80211_radiotap_he_mu);
84 	if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
85 		data += sizeof(struct ieee80211_radiotap_lsig);
86 	if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
87 		struct ieee80211_vendor_radiotap *radiotap = (void *)data;
88 
89 		data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
90 	}
91 
92 	return data;
93 }
94 
95 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
96 				   int queue, struct ieee80211_sta *sta)
97 {
98 	struct iwl_mvm_sta *mvmsta;
99 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
100 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
101 	struct iwl_mvm_key_pn *ptk_pn;
102 	int res;
103 	u8 tid, keyidx;
104 	u8 pn[IEEE80211_CCMP_PN_LEN];
105 	u8 *extiv;
106 
107 	/* do PN checking */
108 
109 	/* multicast and non-data only arrives on default queue */
110 	if (!ieee80211_is_data(hdr->frame_control) ||
111 	    is_multicast_ether_addr(hdr->addr1))
112 		return 0;
113 
114 	/* do not check PN for open AP */
115 	if (!(stats->flag & RX_FLAG_DECRYPTED))
116 		return 0;
117 
118 	/*
119 	 * avoid checking for default queue - we don't want to replicate
120 	 * all the logic that's necessary for checking the PN on fragmented
121 	 * frames, leave that to mac80211
122 	 */
123 	if (queue == 0)
124 		return 0;
125 
126 	/* if we are here - this for sure is either CCMP or GCMP */
127 	if (IS_ERR_OR_NULL(sta)) {
128 		IWL_ERR(mvm,
129 			"expected hw-decrypted unicast frame for station\n");
130 		return -1;
131 	}
132 
133 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
134 
135 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
136 	keyidx = extiv[3] >> 6;
137 
138 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
139 	if (!ptk_pn)
140 		return -1;
141 
142 	if (ieee80211_is_data_qos(hdr->frame_control))
143 		tid = ieee80211_get_tid(hdr);
144 	else
145 		tid = 0;
146 
147 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
148 	if (tid >= IWL_MAX_TID_COUNT)
149 		return -1;
150 
151 	/* load pn */
152 	pn[0] = extiv[7];
153 	pn[1] = extiv[6];
154 	pn[2] = extiv[5];
155 	pn[3] = extiv[4];
156 	pn[4] = extiv[1];
157 	pn[5] = extiv[0];
158 
159 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
160 	if (res < 0)
161 		return -1;
162 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
163 		return -1;
164 
165 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
166 	stats->flag |= RX_FLAG_PN_VALIDATED;
167 
168 	return 0;
169 }
170 
171 /* iwl_mvm_create_skb Adds the rxb to a new skb */
172 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
173 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
174 			      struct iwl_rx_cmd_buffer *rxb)
175 {
176 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
177 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
178 	unsigned int headlen, fraglen, pad_len = 0;
179 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
180 
181 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
182 		len -= 2;
183 		pad_len = 2;
184 	}
185 
186 	/* If frame is small enough to fit in skb->head, pull it completely.
187 	 * If not, only pull ieee80211_hdr (including crypto if present, and
188 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
189 	 * splice() or TCP coalesce are more efficient.
190 	 *
191 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
192 	 * least 8 bytes (possibly more for mesh) we can do the same here
193 	 * to save the cost of doing it later. That still doesn't pull in
194 	 * the actual IP header since the typical case has a SNAP header.
195 	 * If the latter changes (there are efforts in the standards group
196 	 * to do so) we should revisit this and ieee80211_data_to_8023().
197 	 */
198 	headlen = (len <= skb_tailroom(skb)) ? len :
199 					       hdrlen + crypt_len + 8;
200 
201 	/* The firmware may align the packet to DWORD.
202 	 * The padding is inserted after the IV.
203 	 * After copying the header + IV skip the padding if
204 	 * present before copying packet data.
205 	 */
206 	hdrlen += crypt_len;
207 
208 	if (WARN_ONCE(headlen < hdrlen,
209 		      "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
210 		      hdrlen, len, crypt_len)) {
211 		/*
212 		 * We warn and trace because we want to be able to see
213 		 * it in trace-cmd as well.
214 		 */
215 		IWL_DEBUG_RX(mvm,
216 			     "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
217 			     hdrlen, len, crypt_len);
218 		return -EINVAL;
219 	}
220 
221 	skb_put_data(skb, hdr, hdrlen);
222 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
223 
224 	fraglen = len - headlen;
225 
226 	if (fraglen) {
227 		int offset = (void *)hdr + headlen + pad_len -
228 			     rxb_addr(rxb) + rxb_offset(rxb);
229 
230 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
231 				fraglen, rxb->truesize);
232 	}
233 
234 	return 0;
235 }
236 
237 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
238 					    struct sk_buff *skb)
239 {
240 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
241 	struct ieee80211_vendor_radiotap *radiotap;
242 	const int size = sizeof(*radiotap) + sizeof(__le16);
243 
244 	if (!mvm->cur_aid)
245 		return;
246 
247 	/* ensure alignment */
248 	BUILD_BUG_ON((size + 2) % 4);
249 
250 	radiotap = skb_put(skb, size + 2);
251 	radiotap->align = 1;
252 	/* Intel OUI */
253 	radiotap->oui[0] = 0xf6;
254 	radiotap->oui[1] = 0x54;
255 	radiotap->oui[2] = 0x25;
256 	/* radiotap sniffer config sub-namespace */
257 	radiotap->subns = 1;
258 	radiotap->present = 0x1;
259 	radiotap->len = size - sizeof(*radiotap);
260 	radiotap->pad = 2;
261 
262 	/* fill the data now */
263 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
264 	/* and clear the padding */
265 	memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
266 
267 	rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
268 }
269 
270 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
271 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
272 					    struct napi_struct *napi,
273 					    struct sk_buff *skb, int queue,
274 					    struct ieee80211_sta *sta,
275 					    bool csi)
276 {
277 	if (iwl_mvm_check_pn(mvm, skb, queue, sta))
278 		kfree_skb(skb);
279 	else
280 		ieee80211_rx_napi(mvm->hw, sta, skb, napi);
281 }
282 
283 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
284 					struct ieee80211_rx_status *rx_status,
285 					u32 rate_n_flags, int energy_a,
286 					int energy_b)
287 {
288 	int max_energy;
289 	u32 rate_flags = rate_n_flags;
290 
291 	energy_a = energy_a ? -energy_a : S8_MIN;
292 	energy_b = energy_b ? -energy_b : S8_MIN;
293 	max_energy = max(energy_a, energy_b);
294 
295 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
296 			energy_a, energy_b, max_energy);
297 
298 	rx_status->signal = max_energy;
299 	rx_status->chains =
300 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
301 	rx_status->chain_signal[0] = energy_a;
302 	rx_status->chain_signal[1] = energy_b;
303 	rx_status->chain_signal[2] = S8_MIN;
304 }
305 
306 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr,
307 			     struct ieee80211_rx_status *stats, u16 phy_info,
308 			     struct iwl_rx_mpdu_desc *desc,
309 			     u32 pkt_flags, int queue, u8 *crypt_len)
310 {
311 	u16 status = le16_to_cpu(desc->status);
312 
313 	/*
314 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
315 	 * (where we don't have the keys).
316 	 * We limit this to aggregation because in TKIP this is a valid
317 	 * scenario, since we may not have the (correct) TTAK (phase 1
318 	 * key) in the firmware.
319 	 */
320 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
321 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
322 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
323 		return -1;
324 
325 	if (!ieee80211_has_protected(hdr->frame_control) ||
326 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
327 	    IWL_RX_MPDU_STATUS_SEC_NONE)
328 		return 0;
329 
330 	/* TODO: handle packets encrypted with unknown alg */
331 
332 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
333 	case IWL_RX_MPDU_STATUS_SEC_CCM:
334 	case IWL_RX_MPDU_STATUS_SEC_GCM:
335 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
336 		/* alg is CCM: check MIC only */
337 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
338 			return -1;
339 
340 		stats->flag |= RX_FLAG_DECRYPTED;
341 		if (pkt_flags & FH_RSCSR_RADA_EN)
342 			stats->flag |= RX_FLAG_MIC_STRIPPED;
343 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
344 		return 0;
345 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
346 		/* Don't drop the frame and decrypt it in SW */
347 		if (!fw_has_api(&mvm->fw->ucode_capa,
348 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
349 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
350 			return 0;
351 
352 		if (mvm->trans->trans_cfg->gen2 &&
353 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
354 			stats->flag |= RX_FLAG_MMIC_ERROR;
355 
356 		*crypt_len = IEEE80211_TKIP_IV_LEN;
357 		/* fall through */
358 	case IWL_RX_MPDU_STATUS_SEC_WEP:
359 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
360 			return -1;
361 
362 		stats->flag |= RX_FLAG_DECRYPTED;
363 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
364 				IWL_RX_MPDU_STATUS_SEC_WEP)
365 			*crypt_len = IEEE80211_WEP_IV_LEN;
366 
367 		if (pkt_flags & FH_RSCSR_RADA_EN) {
368 			stats->flag |= RX_FLAG_ICV_STRIPPED;
369 			if (mvm->trans->trans_cfg->gen2)
370 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
371 		}
372 
373 		return 0;
374 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
375 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
376 			return -1;
377 		stats->flag |= RX_FLAG_DECRYPTED;
378 		return 0;
379 	default:
380 		/*
381 		 * Sometimes we can get frames that were not decrypted
382 		 * because the firmware didn't have the keys yet. This can
383 		 * happen after connection where we can get multicast frames
384 		 * before the GTK is installed.
385 		 * Silently drop those frames.
386 		 * Also drop un-decrypted frames in monitor mode.
387 		 */
388 		if (!is_multicast_ether_addr(hdr->addr1) &&
389 		    !mvm->monitor_on && net_ratelimit())
390 			IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
391 	}
392 
393 	return 0;
394 }
395 
396 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta,
397 			    struct sk_buff *skb,
398 			    struct iwl_rx_mpdu_desc *desc)
399 {
400 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
401 	struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
402 	u16 flags = le16_to_cpu(desc->l3l4_flags);
403 	u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
404 			  IWL_RX_L3_PROTO_POS);
405 
406 	if (mvmvif->features & NETIF_F_RXCSUM &&
407 	    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
408 	    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
409 	     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
410 	     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
411 		skb->ip_summed = CHECKSUM_UNNECESSARY;
412 }
413 
414 /*
415  * returns true if a packet is a duplicate and should be dropped.
416  * Updates AMSDU PN tracking info
417  */
418 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
419 			   struct ieee80211_rx_status *rx_status,
420 			   struct ieee80211_hdr *hdr,
421 			   struct iwl_rx_mpdu_desc *desc)
422 {
423 	struct iwl_mvm_sta *mvm_sta;
424 	struct iwl_mvm_rxq_dup_data *dup_data;
425 	u8 tid, sub_frame_idx;
426 
427 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
428 		return false;
429 
430 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
431 	dup_data = &mvm_sta->dup_data[queue];
432 
433 	/*
434 	 * Drop duplicate 802.11 retransmissions
435 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
436 	 */
437 	if (ieee80211_is_ctl(hdr->frame_control) ||
438 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
439 	    is_multicast_ether_addr(hdr->addr1)) {
440 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
441 		return false;
442 	}
443 
444 	if (ieee80211_is_data_qos(hdr->frame_control))
445 		/* frame has qos control */
446 		tid = ieee80211_get_tid(hdr);
447 	else
448 		tid = IWL_MAX_TID_COUNT;
449 
450 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
451 	sub_frame_idx = desc->amsdu_info &
452 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
453 
454 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
455 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
456 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
457 		return true;
458 
459 	/* Allow same PN as the first subframe for following sub frames */
460 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
461 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
462 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
463 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
464 
465 	dup_data->last_seq[tid] = hdr->seq_ctrl;
466 	dup_data->last_sub_frame[tid] = sub_frame_idx;
467 
468 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
469 
470 	return false;
471 }
472 
473 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask,
474 			    const u8 *data, u32 count, bool async)
475 {
476 	u8 buf[sizeof(struct iwl_rxq_sync_cmd) +
477 	       sizeof(struct iwl_mvm_rss_sync_notif)];
478 	struct iwl_rxq_sync_cmd *cmd = (void *)buf;
479 	u32 data_size = sizeof(*cmd) + count;
480 	int ret;
481 
482 	/*
483 	 * size must be a multiple of DWORD
484 	 * Ensure we don't overflow buf
485 	 */
486 	if (WARN_ON(count & 3 ||
487 		    count > sizeof(struct iwl_mvm_rss_sync_notif)))
488 		return -EINVAL;
489 
490 	cmd->rxq_mask = cpu_to_le32(rxq_mask);
491 	cmd->count =  cpu_to_le32(count);
492 	cmd->flags = 0;
493 	memcpy(cmd->payload, data, count);
494 
495 	ret = iwl_mvm_send_cmd_pdu(mvm,
496 				   WIDE_ID(DATA_PATH_GROUP,
497 					   TRIGGER_RX_QUEUES_NOTIF_CMD),
498 				   async ? CMD_ASYNC : 0, data_size, cmd);
499 
500 	return ret;
501 }
502 
503 /*
504  * Returns true if sn2 - buffer_size < sn1 < sn2.
505  * To be used only in order to compare reorder buffer head with NSSN.
506  * We fully trust NSSN unless it is behind us due to reorder timeout.
507  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
508  */
509 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
510 {
511 	return ieee80211_sn_less(sn1, sn2) &&
512 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
513 }
514 
515 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
516 {
517 	if (IWL_MVM_USE_NSSN_SYNC) {
518 		struct iwl_mvm_rss_sync_notif notif = {
519 			.metadata.type = IWL_MVM_RXQ_NSSN_SYNC,
520 			.metadata.sync = 0,
521 			.nssn_sync.baid = baid,
522 			.nssn_sync.nssn = nssn,
523 		};
524 
525 		iwl_mvm_sync_rx_queues_internal(mvm, (void *)&notif,
526 						sizeof(notif));
527 	}
528 }
529 
530 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
531 
532 enum iwl_mvm_release_flags {
533 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
534 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
535 };
536 
537 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
538 				   struct ieee80211_sta *sta,
539 				   struct napi_struct *napi,
540 				   struct iwl_mvm_baid_data *baid_data,
541 				   struct iwl_mvm_reorder_buffer *reorder_buf,
542 				   u16 nssn, u32 flags)
543 {
544 	struct iwl_mvm_reorder_buf_entry *entries =
545 		&baid_data->entries[reorder_buf->queue *
546 				    baid_data->entries_per_queue];
547 	u16 ssn = reorder_buf->head_sn;
548 
549 	lockdep_assert_held(&reorder_buf->lock);
550 
551 	/*
552 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
553 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
554 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
555 	 * behind and this queue already processed packets. The next if
556 	 * would have caught cases where this queue would have processed less
557 	 * than 64 packets, but it may have processed more than 64 packets.
558 	 */
559 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
560 	    ieee80211_sn_less(nssn, ssn))
561 		goto set_timer;
562 
563 	/* ignore nssn smaller than head sn - this can happen due to timeout */
564 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
565 		goto set_timer;
566 
567 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
568 		int index = ssn % reorder_buf->buf_size;
569 		struct sk_buff_head *skb_list = &entries[index].e.frames;
570 		struct sk_buff *skb;
571 
572 		ssn = ieee80211_sn_inc(ssn);
573 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
574 		    (ssn == 2048 || ssn == 0))
575 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
576 
577 		/*
578 		 * Empty the list. Will have more than one frame for A-MSDU.
579 		 * Empty list is valid as well since nssn indicates frames were
580 		 * received.
581 		 */
582 		while ((skb = __skb_dequeue(skb_list))) {
583 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
584 							reorder_buf->queue,
585 							sta, false);
586 			reorder_buf->num_stored--;
587 		}
588 	}
589 	reorder_buf->head_sn = nssn;
590 
591 set_timer:
592 	if (reorder_buf->num_stored && !reorder_buf->removed) {
593 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
594 
595 		while (skb_queue_empty(&entries[index].e.frames))
596 			index = (index + 1) % reorder_buf->buf_size;
597 		/* modify timer to match next frame's expiration time */
598 		mod_timer(&reorder_buf->reorder_timer,
599 			  entries[index].e.reorder_time + 1 +
600 			  RX_REORDER_BUF_TIMEOUT_MQ);
601 	} else {
602 		del_timer(&reorder_buf->reorder_timer);
603 	}
604 }
605 
606 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
607 {
608 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
609 	struct iwl_mvm_baid_data *baid_data =
610 		iwl_mvm_baid_data_from_reorder_buf(buf);
611 	struct iwl_mvm_reorder_buf_entry *entries =
612 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
613 	int i;
614 	u16 sn = 0, index = 0;
615 	bool expired = false;
616 	bool cont = false;
617 
618 	spin_lock(&buf->lock);
619 
620 	if (!buf->num_stored || buf->removed) {
621 		spin_unlock(&buf->lock);
622 		return;
623 	}
624 
625 	for (i = 0; i < buf->buf_size ; i++) {
626 		index = (buf->head_sn + i) % buf->buf_size;
627 
628 		if (skb_queue_empty(&entries[index].e.frames)) {
629 			/*
630 			 * If there is a hole and the next frame didn't expire
631 			 * we want to break and not advance SN
632 			 */
633 			cont = false;
634 			continue;
635 		}
636 		if (!cont &&
637 		    !time_after(jiffies, entries[index].e.reorder_time +
638 					 RX_REORDER_BUF_TIMEOUT_MQ))
639 			break;
640 
641 		expired = true;
642 		/* continue until next hole after this expired frames */
643 		cont = true;
644 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
645 	}
646 
647 	if (expired) {
648 		struct ieee80211_sta *sta;
649 		struct iwl_mvm_sta *mvmsta;
650 		u8 sta_id = baid_data->sta_id;
651 
652 		rcu_read_lock();
653 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
654 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
655 
656 		/* SN is set to the last expired frame + 1 */
657 		IWL_DEBUG_HT(buf->mvm,
658 			     "Releasing expired frames for sta %u, sn %d\n",
659 			     sta_id, sn);
660 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
661 						     sta, baid_data->tid);
662 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
663 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
664 		rcu_read_unlock();
665 	} else {
666 		/*
667 		 * If no frame expired and there are stored frames, index is now
668 		 * pointing to the first unexpired frame - modify timer
669 		 * accordingly to this frame.
670 		 */
671 		mod_timer(&buf->reorder_timer,
672 			  entries[index].e.reorder_time +
673 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
674 	}
675 	spin_unlock(&buf->lock);
676 }
677 
678 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
679 			   struct iwl_mvm_delba_data *data)
680 {
681 	struct iwl_mvm_baid_data *ba_data;
682 	struct ieee80211_sta *sta;
683 	struct iwl_mvm_reorder_buffer *reorder_buf;
684 	u8 baid = data->baid;
685 
686 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
687 		return;
688 
689 	rcu_read_lock();
690 
691 	ba_data = rcu_dereference(mvm->baid_map[baid]);
692 	if (WARN_ON_ONCE(!ba_data))
693 		goto out;
694 
695 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
696 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
697 		goto out;
698 
699 	reorder_buf = &ba_data->reorder_buf[queue];
700 
701 	/* release all frames that are in the reorder buffer to the stack */
702 	spin_lock_bh(&reorder_buf->lock);
703 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
704 			       ieee80211_sn_add(reorder_buf->head_sn,
705 						reorder_buf->buf_size),
706 			       0);
707 	spin_unlock_bh(&reorder_buf->lock);
708 	del_timer_sync(&reorder_buf->reorder_timer);
709 
710 out:
711 	rcu_read_unlock();
712 }
713 
714 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
715 					      struct napi_struct *napi,
716 					      u8 baid, u16 nssn, int queue,
717 					      u32 flags)
718 {
719 	struct ieee80211_sta *sta;
720 	struct iwl_mvm_reorder_buffer *reorder_buf;
721 	struct iwl_mvm_baid_data *ba_data;
722 
723 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
724 		     baid, nssn);
725 
726 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
727 			 baid >= ARRAY_SIZE(mvm->baid_map)))
728 		return;
729 
730 	rcu_read_lock();
731 
732 	ba_data = rcu_dereference(mvm->baid_map[baid]);
733 	if (WARN_ON_ONCE(!ba_data))
734 		goto out;
735 
736 	sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
737 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
738 		goto out;
739 
740 	reorder_buf = &ba_data->reorder_buf[queue];
741 
742 	spin_lock_bh(&reorder_buf->lock);
743 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
744 			       reorder_buf, nssn, flags);
745 	spin_unlock_bh(&reorder_buf->lock);
746 
747 out:
748 	rcu_read_unlock();
749 }
750 
751 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
752 			      struct napi_struct *napi, int queue,
753 			      const struct iwl_mvm_nssn_sync_data *data)
754 {
755 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
756 					  data->nssn, queue,
757 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
758 }
759 
760 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
761 			    struct iwl_rx_cmd_buffer *rxb, int queue)
762 {
763 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
764 	struct iwl_rxq_sync_notification *notif;
765 	struct iwl_mvm_internal_rxq_notif *internal_notif;
766 
767 	notif = (void *)pkt->data;
768 	internal_notif = (void *)notif->payload;
769 
770 	if (internal_notif->sync &&
771 	    mvm->queue_sync_cookie != internal_notif->cookie) {
772 		WARN_ONCE(1, "Received expired RX queue sync message\n");
773 		return;
774 	}
775 
776 	switch (internal_notif->type) {
777 	case IWL_MVM_RXQ_EMPTY:
778 		break;
779 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
780 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
781 		break;
782 	case IWL_MVM_RXQ_NSSN_SYNC:
783 		iwl_mvm_nssn_sync(mvm, napi, queue,
784 				  (void *)internal_notif->data);
785 		break;
786 	default:
787 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
788 	}
789 
790 	if (internal_notif->sync &&
791 	    !atomic_dec_return(&mvm->queue_sync_counter))
792 		wake_up(&mvm->rx_sync_waitq);
793 }
794 
795 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
796 				     struct ieee80211_sta *sta, int tid,
797 				     struct iwl_mvm_reorder_buffer *buffer,
798 				     u32 reorder, u32 gp2, int queue)
799 {
800 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
801 
802 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
803 		/* we have a new (A-)MPDU ... */
804 
805 		/*
806 		 * reset counter to 0 if we didn't have any oldsn in
807 		 * the last A-MPDU (as detected by GP2 being identical)
808 		 */
809 		if (!buffer->consec_oldsn_prev_drop)
810 			buffer->consec_oldsn_drops = 0;
811 
812 		/* either way, update our tracking state */
813 		buffer->consec_oldsn_ampdu_gp2 = gp2;
814 	} else if (buffer->consec_oldsn_prev_drop) {
815 		/*
816 		 * tracking state didn't change, and we had an old SN
817 		 * indication before - do nothing in this case, we
818 		 * already noted this one down and are waiting for the
819 		 * next A-MPDU (by GP2)
820 		 */
821 		return;
822 	}
823 
824 	/* return unless this MPDU has old SN */
825 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
826 		return;
827 
828 	/* update state */
829 	buffer->consec_oldsn_prev_drop = 1;
830 	buffer->consec_oldsn_drops++;
831 
832 	/* if limit is reached, send del BA and reset state */
833 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
834 		IWL_WARN(mvm,
835 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
836 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
837 			 sta->addr, queue, tid);
838 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
839 		buffer->consec_oldsn_prev_drop = 0;
840 		buffer->consec_oldsn_drops = 0;
841 	}
842 }
843 
844 /*
845  * Returns true if the MPDU was buffered\dropped, false if it should be passed
846  * to upper layer.
847  */
848 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
849 			    struct napi_struct *napi,
850 			    int queue,
851 			    struct ieee80211_sta *sta,
852 			    struct sk_buff *skb,
853 			    struct iwl_rx_mpdu_desc *desc)
854 {
855 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
856 	struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
857 	struct iwl_mvm_sta *mvm_sta;
858 	struct iwl_mvm_baid_data *baid_data;
859 	struct iwl_mvm_reorder_buffer *buffer;
860 	struct sk_buff *tail;
861 	u32 reorder = le32_to_cpu(desc->reorder_data);
862 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
863 	bool last_subframe =
864 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
865 	u8 tid = ieee80211_get_tid(hdr);
866 	u8 sub_frame_idx = desc->amsdu_info &
867 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
868 	struct iwl_mvm_reorder_buf_entry *entries;
869 	int index;
870 	u16 nssn, sn;
871 	u8 baid;
872 
873 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
874 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
875 
876 	/*
877 	 * This also covers the case of receiving a Block Ack Request
878 	 * outside a BA session; we'll pass it to mac80211 and that
879 	 * then sends a delBA action frame.
880 	 * This also covers pure monitor mode, in which case we won't
881 	 * have any BA sessions.
882 	 */
883 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
884 		return false;
885 
886 	/* no sta yet */
887 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
888 		      "Got valid BAID without a valid station assigned\n"))
889 		return false;
890 
891 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
892 
893 	/* not a data packet or a bar */
894 	if (!ieee80211_is_back_req(hdr->frame_control) &&
895 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
896 	     is_multicast_ether_addr(hdr->addr1)))
897 		return false;
898 
899 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
900 		return false;
901 
902 	baid_data = rcu_dereference(mvm->baid_map[baid]);
903 	if (!baid_data) {
904 		IWL_DEBUG_RX(mvm,
905 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
906 			      baid, reorder);
907 		return false;
908 	}
909 
910 	if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
911 		 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
912 		 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
913 		 tid))
914 		return false;
915 
916 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
917 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
918 		IWL_RX_MPDU_REORDER_SN_SHIFT;
919 
920 	buffer = &baid_data->reorder_buf[queue];
921 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
922 
923 	spin_lock_bh(&buffer->lock);
924 
925 	if (!buffer->valid) {
926 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
927 			spin_unlock_bh(&buffer->lock);
928 			return false;
929 		}
930 		buffer->valid = true;
931 	}
932 
933 	if (ieee80211_is_back_req(hdr->frame_control)) {
934 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
935 				       buffer, nssn, 0);
936 		goto drop;
937 	}
938 
939 	/*
940 	 * If there was a significant jump in the nssn - adjust.
941 	 * If the SN is smaller than the NSSN it might need to first go into
942 	 * the reorder buffer, in which case we just release up to it and the
943 	 * rest of the function will take care of storing it and releasing up to
944 	 * the nssn.
945 	 * This should not happen. This queue has been lagging and it should
946 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
947 	 * and update the other queues.
948 	 */
949 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
950 				buffer->buf_size) ||
951 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
952 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
953 
954 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
955 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
956 	}
957 
958 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
959 				 rx_status->device_timestamp, queue);
960 
961 	/* drop any oudated packets */
962 	if (ieee80211_sn_less(sn, buffer->head_sn))
963 		goto drop;
964 
965 	/* release immediately if allowed by nssn and no stored frames */
966 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
967 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
968 				       buffer->buf_size) &&
969 		   (!amsdu || last_subframe)) {
970 			/*
971 			 * If we crossed the 2048 or 0 SN, notify all the
972 			 * queues. This is done in order to avoid having a
973 			 * head_sn that lags behind for too long. When that
974 			 * happens, we can get to a situation where the head_sn
975 			 * is within the interval [nssn - buf_size : nssn]
976 			 * which will make us think that the nssn is a packet
977 			 * that we already freed because of the reordering
978 			 * buffer and we will ignore it. So maintain the
979 			 * head_sn somewhat updated across all the queues:
980 			 * when it crosses 0 and 2048.
981 			 */
982 			if (sn == 2048 || sn == 0)
983 				iwl_mvm_sync_nssn(mvm, baid, sn);
984 			buffer->head_sn = nssn;
985 		}
986 		/* No need to update AMSDU last SN - we are moving the head */
987 		spin_unlock_bh(&buffer->lock);
988 		return false;
989 	}
990 
991 	/*
992 	 * release immediately if there are no stored frames, and the sn is
993 	 * equal to the head.
994 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
995 	 * When we released everything, and we got the next frame in the
996 	 * sequence, according to the NSSN we can't release immediately,
997 	 * while technically there is no hole and we can move forward.
998 	 */
999 	if (!buffer->num_stored && sn == buffer->head_sn) {
1000 		if (!amsdu || last_subframe) {
1001 			if (sn == 2048 || sn == 0)
1002 				iwl_mvm_sync_nssn(mvm, baid, sn);
1003 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1004 		}
1005 		/* No need to update AMSDU last SN - we are moving the head */
1006 		spin_unlock_bh(&buffer->lock);
1007 		return false;
1008 	}
1009 
1010 	index = sn % buffer->buf_size;
1011 
1012 	/*
1013 	 * Check if we already stored this frame
1014 	 * As AMSDU is either received or not as whole, logic is simple:
1015 	 * If we have frames in that position in the buffer and the last frame
1016 	 * originated from AMSDU had a different SN then it is a retransmission.
1017 	 * If it is the same SN then if the subframe index is incrementing it
1018 	 * is the same AMSDU - otherwise it is a retransmission.
1019 	 */
1020 	tail = skb_peek_tail(&entries[index].e.frames);
1021 	if (tail && !amsdu)
1022 		goto drop;
1023 	else if (tail && (sn != buffer->last_amsdu ||
1024 			  buffer->last_sub_index >= sub_frame_idx))
1025 		goto drop;
1026 
1027 	/* put in reorder buffer */
1028 	__skb_queue_tail(&entries[index].e.frames, skb);
1029 	buffer->num_stored++;
1030 	entries[index].e.reorder_time = jiffies;
1031 
1032 	if (amsdu) {
1033 		buffer->last_amsdu = sn;
1034 		buffer->last_sub_index = sub_frame_idx;
1035 	}
1036 
1037 	/*
1038 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1039 	 * The reason is that NSSN advances on the first sub-frame, and may
1040 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1041 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1042 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1043 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1044 	 * already ahead and it will be dropped.
1045 	 * If the last sub-frame is not on this queue - we will get frame
1046 	 * release notification with up to date NSSN.
1047 	 */
1048 	if (!amsdu || last_subframe)
1049 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1050 				       buffer, nssn,
1051 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1052 
1053 	spin_unlock_bh(&buffer->lock);
1054 	return true;
1055 
1056 drop:
1057 	kfree_skb(skb);
1058 	spin_unlock_bh(&buffer->lock);
1059 	return true;
1060 }
1061 
1062 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1063 				    u32 reorder_data, u8 baid)
1064 {
1065 	unsigned long now = jiffies;
1066 	unsigned long timeout;
1067 	struct iwl_mvm_baid_data *data;
1068 
1069 	rcu_read_lock();
1070 
1071 	data = rcu_dereference(mvm->baid_map[baid]);
1072 	if (!data) {
1073 		IWL_DEBUG_RX(mvm,
1074 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1075 			      baid, reorder_data);
1076 		goto out;
1077 	}
1078 
1079 	if (!data->timeout)
1080 		goto out;
1081 
1082 	timeout = data->timeout;
1083 	/*
1084 	 * Do not update last rx all the time to avoid cache bouncing
1085 	 * between the rx queues.
1086 	 * Update it every timeout. Worst case is the session will
1087 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1088 	 */
1089 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1090 		/* Update is atomic */
1091 		data->last_rx = now;
1092 
1093 out:
1094 	rcu_read_unlock();
1095 }
1096 
1097 static void iwl_mvm_flip_address(u8 *addr)
1098 {
1099 	int i;
1100 	u8 mac_addr[ETH_ALEN];
1101 
1102 	for (i = 0; i < ETH_ALEN; i++)
1103 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1104 	ether_addr_copy(addr, mac_addr);
1105 }
1106 
1107 struct iwl_mvm_rx_phy_data {
1108 	enum iwl_rx_phy_info_type info_type;
1109 	__le32 d0, d1, d2, d3;
1110 	__le16 d4;
1111 };
1112 
1113 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1114 				     struct iwl_mvm_rx_phy_data *phy_data,
1115 				     u32 rate_n_flags,
1116 				     struct ieee80211_radiotap_he_mu *he_mu)
1117 {
1118 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1119 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1120 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1121 
1122 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1123 		he_mu->flags1 |=
1124 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1125 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1126 
1127 		he_mu->flags1 |=
1128 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1129 						   phy_data4),
1130 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1131 
1132 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1133 					     phy_data2);
1134 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1135 					     phy_data3);
1136 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1137 					     phy_data2);
1138 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1139 					     phy_data3);
1140 	}
1141 
1142 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1143 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1144 		he_mu->flags1 |=
1145 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1146 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1147 
1148 		he_mu->flags2 |=
1149 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1150 						   phy_data4),
1151 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1152 
1153 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1154 					     phy_data2);
1155 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1156 					     phy_data3);
1157 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1158 					     phy_data2);
1159 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1160 					     phy_data3);
1161 	}
1162 }
1163 
1164 static void
1165 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1166 			       u32 rate_n_flags,
1167 			       struct ieee80211_radiotap_he *he,
1168 			       struct ieee80211_radiotap_he_mu *he_mu,
1169 			       struct ieee80211_rx_status *rx_status)
1170 {
1171 	/*
1172 	 * Unfortunately, we have to leave the mac80211 data
1173 	 * incorrect for the case that we receive an HE-MU
1174 	 * transmission and *don't* have the HE phy data (due
1175 	 * to the bits being used for TSF). This shouldn't
1176 	 * happen though as management frames where we need
1177 	 * the TSF/timers are not be transmitted in HE-MU.
1178 	 */
1179 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1180 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1181 	u8 offs = 0;
1182 
1183 	rx_status->bw = RATE_INFO_BW_HE_RU;
1184 
1185 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1186 
1187 	switch (ru) {
1188 	case 0 ... 36:
1189 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1190 		offs = ru;
1191 		break;
1192 	case 37 ... 52:
1193 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1194 		offs = ru - 37;
1195 		break;
1196 	case 53 ... 60:
1197 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1198 		offs = ru - 53;
1199 		break;
1200 	case 61 ... 64:
1201 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1202 		offs = ru - 61;
1203 		break;
1204 	case 65 ... 66:
1205 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1206 		offs = ru - 65;
1207 		break;
1208 	case 67:
1209 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1210 		break;
1211 	case 68:
1212 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1213 		break;
1214 	}
1215 	he->data2 |= le16_encode_bits(offs,
1216 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1217 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1218 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1219 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1220 		he->data2 |=
1221 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1222 
1223 #define CHECK_BW(bw) \
1224 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1225 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1226 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1227 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1228 	CHECK_BW(20);
1229 	CHECK_BW(40);
1230 	CHECK_BW(80);
1231 	CHECK_BW(160);
1232 
1233 	if (he_mu)
1234 		he_mu->flags2 |=
1235 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1236 						   rate_n_flags),
1237 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1238 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1239 		he->data6 |=
1240 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1241 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1242 						   rate_n_flags),
1243 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1244 }
1245 
1246 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1247 				       struct iwl_mvm_rx_phy_data *phy_data,
1248 				       struct ieee80211_radiotap_he *he,
1249 				       struct ieee80211_radiotap_he_mu *he_mu,
1250 				       struct ieee80211_rx_status *rx_status,
1251 				       u32 rate_n_flags, int queue)
1252 {
1253 	switch (phy_data->info_type) {
1254 	case IWL_RX_PHY_INFO_TYPE_NONE:
1255 	case IWL_RX_PHY_INFO_TYPE_CCK:
1256 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1257 	case IWL_RX_PHY_INFO_TYPE_HT:
1258 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1259 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1260 		return;
1261 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1262 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1263 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1264 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1265 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1266 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1267 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1268 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1269 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1270 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1271 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1272 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1273 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1274 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1275 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1276 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1277 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1278 		/* fall through */
1279 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1280 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1281 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1282 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1283 		/* HE common */
1284 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1285 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1286 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1287 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1288 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1289 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1290 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1291 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1292 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1293 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1294 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1295 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1296 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1297 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1298 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1299 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1300 		}
1301 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1302 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1303 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1304 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1305 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1306 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1307 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1308 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1309 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1310 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1311 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1312 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1313 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1314 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1315 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1316 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1317 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1318 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1319 		break;
1320 	}
1321 
1322 	switch (phy_data->info_type) {
1323 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1324 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1325 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1326 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1327 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1328 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1329 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1330 		break;
1331 	default:
1332 		/* nothing here */
1333 		break;
1334 	}
1335 
1336 	switch (phy_data->info_type) {
1337 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1338 		he_mu->flags1 |=
1339 			le16_encode_bits(le16_get_bits(phy_data->d4,
1340 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1341 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1342 		he_mu->flags1 |=
1343 			le16_encode_bits(le16_get_bits(phy_data->d4,
1344 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1345 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1346 		he_mu->flags2 |=
1347 			le16_encode_bits(le16_get_bits(phy_data->d4,
1348 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1349 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1350 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1351 		/* fall through */
1352 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1353 		he_mu->flags2 |=
1354 			le16_encode_bits(le32_get_bits(phy_data->d1,
1355 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1356 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1357 		he_mu->flags2 |=
1358 			le16_encode_bits(le32_get_bits(phy_data->d1,
1359 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1360 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1361 		/* fall through */
1362 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1363 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1364 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1365 					       he, he_mu, rx_status);
1366 		break;
1367 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1368 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1369 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1370 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1371 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1372 		break;
1373 	default:
1374 		/* nothing */
1375 		break;
1376 	}
1377 }
1378 
1379 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1380 			  struct iwl_mvm_rx_phy_data *phy_data,
1381 			  u32 rate_n_flags, u16 phy_info, int queue)
1382 {
1383 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1384 	struct ieee80211_radiotap_he *he = NULL;
1385 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1386 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1387 	u8 stbc, ltf;
1388 	static const struct ieee80211_radiotap_he known = {
1389 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1390 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1391 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1392 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1393 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1394 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1395 	};
1396 	static const struct ieee80211_radiotap_he_mu mu_known = {
1397 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1398 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1399 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1400 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1401 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1402 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1403 	};
1404 
1405 	he = skb_put_data(skb, &known, sizeof(known));
1406 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1407 
1408 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1409 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1410 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1411 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1412 	}
1413 
1414 	/* report the AMPDU-EOF bit on single frames */
1415 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1416 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1417 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1418 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1419 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1420 	}
1421 
1422 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1423 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1424 					   rate_n_flags, queue);
1425 
1426 	/* update aggregation data for monitor sake on default queue */
1427 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1428 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1429 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1430 
1431 		/* toggle is switched whenever new aggregation starts */
1432 		if (toggle_bit != mvm->ampdu_toggle) {
1433 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1434 			if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1435 				rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1436 		}
1437 	}
1438 
1439 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1440 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1441 		rx_status->bw = RATE_INFO_BW_HE_RU;
1442 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1443 	}
1444 
1445 	/* actually data is filled in mac80211 */
1446 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1447 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1448 		he->data1 |=
1449 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1450 
1451 	stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1452 	rx_status->nss =
1453 		((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1454 					RATE_VHT_MCS_NSS_POS) + 1;
1455 	rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1456 	rx_status->encoding = RX_ENC_HE;
1457 	rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1458 	if (rate_n_flags & RATE_MCS_BF_MSK)
1459 		rx_status->enc_flags |= RX_ENC_FLAG_BF;
1460 
1461 	rx_status->he_dcm =
1462 		!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1463 
1464 #define CHECK_TYPE(F)							\
1465 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1466 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1467 
1468 	CHECK_TYPE(SU);
1469 	CHECK_TYPE(EXT_SU);
1470 	CHECK_TYPE(MU);
1471 	CHECK_TYPE(TRIG);
1472 
1473 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1474 
1475 	if (rate_n_flags & RATE_MCS_BF_MSK)
1476 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1477 
1478 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1479 		RATE_MCS_HE_GI_LTF_POS) {
1480 	case 0:
1481 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1482 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1483 		else
1484 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1485 		if (he_type == RATE_MCS_HE_TYPE_MU)
1486 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1487 		else
1488 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1489 		break;
1490 	case 1:
1491 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1492 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1493 		else
1494 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1495 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1496 		break;
1497 	case 2:
1498 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1499 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1500 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1501 		} else {
1502 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1503 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1504 		}
1505 		break;
1506 	case 3:
1507 		if ((he_type == RATE_MCS_HE_TYPE_SU ||
1508 		     he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1509 		    rate_n_flags & RATE_MCS_SGI_MSK)
1510 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1511 		else
1512 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1513 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1514 		break;
1515 	}
1516 
1517 	he->data5 |= le16_encode_bits(ltf,
1518 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1519 }
1520 
1521 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1522 				struct iwl_mvm_rx_phy_data *phy_data)
1523 {
1524 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1525 	struct ieee80211_radiotap_lsig *lsig;
1526 
1527 	switch (phy_data->info_type) {
1528 	case IWL_RX_PHY_INFO_TYPE_HT:
1529 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1530 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1531 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1532 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1533 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1534 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1535 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1536 		lsig = skb_put(skb, sizeof(*lsig));
1537 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1538 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1539 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1540 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1541 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1542 		break;
1543 	default:
1544 		break;
1545 	}
1546 }
1547 
1548 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1549 {
1550 	switch (phy_band) {
1551 	case PHY_BAND_24:
1552 		return NL80211_BAND_2GHZ;
1553 	case PHY_BAND_5:
1554 		return NL80211_BAND_5GHZ;
1555 	default:
1556 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1557 		return NL80211_BAND_5GHZ;
1558 	}
1559 }
1560 
1561 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1562 			struct iwl_rx_cmd_buffer *rxb, int queue)
1563 {
1564 	struct ieee80211_rx_status *rx_status;
1565 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1566 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1567 	struct ieee80211_hdr *hdr;
1568 	u32 len = le16_to_cpu(desc->mpdu_len);
1569 	u32 rate_n_flags, gp2_on_air_rise;
1570 	u16 phy_info = le16_to_cpu(desc->phy_info);
1571 	struct ieee80211_sta *sta = NULL;
1572 	struct sk_buff *skb;
1573 	u8 crypt_len = 0, channel, energy_a, energy_b;
1574 	size_t desc_size;
1575 	struct iwl_mvm_rx_phy_data phy_data = {
1576 		.d4 = desc->phy_data4,
1577 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1578 	};
1579 	bool csi = false;
1580 
1581 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1582 		return;
1583 
1584 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1585 		rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1586 		channel = desc->v3.channel;
1587 		gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1588 		energy_a = desc->v3.energy_a;
1589 		energy_b = desc->v3.energy_b;
1590 		desc_size = sizeof(*desc);
1591 
1592 		phy_data.d0 = desc->v3.phy_data0;
1593 		phy_data.d1 = desc->v3.phy_data1;
1594 		phy_data.d2 = desc->v3.phy_data2;
1595 		phy_data.d3 = desc->v3.phy_data3;
1596 	} else {
1597 		rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1598 		channel = desc->v1.channel;
1599 		gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1600 		energy_a = desc->v1.energy_a;
1601 		energy_b = desc->v1.energy_b;
1602 		desc_size = IWL_RX_DESC_SIZE_V1;
1603 
1604 		phy_data.d0 = desc->v1.phy_data0;
1605 		phy_data.d1 = desc->v1.phy_data1;
1606 		phy_data.d2 = desc->v1.phy_data2;
1607 		phy_data.d3 = desc->v1.phy_data3;
1608 	}
1609 
1610 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1611 		phy_data.info_type =
1612 			le32_get_bits(phy_data.d1,
1613 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1614 
1615 	hdr = (void *)(pkt->data + desc_size);
1616 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1617 	 * ieee80211_hdr pulled.
1618 	 */
1619 	skb = alloc_skb(128, GFP_ATOMIC);
1620 	if (!skb) {
1621 		IWL_ERR(mvm, "alloc_skb failed\n");
1622 		return;
1623 	}
1624 
1625 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1626 		/*
1627 		 * If the device inserted padding it means that (it thought)
1628 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1629 		 * this case, reserve two bytes at the start of the SKB to
1630 		 * align the payload properly in case we end up copying it.
1631 		 */
1632 		skb_reserve(skb, 2);
1633 	}
1634 
1635 	rx_status = IEEE80211_SKB_RXCB(skb);
1636 
1637 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1638 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1639 	case RATE_MCS_CHAN_WIDTH_20:
1640 		break;
1641 	case RATE_MCS_CHAN_WIDTH_40:
1642 		rx_status->bw = RATE_INFO_BW_40;
1643 		break;
1644 	case RATE_MCS_CHAN_WIDTH_80:
1645 		rx_status->bw = RATE_INFO_BW_80;
1646 		break;
1647 	case RATE_MCS_CHAN_WIDTH_160:
1648 		rx_status->bw = RATE_INFO_BW_160;
1649 		break;
1650 	}
1651 
1652 	if (rate_n_flags & RATE_MCS_HE_MSK)
1653 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1654 			      phy_info, queue);
1655 
1656 	iwl_mvm_decode_lsig(skb, &phy_data);
1657 
1658 	rx_status = IEEE80211_SKB_RXCB(skb);
1659 
1660 	if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc,
1661 			      le32_to_cpu(pkt->len_n_flags), queue,
1662 			      &crypt_len)) {
1663 		kfree_skb(skb);
1664 		return;
1665 	}
1666 
1667 	/*
1668 	 * Keep packets with CRC errors (and with overrun) for monitor mode
1669 	 * (otherwise the firmware discards them) but mark them as bad.
1670 	 */
1671 	if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1672 	    !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1673 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1674 			     le16_to_cpu(desc->status));
1675 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1676 	}
1677 	/* set the preamble flag if appropriate */
1678 	if (rate_n_flags & RATE_MCS_CCK_MSK &&
1679 	    phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1680 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1681 
1682 	if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1683 		u64 tsf_on_air_rise;
1684 
1685 		if (mvm->trans->trans_cfg->device_family >=
1686 		    IWL_DEVICE_FAMILY_AX210)
1687 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1688 		else
1689 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1690 
1691 		rx_status->mactime = tsf_on_air_rise;
1692 		/* TSF as indicated by the firmware is at INA time */
1693 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1694 	}
1695 
1696 	rx_status->device_timestamp = gp2_on_air_rise;
1697 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1698 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1699 
1700 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1701 	} else {
1702 		rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1703 			NL80211_BAND_2GHZ;
1704 	}
1705 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1706 							 rx_status->band);
1707 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1708 				    energy_b);
1709 
1710 	/* update aggregation data for monitor sake on default queue */
1711 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1712 		bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1713 
1714 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1715 		/*
1716 		 * Toggle is switched whenever new aggregation starts. Make
1717 		 * sure ampdu_reference is never 0 so we can later use it to
1718 		 * see if the frame was really part of an A-MPDU or not.
1719 		 */
1720 		if (toggle_bit != mvm->ampdu_toggle) {
1721 			mvm->ampdu_ref++;
1722 			if (mvm->ampdu_ref == 0)
1723 				mvm->ampdu_ref++;
1724 			mvm->ampdu_toggle = toggle_bit;
1725 		}
1726 		rx_status->ampdu_reference = mvm->ampdu_ref;
1727 	}
1728 
1729 	if (unlikely(mvm->monitor_on))
1730 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1731 
1732 	rcu_read_lock();
1733 
1734 	if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1735 		u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
1736 
1737 		if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
1738 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1739 			if (IS_ERR(sta))
1740 				sta = NULL;
1741 		}
1742 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1743 		/*
1744 		 * This is fine since we prevent two stations with the same
1745 		 * address from being added.
1746 		 */
1747 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1748 	}
1749 
1750 	if (sta) {
1751 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1752 		struct ieee80211_vif *tx_blocked_vif =
1753 			rcu_dereference(mvm->csa_tx_blocked_vif);
1754 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1755 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
1756 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
1757 		struct iwl_fw_dbg_trigger_tlv *trig;
1758 		struct ieee80211_vif *vif = mvmsta->vif;
1759 
1760 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1761 		    !is_multicast_ether_addr(hdr->addr1) &&
1762 		    ieee80211_is_data(hdr->frame_control) &&
1763 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1764 			schedule_delayed_work(&mvm->tcm.work, 0);
1765 
1766 		/*
1767 		 * We have tx blocked stations (with CS bit). If we heard
1768 		 * frames from a blocked station on a new channel we can
1769 		 * TX to it again.
1770 		 */
1771 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1772 			struct iwl_mvm_vif *mvmvif =
1773 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1774 
1775 			if (mvmvif->csa_target_freq == rx_status->freq)
1776 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1777 								 false);
1778 		}
1779 
1780 		rs_update_last_rssi(mvm, mvmsta, rx_status);
1781 
1782 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1783 					     ieee80211_vif_to_wdev(vif),
1784 					     FW_DBG_TRIGGER_RSSI);
1785 
1786 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1787 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1788 			s32 rssi;
1789 
1790 			rssi_trig = (void *)trig->data;
1791 			rssi = le32_to_cpu(rssi_trig->rssi);
1792 
1793 			if (rx_status->signal < rssi)
1794 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1795 							NULL);
1796 		}
1797 
1798 		if (ieee80211_is_data(hdr->frame_control))
1799 			iwl_mvm_rx_csum(sta, skb, desc);
1800 
1801 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1802 			kfree_skb(skb);
1803 			goto out;
1804 		}
1805 
1806 		/*
1807 		 * Our hardware de-aggregates AMSDUs but copies the mac header
1808 		 * as it to the de-aggregated MPDUs. We need to turn off the
1809 		 * AMSDU bit in the QoS control ourselves.
1810 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
1811 		 */
1812 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1813 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1814 			u8 *qc = ieee80211_get_qos_ctl(hdr);
1815 
1816 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1817 
1818 			if (mvm->trans->trans_cfg->device_family ==
1819 			    IWL_DEVICE_FAMILY_9000) {
1820 				iwl_mvm_flip_address(hdr->addr3);
1821 
1822 				if (ieee80211_has_a4(hdr->frame_control))
1823 					iwl_mvm_flip_address(hdr->addr4);
1824 			}
1825 		}
1826 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1827 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
1828 
1829 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1830 		}
1831 	}
1832 
1833 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1834 	    rate_n_flags & RATE_MCS_SGI_MSK)
1835 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1836 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1837 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1838 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1839 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1840 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1841 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1842 				RATE_MCS_STBC_POS;
1843 		rx_status->encoding = RX_ENC_HT;
1844 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1845 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1846 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1847 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1848 				RATE_MCS_STBC_POS;
1849 		rx_status->nss =
1850 			((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1851 						RATE_VHT_MCS_NSS_POS) + 1;
1852 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1853 		rx_status->encoding = RX_ENC_VHT;
1854 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1855 		if (rate_n_flags & RATE_MCS_BF_MSK)
1856 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
1857 	} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1858 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1859 							       rx_status->band);
1860 
1861 		if (WARN(rate < 0 || rate > 0xFF,
1862 			 "Invalid rate flags 0x%x, band %d,\n",
1863 			 rate_n_flags, rx_status->band)) {
1864 			kfree_skb(skb);
1865 			goto out;
1866 		}
1867 		rx_status->rate_idx = rate;
1868 	}
1869 
1870 	/* management stuff on default queue */
1871 	if (!queue) {
1872 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1873 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
1874 			     mvm->sched_scan_pass_all ==
1875 			     SCHED_SCAN_PASS_ALL_ENABLED))
1876 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1877 
1878 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1879 			     ieee80211_is_probe_resp(hdr->frame_control)))
1880 			rx_status->boottime_ns = ktime_get_boottime_ns();
1881 	}
1882 
1883 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1884 		kfree_skb(skb);
1885 		goto out;
1886 	}
1887 
1888 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1889 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1890 						sta, csi);
1891 out:
1892 	rcu_read_unlock();
1893 }
1894 
1895 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
1896 				struct iwl_rx_cmd_buffer *rxb, int queue)
1897 {
1898 	struct ieee80211_rx_status *rx_status;
1899 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1900 	struct iwl_rx_no_data *desc = (void *)pkt->data;
1901 	u32 rate_n_flags = le32_to_cpu(desc->rate);
1902 	u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1903 	u32 rssi = le32_to_cpu(desc->rssi);
1904 	u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
1905 	u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1906 	struct ieee80211_sta *sta = NULL;
1907 	struct sk_buff *skb;
1908 	u8 channel, energy_a, energy_b;
1909 	struct iwl_mvm_rx_phy_data phy_data = {
1910 		.d0 = desc->phy_info[0],
1911 		.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1912 	};
1913 
1914 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1915 		return;
1916 
1917 	energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
1918 	energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
1919 	channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
1920 
1921 	phy_data.info_type =
1922 		le32_get_bits(desc->phy_info[1],
1923 			      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1924 
1925 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
1926 	 * ieee80211_hdr pulled.
1927 	 */
1928 	skb = alloc_skb(128, GFP_ATOMIC);
1929 	if (!skb) {
1930 		IWL_ERR(mvm, "alloc_skb failed\n");
1931 		return;
1932 	}
1933 
1934 	rx_status = IEEE80211_SKB_RXCB(skb);
1935 
1936 	/* 0-length PSDU */
1937 	rx_status->flag |= RX_FLAG_NO_PSDU;
1938 
1939 	switch (info_type) {
1940 	case RX_NO_DATA_INFO_TYPE_NDP:
1941 		rx_status->zero_length_psdu_type =
1942 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
1943 		break;
1944 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
1945 	case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
1946 		rx_status->zero_length_psdu_type =
1947 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
1948 		break;
1949 	default:
1950 		rx_status->zero_length_psdu_type =
1951 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
1952 		break;
1953 	}
1954 
1955 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1956 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1957 	case RATE_MCS_CHAN_WIDTH_20:
1958 		break;
1959 	case RATE_MCS_CHAN_WIDTH_40:
1960 		rx_status->bw = RATE_INFO_BW_40;
1961 		break;
1962 	case RATE_MCS_CHAN_WIDTH_80:
1963 		rx_status->bw = RATE_INFO_BW_80;
1964 		break;
1965 	case RATE_MCS_CHAN_WIDTH_160:
1966 		rx_status->bw = RATE_INFO_BW_160;
1967 		break;
1968 	}
1969 
1970 	if (rate_n_flags & RATE_MCS_HE_MSK)
1971 		iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1972 			      phy_info, queue);
1973 
1974 	iwl_mvm_decode_lsig(skb, &phy_data);
1975 
1976 	rx_status->device_timestamp = gp2_on_air_rise;
1977 	rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1978 		NL80211_BAND_2GHZ;
1979 	rx_status->freq = ieee80211_channel_to_frequency(channel,
1980 							 rx_status->band);
1981 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1982 				    energy_b);
1983 
1984 	rcu_read_lock();
1985 
1986 	if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1987 	    rate_n_flags & RATE_MCS_SGI_MSK)
1988 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1989 	if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1990 		rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1991 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1992 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1993 	if (rate_n_flags & RATE_MCS_HT_MSK) {
1994 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1995 				RATE_MCS_STBC_POS;
1996 		rx_status->encoding = RX_ENC_HT;
1997 		rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1998 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1999 	} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2000 		u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2001 				RATE_MCS_STBC_POS;
2002 		rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2003 		rx_status->encoding = RX_ENC_VHT;
2004 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2005 		if (rate_n_flags & RATE_MCS_BF_MSK)
2006 			rx_status->enc_flags |= RX_ENC_FLAG_BF;
2007 		/*
2008 		 * take the nss from the rx_vec since the rate_n_flags has
2009 		 * only 2 bits for the nss which gives a max of 4 ss but
2010 		 * there may be up to 8 spatial streams
2011 		 */
2012 		rx_status->nss =
2013 			le32_get_bits(desc->rx_vec[0],
2014 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2015 	} else if (rate_n_flags & RATE_MCS_HE_MSK) {
2016 		rx_status->nss =
2017 			le32_get_bits(desc->rx_vec[0],
2018 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2019 	} else {
2020 		int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2021 							       rx_status->band);
2022 
2023 		if (WARN(rate < 0 || rate > 0xFF,
2024 			 "Invalid rate flags 0x%x, band %d,\n",
2025 			 rate_n_flags, rx_status->band)) {
2026 			kfree_skb(skb);
2027 			goto out;
2028 		}
2029 		rx_status->rate_idx = rate;
2030 	}
2031 
2032 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2033 out:
2034 	rcu_read_unlock();
2035 }
2036 
2037 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2038 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2039 {
2040 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2041 	struct iwl_frame_release *release = (void *)pkt->data;
2042 
2043 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2044 					  le16_to_cpu(release->nssn),
2045 					  queue, 0);
2046 }
2047 
2048 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2049 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2050 {
2051 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2052 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2053 	unsigned int baid = le32_get_bits(release->ba_info,
2054 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2055 	unsigned int nssn = le32_get_bits(release->ba_info,
2056 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2057 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2058 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2059 	unsigned int tid = le32_get_bits(release->sta_tid,
2060 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2061 	struct iwl_mvm_baid_data *baid_data;
2062 
2063 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2064 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2065 		return;
2066 
2067 	rcu_read_lock();
2068 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2069 	if (!baid_data) {
2070 		IWL_DEBUG_RX(mvm,
2071 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2072 			      baid);
2073 		goto out;
2074 	}
2075 
2076 	if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2077 		 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2078 		 baid, baid_data->sta_id, baid_data->tid, sta_id,
2079 		 tid))
2080 		goto out;
2081 
2082 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2083 out:
2084 	rcu_read_unlock();
2085 }
2086