1 /****************************************************************************** 2 * 3 * This file is provided under a dual BSD/GPLv2 license. When using or 4 * redistributing this file, you may do so under either license. 5 * 6 * GPL LICENSE SUMMARY 7 * 8 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 9 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 10 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 11 * Copyright(c) 2018 Intel Corporation 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of version 2 of the GNU General Public License as 15 * published by the Free Software Foundation. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * The full GNU General Public License is included in this distribution 23 * in the file called COPYING. 24 * 25 * Contact Information: 26 * Intel Linux Wireless <ilw@linux.intel.com> 27 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 28 * 29 * BSD LICENSE 30 * 31 * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. 32 * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH 33 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 34 * Copyright(c) 2018 Intel Corporation 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 41 * * Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * * Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in 45 * the documentation and/or other materials provided with the 46 * distribution. 47 * * Neither the name Intel Corporation nor the names of its 48 * contributors may be used to endorse or promote products derived 49 * from this software without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 52 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 53 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 54 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 55 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 56 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 57 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 61 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 62 *****************************************************************************/ 63 #include <linux/etherdevice.h> 64 #include <linux/skbuff.h> 65 #include "iwl-trans.h" 66 #include "mvm.h" 67 #include "fw-api.h" 68 69 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 70 int queue, struct ieee80211_sta *sta) 71 { 72 struct iwl_mvm_sta *mvmsta; 73 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 74 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 75 struct iwl_mvm_key_pn *ptk_pn; 76 int res; 77 u8 tid, keyidx; 78 u8 pn[IEEE80211_CCMP_PN_LEN]; 79 u8 *extiv; 80 81 /* do PN checking */ 82 83 /* multicast and non-data only arrives on default queue */ 84 if (!ieee80211_is_data(hdr->frame_control) || 85 is_multicast_ether_addr(hdr->addr1)) 86 return 0; 87 88 /* do not check PN for open AP */ 89 if (!(stats->flag & RX_FLAG_DECRYPTED)) 90 return 0; 91 92 /* 93 * avoid checking for default queue - we don't want to replicate 94 * all the logic that's necessary for checking the PN on fragmented 95 * frames, leave that to mac80211 96 */ 97 if (queue == 0) 98 return 0; 99 100 /* if we are here - this for sure is either CCMP or GCMP */ 101 if (IS_ERR_OR_NULL(sta)) { 102 IWL_ERR(mvm, 103 "expected hw-decrypted unicast frame for station\n"); 104 return -1; 105 } 106 107 mvmsta = iwl_mvm_sta_from_mac80211(sta); 108 109 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 110 keyidx = extiv[3] >> 6; 111 112 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 113 if (!ptk_pn) 114 return -1; 115 116 if (ieee80211_is_data_qos(hdr->frame_control)) 117 tid = ieee80211_get_tid(hdr); 118 else 119 tid = 0; 120 121 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 122 if (tid >= IWL_MAX_TID_COUNT) 123 return -1; 124 125 /* load pn */ 126 pn[0] = extiv[7]; 127 pn[1] = extiv[6]; 128 pn[2] = extiv[5]; 129 pn[3] = extiv[4]; 130 pn[4] = extiv[1]; 131 pn[5] = extiv[0]; 132 133 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 134 if (res < 0) 135 return -1; 136 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 137 return -1; 138 139 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 140 stats->flag |= RX_FLAG_PN_VALIDATED; 141 142 return 0; 143 } 144 145 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 146 static void iwl_mvm_create_skb(struct sk_buff *skb, struct ieee80211_hdr *hdr, 147 u16 len, u8 crypt_len, 148 struct iwl_rx_cmd_buffer *rxb) 149 { 150 struct iwl_rx_packet *pkt = rxb_addr(rxb); 151 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 152 unsigned int headlen, fraglen, pad_len = 0; 153 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 154 155 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 156 len -= 2; 157 pad_len = 2; 158 } 159 160 /* If frame is small enough to fit in skb->head, pull it completely. 161 * If not, only pull ieee80211_hdr (including crypto if present, and 162 * an additional 8 bytes for SNAP/ethertype, see below) so that 163 * splice() or TCP coalesce are more efficient. 164 * 165 * Since, in addition, ieee80211_data_to_8023() always pull in at 166 * least 8 bytes (possibly more for mesh) we can do the same here 167 * to save the cost of doing it later. That still doesn't pull in 168 * the actual IP header since the typical case has a SNAP header. 169 * If the latter changes (there are efforts in the standards group 170 * to do so) we should revisit this and ieee80211_data_to_8023(). 171 */ 172 headlen = (len <= skb_tailroom(skb)) ? len : 173 hdrlen + crypt_len + 8; 174 175 /* The firmware may align the packet to DWORD. 176 * The padding is inserted after the IV. 177 * After copying the header + IV skip the padding if 178 * present before copying packet data. 179 */ 180 hdrlen += crypt_len; 181 skb_put_data(skb, hdr, hdrlen); 182 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 183 184 fraglen = len - headlen; 185 186 if (fraglen) { 187 int offset = (void *)hdr + headlen + pad_len - 188 rxb_addr(rxb) + rxb_offset(rxb); 189 190 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 191 fraglen, rxb->truesize); 192 } 193 } 194 195 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 196 struct sk_buff *skb) 197 { 198 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 199 struct ieee80211_vendor_radiotap *radiotap; 200 int size = sizeof(*radiotap) + sizeof(__le16); 201 202 if (!mvm->cur_aid) 203 return; 204 205 radiotap = skb_put(skb, size); 206 radiotap->align = 1; 207 /* Intel OUI */ 208 radiotap->oui[0] = 0xf6; 209 radiotap->oui[1] = 0x54; 210 radiotap->oui[2] = 0x25; 211 /* radiotap sniffer config sub-namespace */ 212 radiotap->subns = 1; 213 radiotap->present = 0x1; 214 radiotap->len = size - sizeof(*radiotap); 215 radiotap->pad = 0; 216 217 /* fill the data now */ 218 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 219 220 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 221 } 222 223 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 224 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 225 struct napi_struct *napi, 226 struct sk_buff *skb, int queue, 227 struct ieee80211_sta *sta, 228 bool csi) 229 { 230 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 231 232 if (!(rx_status->flag & RX_FLAG_NO_PSDU) && 233 iwl_mvm_check_pn(mvm, skb, queue, sta)) 234 kfree_skb(skb); 235 else 236 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 237 } 238 239 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 240 struct ieee80211_rx_status *rx_status, 241 u32 rate_n_flags, int energy_a, 242 int energy_b) 243 { 244 int max_energy; 245 u32 rate_flags = rate_n_flags; 246 247 energy_a = energy_a ? -energy_a : S8_MIN; 248 energy_b = energy_b ? -energy_b : S8_MIN; 249 max_energy = max(energy_a, energy_b); 250 251 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 252 energy_a, energy_b, max_energy); 253 254 rx_status->signal = max_energy; 255 rx_status->chains = 256 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 257 rx_status->chain_signal[0] = energy_a; 258 rx_status->chain_signal[1] = energy_b; 259 rx_status->chain_signal[2] = S8_MIN; 260 } 261 262 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_hdr *hdr, 263 struct ieee80211_rx_status *stats, u16 phy_info, 264 struct iwl_rx_mpdu_desc *desc, 265 u32 pkt_flags, int queue, u8 *crypt_len) 266 { 267 u16 status = le16_to_cpu(desc->status); 268 269 /* 270 * Drop UNKNOWN frames in aggregation, unless in monitor mode 271 * (where we don't have the keys). 272 * We limit this to aggregation because in TKIP this is a valid 273 * scenario, since we may not have the (correct) TTAK (phase 1 274 * key) in the firmware. 275 */ 276 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 277 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 278 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 279 return -1; 280 281 if (!ieee80211_has_protected(hdr->frame_control) || 282 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 283 IWL_RX_MPDU_STATUS_SEC_NONE) 284 return 0; 285 286 /* TODO: handle packets encrypted with unknown alg */ 287 288 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 289 case IWL_RX_MPDU_STATUS_SEC_CCM: 290 case IWL_RX_MPDU_STATUS_SEC_GCM: 291 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 292 /* alg is CCM: check MIC only */ 293 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 294 return -1; 295 296 stats->flag |= RX_FLAG_DECRYPTED; 297 if (pkt_flags & FH_RSCSR_RADA_EN) 298 stats->flag |= RX_FLAG_MIC_STRIPPED; 299 *crypt_len = IEEE80211_CCMP_HDR_LEN; 300 return 0; 301 case IWL_RX_MPDU_STATUS_SEC_TKIP: 302 /* Don't drop the frame and decrypt it in SW */ 303 if (!fw_has_api(&mvm->fw->ucode_capa, 304 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 305 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 306 return 0; 307 308 if (mvm->trans->cfg->gen2 && 309 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 310 stats->flag |= RX_FLAG_MMIC_ERROR; 311 312 *crypt_len = IEEE80211_TKIP_IV_LEN; 313 /* fall through if TTAK OK */ 314 case IWL_RX_MPDU_STATUS_SEC_WEP: 315 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 316 return -1; 317 318 stats->flag |= RX_FLAG_DECRYPTED; 319 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 320 IWL_RX_MPDU_STATUS_SEC_WEP) 321 *crypt_len = IEEE80211_WEP_IV_LEN; 322 323 if (pkt_flags & FH_RSCSR_RADA_EN) { 324 stats->flag |= RX_FLAG_ICV_STRIPPED; 325 if (mvm->trans->cfg->gen2) 326 stats->flag |= RX_FLAG_MMIC_STRIPPED; 327 } 328 329 return 0; 330 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 331 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 332 return -1; 333 stats->flag |= RX_FLAG_DECRYPTED; 334 return 0; 335 default: 336 /* Expected in monitor (not having the keys) */ 337 if (!mvm->monitor_on) 338 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status); 339 } 340 341 return 0; 342 } 343 344 static void iwl_mvm_rx_csum(struct ieee80211_sta *sta, 345 struct sk_buff *skb, 346 struct iwl_rx_mpdu_desc *desc) 347 { 348 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 349 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 350 u16 flags = le16_to_cpu(desc->l3l4_flags); 351 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 352 IWL_RX_L3_PROTO_POS); 353 354 if (mvmvif->features & NETIF_F_RXCSUM && 355 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 356 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 357 l3_prot == IWL_RX_L3_TYPE_IPV6 || 358 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 359 skb->ip_summed = CHECKSUM_UNNECESSARY; 360 } 361 362 /* 363 * returns true if a packet is a duplicate and should be dropped. 364 * Updates AMSDU PN tracking info 365 */ 366 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 367 struct ieee80211_rx_status *rx_status, 368 struct ieee80211_hdr *hdr, 369 struct iwl_rx_mpdu_desc *desc) 370 { 371 struct iwl_mvm_sta *mvm_sta; 372 struct iwl_mvm_rxq_dup_data *dup_data; 373 u8 tid, sub_frame_idx; 374 375 if (WARN_ON(IS_ERR_OR_NULL(sta))) 376 return false; 377 378 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 379 dup_data = &mvm_sta->dup_data[queue]; 380 381 /* 382 * Drop duplicate 802.11 retransmissions 383 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 384 */ 385 if (ieee80211_is_ctl(hdr->frame_control) || 386 ieee80211_is_qos_nullfunc(hdr->frame_control) || 387 is_multicast_ether_addr(hdr->addr1)) { 388 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 389 return false; 390 } 391 392 if (ieee80211_is_data_qos(hdr->frame_control)) 393 /* frame has qos control */ 394 tid = ieee80211_get_tid(hdr); 395 else 396 tid = IWL_MAX_TID_COUNT; 397 398 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 399 sub_frame_idx = desc->amsdu_info & 400 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 401 402 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 403 dup_data->last_seq[tid] == hdr->seq_ctrl && 404 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 405 return true; 406 407 /* Allow same PN as the first subframe for following sub frames */ 408 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 409 sub_frame_idx > dup_data->last_sub_frame[tid] && 410 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 411 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 412 413 dup_data->last_seq[tid] = hdr->seq_ctrl; 414 dup_data->last_sub_frame[tid] = sub_frame_idx; 415 416 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 417 418 return false; 419 } 420 421 int iwl_mvm_notify_rx_queue(struct iwl_mvm *mvm, u32 rxq_mask, 422 const u8 *data, u32 count) 423 { 424 struct iwl_rxq_sync_cmd *cmd; 425 u32 data_size = sizeof(*cmd) + count; 426 int ret; 427 428 /* should be DWORD aligned */ 429 if (WARN_ON(count & 3 || count > IWL_MULTI_QUEUE_SYNC_MSG_MAX_SIZE)) 430 return -EINVAL; 431 432 cmd = kzalloc(data_size, GFP_KERNEL); 433 if (!cmd) 434 return -ENOMEM; 435 436 cmd->rxq_mask = cpu_to_le32(rxq_mask); 437 cmd->count = cpu_to_le32(count); 438 cmd->flags = 0; 439 memcpy(cmd->payload, data, count); 440 441 ret = iwl_mvm_send_cmd_pdu(mvm, 442 WIDE_ID(DATA_PATH_GROUP, 443 TRIGGER_RX_QUEUES_NOTIF_CMD), 444 0, data_size, cmd); 445 446 kfree(cmd); 447 return ret; 448 } 449 450 /* 451 * Returns true if sn2 - buffer_size < sn1 < sn2. 452 * To be used only in order to compare reorder buffer head with NSSN. 453 * We fully trust NSSN unless it is behind us due to reorder timeout. 454 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 455 */ 456 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 457 { 458 return ieee80211_sn_less(sn1, sn2) && 459 !ieee80211_sn_less(sn1, sn2 - buffer_size); 460 } 461 462 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 463 464 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 465 struct ieee80211_sta *sta, 466 struct napi_struct *napi, 467 struct iwl_mvm_baid_data *baid_data, 468 struct iwl_mvm_reorder_buffer *reorder_buf, 469 u16 nssn) 470 { 471 struct iwl_mvm_reorder_buf_entry *entries = 472 &baid_data->entries[reorder_buf->queue * 473 baid_data->entries_per_queue]; 474 u16 ssn = reorder_buf->head_sn; 475 476 lockdep_assert_held(&reorder_buf->lock); 477 478 /* ignore nssn smaller than head sn - this can happen due to timeout */ 479 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 480 goto set_timer; 481 482 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 483 int index = ssn % reorder_buf->buf_size; 484 struct sk_buff_head *skb_list = &entries[index].e.frames; 485 struct sk_buff *skb; 486 487 ssn = ieee80211_sn_inc(ssn); 488 489 /* 490 * Empty the list. Will have more than one frame for A-MSDU. 491 * Empty list is valid as well since nssn indicates frames were 492 * received. 493 */ 494 while ((skb = __skb_dequeue(skb_list))) { 495 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 496 reorder_buf->queue, 497 sta, false); 498 reorder_buf->num_stored--; 499 } 500 } 501 reorder_buf->head_sn = nssn; 502 503 set_timer: 504 if (reorder_buf->num_stored && !reorder_buf->removed) { 505 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 506 507 while (skb_queue_empty(&entries[index].e.frames)) 508 index = (index + 1) % reorder_buf->buf_size; 509 /* modify timer to match next frame's expiration time */ 510 mod_timer(&reorder_buf->reorder_timer, 511 entries[index].e.reorder_time + 1 + 512 RX_REORDER_BUF_TIMEOUT_MQ); 513 } else { 514 del_timer(&reorder_buf->reorder_timer); 515 } 516 } 517 518 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 519 { 520 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 521 struct iwl_mvm_baid_data *baid_data = 522 iwl_mvm_baid_data_from_reorder_buf(buf); 523 struct iwl_mvm_reorder_buf_entry *entries = 524 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 525 int i; 526 u16 sn = 0, index = 0; 527 bool expired = false; 528 bool cont = false; 529 530 spin_lock(&buf->lock); 531 532 if (!buf->num_stored || buf->removed) { 533 spin_unlock(&buf->lock); 534 return; 535 } 536 537 for (i = 0; i < buf->buf_size ; i++) { 538 index = (buf->head_sn + i) % buf->buf_size; 539 540 if (skb_queue_empty(&entries[index].e.frames)) { 541 /* 542 * If there is a hole and the next frame didn't expire 543 * we want to break and not advance SN 544 */ 545 cont = false; 546 continue; 547 } 548 if (!cont && 549 !time_after(jiffies, entries[index].e.reorder_time + 550 RX_REORDER_BUF_TIMEOUT_MQ)) 551 break; 552 553 expired = true; 554 /* continue until next hole after this expired frames */ 555 cont = true; 556 sn = ieee80211_sn_add(buf->head_sn, i + 1); 557 } 558 559 if (expired) { 560 struct ieee80211_sta *sta; 561 struct iwl_mvm_sta *mvmsta; 562 u8 sta_id = baid_data->sta_id; 563 564 rcu_read_lock(); 565 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 566 mvmsta = iwl_mvm_sta_from_mac80211(sta); 567 568 /* SN is set to the last expired frame + 1 */ 569 IWL_DEBUG_HT(buf->mvm, 570 "Releasing expired frames for sta %u, sn %d\n", 571 sta_id, sn); 572 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 573 sta, baid_data->tid); 574 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, buf, sn); 575 rcu_read_unlock(); 576 } else { 577 /* 578 * If no frame expired and there are stored frames, index is now 579 * pointing to the first unexpired frame - modify timer 580 * accordingly to this frame. 581 */ 582 mod_timer(&buf->reorder_timer, 583 entries[index].e.reorder_time + 584 1 + RX_REORDER_BUF_TIMEOUT_MQ); 585 } 586 spin_unlock(&buf->lock); 587 } 588 589 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 590 struct iwl_mvm_delba_data *data) 591 { 592 struct iwl_mvm_baid_data *ba_data; 593 struct ieee80211_sta *sta; 594 struct iwl_mvm_reorder_buffer *reorder_buf; 595 u8 baid = data->baid; 596 597 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 598 return; 599 600 rcu_read_lock(); 601 602 ba_data = rcu_dereference(mvm->baid_map[baid]); 603 if (WARN_ON_ONCE(!ba_data)) 604 goto out; 605 606 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 607 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 608 goto out; 609 610 reorder_buf = &ba_data->reorder_buf[queue]; 611 612 /* release all frames that are in the reorder buffer to the stack */ 613 spin_lock_bh(&reorder_buf->lock); 614 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 615 ieee80211_sn_add(reorder_buf->head_sn, 616 reorder_buf->buf_size)); 617 spin_unlock_bh(&reorder_buf->lock); 618 del_timer_sync(&reorder_buf->reorder_timer); 619 620 out: 621 rcu_read_unlock(); 622 } 623 624 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb, 625 int queue) 626 { 627 struct iwl_rx_packet *pkt = rxb_addr(rxb); 628 struct iwl_rxq_sync_notification *notif; 629 struct iwl_mvm_internal_rxq_notif *internal_notif; 630 631 notif = (void *)pkt->data; 632 internal_notif = (void *)notif->payload; 633 634 if (internal_notif->sync && 635 mvm->queue_sync_cookie != internal_notif->cookie) { 636 WARN_ONCE(1, "Received expired RX queue sync message\n"); 637 return; 638 } 639 640 switch (internal_notif->type) { 641 case IWL_MVM_RXQ_EMPTY: 642 break; 643 case IWL_MVM_RXQ_NOTIF_DEL_BA: 644 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 645 break; 646 default: 647 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 648 } 649 650 if (internal_notif->sync && 651 !atomic_dec_return(&mvm->queue_sync_counter)) 652 wake_up(&mvm->rx_sync_waitq); 653 } 654 655 /* 656 * Returns true if the MPDU was buffered\dropped, false if it should be passed 657 * to upper layer. 658 */ 659 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 660 struct napi_struct *napi, 661 int queue, 662 struct ieee80211_sta *sta, 663 struct sk_buff *skb, 664 struct iwl_rx_mpdu_desc *desc) 665 { 666 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 667 struct iwl_mvm_sta *mvm_sta; 668 struct iwl_mvm_baid_data *baid_data; 669 struct iwl_mvm_reorder_buffer *buffer; 670 struct sk_buff *tail; 671 u32 reorder = le32_to_cpu(desc->reorder_data); 672 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 673 bool last_subframe = 674 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 675 u8 tid = ieee80211_get_tid(hdr); 676 u8 sub_frame_idx = desc->amsdu_info & 677 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 678 struct iwl_mvm_reorder_buf_entry *entries; 679 int index; 680 u16 nssn, sn; 681 u8 baid; 682 683 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 684 IWL_RX_MPDU_REORDER_BAID_SHIFT; 685 686 /* 687 * This also covers the case of receiving a Block Ack Request 688 * outside a BA session; we'll pass it to mac80211 and that 689 * then sends a delBA action frame. 690 * This also covers pure monitor mode, in which case we won't 691 * have any BA sessions. 692 */ 693 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 694 return false; 695 696 /* no sta yet */ 697 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 698 "Got valid BAID without a valid station assigned\n")) 699 return false; 700 701 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 702 703 /* not a data packet or a bar */ 704 if (!ieee80211_is_back_req(hdr->frame_control) && 705 (!ieee80211_is_data_qos(hdr->frame_control) || 706 is_multicast_ether_addr(hdr->addr1))) 707 return false; 708 709 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 710 return false; 711 712 baid_data = rcu_dereference(mvm->baid_map[baid]); 713 if (!baid_data) { 714 IWL_DEBUG_RX(mvm, 715 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 716 baid, reorder); 717 return false; 718 } 719 720 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 721 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 722 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 723 tid)) 724 return false; 725 726 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 727 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 728 IWL_RX_MPDU_REORDER_SN_SHIFT; 729 730 buffer = &baid_data->reorder_buf[queue]; 731 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 732 733 spin_lock_bh(&buffer->lock); 734 735 if (!buffer->valid) { 736 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 737 spin_unlock_bh(&buffer->lock); 738 return false; 739 } 740 buffer->valid = true; 741 } 742 743 if (ieee80211_is_back_req(hdr->frame_control)) { 744 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn); 745 goto drop; 746 } 747 748 /* 749 * If there was a significant jump in the nssn - adjust. 750 * If the SN is smaller than the NSSN it might need to first go into 751 * the reorder buffer, in which case we just release up to it and the 752 * rest of the function will take care of storing it and releasing up to 753 * the nssn 754 */ 755 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 756 buffer->buf_size) || 757 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 758 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 759 760 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 761 min_sn); 762 } 763 764 /* drop any oudated packets */ 765 if (ieee80211_sn_less(sn, buffer->head_sn)) 766 goto drop; 767 768 /* release immediately if allowed by nssn and no stored frames */ 769 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 770 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 771 buffer->buf_size) && 772 (!amsdu || last_subframe)) 773 buffer->head_sn = nssn; 774 /* No need to update AMSDU last SN - we are moving the head */ 775 spin_unlock_bh(&buffer->lock); 776 return false; 777 } 778 779 /* 780 * release immediately if there are no stored frames, and the sn is 781 * equal to the head. 782 * This can happen due to reorder timer, where NSSN is behind head_sn. 783 * When we released everything, and we got the next frame in the 784 * sequence, according to the NSSN we can't release immediately, 785 * while technically there is no hole and we can move forward. 786 */ 787 if (!buffer->num_stored && sn == buffer->head_sn) { 788 if (!amsdu || last_subframe) 789 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 790 /* No need to update AMSDU last SN - we are moving the head */ 791 spin_unlock_bh(&buffer->lock); 792 return false; 793 } 794 795 index = sn % buffer->buf_size; 796 797 /* 798 * Check if we already stored this frame 799 * As AMSDU is either received or not as whole, logic is simple: 800 * If we have frames in that position in the buffer and the last frame 801 * originated from AMSDU had a different SN then it is a retransmission. 802 * If it is the same SN then if the subframe index is incrementing it 803 * is the same AMSDU - otherwise it is a retransmission. 804 */ 805 tail = skb_peek_tail(&entries[index].e.frames); 806 if (tail && !amsdu) 807 goto drop; 808 else if (tail && (sn != buffer->last_amsdu || 809 buffer->last_sub_index >= sub_frame_idx)) 810 goto drop; 811 812 /* put in reorder buffer */ 813 __skb_queue_tail(&entries[index].e.frames, skb); 814 buffer->num_stored++; 815 entries[index].e.reorder_time = jiffies; 816 817 if (amsdu) { 818 buffer->last_amsdu = sn; 819 buffer->last_sub_index = sub_frame_idx; 820 } 821 822 /* 823 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 824 * The reason is that NSSN advances on the first sub-frame, and may 825 * cause the reorder buffer to advance before all the sub-frames arrive. 826 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 827 * SN 1. NSSN for first sub frame will be 3 with the result of driver 828 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 829 * already ahead and it will be dropped. 830 * If the last sub-frame is not on this queue - we will get frame 831 * release notification with up to date NSSN. 832 */ 833 if (!amsdu || last_subframe) 834 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, nssn); 835 836 spin_unlock_bh(&buffer->lock); 837 return true; 838 839 drop: 840 kfree_skb(skb); 841 spin_unlock_bh(&buffer->lock); 842 return true; 843 } 844 845 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 846 u32 reorder_data, u8 baid) 847 { 848 unsigned long now = jiffies; 849 unsigned long timeout; 850 struct iwl_mvm_baid_data *data; 851 852 rcu_read_lock(); 853 854 data = rcu_dereference(mvm->baid_map[baid]); 855 if (!data) { 856 IWL_DEBUG_RX(mvm, 857 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 858 baid, reorder_data); 859 goto out; 860 } 861 862 if (!data->timeout) 863 goto out; 864 865 timeout = data->timeout; 866 /* 867 * Do not update last rx all the time to avoid cache bouncing 868 * between the rx queues. 869 * Update it every timeout. Worst case is the session will 870 * expire after ~ 2 * timeout, which doesn't matter that much. 871 */ 872 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 873 /* Update is atomic */ 874 data->last_rx = now; 875 876 out: 877 rcu_read_unlock(); 878 } 879 880 static void iwl_mvm_flip_address(u8 *addr) 881 { 882 int i; 883 u8 mac_addr[ETH_ALEN]; 884 885 for (i = 0; i < ETH_ALEN; i++) 886 mac_addr[i] = addr[ETH_ALEN - i - 1]; 887 ether_addr_copy(addr, mac_addr); 888 } 889 890 struct iwl_mvm_rx_phy_data { 891 enum iwl_rx_phy_info_type info_type; 892 __le32 d0, d1, d2, d3; 893 __le16 d4; 894 }; 895 896 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 897 struct iwl_mvm_rx_phy_data *phy_data, 898 u32 rate_n_flags, 899 struct ieee80211_radiotap_he_mu *he_mu) 900 { 901 u32 phy_data2 = le32_to_cpu(phy_data->d2); 902 u32 phy_data3 = le32_to_cpu(phy_data->d3); 903 u16 phy_data4 = le16_to_cpu(phy_data->d4); 904 905 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 906 he_mu->flags1 |= 907 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 908 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 909 910 he_mu->flags1 |= 911 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 912 phy_data4), 913 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 914 915 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 916 phy_data2); 917 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 918 phy_data3); 919 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 920 phy_data2); 921 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 922 phy_data3); 923 } 924 925 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 926 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) { 927 he_mu->flags1 |= 928 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 929 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 930 931 he_mu->flags2 |= 932 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 933 phy_data4), 934 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 935 936 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 937 phy_data2); 938 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 939 phy_data3); 940 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 941 phy_data2); 942 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 943 phy_data3); 944 } 945 } 946 947 static void 948 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 949 u32 rate_n_flags, 950 struct ieee80211_radiotap_he *he, 951 struct ieee80211_radiotap_he_mu *he_mu, 952 struct ieee80211_rx_status *rx_status) 953 { 954 /* 955 * Unfortunately, we have to leave the mac80211 data 956 * incorrect for the case that we receive an HE-MU 957 * transmission and *don't* have the HE phy data (due 958 * to the bits being used for TSF). This shouldn't 959 * happen though as management frames where we need 960 * the TSF/timers are not be transmitted in HE-MU. 961 */ 962 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 963 u8 offs = 0; 964 965 rx_status->bw = RATE_INFO_BW_HE_RU; 966 967 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 968 969 switch (ru) { 970 case 0 ... 36: 971 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 972 offs = ru; 973 break; 974 case 37 ... 52: 975 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 976 offs = ru - 37; 977 break; 978 case 53 ... 60: 979 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 980 offs = ru - 53; 981 break; 982 case 61 ... 64: 983 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 984 offs = ru - 61; 985 break; 986 case 65 ... 66: 987 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 988 offs = ru - 65; 989 break; 990 case 67: 991 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 992 break; 993 case 68: 994 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 995 break; 996 } 997 he->data2 |= le16_encode_bits(offs, 998 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 999 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1000 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1001 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1002 he->data2 |= 1003 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1004 1005 if (he_mu) { 1006 #define CHECK_BW(bw) \ 1007 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1008 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1009 CHECK_BW(20); 1010 CHECK_BW(40); 1011 CHECK_BW(80); 1012 CHECK_BW(160); 1013 he_mu->flags2 |= 1014 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1015 rate_n_flags), 1016 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1017 } 1018 } 1019 1020 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1021 struct iwl_mvm_rx_phy_data *phy_data, 1022 struct ieee80211_radiotap_he *he, 1023 struct ieee80211_radiotap_he_mu *he_mu, 1024 struct ieee80211_rx_status *rx_status, 1025 u32 rate_n_flags, int queue) 1026 { 1027 switch (phy_data->info_type) { 1028 case IWL_RX_PHY_INFO_TYPE_NONE: 1029 case IWL_RX_PHY_INFO_TYPE_CCK: 1030 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1031 case IWL_RX_PHY_INFO_TYPE_HT: 1032 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1033 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1034 return; 1035 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1036 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1037 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1038 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1039 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1040 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1041 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1042 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1043 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1044 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1045 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1046 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1047 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1048 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1049 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1050 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1051 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1052 /* fall through */ 1053 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1054 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1055 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1056 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1057 /* HE common */ 1058 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1059 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1060 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1061 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1062 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1063 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1064 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1065 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1066 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1067 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1068 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1069 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1070 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1071 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1072 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1073 IWL_RX_PHY_DATA0_HE_UPLINK), 1074 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1075 } 1076 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1077 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1078 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1079 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1080 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1081 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1082 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1083 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1084 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1085 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1086 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1087 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1088 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1089 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1090 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1091 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1092 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1093 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1094 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1095 IWL_RX_PHY_DATA0_HE_DOPPLER), 1096 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1097 break; 1098 } 1099 1100 switch (phy_data->info_type) { 1101 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1102 he_mu->flags1 |= 1103 le16_encode_bits(le16_get_bits(phy_data->d4, 1104 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1105 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1106 he_mu->flags1 |= 1107 le16_encode_bits(le16_get_bits(phy_data->d4, 1108 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1109 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1110 he_mu->flags2 |= 1111 le16_encode_bits(le16_get_bits(phy_data->d4, 1112 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1113 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1114 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1115 /* fall through */ 1116 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1117 he_mu->flags2 |= 1118 le16_encode_bits(le32_get_bits(phy_data->d1, 1119 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1120 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1121 he_mu->flags2 |= 1122 le16_encode_bits(le32_get_bits(phy_data->d1, 1123 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1124 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1125 /* fall through */ 1126 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1127 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1128 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1129 he, he_mu, rx_status); 1130 break; 1131 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1132 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1133 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1134 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1135 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1136 break; 1137 default: 1138 /* nothing */ 1139 break; 1140 } 1141 } 1142 1143 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1144 struct iwl_mvm_rx_phy_data *phy_data, 1145 u32 rate_n_flags, u16 phy_info, int queue) 1146 { 1147 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1148 struct ieee80211_radiotap_he *he = NULL; 1149 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1150 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1151 u8 stbc, ltf; 1152 static const struct ieee80211_radiotap_he known = { 1153 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1154 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1155 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1156 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1157 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1158 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1159 }; 1160 static const struct ieee80211_radiotap_he_mu mu_known = { 1161 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1162 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1163 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1164 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1165 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1166 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1167 }; 1168 unsigned int radiotap_len = 0; 1169 1170 he = skb_put_data(skb, &known, sizeof(known)); 1171 radiotap_len += sizeof(known); 1172 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1173 1174 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1175 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1176 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1177 radiotap_len += sizeof(mu_known); 1178 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1179 } 1180 1181 /* temporarily hide the radiotap data */ 1182 __skb_pull(skb, radiotap_len); 1183 1184 /* report the AMPDU-EOF bit on single frames */ 1185 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1186 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1187 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1188 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1189 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1190 } 1191 1192 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1193 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1194 rate_n_flags, queue); 1195 1196 /* update aggregation data for monitor sake on default queue */ 1197 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1198 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1199 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1200 1201 /* toggle is switched whenever new aggregation starts */ 1202 if (toggle_bit != mvm->ampdu_toggle) { 1203 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1204 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1205 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1206 } 1207 } 1208 1209 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1210 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1211 rx_status->bw = RATE_INFO_BW_HE_RU; 1212 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1213 } 1214 1215 /* actually data is filled in mac80211 */ 1216 if (he_type == RATE_MCS_HE_TYPE_SU || 1217 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1218 he->data1 |= 1219 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1220 1221 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1222 rx_status->nss = 1223 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1224 RATE_VHT_MCS_NSS_POS) + 1; 1225 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1226 rx_status->encoding = RX_ENC_HE; 1227 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1228 if (rate_n_flags & RATE_MCS_BF_MSK) 1229 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1230 1231 rx_status->he_dcm = 1232 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1233 1234 #define CHECK_TYPE(F) \ 1235 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1236 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1237 1238 CHECK_TYPE(SU); 1239 CHECK_TYPE(EXT_SU); 1240 CHECK_TYPE(MU); 1241 CHECK_TYPE(TRIG); 1242 1243 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1244 1245 if (rate_n_flags & RATE_MCS_BF_MSK) 1246 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1247 1248 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1249 RATE_MCS_HE_GI_LTF_POS) { 1250 case 0: 1251 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1252 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1253 else 1254 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1255 if (he_type == RATE_MCS_HE_TYPE_MU) 1256 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1257 else 1258 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1259 break; 1260 case 1: 1261 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1262 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1263 else 1264 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1265 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1266 break; 1267 case 2: 1268 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1269 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1270 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1271 } else { 1272 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1273 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1274 } 1275 break; 1276 case 3: 1277 if ((he_type == RATE_MCS_HE_TYPE_SU || 1278 he_type == RATE_MCS_HE_TYPE_EXT_SU) && 1279 rate_n_flags & RATE_MCS_SGI_MSK) 1280 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1281 else 1282 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1283 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1284 break; 1285 } 1286 1287 he->data5 |= le16_encode_bits(ltf, 1288 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1289 } 1290 1291 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1292 struct iwl_mvm_rx_phy_data *phy_data) 1293 { 1294 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1295 struct ieee80211_radiotap_lsig *lsig; 1296 1297 switch (phy_data->info_type) { 1298 case IWL_RX_PHY_INFO_TYPE_HT: 1299 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1300 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1301 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1302 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1303 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1304 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1305 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1306 lsig = skb_put(skb, sizeof(*lsig)); 1307 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1308 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1309 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1310 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1311 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1312 break; 1313 default: 1314 break; 1315 } 1316 } 1317 1318 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1319 struct iwl_rx_cmd_buffer *rxb, int queue) 1320 { 1321 struct ieee80211_rx_status *rx_status; 1322 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1323 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1324 struct ieee80211_hdr *hdr; 1325 u32 len = le16_to_cpu(desc->mpdu_len); 1326 u32 rate_n_flags, gp2_on_air_rise; 1327 u16 phy_info = le16_to_cpu(desc->phy_info); 1328 struct ieee80211_sta *sta = NULL; 1329 struct sk_buff *skb; 1330 u8 crypt_len = 0, channel, energy_a, energy_b; 1331 size_t desc_size; 1332 struct iwl_mvm_rx_phy_data phy_data = { 1333 .d4 = desc->phy_data4, 1334 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1335 }; 1336 bool csi = false; 1337 1338 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1339 return; 1340 1341 if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) { 1342 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1343 channel = desc->v3.channel; 1344 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1345 energy_a = desc->v3.energy_a; 1346 energy_b = desc->v3.energy_b; 1347 desc_size = sizeof(*desc); 1348 1349 phy_data.d0 = desc->v3.phy_data0; 1350 phy_data.d1 = desc->v3.phy_data1; 1351 phy_data.d2 = desc->v3.phy_data2; 1352 phy_data.d3 = desc->v3.phy_data3; 1353 } else { 1354 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1355 channel = desc->v1.channel; 1356 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1357 energy_a = desc->v1.energy_a; 1358 energy_b = desc->v1.energy_b; 1359 desc_size = IWL_RX_DESC_SIZE_V1; 1360 1361 phy_data.d0 = desc->v1.phy_data0; 1362 phy_data.d1 = desc->v1.phy_data1; 1363 phy_data.d2 = desc->v1.phy_data2; 1364 phy_data.d3 = desc->v1.phy_data3; 1365 } 1366 1367 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1368 phy_data.info_type = 1369 le32_get_bits(phy_data.d1, 1370 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1371 1372 hdr = (void *)(pkt->data + desc_size); 1373 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1374 * ieee80211_hdr pulled. 1375 */ 1376 skb = alloc_skb(128, GFP_ATOMIC); 1377 if (!skb) { 1378 IWL_ERR(mvm, "alloc_skb failed\n"); 1379 return; 1380 } 1381 1382 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1383 /* 1384 * If the device inserted padding it means that (it thought) 1385 * the 802.11 header wasn't a multiple of 4 bytes long. In 1386 * this case, reserve two bytes at the start of the SKB to 1387 * align the payload properly in case we end up copying it. 1388 */ 1389 skb_reserve(skb, 2); 1390 } 1391 1392 rx_status = IEEE80211_SKB_RXCB(skb); 1393 1394 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1395 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1396 case RATE_MCS_CHAN_WIDTH_20: 1397 break; 1398 case RATE_MCS_CHAN_WIDTH_40: 1399 rx_status->bw = RATE_INFO_BW_40; 1400 break; 1401 case RATE_MCS_CHAN_WIDTH_80: 1402 rx_status->bw = RATE_INFO_BW_80; 1403 break; 1404 case RATE_MCS_CHAN_WIDTH_160: 1405 rx_status->bw = RATE_INFO_BW_160; 1406 break; 1407 } 1408 1409 if (rate_n_flags & RATE_MCS_HE_MSK) 1410 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1411 phy_info, queue); 1412 1413 iwl_mvm_decode_lsig(skb, &phy_data); 1414 1415 rx_status = IEEE80211_SKB_RXCB(skb); 1416 1417 if (iwl_mvm_rx_crypto(mvm, hdr, rx_status, phy_info, desc, 1418 le32_to_cpu(pkt->len_n_flags), queue, 1419 &crypt_len)) { 1420 kfree_skb(skb); 1421 return; 1422 } 1423 1424 /* 1425 * Keep packets with CRC errors (and with overrun) for monitor mode 1426 * (otherwise the firmware discards them) but mark them as bad. 1427 */ 1428 if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) || 1429 !(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1430 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1431 le16_to_cpu(desc->status)); 1432 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1433 } 1434 /* set the preamble flag if appropriate */ 1435 if (rate_n_flags & RATE_MCS_CCK_MSK && 1436 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1437 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1438 1439 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1440 u64 tsf_on_air_rise; 1441 1442 if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) 1443 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1444 else 1445 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1446 1447 rx_status->mactime = tsf_on_air_rise; 1448 /* TSF as indicated by the firmware is at INA time */ 1449 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1450 } 1451 1452 rx_status->device_timestamp = gp2_on_air_rise; 1453 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1454 NL80211_BAND_2GHZ; 1455 rx_status->freq = ieee80211_channel_to_frequency(channel, 1456 rx_status->band); 1457 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1458 energy_b); 1459 1460 /* update aggregation data for monitor sake on default queue */ 1461 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1462 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1463 1464 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1465 /* 1466 * Toggle is switched whenever new aggregation starts. Make 1467 * sure ampdu_reference is never 0 so we can later use it to 1468 * see if the frame was really part of an A-MPDU or not. 1469 */ 1470 if (toggle_bit != mvm->ampdu_toggle) { 1471 mvm->ampdu_ref++; 1472 if (mvm->ampdu_ref == 0) 1473 mvm->ampdu_ref++; 1474 mvm->ampdu_toggle = toggle_bit; 1475 } 1476 rx_status->ampdu_reference = mvm->ampdu_ref; 1477 } 1478 1479 if (unlikely(mvm->monitor_on)) 1480 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1481 1482 rcu_read_lock(); 1483 1484 if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1485 u8 id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK; 1486 1487 if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) { 1488 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1489 if (IS_ERR(sta)) 1490 sta = NULL; 1491 } 1492 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1493 /* 1494 * This is fine since we prevent two stations with the same 1495 * address from being added. 1496 */ 1497 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1498 } 1499 1500 if (sta) { 1501 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1502 struct ieee80211_vif *tx_blocked_vif = 1503 rcu_dereference(mvm->csa_tx_blocked_vif); 1504 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1505 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1506 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1507 struct iwl_fw_dbg_trigger_tlv *trig; 1508 struct ieee80211_vif *vif = mvmsta->vif; 1509 1510 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1511 !is_multicast_ether_addr(hdr->addr1) && 1512 ieee80211_is_data(hdr->frame_control) && 1513 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1514 schedule_delayed_work(&mvm->tcm.work, 0); 1515 1516 /* 1517 * We have tx blocked stations (with CS bit). If we heard 1518 * frames from a blocked station on a new channel we can 1519 * TX to it again. 1520 */ 1521 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1522 struct iwl_mvm_vif *mvmvif = 1523 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1524 1525 if (mvmvif->csa_target_freq == rx_status->freq) 1526 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1527 false); 1528 } 1529 1530 rs_update_last_rssi(mvm, mvmsta, rx_status); 1531 1532 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1533 ieee80211_vif_to_wdev(vif), 1534 FW_DBG_TRIGGER_RSSI); 1535 1536 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1537 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1538 s32 rssi; 1539 1540 rssi_trig = (void *)trig->data; 1541 rssi = le32_to_cpu(rssi_trig->rssi); 1542 1543 if (rx_status->signal < rssi) 1544 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1545 NULL); 1546 } 1547 1548 if (ieee80211_is_data(hdr->frame_control)) 1549 iwl_mvm_rx_csum(sta, skb, desc); 1550 1551 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1552 kfree_skb(skb); 1553 goto out; 1554 } 1555 1556 /* 1557 * Our hardware de-aggregates AMSDUs but copies the mac header 1558 * as it to the de-aggregated MPDUs. We need to turn off the 1559 * AMSDU bit in the QoS control ourselves. 1560 * In addition, HW reverses addr3 and addr4 - reverse it back. 1561 */ 1562 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1563 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1564 u8 *qc = ieee80211_get_qos_ctl(hdr); 1565 1566 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1567 1568 if (mvm->trans->cfg->device_family == 1569 IWL_DEVICE_FAMILY_9000) { 1570 iwl_mvm_flip_address(hdr->addr3); 1571 1572 if (ieee80211_has_a4(hdr->frame_control)) 1573 iwl_mvm_flip_address(hdr->addr4); 1574 } 1575 } 1576 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1577 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1578 1579 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1580 } 1581 } 1582 1583 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1584 rate_n_flags & RATE_MCS_SGI_MSK) 1585 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1586 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1587 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1588 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1589 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1590 if (rate_n_flags & RATE_MCS_HT_MSK) { 1591 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1592 RATE_MCS_STBC_POS; 1593 rx_status->encoding = RX_ENC_HT; 1594 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1595 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1596 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1597 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1598 RATE_MCS_STBC_POS; 1599 rx_status->nss = 1600 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >> 1601 RATE_VHT_MCS_NSS_POS) + 1; 1602 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1603 rx_status->encoding = RX_ENC_VHT; 1604 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1605 if (rate_n_flags & RATE_MCS_BF_MSK) 1606 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1607 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) { 1608 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1609 rx_status->band); 1610 1611 if (WARN(rate < 0 || rate > 0xFF, 1612 "Invalid rate flags 0x%x, band %d,\n", 1613 rate_n_flags, rx_status->band)) { 1614 kfree_skb(skb); 1615 goto out; 1616 } 1617 rx_status->rate_idx = rate; 1618 } 1619 1620 /* management stuff on default queue */ 1621 if (!queue) { 1622 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1623 ieee80211_is_probe_resp(hdr->frame_control)) && 1624 mvm->sched_scan_pass_all == 1625 SCHED_SCAN_PASS_ALL_ENABLED)) 1626 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 1627 1628 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 1629 ieee80211_is_probe_resp(hdr->frame_control))) 1630 rx_status->boottime_ns = ktime_get_boot_ns(); 1631 } 1632 1633 iwl_mvm_create_skb(skb, hdr, len, crypt_len, rxb); 1634 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 1635 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 1636 sta, csi); 1637 out: 1638 rcu_read_unlock(); 1639 } 1640 1641 void iwl_mvm_rx_monitor_ndp(struct iwl_mvm *mvm, struct napi_struct *napi, 1642 struct iwl_rx_cmd_buffer *rxb, int queue) 1643 { 1644 struct ieee80211_rx_status *rx_status; 1645 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1646 struct iwl_rx_no_data *desc = (void *)pkt->data; 1647 u32 rate_n_flags = le32_to_cpu(desc->rate); 1648 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 1649 u32 rssi = le32_to_cpu(desc->rssi); 1650 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 1651 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 1652 struct ieee80211_sta *sta = NULL; 1653 struct sk_buff *skb; 1654 u8 channel, energy_a, energy_b; 1655 struct iwl_mvm_rx_phy_data phy_data = { 1656 .d0 = desc->phy_info[0], 1657 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1658 }; 1659 1660 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1661 return; 1662 1663 /* Currently only NDP type is supported */ 1664 if (info_type != RX_NO_DATA_INFO_TYPE_NDP) 1665 return; 1666 1667 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 1668 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 1669 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 1670 1671 phy_data.info_type = 1672 le32_get_bits(desc->phy_info[1], 1673 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1674 1675 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1676 * ieee80211_hdr pulled. 1677 */ 1678 skb = alloc_skb(128, GFP_ATOMIC); 1679 if (!skb) { 1680 IWL_ERR(mvm, "alloc_skb failed\n"); 1681 return; 1682 } 1683 1684 rx_status = IEEE80211_SKB_RXCB(skb); 1685 1686 /* 0-length PSDU */ 1687 rx_status->flag |= RX_FLAG_NO_PSDU; 1688 /* currently this is the only type for which we get this notif */ 1689 rx_status->zero_length_psdu_type = 1690 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 1691 1692 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1693 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1694 case RATE_MCS_CHAN_WIDTH_20: 1695 break; 1696 case RATE_MCS_CHAN_WIDTH_40: 1697 rx_status->bw = RATE_INFO_BW_40; 1698 break; 1699 case RATE_MCS_CHAN_WIDTH_80: 1700 rx_status->bw = RATE_INFO_BW_80; 1701 break; 1702 case RATE_MCS_CHAN_WIDTH_160: 1703 rx_status->bw = RATE_INFO_BW_160; 1704 break; 1705 } 1706 1707 if (rate_n_flags & RATE_MCS_HE_MSK) 1708 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1709 phy_info, queue); 1710 1711 iwl_mvm_decode_lsig(skb, &phy_data); 1712 1713 rx_status->device_timestamp = gp2_on_air_rise; 1714 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1715 NL80211_BAND_2GHZ; 1716 rx_status->freq = ieee80211_channel_to_frequency(channel, 1717 rx_status->band); 1718 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1719 energy_b); 1720 1721 rcu_read_lock(); 1722 1723 if (!(rate_n_flags & RATE_MCS_CCK_MSK) && 1724 rate_n_flags & RATE_MCS_SGI_MSK) 1725 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1726 if (rate_n_flags & RATE_HT_MCS_GF_MSK) 1727 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF; 1728 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1729 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1730 if (rate_n_flags & RATE_MCS_HT_MSK) { 1731 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1732 RATE_MCS_STBC_POS; 1733 rx_status->encoding = RX_ENC_HT; 1734 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK; 1735 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1736 } else if (rate_n_flags & RATE_MCS_VHT_MSK) { 1737 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1738 RATE_MCS_STBC_POS; 1739 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK; 1740 rx_status->encoding = RX_ENC_VHT; 1741 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1742 if (rate_n_flags & RATE_MCS_BF_MSK) 1743 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1744 /* 1745 * take the nss from the rx_vec since the rate_n_flags has 1746 * only 2 bits for the nss which gives a max of 4 ss but 1747 * there may be up to 8 spatial streams 1748 */ 1749 rx_status->nss = 1750 le32_get_bits(desc->rx_vec[0], 1751 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 1752 } else if (rate_n_flags & RATE_MCS_HE_MSK) { 1753 rx_status->nss = 1754 le32_get_bits(desc->rx_vec[0], 1755 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 1756 } else { 1757 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags, 1758 rx_status->band); 1759 1760 if (WARN(rate < 0 || rate > 0xFF, 1761 "Invalid rate flags 0x%x, band %d,\n", 1762 rate_n_flags, rx_status->band)) { 1763 kfree_skb(skb); 1764 goto out; 1765 } 1766 rx_status->rate_idx = rate; 1767 } 1768 1769 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, false); 1770 out: 1771 rcu_read_unlock(); 1772 } 1773 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 1774 struct iwl_rx_cmd_buffer *rxb, int queue) 1775 { 1776 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1777 struct iwl_frame_release *release = (void *)pkt->data; 1778 struct ieee80211_sta *sta; 1779 struct iwl_mvm_reorder_buffer *reorder_buf; 1780 struct iwl_mvm_baid_data *ba_data; 1781 1782 int baid = release->baid; 1783 1784 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 1785 release->baid, le16_to_cpu(release->nssn)); 1786 1787 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID)) 1788 return; 1789 1790 rcu_read_lock(); 1791 1792 ba_data = rcu_dereference(mvm->baid_map[baid]); 1793 if (WARN_ON_ONCE(!ba_data)) 1794 goto out; 1795 1796 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 1797 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 1798 goto out; 1799 1800 reorder_buf = &ba_data->reorder_buf[queue]; 1801 1802 spin_lock_bh(&reorder_buf->lock); 1803 iwl_mvm_release_frames(mvm, sta, napi, ba_data, reorder_buf, 1804 le16_to_cpu(release->nssn)); 1805 spin_unlock_bh(&reorder_buf->lock); 1806 1807 out: 1808 rcu_read_unlock(); 1809 } 1810