xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2024 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta)
240 {
241 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
242 		kfree_skb(skb);
243 		return;
244 	}
245 
246 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
247 }
248 
249 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
250 					struct ieee80211_rx_status *rx_status,
251 					u32 rate_n_flags, int energy_a,
252 					int energy_b)
253 {
254 	int max_energy;
255 	u32 rate_flags = rate_n_flags;
256 
257 	energy_a = energy_a ? -energy_a : S8_MIN;
258 	energy_b = energy_b ? -energy_b : S8_MIN;
259 	max_energy = max(energy_a, energy_b);
260 
261 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
262 			energy_a, energy_b, max_energy);
263 
264 	rx_status->signal = max_energy;
265 	rx_status->chains =
266 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
267 	rx_status->chain_signal[0] = energy_a;
268 	rx_status->chain_signal[1] = energy_b;
269 }
270 
271 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
272 				struct ieee80211_hdr *hdr,
273 				struct iwl_rx_mpdu_desc *desc,
274 				u32 status,
275 				struct ieee80211_rx_status *stats)
276 {
277 	struct wireless_dev *wdev;
278 	struct iwl_mvm_sta *mvmsta;
279 	struct iwl_mvm_vif *mvmvif;
280 	u8 keyid;
281 	struct ieee80211_key_conf *key;
282 	u32 len = le16_to_cpu(desc->mpdu_len);
283 	const u8 *frame = (void *)hdr;
284 
285 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
286 		return 0;
287 
288 	/*
289 	 * For non-beacon, we don't really care. But beacons may
290 	 * be filtered out, and we thus need the firmware's replay
291 	 * detection, otherwise beacons the firmware previously
292 	 * filtered could be replayed, or something like that, and
293 	 * it can filter a lot - though usually only if nothing has
294 	 * changed.
295 	 */
296 	if (!ieee80211_is_beacon(hdr->frame_control))
297 		return 0;
298 
299 	if (!sta)
300 		return -1;
301 
302 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
303 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
304 
305 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
306 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
307 		goto report;
308 
309 	/* good cases */
310 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
311 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
312 		stats->flag |= RX_FLAG_DECRYPTED;
313 		return 0;
314 	}
315 
316 	/*
317 	 * both keys will have the same cipher and MIC length, use
318 	 * whichever one is available
319 	 */
320 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
321 	if (!key) {
322 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
323 		if (!key)
324 			goto report;
325 	}
326 
327 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
328 		goto report;
329 
330 	/* get the real key ID */
331 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
332 	/* and if that's the other key, look it up */
333 	if (keyid != key->keyidx) {
334 		/*
335 		 * shouldn't happen since firmware checked, but be safe
336 		 * in case the MIC length is wrong too, for example
337 		 */
338 		if (keyid != 6 && keyid != 7)
339 			return -1;
340 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
341 		if (!key)
342 			goto report;
343 	}
344 
345 	/* Report status to mac80211 */
346 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
347 		ieee80211_key_mic_failure(key);
348 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
349 		ieee80211_key_replay(key);
350 report:
351 	wdev = ieee80211_vif_to_wdev(mvmsta->vif);
352 	if (wdev->netdev)
353 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
354 
355 	return -1;
356 }
357 
358 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
359 			     struct ieee80211_hdr *hdr,
360 			     struct ieee80211_rx_status *stats, u16 phy_info,
361 			     struct iwl_rx_mpdu_desc *desc,
362 			     u32 pkt_flags, int queue, u8 *crypt_len)
363 {
364 	u32 status = le32_to_cpu(desc->status);
365 
366 	/*
367 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
368 	 * (where we don't have the keys).
369 	 * We limit this to aggregation because in TKIP this is a valid
370 	 * scenario, since we may not have the (correct) TTAK (phase 1
371 	 * key) in the firmware.
372 	 */
373 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
374 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
375 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
376 		IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
377 		return -1;
378 	}
379 
380 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
381 		     !ieee80211_has_protected(hdr->frame_control)))
382 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
383 
384 	if (!ieee80211_has_protected(hdr->frame_control) ||
385 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
386 	    IWL_RX_MPDU_STATUS_SEC_NONE)
387 		return 0;
388 
389 	/* TODO: handle packets encrypted with unknown alg */
390 
391 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
392 	case IWL_RX_MPDU_STATUS_SEC_CCM:
393 	case IWL_RX_MPDU_STATUS_SEC_GCM:
394 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
395 		/* alg is CCM: check MIC only */
396 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
397 			IWL_DEBUG_DROP(mvm,
398 				       "Dropping packet, bad MIC (CCM/GCM)\n");
399 			return -1;
400 		}
401 
402 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
403 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
404 		return 0;
405 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
406 		/* Don't drop the frame and decrypt it in SW */
407 		if (!fw_has_api(&mvm->fw->ucode_capa,
408 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
409 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
410 			return 0;
411 
412 		if (mvm->trans->trans_cfg->gen2 &&
413 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
414 			stats->flag |= RX_FLAG_MMIC_ERROR;
415 
416 		*crypt_len = IEEE80211_TKIP_IV_LEN;
417 		fallthrough;
418 	case IWL_RX_MPDU_STATUS_SEC_WEP:
419 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
420 			return -1;
421 
422 		stats->flag |= RX_FLAG_DECRYPTED;
423 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
424 				IWL_RX_MPDU_STATUS_SEC_WEP)
425 			*crypt_len = IEEE80211_WEP_IV_LEN;
426 
427 		if (pkt_flags & FH_RSCSR_RADA_EN) {
428 			stats->flag |= RX_FLAG_ICV_STRIPPED;
429 			if (mvm->trans->trans_cfg->gen2)
430 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
431 		}
432 
433 		return 0;
434 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
435 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
436 			return -1;
437 		stats->flag |= RX_FLAG_DECRYPTED;
438 		return 0;
439 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
440 		break;
441 	default:
442 		/*
443 		 * Sometimes we can get frames that were not decrypted
444 		 * because the firmware didn't have the keys yet. This can
445 		 * happen after connection where we can get multicast frames
446 		 * before the GTK is installed.
447 		 * Silently drop those frames.
448 		 * Also drop un-decrypted frames in monitor mode.
449 		 */
450 		if (!is_multicast_ether_addr(hdr->addr1) &&
451 		    !mvm->monitor_on && net_ratelimit())
452 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
453 	}
454 
455 	return 0;
456 }
457 
458 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
459 			    struct ieee80211_sta *sta,
460 			    struct sk_buff *skb,
461 			    struct iwl_rx_packet *pkt)
462 {
463 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
464 
465 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
466 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
467 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
468 
469 			skb->ip_summed = CHECKSUM_COMPLETE;
470 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
471 		}
472 	} else {
473 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
474 		struct iwl_mvm_vif *mvmvif;
475 		u16 flags = le16_to_cpu(desc->l3l4_flags);
476 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
477 				  IWL_RX_L3_PROTO_POS);
478 
479 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
480 
481 		if (mvmvif->features & NETIF_F_RXCSUM &&
482 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
483 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
484 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
485 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
486 			skb->ip_summed = CHECKSUM_UNNECESSARY;
487 	}
488 }
489 
490 /*
491  * returns true if a packet is a duplicate or invalid tid and should be dropped.
492  * Updates AMSDU PN tracking info
493  */
494 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
495 			   struct ieee80211_rx_status *rx_status,
496 			   struct ieee80211_hdr *hdr,
497 			   struct iwl_rx_mpdu_desc *desc)
498 {
499 	struct iwl_mvm_sta *mvm_sta;
500 	struct iwl_mvm_rxq_dup_data *dup_data;
501 	u8 tid, sub_frame_idx;
502 
503 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
504 		return false;
505 
506 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
507 
508 	if (WARN_ON_ONCE(!mvm_sta->dup_data))
509 		return false;
510 
511 	dup_data = &mvm_sta->dup_data[queue];
512 
513 	/*
514 	 * Drop duplicate 802.11 retransmissions
515 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
516 	 */
517 	if (ieee80211_is_ctl(hdr->frame_control) ||
518 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
519 	    is_multicast_ether_addr(hdr->addr1))
520 		return false;
521 
522 	if (ieee80211_is_data_qos(hdr->frame_control)) {
523 		/* frame has qos control */
524 		tid = ieee80211_get_tid(hdr);
525 		if (tid >= IWL_MAX_TID_COUNT)
526 			return true;
527 	} else {
528 		tid = IWL_MAX_TID_COUNT;
529 	}
530 
531 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
532 	sub_frame_idx = desc->amsdu_info &
533 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
534 
535 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
536 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
537 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
538 		return true;
539 
540 	/* Allow same PN as the first subframe for following sub frames */
541 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
542 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
543 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
544 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
545 
546 	dup_data->last_seq[tid] = hdr->seq_ctrl;
547 	dup_data->last_sub_frame[tid] = sub_frame_idx;
548 
549 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
550 
551 	return false;
552 }
553 
554 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
555 				   struct ieee80211_sta *sta,
556 				   struct napi_struct *napi,
557 				   struct iwl_mvm_baid_data *baid_data,
558 				   struct iwl_mvm_reorder_buffer *reorder_buf,
559 				   u16 nssn)
560 {
561 	struct iwl_mvm_reorder_buf_entry *entries =
562 		&baid_data->entries[reorder_buf->queue *
563 				    baid_data->entries_per_queue];
564 	u16 ssn = reorder_buf->head_sn;
565 
566 	lockdep_assert_held(&reorder_buf->lock);
567 
568 	while (ieee80211_sn_less(ssn, nssn)) {
569 		int index = ssn % baid_data->buf_size;
570 		struct sk_buff_head *skb_list = &entries[index].frames;
571 		struct sk_buff *skb;
572 
573 		ssn = ieee80211_sn_inc(ssn);
574 
575 		/*
576 		 * Empty the list. Will have more than one frame for A-MSDU.
577 		 * Empty list is valid as well since nssn indicates frames were
578 		 * received.
579 		 */
580 		while ((skb = __skb_dequeue(skb_list))) {
581 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
582 							reorder_buf->queue,
583 							sta);
584 			reorder_buf->num_stored--;
585 		}
586 	}
587 	reorder_buf->head_sn = nssn;
588 }
589 
590 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
591 			   struct iwl_mvm_delba_data *data)
592 {
593 	struct iwl_mvm_baid_data *ba_data;
594 	struct ieee80211_sta *sta;
595 	struct iwl_mvm_reorder_buffer *reorder_buf;
596 	u8 baid = data->baid;
597 	u32 sta_id;
598 
599 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
600 		return;
601 
602 	rcu_read_lock();
603 
604 	ba_data = rcu_dereference(mvm->baid_map[baid]);
605 	if (WARN_ON_ONCE(!ba_data))
606 		goto out;
607 
608 	/* pick any STA ID to find the pointer */
609 	sta_id = ffs(ba_data->sta_mask) - 1;
610 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
611 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
612 		goto out;
613 
614 	reorder_buf = &ba_data->reorder_buf[queue];
615 
616 	/* release all frames that are in the reorder buffer to the stack */
617 	spin_lock_bh(&reorder_buf->lock);
618 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
619 			       ieee80211_sn_add(reorder_buf->head_sn,
620 						ba_data->buf_size));
621 	spin_unlock_bh(&reorder_buf->lock);
622 
623 out:
624 	rcu_read_unlock();
625 }
626 
627 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
628 					      struct napi_struct *napi,
629 					      u8 baid, u16 nssn, int queue)
630 {
631 	struct ieee80211_sta *sta;
632 	struct iwl_mvm_reorder_buffer *reorder_buf;
633 	struct iwl_mvm_baid_data *ba_data;
634 	u32 sta_id;
635 
636 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
637 		     baid, nssn);
638 
639 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
640 			 baid >= ARRAY_SIZE(mvm->baid_map)))
641 		return;
642 
643 	rcu_read_lock();
644 
645 	ba_data = rcu_dereference(mvm->baid_map[baid]);
646 	if (WARN(!ba_data, "BAID %d not found in map\n", baid))
647 		goto out;
648 
649 	/* pick any STA ID to find the pointer */
650 	sta_id = ffs(ba_data->sta_mask) - 1;
651 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
652 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
653 		goto out;
654 
655 	reorder_buf = &ba_data->reorder_buf[queue];
656 
657 	spin_lock_bh(&reorder_buf->lock);
658 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
659 			       reorder_buf, nssn);
660 	spin_unlock_bh(&reorder_buf->lock);
661 
662 out:
663 	rcu_read_unlock();
664 }
665 
666 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
667 			    struct iwl_rx_cmd_buffer *rxb, int queue)
668 {
669 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
670 	struct iwl_rxq_sync_notification *notif;
671 	struct iwl_mvm_internal_rxq_notif *internal_notif;
672 	u32 len = iwl_rx_packet_payload_len(pkt);
673 
674 	notif = (void *)pkt->data;
675 	internal_notif = (void *)notif->payload;
676 
677 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
678 		      "invalid notification size %d (%d)",
679 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
680 		return;
681 	len -= sizeof(*notif) + sizeof(*internal_notif);
682 
683 	if (WARN_ONCE(internal_notif->sync &&
684 		      mvm->queue_sync_cookie != internal_notif->cookie,
685 		      "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n",
686 		      internal_notif->cookie, mvm->queue_sync_cookie, queue))
687 		return;
688 
689 	switch (internal_notif->type) {
690 	case IWL_MVM_RXQ_EMPTY:
691 		WARN_ONCE(len, "invalid empty notification size %d", len);
692 		break;
693 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
694 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
695 			      "invalid delba notification size %d (%d)",
696 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
697 			break;
698 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
699 		break;
700 	default:
701 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
702 	}
703 
704 	if (internal_notif->sync) {
705 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
706 			  "queue sync: queue %d responded a second time!\n",
707 			  queue);
708 		if (READ_ONCE(mvm->queue_sync_state) == 0)
709 			wake_up(&mvm->rx_sync_waitq);
710 	}
711 }
712 
713 /*
714  * Returns true if the MPDU was buffered\dropped, false if it should be passed
715  * to upper layer.
716  */
717 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
718 			    struct napi_struct *napi,
719 			    int queue,
720 			    struct ieee80211_sta *sta,
721 			    struct sk_buff *skb,
722 			    struct iwl_rx_mpdu_desc *desc)
723 {
724 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
725 	struct iwl_mvm_baid_data *baid_data;
726 	struct iwl_mvm_reorder_buffer *buffer;
727 	u32 reorder = le32_to_cpu(desc->reorder_data);
728 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
729 	bool last_subframe =
730 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
731 	u8 tid = ieee80211_get_tid(hdr);
732 	struct iwl_mvm_reorder_buf_entry *entries;
733 	u32 sta_mask;
734 	int index;
735 	u16 nssn, sn;
736 	u8 baid;
737 
738 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
739 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
740 
741 	if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
742 		return false;
743 
744 	/*
745 	 * This also covers the case of receiving a Block Ack Request
746 	 * outside a BA session; we'll pass it to mac80211 and that
747 	 * then sends a delBA action frame.
748 	 * This also covers pure monitor mode, in which case we won't
749 	 * have any BA sessions.
750 	 */
751 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
752 		return false;
753 
754 	/* no sta yet */
755 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
756 		      "Got valid BAID without a valid station assigned\n"))
757 		return false;
758 
759 	/* not a data packet or a bar */
760 	if (!ieee80211_is_back_req(hdr->frame_control) &&
761 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
762 	     is_multicast_ether_addr(hdr->addr1)))
763 		return false;
764 
765 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
766 		return false;
767 
768 	baid_data = rcu_dereference(mvm->baid_map[baid]);
769 	if (!baid_data) {
770 		IWL_DEBUG_RX(mvm,
771 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
772 			      baid, reorder);
773 		return false;
774 	}
775 
776 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
777 
778 	if (IWL_FW_CHECK(mvm,
779 			 tid != baid_data->tid ||
780 			 !(sta_mask & baid_data->sta_mask),
781 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
782 			 baid, baid_data->sta_mask, baid_data->tid,
783 			 sta_mask, tid))
784 		return false;
785 
786 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
787 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
788 		IWL_RX_MPDU_REORDER_SN_SHIFT;
789 
790 	buffer = &baid_data->reorder_buf[queue];
791 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
792 
793 	spin_lock_bh(&buffer->lock);
794 
795 	if (!buffer->valid) {
796 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
797 			spin_unlock_bh(&buffer->lock);
798 			return false;
799 		}
800 		buffer->valid = true;
801 	}
802 
803 	/* drop any duplicated packets */
804 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
805 		goto drop;
806 
807 	/* drop any oudated packets */
808 	if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
809 		goto drop;
810 
811 	/* release immediately if allowed by nssn and no stored frames */
812 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
813 		if (!amsdu || last_subframe)
814 			buffer->head_sn = nssn;
815 
816 		spin_unlock_bh(&buffer->lock);
817 		return false;
818 	}
819 
820 	/*
821 	 * release immediately if there are no stored frames, and the sn is
822 	 * equal to the head.
823 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
824 	 * When we released everything, and we got the next frame in the
825 	 * sequence, according to the NSSN we can't release immediately,
826 	 * while technically there is no hole and we can move forward.
827 	 */
828 	if (!buffer->num_stored && sn == buffer->head_sn) {
829 		if (!amsdu || last_subframe)
830 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
831 
832 		spin_unlock_bh(&buffer->lock);
833 		return false;
834 	}
835 
836 	/* put in reorder buffer */
837 	index = sn % baid_data->buf_size;
838 	__skb_queue_tail(&entries[index].frames, skb);
839 	buffer->num_stored++;
840 
841 	/*
842 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
843 	 * The reason is that NSSN advances on the first sub-frame, and may
844 	 * cause the reorder buffer to advance before all the sub-frames arrive.
845 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
846 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
847 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
848 	 * already ahead and it will be dropped.
849 	 * If the last sub-frame is not on this queue - we will get frame
850 	 * release notification with up to date NSSN.
851 	 */
852 	if (!amsdu || last_subframe)
853 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
854 				       buffer, nssn);
855 
856 	spin_unlock_bh(&buffer->lock);
857 	return true;
858 
859 drop:
860 	kfree_skb(skb);
861 	spin_unlock_bh(&buffer->lock);
862 	return true;
863 }
864 
865 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
866 				    u32 reorder_data, u8 baid)
867 {
868 	unsigned long now = jiffies;
869 	unsigned long timeout;
870 	struct iwl_mvm_baid_data *data;
871 
872 	rcu_read_lock();
873 
874 	data = rcu_dereference(mvm->baid_map[baid]);
875 	if (!data) {
876 		IWL_DEBUG_RX(mvm,
877 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
878 			      baid, reorder_data);
879 		goto out;
880 	}
881 
882 	if (!data->timeout)
883 		goto out;
884 
885 	timeout = data->timeout;
886 	/*
887 	 * Do not update last rx all the time to avoid cache bouncing
888 	 * between the rx queues.
889 	 * Update it every timeout. Worst case is the session will
890 	 * expire after ~ 2 * timeout, which doesn't matter that much.
891 	 */
892 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
893 		/* Update is atomic */
894 		data->last_rx = now;
895 
896 out:
897 	rcu_read_unlock();
898 }
899 
900 static void iwl_mvm_flip_address(u8 *addr)
901 {
902 	int i;
903 	u8 mac_addr[ETH_ALEN];
904 
905 	for (i = 0; i < ETH_ALEN; i++)
906 		mac_addr[i] = addr[ETH_ALEN - i - 1];
907 	ether_addr_copy(addr, mac_addr);
908 }
909 
910 struct iwl_mvm_rx_phy_data {
911 	enum iwl_rx_phy_info_type info_type;
912 	__le32 d0, d1, d2, d3, eht_d4, d5;
913 	__le16 d4;
914 	bool with_data;
915 	bool first_subframe;
916 	__le32 rx_vec[4];
917 
918 	u32 rate_n_flags;
919 	u32 gp2_on_air_rise;
920 	u16 phy_info;
921 	u8 energy_a, energy_b;
922 	u8 channel;
923 };
924 
925 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
926 				     struct iwl_mvm_rx_phy_data *phy_data,
927 				     struct ieee80211_radiotap_he_mu *he_mu)
928 {
929 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
930 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
931 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
932 	u32 rate_n_flags = phy_data->rate_n_flags;
933 
934 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
935 		he_mu->flags1 |=
936 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
937 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
938 
939 		he_mu->flags1 |=
940 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
941 						   phy_data4),
942 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
943 
944 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
945 					     phy_data2);
946 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
947 					     phy_data3);
948 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
949 					     phy_data2);
950 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
951 					     phy_data3);
952 	}
953 
954 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
955 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
956 		he_mu->flags1 |=
957 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
958 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
959 
960 		he_mu->flags2 |=
961 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
962 						   phy_data4),
963 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
964 
965 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
966 					     phy_data2);
967 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
968 					     phy_data3);
969 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
970 					     phy_data2);
971 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
972 					     phy_data3);
973 	}
974 }
975 
976 static void
977 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
978 			       struct ieee80211_radiotap_he *he,
979 			       struct ieee80211_radiotap_he_mu *he_mu,
980 			       struct ieee80211_rx_status *rx_status)
981 {
982 	/*
983 	 * Unfortunately, we have to leave the mac80211 data
984 	 * incorrect for the case that we receive an HE-MU
985 	 * transmission and *don't* have the HE phy data (due
986 	 * to the bits being used for TSF). This shouldn't
987 	 * happen though as management frames where we need
988 	 * the TSF/timers are not be transmitted in HE-MU.
989 	 */
990 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
991 	u32 rate_n_flags = phy_data->rate_n_flags;
992 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
993 	u8 offs = 0;
994 
995 	rx_status->bw = RATE_INFO_BW_HE_RU;
996 
997 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
998 
999 	switch (ru) {
1000 	case 0 ... 36:
1001 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1002 		offs = ru;
1003 		break;
1004 	case 37 ... 52:
1005 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1006 		offs = ru - 37;
1007 		break;
1008 	case 53 ... 60:
1009 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1010 		offs = ru - 53;
1011 		break;
1012 	case 61 ... 64:
1013 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1014 		offs = ru - 61;
1015 		break;
1016 	case 65 ... 66:
1017 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1018 		offs = ru - 65;
1019 		break;
1020 	case 67:
1021 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1022 		break;
1023 	case 68:
1024 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1025 		break;
1026 	}
1027 	he->data2 |= le16_encode_bits(offs,
1028 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1029 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1030 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1031 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1032 		he->data2 |=
1033 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1034 
1035 #define CHECK_BW(bw) \
1036 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1037 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1038 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1039 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1040 	CHECK_BW(20);
1041 	CHECK_BW(40);
1042 	CHECK_BW(80);
1043 	CHECK_BW(160);
1044 
1045 	if (he_mu)
1046 		he_mu->flags2 |=
1047 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1048 						   rate_n_flags),
1049 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1050 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1051 		he->data6 |=
1052 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1053 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1054 						   rate_n_flags),
1055 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1056 }
1057 
1058 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1059 				       struct iwl_mvm_rx_phy_data *phy_data,
1060 				       struct ieee80211_radiotap_he *he,
1061 				       struct ieee80211_radiotap_he_mu *he_mu,
1062 				       struct ieee80211_rx_status *rx_status,
1063 				       int queue)
1064 {
1065 	switch (phy_data->info_type) {
1066 	case IWL_RX_PHY_INFO_TYPE_NONE:
1067 	case IWL_RX_PHY_INFO_TYPE_CCK:
1068 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1069 	case IWL_RX_PHY_INFO_TYPE_HT:
1070 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1071 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1072 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1073 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1074 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1075 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1076 		return;
1077 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1078 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1079 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1080 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1081 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1082 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1083 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1084 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1085 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1086 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1087 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1088 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1089 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1090 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1091 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1092 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1093 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1094 		fallthrough;
1095 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1096 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1097 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1098 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1099 		/* HE common */
1100 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1101 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1102 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1103 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1104 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1105 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1106 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1107 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1108 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1109 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1110 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1111 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1112 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1113 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1114 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1115 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1116 		}
1117 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1118 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1119 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1120 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1121 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1122 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1123 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1124 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1125 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1126 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1127 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1128 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1129 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1130 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1131 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1132 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1133 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1134 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1135 		break;
1136 	}
1137 
1138 	switch (phy_data->info_type) {
1139 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1140 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1141 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1142 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1143 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1144 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1145 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1146 		break;
1147 	default:
1148 		/* nothing here */
1149 		break;
1150 	}
1151 
1152 	switch (phy_data->info_type) {
1153 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1154 		he_mu->flags1 |=
1155 			le16_encode_bits(le16_get_bits(phy_data->d4,
1156 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1157 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1158 		he_mu->flags1 |=
1159 			le16_encode_bits(le16_get_bits(phy_data->d4,
1160 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1161 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1162 		he_mu->flags2 |=
1163 			le16_encode_bits(le16_get_bits(phy_data->d4,
1164 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1165 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1166 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1167 		fallthrough;
1168 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1169 		he_mu->flags2 |=
1170 			le16_encode_bits(le32_get_bits(phy_data->d1,
1171 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1172 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1173 		he_mu->flags2 |=
1174 			le16_encode_bits(le32_get_bits(phy_data->d1,
1175 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1176 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1177 		fallthrough;
1178 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1179 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1180 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1181 		break;
1182 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1183 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1184 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1185 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1186 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1187 		break;
1188 	default:
1189 		/* nothing */
1190 		break;
1191 	}
1192 }
1193 
1194 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1195 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1196 
1197 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1198 	typeof(enc_bits) _enc_bits = enc_bits; \
1199 	typeof(usig) _usig = usig; \
1200 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1201 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1202 } while (0)
1203 
1204 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1205 	eht->data[(rt_data)] |= \
1206 		(cpu_to_le32 \
1207 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1208 		 LE32_DEC_ENC(data ## fw_data, \
1209 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1210 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1211 
1212 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1213 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1214 
1215 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1216 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1217 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1218 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1219 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1220 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1221 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1222 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1223 
1224 #define IWL_RX_RU_DATA_A1			2
1225 #define IWL_RX_RU_DATA_A2			2
1226 #define IWL_RX_RU_DATA_B1			2
1227 #define IWL_RX_RU_DATA_B2			4
1228 #define IWL_RX_RU_DATA_C1			3
1229 #define IWL_RX_RU_DATA_C2			3
1230 #define IWL_RX_RU_DATA_D1			4
1231 #define IWL_RX_RU_DATA_D2			4
1232 
1233 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1234 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1235 			    rt_ru,					\
1236 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1237 			    fw_ru)
1238 
1239 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1240 				      struct iwl_mvm_rx_phy_data *phy_data,
1241 				      struct ieee80211_rx_status *rx_status,
1242 				      struct ieee80211_radiotap_eht *eht,
1243 				      struct ieee80211_radiotap_eht_usig *usig)
1244 {
1245 	if (phy_data->with_data) {
1246 		__le32 data1 = phy_data->d1;
1247 		__le32 data2 = phy_data->d2;
1248 		__le32 data3 = phy_data->d3;
1249 		__le32 data4 = phy_data->eht_d4;
1250 		__le32 data5 = phy_data->d5;
1251 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1252 
1253 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1254 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1255 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1256 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1257 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1258 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1259 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1260 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1261 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1262 		IWL_MVM_ENC_USIG_VALUE_MASK
1263 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1264 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1265 
1266 		eht->user_info[0] |=
1267 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1268 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1269 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1270 
1271 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1272 		eht->data[7] |= LE32_DEC_ENC
1273 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1274 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1275 
1276 		/*
1277 		 * Hardware labels the content channels/RU allocation values
1278 		 * as follows:
1279 		 *           Content Channel 1		Content Channel 2
1280 		 *   20 MHz: A1
1281 		 *   40 MHz: A1				B1
1282 		 *   80 MHz: A1 C1			B1 D1
1283 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1284 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1285 		 *
1286 		 * However firmware can only give us A1-D2, so the higher
1287 		 * frequencies are missing.
1288 		 */
1289 
1290 		switch (phy_bw) {
1291 		case RATE_MCS_CHAN_WIDTH_320:
1292 			/* additional values are missing in RX metadata */
1293 		case RATE_MCS_CHAN_WIDTH_160:
1294 			/* content channel 1 */
1295 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1296 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1297 			/* content channel 2 */
1298 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1299 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1300 			fallthrough;
1301 		case RATE_MCS_CHAN_WIDTH_80:
1302 			/* content channel 1 */
1303 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1304 			/* content channel 2 */
1305 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1306 			fallthrough;
1307 		case RATE_MCS_CHAN_WIDTH_40:
1308 			/* content channel 2 */
1309 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1310 			fallthrough;
1311 		case RATE_MCS_CHAN_WIDTH_20:
1312 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1313 			break;
1314 		}
1315 	} else {
1316 		__le32 usig_a1 = phy_data->rx_vec[0];
1317 		__le32 usig_a2 = phy_data->rx_vec[1];
1318 
1319 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1320 					    IWL_RX_USIG_A1_DISREGARD,
1321 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1322 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1323 					    IWL_RX_USIG_A1_VALIDATE,
1324 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1325 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1326 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1327 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1328 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1329 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1330 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1331 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1332 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1333 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1334 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1335 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1336 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1337 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1338 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1339 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1340 		IWL_MVM_ENC_USIG_VALUE_MASK
1341 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1342 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1343 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1344 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1345 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1346 	}
1347 }
1348 
1349 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1350 				      struct iwl_mvm_rx_phy_data *phy_data,
1351 				      struct ieee80211_rx_status *rx_status,
1352 				      struct ieee80211_radiotap_eht *eht,
1353 				      struct ieee80211_radiotap_eht_usig *usig)
1354 {
1355 	if (phy_data->with_data) {
1356 		__le32 data5 = phy_data->d5;
1357 
1358 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1359 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1360 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1361 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1362 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1363 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1364 
1365 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1366 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1367 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1368 	} else {
1369 		__le32 usig_a1 = phy_data->rx_vec[0];
1370 		__le32 usig_a2 = phy_data->rx_vec[1];
1371 
1372 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1373 					    IWL_RX_USIG_A1_DISREGARD,
1374 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1375 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1376 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1377 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1378 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1379 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1380 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1381 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1382 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1383 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1384 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1385 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1386 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1387 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1388 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1389 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1390 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1391 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1392 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1393 	}
1394 }
1395 
1396 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1397 				  struct ieee80211_rx_status *rx_status,
1398 				  struct ieee80211_radiotap_eht *eht)
1399 {
1400 	u32 ru = le32_get_bits(eht->data[8],
1401 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1402 	enum nl80211_eht_ru_alloc nl_ru;
1403 
1404 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1405 	 * in an EHT variant User Info field
1406 	 */
1407 
1408 	switch (ru) {
1409 	case 0 ... 36:
1410 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1411 		break;
1412 	case 37 ... 52:
1413 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1414 		break;
1415 	case 53 ... 60:
1416 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1417 		break;
1418 	case 61 ... 64:
1419 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1420 		break;
1421 	case 65 ... 66:
1422 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1423 		break;
1424 	case 67:
1425 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1426 		break;
1427 	case 68:
1428 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1429 		break;
1430 	case 69:
1431 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1432 		break;
1433 	case 70 ... 81:
1434 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1435 		break;
1436 	case 82 ... 89:
1437 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1438 		break;
1439 	case 90 ... 93:
1440 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1441 		break;
1442 	case 94 ... 95:
1443 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1444 		break;
1445 	case 96 ... 99:
1446 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1447 		break;
1448 	case 100 ... 103:
1449 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1450 		break;
1451 	case 104:
1452 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1453 		break;
1454 	case 105 ... 106:
1455 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1456 		break;
1457 	default:
1458 		return;
1459 	}
1460 
1461 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1462 	rx_status->eht.ru = nl_ru;
1463 }
1464 
1465 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1466 					struct iwl_mvm_rx_phy_data *phy_data,
1467 					struct ieee80211_rx_status *rx_status,
1468 					struct ieee80211_radiotap_eht *eht,
1469 					struct ieee80211_radiotap_eht_usig *usig)
1470 
1471 {
1472 	__le32 data0 = phy_data->d0;
1473 	__le32 data1 = phy_data->d1;
1474 	__le32 usig_a1 = phy_data->rx_vec[0];
1475 	u8 info_type = phy_data->info_type;
1476 
1477 	/* Not in EHT range */
1478 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1479 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1480 		return;
1481 
1482 	usig->common |= cpu_to_le32
1483 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1484 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1485 	if (phy_data->with_data) {
1486 		usig->common |= LE32_DEC_ENC(data0,
1487 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1488 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1489 		usig->common |= LE32_DEC_ENC(data0,
1490 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1491 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1492 	} else {
1493 		usig->common |= LE32_DEC_ENC(usig_a1,
1494 					     IWL_RX_USIG_A1_UL_FLAG,
1495 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1496 		usig->common |= LE32_DEC_ENC(usig_a1,
1497 					     IWL_RX_USIG_A1_BSS_COLOR,
1498 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1499 	}
1500 
1501 	if (fw_has_capa(&mvm->fw->ucode_capa,
1502 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1503 		usig->common |=
1504 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1505 		usig->common |=
1506 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1507 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1508 	}
1509 
1510 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1511 	eht->data[0] |= LE32_DEC_ENC(data0,
1512 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1513 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1514 
1515 	/* All RU allocating size/index is in TB format */
1516 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1517 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1518 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1519 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1520 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1521 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1522 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1523 
1524 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1525 
1526 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1527 	 * which is on only in case of monitor mode so no need to check monitor
1528 	 * mode
1529 	 */
1530 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1531 	eht->data[1] |=
1532 		le32_encode_bits(mvm->monitor_p80,
1533 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1534 
1535 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1536 	if (phy_data->with_data)
1537 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1538 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1539 	else
1540 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1541 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1542 
1543 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1544 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1545 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1546 
1547 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1548 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1549 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1550 
1551 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1552 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1553 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1554 
1555 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1556 
1557 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1558 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1559 
1560 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1561 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1562 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1563 
1564 	/*
1565 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1566 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1567 	 */
1568 
1569 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1570 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1571 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1572 
1573 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1574 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1575 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1576 
1577 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1578 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1579 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1580 }
1581 
1582 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1583 			   struct iwl_mvm_rx_phy_data *phy_data,
1584 			   int queue)
1585 {
1586 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1587 
1588 	struct ieee80211_radiotap_eht *eht;
1589 	struct ieee80211_radiotap_eht_usig *usig;
1590 	size_t eht_len = sizeof(*eht);
1591 
1592 	u32 rate_n_flags = phy_data->rate_n_flags;
1593 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1594 	/* EHT and HE have the same valus for LTF */
1595 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1596 	u16 phy_info = phy_data->phy_info;
1597 	u32 bw;
1598 
1599 	/* u32 for 1 user_info */
1600 	if (phy_data->with_data)
1601 		eht_len += sizeof(u32);
1602 
1603 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1604 
1605 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1606 					sizeof(*usig));
1607 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1608 	usig->common |=
1609 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1610 
1611 	/* specific handling for 320MHz */
1612 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1613 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1614 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1615 				le32_to_cpu(phy_data->d0));
1616 
1617 	usig->common |= cpu_to_le32
1618 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1619 
1620 	/* report the AMPDU-EOF bit on single frames */
1621 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1622 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1623 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1624 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1625 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1626 	}
1627 
1628 	/* update aggregation data for monitor sake on default queue */
1629 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1630 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1631 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1632 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1633 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1634 	}
1635 
1636 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1637 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1638 
1639 #define CHECK_TYPE(F)							\
1640 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1641 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1642 
1643 	CHECK_TYPE(SU);
1644 	CHECK_TYPE(EXT_SU);
1645 	CHECK_TYPE(MU);
1646 	CHECK_TYPE(TRIG);
1647 
1648 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1649 	case 0:
1650 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1651 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1652 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1653 		} else {
1654 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1655 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1656 		}
1657 		break;
1658 	case 1:
1659 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1660 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1661 		break;
1662 	case 2:
1663 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1664 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1665 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1666 		else
1667 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1668 		break;
1669 	case 3:
1670 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1671 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1672 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1673 		}
1674 		break;
1675 	default:
1676 		/* nothing here */
1677 		break;
1678 	}
1679 
1680 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1681 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1682 		eht->data[0] |= cpu_to_le32
1683 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1684 				    ltf) |
1685 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1686 				    rx_status->eht.gi));
1687 	}
1688 
1689 
1690 	if (!phy_data->with_data) {
1691 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1692 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1693 		eht->data[7] |=
1694 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1695 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1696 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1697 		if (rate_n_flags & RATE_MCS_BF_MSK)
1698 			eht->data[7] |=
1699 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1700 	} else {
1701 		eht->user_info[0] |=
1702 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1703 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1704 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1705 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1706 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1707 
1708 		if (rate_n_flags & RATE_MCS_BF_MSK)
1709 			eht->user_info[0] |=
1710 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1711 
1712 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1713 			eht->user_info[0] |=
1714 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1715 
1716 		eht->user_info[0] |= cpu_to_le32
1717 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1718 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1719 					      rate_n_flags)) |
1720 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1721 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1722 	}
1723 }
1724 
1725 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1726 			  struct iwl_mvm_rx_phy_data *phy_data,
1727 			  int queue)
1728 {
1729 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1730 	struct ieee80211_radiotap_he *he = NULL;
1731 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1732 	u32 rate_n_flags = phy_data->rate_n_flags;
1733 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1734 	u8 ltf;
1735 	static const struct ieee80211_radiotap_he known = {
1736 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1737 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1738 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1739 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1740 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1741 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1742 	};
1743 	static const struct ieee80211_radiotap_he_mu mu_known = {
1744 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1745 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1746 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1747 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1748 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1749 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1750 	};
1751 	u16 phy_info = phy_data->phy_info;
1752 
1753 	he = skb_put_data(skb, &known, sizeof(known));
1754 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1755 
1756 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1757 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1758 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1759 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1760 	}
1761 
1762 	/* report the AMPDU-EOF bit on single frames */
1763 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1764 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1765 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1766 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1767 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1768 	}
1769 
1770 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1771 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1772 					   queue);
1773 
1774 	/* update aggregation data for monitor sake on default queue */
1775 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1776 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1777 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1778 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1779 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1780 	}
1781 
1782 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1783 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1784 		rx_status->bw = RATE_INFO_BW_HE_RU;
1785 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1786 	}
1787 
1788 	/* actually data is filled in mac80211 */
1789 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1790 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1791 		he->data1 |=
1792 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1793 
1794 #define CHECK_TYPE(F)							\
1795 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1796 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1797 
1798 	CHECK_TYPE(SU);
1799 	CHECK_TYPE(EXT_SU);
1800 	CHECK_TYPE(MU);
1801 	CHECK_TYPE(TRIG);
1802 
1803 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1804 
1805 	if (rate_n_flags & RATE_MCS_BF_MSK)
1806 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1807 
1808 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1809 		RATE_MCS_HE_GI_LTF_POS) {
1810 	case 0:
1811 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1812 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1813 		else
1814 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1815 		if (he_type == RATE_MCS_HE_TYPE_MU)
1816 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1817 		else
1818 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1819 		break;
1820 	case 1:
1821 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1822 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1823 		else
1824 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1825 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1826 		break;
1827 	case 2:
1828 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1829 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1830 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1831 		} else {
1832 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1833 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1834 		}
1835 		break;
1836 	case 3:
1837 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1838 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1839 		break;
1840 	case 4:
1841 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1842 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1843 		break;
1844 	default:
1845 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1846 	}
1847 
1848 	he->data5 |= le16_encode_bits(ltf,
1849 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1850 }
1851 
1852 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1853 				struct iwl_mvm_rx_phy_data *phy_data)
1854 {
1855 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1856 	struct ieee80211_radiotap_lsig *lsig;
1857 
1858 	switch (phy_data->info_type) {
1859 	case IWL_RX_PHY_INFO_TYPE_HT:
1860 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1861 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1862 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1863 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1864 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1865 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1866 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1867 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1868 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1869 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1870 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1871 		lsig = skb_put(skb, sizeof(*lsig));
1872 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1873 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1874 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1875 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1876 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1877 		break;
1878 	default:
1879 		break;
1880 	}
1881 }
1882 
1883 struct iwl_rx_sta_csa {
1884 	bool all_sta_unblocked;
1885 	struct ieee80211_vif *vif;
1886 };
1887 
1888 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1889 {
1890 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1891 	struct iwl_rx_sta_csa *rx_sta_csa = data;
1892 
1893 	if (mvmsta->vif != rx_sta_csa->vif)
1894 		return;
1895 
1896 	if (mvmsta->disable_tx)
1897 		rx_sta_csa->all_sta_unblocked = false;
1898 }
1899 
1900 /*
1901  * Note: requires also rx_status->band to be prefilled, as well
1902  * as phy_data (apart from phy_data->info_type)
1903  */
1904 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1905 				   struct sk_buff *skb,
1906 				   struct iwl_mvm_rx_phy_data *phy_data,
1907 				   int queue)
1908 {
1909 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1910 	u32 rate_n_flags = phy_data->rate_n_flags;
1911 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1912 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1913 	bool is_sgi;
1914 
1915 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1916 
1917 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1918 		phy_data->info_type =
1919 			le32_get_bits(phy_data->d1,
1920 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1921 
1922 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1923 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1924 	case RATE_MCS_CHAN_WIDTH_20:
1925 		break;
1926 	case RATE_MCS_CHAN_WIDTH_40:
1927 		rx_status->bw = RATE_INFO_BW_40;
1928 		break;
1929 	case RATE_MCS_CHAN_WIDTH_80:
1930 		rx_status->bw = RATE_INFO_BW_80;
1931 		break;
1932 	case RATE_MCS_CHAN_WIDTH_160:
1933 		rx_status->bw = RATE_INFO_BW_160;
1934 		break;
1935 	case RATE_MCS_CHAN_WIDTH_320:
1936 		rx_status->bw = RATE_INFO_BW_320;
1937 		break;
1938 	}
1939 
1940 	/* must be before L-SIG data */
1941 	if (format == RATE_MCS_HE_MSK)
1942 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1943 
1944 	iwl_mvm_decode_lsig(skb, phy_data);
1945 
1946 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1947 
1948 	if (mvm->rx_ts_ptp && mvm->monitor_on) {
1949 		u64 adj_time =
1950 			iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC);
1951 
1952 		rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
1953 		rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
1954 		rx_status->flag &= ~RX_FLAG_MACTIME;
1955 	}
1956 
1957 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1958 							 rx_status->band);
1959 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1960 				    phy_data->energy_a, phy_data->energy_b);
1961 
1962 	/* using TLV format and must be after all fixed len fields */
1963 	if (format == RATE_MCS_EHT_MSK)
1964 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1965 
1966 	if (unlikely(mvm->monitor_on))
1967 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1968 
1969 	is_sgi = format == RATE_MCS_HE_MSK ?
1970 		iwl_he_is_sgi(rate_n_flags) :
1971 		rate_n_flags & RATE_MCS_SGI_MSK;
1972 
1973 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1974 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1975 
1976 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1977 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1978 
1979 	switch (format) {
1980 	case RATE_MCS_VHT_MSK:
1981 		rx_status->encoding = RX_ENC_VHT;
1982 		break;
1983 	case RATE_MCS_HE_MSK:
1984 		rx_status->encoding = RX_ENC_HE;
1985 		rx_status->he_dcm =
1986 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1987 		break;
1988 	case RATE_MCS_EHT_MSK:
1989 		rx_status->encoding = RX_ENC_EHT;
1990 		break;
1991 	}
1992 
1993 	switch (format) {
1994 	case RATE_MCS_HT_MSK:
1995 		rx_status->encoding = RX_ENC_HT;
1996 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1997 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1998 		break;
1999 	case RATE_MCS_VHT_MSK:
2000 	case RATE_MCS_HE_MSK:
2001 	case RATE_MCS_EHT_MSK:
2002 		rx_status->nss =
2003 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2004 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2005 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2006 		break;
2007 	default: {
2008 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2009 								 rx_status->band);
2010 
2011 		rx_status->rate_idx = rate;
2012 
2013 		if ((rate < 0 || rate > 0xFF)) {
2014 			rx_status->rate_idx = 0;
2015 			if (net_ratelimit())
2016 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2017 					rate_n_flags, rx_status->band);
2018 		}
2019 
2020 		break;
2021 		}
2022 	}
2023 }
2024 
2025 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2026 			struct iwl_rx_cmd_buffer *rxb, int queue)
2027 {
2028 	struct ieee80211_rx_status *rx_status;
2029 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2030 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2031 	struct ieee80211_hdr *hdr;
2032 	u32 len;
2033 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2034 	struct ieee80211_sta *sta = NULL;
2035 	struct sk_buff *skb;
2036 	u8 crypt_len = 0;
2037 	u8 sta_id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2038 	size_t desc_size;
2039 	struct iwl_mvm_rx_phy_data phy_data = {};
2040 	u32 format;
2041 
2042 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2043 		return;
2044 
2045 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2046 		desc_size = sizeof(*desc);
2047 	else
2048 		desc_size = IWL_RX_DESC_SIZE_V1;
2049 
2050 	if (unlikely(pkt_len < desc_size)) {
2051 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2052 		return;
2053 	}
2054 
2055 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2056 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2057 		phy_data.channel = desc->v3.channel;
2058 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2059 		phy_data.energy_a = desc->v3.energy_a;
2060 		phy_data.energy_b = desc->v3.energy_b;
2061 
2062 		phy_data.d0 = desc->v3.phy_data0;
2063 		phy_data.d1 = desc->v3.phy_data1;
2064 		phy_data.d2 = desc->v3.phy_data2;
2065 		phy_data.d3 = desc->v3.phy_data3;
2066 		phy_data.eht_d4 = desc->phy_eht_data4;
2067 		phy_data.d5 = desc->v3.phy_data5;
2068 	} else {
2069 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2070 		phy_data.channel = desc->v1.channel;
2071 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2072 		phy_data.energy_a = desc->v1.energy_a;
2073 		phy_data.energy_b = desc->v1.energy_b;
2074 
2075 		phy_data.d0 = desc->v1.phy_data0;
2076 		phy_data.d1 = desc->v1.phy_data1;
2077 		phy_data.d2 = desc->v1.phy_data2;
2078 		phy_data.d3 = desc->v1.phy_data3;
2079 	}
2080 
2081 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2082 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2083 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2084 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2085 			       phy_data.rate_n_flags);
2086 	}
2087 
2088 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2089 
2090 	len = le16_to_cpu(desc->mpdu_len);
2091 
2092 	if (unlikely(len + desc_size > pkt_len)) {
2093 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2094 		return;
2095 	}
2096 
2097 	phy_data.with_data = true;
2098 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2099 	phy_data.d4 = desc->phy_data4;
2100 
2101 	hdr = (void *)(pkt->data + desc_size);
2102 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2103 	 * ieee80211_hdr pulled.
2104 	 */
2105 	skb = alloc_skb(128, GFP_ATOMIC);
2106 	if (!skb) {
2107 		IWL_ERR(mvm, "alloc_skb failed\n");
2108 		return;
2109 	}
2110 
2111 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2112 		/*
2113 		 * If the device inserted padding it means that (it thought)
2114 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2115 		 * this case, reserve two bytes at the start of the SKB to
2116 		 * align the payload properly in case we end up copying it.
2117 		 */
2118 		skb_reserve(skb, 2);
2119 	}
2120 
2121 	rx_status = IEEE80211_SKB_RXCB(skb);
2122 
2123 	/*
2124 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2125 	 * (otherwise the firmware discards them) but mark them as bad.
2126 	 */
2127 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2128 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2129 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2130 			     le32_to_cpu(desc->status));
2131 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2132 	}
2133 
2134 	/* set the preamble flag if appropriate */
2135 	if (format == RATE_MCS_CCK_MSK &&
2136 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2137 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2138 
2139 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2140 		u64 tsf_on_air_rise;
2141 
2142 		if (mvm->trans->trans_cfg->device_family >=
2143 		    IWL_DEVICE_FAMILY_AX210)
2144 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2145 		else
2146 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2147 
2148 		rx_status->mactime = tsf_on_air_rise;
2149 		/* TSF as indicated by the firmware is at INA time */
2150 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2151 	}
2152 
2153 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2154 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2155 
2156 		rx_status->band = iwl_mvm_nl80211_band_from_phy(band);
2157 	} else {
2158 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2159 			NL80211_BAND_2GHZ;
2160 	}
2161 
2162 	/* update aggregation data for monitor sake on default queue */
2163 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2164 		bool toggle_bit;
2165 
2166 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2167 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2168 		/*
2169 		 * Toggle is switched whenever new aggregation starts. Make
2170 		 * sure ampdu_reference is never 0 so we can later use it to
2171 		 * see if the frame was really part of an A-MPDU or not.
2172 		 */
2173 		if (toggle_bit != mvm->ampdu_toggle) {
2174 			mvm->ampdu_ref++;
2175 			if (mvm->ampdu_ref == 0)
2176 				mvm->ampdu_ref++;
2177 			mvm->ampdu_toggle = toggle_bit;
2178 			phy_data.first_subframe = true;
2179 		}
2180 		rx_status->ampdu_reference = mvm->ampdu_ref;
2181 	}
2182 
2183 	rcu_read_lock();
2184 
2185 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2186 		if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) {
2187 			struct ieee80211_link_sta *link_sta;
2188 
2189 			sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
2190 			if (IS_ERR(sta))
2191 				sta = NULL;
2192 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]);
2193 
2194 			if (sta && sta->valid_links && link_sta) {
2195 				rx_status->link_valid = 1;
2196 				rx_status->link_id = link_sta->link_id;
2197 			}
2198 		}
2199 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2200 		/*
2201 		 * This is fine since we prevent two stations with the same
2202 		 * address from being added.
2203 		 */
2204 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2205 	}
2206 
2207 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2208 			      le32_to_cpu(pkt->len_n_flags), queue,
2209 			      &crypt_len)) {
2210 		kfree_skb(skb);
2211 		goto out;
2212 	}
2213 
2214 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2215 
2216 	if (sta) {
2217 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2218 		struct ieee80211_vif *tx_blocked_vif =
2219 			rcu_dereference(mvm->csa_tx_blocked_vif);
2220 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2221 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2222 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2223 		struct iwl_fw_dbg_trigger_tlv *trig;
2224 		struct ieee80211_vif *vif = mvmsta->vif;
2225 
2226 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2227 		    !is_multicast_ether_addr(hdr->addr1) &&
2228 		    ieee80211_is_data(hdr->frame_control) &&
2229 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2230 			schedule_delayed_work(&mvm->tcm.work, 0);
2231 
2232 		/*
2233 		 * We have tx blocked stations (with CS bit). If we heard
2234 		 * frames from a blocked station on a new channel we can
2235 		 * TX to it again.
2236 		 */
2237 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2238 			struct iwl_mvm_vif *mvmvif =
2239 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2240 			struct iwl_rx_sta_csa rx_sta_csa = {
2241 				.all_sta_unblocked = true,
2242 				.vif = tx_blocked_vif,
2243 			};
2244 
2245 			if (mvmvif->csa_target_freq == rx_status->freq)
2246 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2247 								 false);
2248 			ieee80211_iterate_stations_atomic(mvm->hw,
2249 							  iwl_mvm_rx_get_sta_block_tx,
2250 							  &rx_sta_csa);
2251 
2252 			if (rx_sta_csa.all_sta_unblocked) {
2253 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2254 				/* Unblock BCAST / MCAST station */
2255 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2256 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2257 			}
2258 		}
2259 
2260 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2261 
2262 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2263 					     ieee80211_vif_to_wdev(vif),
2264 					     FW_DBG_TRIGGER_RSSI);
2265 
2266 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2267 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2268 			s32 rssi;
2269 
2270 			rssi_trig = (void *)trig->data;
2271 			rssi = le32_to_cpu(rssi_trig->rssi);
2272 
2273 			if (rx_status->signal < rssi)
2274 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2275 							NULL);
2276 		}
2277 
2278 		if (ieee80211_is_data(hdr->frame_control))
2279 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2280 
2281 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2282 			IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2283 				       le16_to_cpu(hdr->seq_ctrl));
2284 			kfree_skb(skb);
2285 			goto out;
2286 		}
2287 
2288 		/*
2289 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2290 		 * as it to the de-aggregated MPDUs. We need to turn off the
2291 		 * AMSDU bit in the QoS control ourselves.
2292 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2293 		 */
2294 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2295 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2296 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2297 
2298 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2299 
2300 			if (mvm->trans->trans_cfg->device_family ==
2301 			    IWL_DEVICE_FAMILY_9000) {
2302 				iwl_mvm_flip_address(hdr->addr3);
2303 
2304 				if (ieee80211_has_a4(hdr->frame_control))
2305 					iwl_mvm_flip_address(hdr->addr4);
2306 			}
2307 		}
2308 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2309 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2310 
2311 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2312 		}
2313 
2314 		if (ieee80211_is_data(hdr->frame_control)) {
2315 			u8 sub_frame_idx = desc->amsdu_info &
2316 				IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
2317 
2318 			/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
2319 			if (!sub_frame_idx || sub_frame_idx == 1)
2320 				iwl_mvm_count_mpdu(mvmsta, sta_id, 1, false,
2321 						   queue);
2322 		}
2323 	}
2324 
2325 	/* management stuff on default queue */
2326 	if (!queue) {
2327 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2328 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2329 			     mvm->sched_scan_pass_all ==
2330 			     SCHED_SCAN_PASS_ALL_ENABLED))
2331 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2332 
2333 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2334 			     ieee80211_is_probe_resp(hdr->frame_control)))
2335 			rx_status->boottime_ns = ktime_get_boottime_ns();
2336 	}
2337 
2338 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2339 		kfree_skb(skb);
2340 		goto out;
2341 	}
2342 
2343 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2344 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2345 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2346 		if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2347 		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2348 		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2349 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2350 
2351 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
2352 	}
2353 out:
2354 	rcu_read_unlock();
2355 }
2356 
2357 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2358 				struct iwl_rx_cmd_buffer *rxb, int queue)
2359 {
2360 	struct ieee80211_rx_status *rx_status;
2361 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2362 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2363 	u32 rssi;
2364 	struct ieee80211_sta *sta = NULL;
2365 	struct sk_buff *skb;
2366 	struct iwl_mvm_rx_phy_data phy_data;
2367 	u32 format;
2368 
2369 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2370 		return;
2371 
2372 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2373 		return;
2374 
2375 	rssi = le32_to_cpu(desc->rssi);
2376 	phy_data.d0 = desc->phy_info[0];
2377 	phy_data.d1 = desc->phy_info[1];
2378 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2379 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2380 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2381 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2382 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2383 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2384 	phy_data.with_data = false;
2385 	phy_data.rx_vec[0] = desc->rx_vec[0];
2386 	phy_data.rx_vec[1] = desc->rx_vec[1];
2387 
2388 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2389 				    RX_NO_DATA_NOTIF, 0) < 2) {
2390 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2391 			       phy_data.rate_n_flags);
2392 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2393 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2394 			       phy_data.rate_n_flags);
2395 	}
2396 
2397 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2398 
2399 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2400 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2401 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2402 		    sizeof(struct iwl_rx_no_data_ver_3)))
2403 		/* invalid len for ver 3 */
2404 			return;
2405 		phy_data.rx_vec[2] = desc->rx_vec[2];
2406 		phy_data.rx_vec[3] = desc->rx_vec[3];
2407 	} else {
2408 		if (format == RATE_MCS_EHT_MSK)
2409 			/* no support for EHT before version 3 API */
2410 			return;
2411 	}
2412 
2413 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2414 	 * ieee80211_hdr pulled.
2415 	 */
2416 	skb = alloc_skb(128, GFP_ATOMIC);
2417 	if (!skb) {
2418 		IWL_ERR(mvm, "alloc_skb failed\n");
2419 		return;
2420 	}
2421 
2422 	rx_status = IEEE80211_SKB_RXCB(skb);
2423 
2424 	/* 0-length PSDU */
2425 	rx_status->flag |= RX_FLAG_NO_PSDU;
2426 
2427 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
2428 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
2429 	    RX_NO_DATA_INFO_ERR_NONE)
2430 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
2431 
2432 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2433 	case RX_NO_DATA_INFO_TYPE_NDP:
2434 		rx_status->zero_length_psdu_type =
2435 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2436 		break;
2437 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2438 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2439 		rx_status->zero_length_psdu_type =
2440 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2441 		break;
2442 	default:
2443 		rx_status->zero_length_psdu_type =
2444 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2445 		break;
2446 	}
2447 
2448 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2449 		NL80211_BAND_2GHZ;
2450 
2451 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2452 
2453 	/* no more radio tap info should be put after this point.
2454 	 *
2455 	 * We mark it as mac header, for upper layers to know where
2456 	 * all radio tap header ends.
2457 	 *
2458 	 * Since data doesn't move data while putting data on skb and that is
2459 	 * the only way we use, data + len is the next place that hdr would be put
2460 	 */
2461 	skb_set_mac_header(skb, skb->len);
2462 
2463 	/*
2464 	 * Override the nss from the rx_vec since the rate_n_flags has
2465 	 * only 2 bits for the nss which gives a max of 4 ss but there
2466 	 * may be up to 8 spatial streams.
2467 	 */
2468 	switch (format) {
2469 	case RATE_MCS_VHT_MSK:
2470 		rx_status->nss =
2471 			le32_get_bits(desc->rx_vec[0],
2472 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2473 		break;
2474 	case RATE_MCS_HE_MSK:
2475 		rx_status->nss =
2476 			le32_get_bits(desc->rx_vec[0],
2477 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2478 		break;
2479 	case RATE_MCS_EHT_MSK:
2480 		rx_status->nss =
2481 			le32_get_bits(desc->rx_vec[2],
2482 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2483 	}
2484 
2485 	rcu_read_lock();
2486 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2487 	rcu_read_unlock();
2488 }
2489 
2490 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2491 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2492 {
2493 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2494 	struct iwl_frame_release *release = (void *)pkt->data;
2495 
2496 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2497 		return;
2498 
2499 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2500 					  le16_to_cpu(release->nssn),
2501 					  queue);
2502 }
2503 
2504 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2505 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2506 {
2507 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2508 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2509 	unsigned int baid = le32_get_bits(release->ba_info,
2510 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2511 	unsigned int nssn = le32_get_bits(release->ba_info,
2512 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2513 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2514 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2515 	unsigned int tid = le32_get_bits(release->sta_tid,
2516 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2517 	struct iwl_mvm_baid_data *baid_data;
2518 
2519 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2520 		return;
2521 
2522 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2523 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2524 		return;
2525 
2526 	rcu_read_lock();
2527 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2528 	if (!baid_data) {
2529 		IWL_DEBUG_RX(mvm,
2530 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2531 			      baid);
2532 		goto out;
2533 	}
2534 
2535 	if (WARN(tid != baid_data->tid || sta_id > IWL_STATION_COUNT_MAX ||
2536 		 !(baid_data->sta_mask & BIT(sta_id)),
2537 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2538 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2539 		 tid))
2540 		goto out;
2541 
2542 	IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2543 		       nssn);
2544 
2545 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2546 out:
2547 	rcu_read_unlock();
2548 }
2549