xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2024 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta)
240 {
241 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
242 		kfree_skb(skb);
243 		return;
244 	}
245 
246 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
247 }
248 
249 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
250 					struct ieee80211_rx_status *rx_status,
251 					u32 rate_n_flags, int energy_a,
252 					int energy_b)
253 {
254 	int max_energy;
255 	u32 rate_flags = rate_n_flags;
256 
257 	energy_a = energy_a ? -energy_a : S8_MIN;
258 	energy_b = energy_b ? -energy_b : S8_MIN;
259 	max_energy = max(energy_a, energy_b);
260 
261 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
262 			energy_a, energy_b, max_energy);
263 
264 	rx_status->signal = max_energy;
265 	rx_status->chains =
266 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
267 	rx_status->chain_signal[0] = energy_a;
268 	rx_status->chain_signal[1] = energy_b;
269 }
270 
271 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
272 				struct ieee80211_hdr *hdr,
273 				struct iwl_rx_mpdu_desc *desc,
274 				u32 status,
275 				struct ieee80211_rx_status *stats)
276 {
277 	struct wireless_dev *wdev;
278 	struct iwl_mvm_sta *mvmsta;
279 	struct iwl_mvm_vif *mvmvif;
280 	u8 keyid;
281 	struct ieee80211_key_conf *key;
282 	u32 len = le16_to_cpu(desc->mpdu_len);
283 	const u8 *frame = (void *)hdr;
284 
285 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
286 		return 0;
287 
288 	/*
289 	 * For non-beacon, we don't really care. But beacons may
290 	 * be filtered out, and we thus need the firmware's replay
291 	 * detection, otherwise beacons the firmware previously
292 	 * filtered could be replayed, or something like that, and
293 	 * it can filter a lot - though usually only if nothing has
294 	 * changed.
295 	 */
296 	if (!ieee80211_is_beacon(hdr->frame_control))
297 		return 0;
298 
299 	if (!sta)
300 		return -1;
301 
302 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
303 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
304 
305 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
306 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
307 		goto report;
308 
309 	/* good cases */
310 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
311 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
312 		stats->flag |= RX_FLAG_DECRYPTED;
313 		return 0;
314 	}
315 
316 	/*
317 	 * both keys will have the same cipher and MIC length, use
318 	 * whichever one is available
319 	 */
320 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
321 	if (!key) {
322 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
323 		if (!key)
324 			goto report;
325 	}
326 
327 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
328 		goto report;
329 
330 	/* get the real key ID */
331 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
332 	/* and if that's the other key, look it up */
333 	if (keyid != key->keyidx) {
334 		/*
335 		 * shouldn't happen since firmware checked, but be safe
336 		 * in case the MIC length is wrong too, for example
337 		 */
338 		if (keyid != 6 && keyid != 7)
339 			return -1;
340 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
341 		if (!key)
342 			goto report;
343 	}
344 
345 	/* Report status to mac80211 */
346 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
347 		ieee80211_key_mic_failure(key);
348 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
349 		ieee80211_key_replay(key);
350 report:
351 	wdev = ieee80211_vif_to_wdev(mvmsta->vif);
352 	if (wdev->netdev)
353 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
354 
355 	return -1;
356 }
357 
358 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
359 			     struct ieee80211_hdr *hdr,
360 			     struct ieee80211_rx_status *stats, u16 phy_info,
361 			     struct iwl_rx_mpdu_desc *desc,
362 			     u32 pkt_flags, int queue, u8 *crypt_len)
363 {
364 	u32 status = le32_to_cpu(desc->status);
365 
366 	/*
367 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
368 	 * (where we don't have the keys).
369 	 * We limit this to aggregation because in TKIP this is a valid
370 	 * scenario, since we may not have the (correct) TTAK (phase 1
371 	 * key) in the firmware.
372 	 */
373 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
374 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
375 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
376 		IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
377 		return -1;
378 	}
379 
380 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
381 		     !ieee80211_has_protected(hdr->frame_control)))
382 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
383 
384 	if (!ieee80211_has_protected(hdr->frame_control) ||
385 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
386 	    IWL_RX_MPDU_STATUS_SEC_NONE)
387 		return 0;
388 
389 	/* TODO: handle packets encrypted with unknown alg */
390 
391 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
392 	case IWL_RX_MPDU_STATUS_SEC_CCM:
393 	case IWL_RX_MPDU_STATUS_SEC_GCM:
394 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
395 		/* alg is CCM: check MIC only */
396 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
397 			IWL_DEBUG_DROP(mvm,
398 				       "Dropping packet, bad MIC (CCM/GCM)\n");
399 			return -1;
400 		}
401 
402 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
403 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
404 		return 0;
405 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
406 		/* Don't drop the frame and decrypt it in SW */
407 		if (!fw_has_api(&mvm->fw->ucode_capa,
408 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
409 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
410 			return 0;
411 
412 		if (mvm->trans->trans_cfg->gen2 &&
413 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
414 			stats->flag |= RX_FLAG_MMIC_ERROR;
415 
416 		*crypt_len = IEEE80211_TKIP_IV_LEN;
417 		fallthrough;
418 	case IWL_RX_MPDU_STATUS_SEC_WEP:
419 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
420 			return -1;
421 
422 		stats->flag |= RX_FLAG_DECRYPTED;
423 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
424 				IWL_RX_MPDU_STATUS_SEC_WEP)
425 			*crypt_len = IEEE80211_WEP_IV_LEN;
426 
427 		if (pkt_flags & FH_RSCSR_RADA_EN) {
428 			stats->flag |= RX_FLAG_ICV_STRIPPED;
429 			if (mvm->trans->trans_cfg->gen2)
430 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
431 		}
432 
433 		return 0;
434 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
435 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
436 			return -1;
437 		stats->flag |= RX_FLAG_DECRYPTED;
438 		return 0;
439 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
440 		break;
441 	default:
442 		/*
443 		 * Sometimes we can get frames that were not decrypted
444 		 * because the firmware didn't have the keys yet. This can
445 		 * happen after connection where we can get multicast frames
446 		 * before the GTK is installed.
447 		 * Silently drop those frames.
448 		 * Also drop un-decrypted frames in monitor mode.
449 		 */
450 		if (!is_multicast_ether_addr(hdr->addr1) &&
451 		    !mvm->monitor_on && net_ratelimit())
452 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
453 	}
454 
455 	return 0;
456 }
457 
458 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
459 			    struct ieee80211_sta *sta,
460 			    struct sk_buff *skb,
461 			    struct iwl_rx_packet *pkt)
462 {
463 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
464 
465 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
466 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
467 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
468 
469 			skb->ip_summed = CHECKSUM_COMPLETE;
470 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
471 		}
472 	} else {
473 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
474 		struct iwl_mvm_vif *mvmvif;
475 		u16 flags = le16_to_cpu(desc->l3l4_flags);
476 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
477 				  IWL_RX_L3_PROTO_POS);
478 
479 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
480 
481 		if (mvmvif->features & NETIF_F_RXCSUM &&
482 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
483 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
484 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
485 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
486 			skb->ip_summed = CHECKSUM_UNNECESSARY;
487 	}
488 }
489 
490 /*
491  * returns true if a packet is a duplicate or invalid tid and should be dropped.
492  * Updates AMSDU PN tracking info
493  */
494 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
495 			   struct ieee80211_rx_status *rx_status,
496 			   struct ieee80211_hdr *hdr,
497 			   struct iwl_rx_mpdu_desc *desc)
498 {
499 	struct iwl_mvm_sta *mvm_sta;
500 	struct iwl_mvm_rxq_dup_data *dup_data;
501 	u8 tid, sub_frame_idx;
502 
503 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
504 		return false;
505 
506 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
507 
508 	if (WARN_ON_ONCE(!mvm_sta->dup_data))
509 		return false;
510 
511 	dup_data = &mvm_sta->dup_data[queue];
512 
513 	/*
514 	 * Drop duplicate 802.11 retransmissions
515 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
516 	 */
517 	if (ieee80211_is_ctl(hdr->frame_control) ||
518 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
519 	    is_multicast_ether_addr(hdr->addr1))
520 		return false;
521 
522 	if (ieee80211_is_data_qos(hdr->frame_control)) {
523 		/* frame has qos control */
524 		tid = ieee80211_get_tid(hdr);
525 		if (tid >= IWL_MAX_TID_COUNT)
526 			return true;
527 	} else {
528 		tid = IWL_MAX_TID_COUNT;
529 	}
530 
531 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
532 	sub_frame_idx = desc->amsdu_info &
533 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
534 
535 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
536 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
537 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
538 		return true;
539 
540 	/* Allow same PN as the first subframe for following sub frames */
541 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
542 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
543 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
544 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
545 
546 	dup_data->last_seq[tid] = hdr->seq_ctrl;
547 	dup_data->last_sub_frame[tid] = sub_frame_idx;
548 
549 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
550 
551 	return false;
552 }
553 
554 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
555 				   struct ieee80211_sta *sta,
556 				   struct napi_struct *napi,
557 				   struct iwl_mvm_baid_data *baid_data,
558 				   struct iwl_mvm_reorder_buffer *reorder_buf,
559 				   u16 nssn)
560 {
561 	struct iwl_mvm_reorder_buf_entry *entries =
562 		&baid_data->entries[reorder_buf->queue *
563 				    baid_data->entries_per_queue];
564 	u16 ssn = reorder_buf->head_sn;
565 
566 	lockdep_assert_held(&reorder_buf->lock);
567 
568 	while (ieee80211_sn_less(ssn, nssn)) {
569 		int index = ssn % baid_data->buf_size;
570 		struct sk_buff_head *skb_list = &entries[index].frames;
571 		struct sk_buff *skb;
572 
573 		ssn = ieee80211_sn_inc(ssn);
574 
575 		/*
576 		 * Empty the list. Will have more than one frame for A-MSDU.
577 		 * Empty list is valid as well since nssn indicates frames were
578 		 * received.
579 		 */
580 		while ((skb = __skb_dequeue(skb_list))) {
581 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
582 							reorder_buf->queue,
583 							sta);
584 			reorder_buf->num_stored--;
585 		}
586 	}
587 	reorder_buf->head_sn = nssn;
588 }
589 
590 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
591 			   struct iwl_mvm_delba_data *data)
592 {
593 	struct iwl_mvm_baid_data *ba_data;
594 	struct ieee80211_sta *sta;
595 	struct iwl_mvm_reorder_buffer *reorder_buf;
596 	u8 baid = data->baid;
597 	u32 sta_id;
598 
599 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
600 		return;
601 
602 	rcu_read_lock();
603 
604 	ba_data = rcu_dereference(mvm->baid_map[baid]);
605 	if (WARN_ON_ONCE(!ba_data))
606 		goto out;
607 
608 	/* pick any STA ID to find the pointer */
609 	sta_id = ffs(ba_data->sta_mask) - 1;
610 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
611 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
612 		goto out;
613 
614 	reorder_buf = &ba_data->reorder_buf[queue];
615 
616 	/* release all frames that are in the reorder buffer to the stack */
617 	spin_lock_bh(&reorder_buf->lock);
618 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
619 			       ieee80211_sn_add(reorder_buf->head_sn,
620 						ba_data->buf_size));
621 	spin_unlock_bh(&reorder_buf->lock);
622 
623 out:
624 	rcu_read_unlock();
625 }
626 
627 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
628 					      struct napi_struct *napi,
629 					      u8 baid, u16 nssn, int queue)
630 {
631 	struct ieee80211_sta *sta;
632 	struct iwl_mvm_reorder_buffer *reorder_buf;
633 	struct iwl_mvm_baid_data *ba_data;
634 	u32 sta_id;
635 
636 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
637 		     baid, nssn);
638 
639 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
640 			 baid >= ARRAY_SIZE(mvm->baid_map)))
641 		return;
642 
643 	rcu_read_lock();
644 
645 	ba_data = rcu_dereference(mvm->baid_map[baid]);
646 	if (WARN(!ba_data, "BAID %d not found in map\n", baid))
647 		goto out;
648 
649 	/* pick any STA ID to find the pointer */
650 	sta_id = ffs(ba_data->sta_mask) - 1;
651 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
652 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
653 		goto out;
654 
655 	reorder_buf = &ba_data->reorder_buf[queue];
656 
657 	spin_lock_bh(&reorder_buf->lock);
658 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
659 			       reorder_buf, nssn);
660 	spin_unlock_bh(&reorder_buf->lock);
661 
662 out:
663 	rcu_read_unlock();
664 }
665 
666 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
667 			    struct iwl_rx_cmd_buffer *rxb, int queue)
668 {
669 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
670 	struct iwl_rxq_sync_notification *notif;
671 	struct iwl_mvm_internal_rxq_notif *internal_notif;
672 	u32 len = iwl_rx_packet_payload_len(pkt);
673 
674 	notif = (void *)pkt->data;
675 	internal_notif = (void *)notif->payload;
676 
677 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
678 		      "invalid notification size %d (%d)",
679 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
680 		return;
681 	len -= sizeof(*notif) + sizeof(*internal_notif);
682 
683 	if (WARN_ONCE(internal_notif->sync &&
684 		      mvm->queue_sync_cookie != internal_notif->cookie,
685 		      "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n",
686 		      internal_notif->cookie, mvm->queue_sync_cookie, queue))
687 		return;
688 
689 	switch (internal_notif->type) {
690 	case IWL_MVM_RXQ_EMPTY:
691 		WARN_ONCE(len, "invalid empty notification size %d", len);
692 		break;
693 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
694 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
695 			      "invalid delba notification size %d (%d)",
696 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
697 			break;
698 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
699 		break;
700 	default:
701 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
702 	}
703 
704 	if (internal_notif->sync) {
705 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
706 			  "queue sync: queue %d responded a second time!\n",
707 			  queue);
708 		if (READ_ONCE(mvm->queue_sync_state) == 0)
709 			wake_up(&mvm->rx_sync_waitq);
710 	}
711 }
712 
713 /*
714  * Returns true if the MPDU was buffered\dropped, false if it should be passed
715  * to upper layer.
716  */
717 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
718 			    struct napi_struct *napi,
719 			    int queue,
720 			    struct ieee80211_sta *sta,
721 			    struct sk_buff *skb,
722 			    struct iwl_rx_mpdu_desc *desc)
723 {
724 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
725 	struct iwl_mvm_baid_data *baid_data;
726 	struct iwl_mvm_reorder_buffer *buffer;
727 	u32 reorder = le32_to_cpu(desc->reorder_data);
728 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
729 	bool last_subframe =
730 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
731 	u8 tid = ieee80211_get_tid(hdr);
732 	struct iwl_mvm_reorder_buf_entry *entries;
733 	u32 sta_mask;
734 	int index;
735 	u16 nssn, sn;
736 	u8 baid;
737 
738 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
739 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
740 
741 	if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
742 		return false;
743 
744 	/*
745 	 * This also covers the case of receiving a Block Ack Request
746 	 * outside a BA session; we'll pass it to mac80211 and that
747 	 * then sends a delBA action frame.
748 	 * This also covers pure monitor mode, in which case we won't
749 	 * have any BA sessions.
750 	 */
751 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
752 		return false;
753 
754 	/* no sta yet */
755 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
756 		      "Got valid BAID without a valid station assigned\n"))
757 		return false;
758 
759 	/* not a data packet or a bar */
760 	if (!ieee80211_is_back_req(hdr->frame_control) &&
761 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
762 	     is_multicast_ether_addr(hdr->addr1)))
763 		return false;
764 
765 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
766 		return false;
767 
768 	baid_data = rcu_dereference(mvm->baid_map[baid]);
769 	if (!baid_data) {
770 		IWL_DEBUG_RX(mvm,
771 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
772 			      baid, reorder);
773 		return false;
774 	}
775 
776 	rcu_read_lock();
777 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
778 	rcu_read_unlock();
779 
780 	if (IWL_FW_CHECK(mvm,
781 			 tid != baid_data->tid ||
782 			 !(sta_mask & baid_data->sta_mask),
783 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
784 			 baid, baid_data->sta_mask, baid_data->tid,
785 			 sta_mask, tid))
786 		return false;
787 
788 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
789 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
790 		IWL_RX_MPDU_REORDER_SN_SHIFT;
791 
792 	buffer = &baid_data->reorder_buf[queue];
793 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
794 
795 	spin_lock_bh(&buffer->lock);
796 
797 	if (!buffer->valid) {
798 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
799 			spin_unlock_bh(&buffer->lock);
800 			return false;
801 		}
802 		buffer->valid = true;
803 	}
804 
805 	/* drop any duplicated packets */
806 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
807 		goto drop;
808 
809 	/* drop any oudated packets */
810 	if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
811 		goto drop;
812 
813 	/* release immediately if allowed by nssn and no stored frames */
814 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
815 		if (!amsdu || last_subframe)
816 			buffer->head_sn = nssn;
817 		/* No need to update AMSDU last SN - we are moving the head */
818 		spin_unlock_bh(&buffer->lock);
819 		return false;
820 	}
821 
822 	/*
823 	 * release immediately if there are no stored frames, and the sn is
824 	 * equal to the head.
825 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
826 	 * When we released everything, and we got the next frame in the
827 	 * sequence, according to the NSSN we can't release immediately,
828 	 * while technically there is no hole and we can move forward.
829 	 */
830 	if (!buffer->num_stored && sn == buffer->head_sn) {
831 		if (!amsdu || last_subframe)
832 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
833 
834 		/* No need to update AMSDU last SN - we are moving the head */
835 		spin_unlock_bh(&buffer->lock);
836 		return false;
837 	}
838 
839 	/* put in reorder buffer */
840 	index = sn % baid_data->buf_size;
841 	__skb_queue_tail(&entries[index].frames, skb);
842 	buffer->num_stored++;
843 
844 	if (amsdu)
845 		buffer->last_amsdu = sn;
846 
847 	/*
848 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
849 	 * The reason is that NSSN advances on the first sub-frame, and may
850 	 * cause the reorder buffer to advance before all the sub-frames arrive.
851 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
852 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
853 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
854 	 * already ahead and it will be dropped.
855 	 * If the last sub-frame is not on this queue - we will get frame
856 	 * release notification with up to date NSSN.
857 	 */
858 	if (!amsdu || last_subframe)
859 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
860 				       buffer, nssn);
861 
862 	spin_unlock_bh(&buffer->lock);
863 	return true;
864 
865 drop:
866 	kfree_skb(skb);
867 	spin_unlock_bh(&buffer->lock);
868 	return true;
869 }
870 
871 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
872 				    u32 reorder_data, u8 baid)
873 {
874 	unsigned long now = jiffies;
875 	unsigned long timeout;
876 	struct iwl_mvm_baid_data *data;
877 
878 	rcu_read_lock();
879 
880 	data = rcu_dereference(mvm->baid_map[baid]);
881 	if (!data) {
882 		IWL_DEBUG_RX(mvm,
883 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
884 			      baid, reorder_data);
885 		goto out;
886 	}
887 
888 	if (!data->timeout)
889 		goto out;
890 
891 	timeout = data->timeout;
892 	/*
893 	 * Do not update last rx all the time to avoid cache bouncing
894 	 * between the rx queues.
895 	 * Update it every timeout. Worst case is the session will
896 	 * expire after ~ 2 * timeout, which doesn't matter that much.
897 	 */
898 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
899 		/* Update is atomic */
900 		data->last_rx = now;
901 
902 out:
903 	rcu_read_unlock();
904 }
905 
906 static void iwl_mvm_flip_address(u8 *addr)
907 {
908 	int i;
909 	u8 mac_addr[ETH_ALEN];
910 
911 	for (i = 0; i < ETH_ALEN; i++)
912 		mac_addr[i] = addr[ETH_ALEN - i - 1];
913 	ether_addr_copy(addr, mac_addr);
914 }
915 
916 struct iwl_mvm_rx_phy_data {
917 	enum iwl_rx_phy_info_type info_type;
918 	__le32 d0, d1, d2, d3, eht_d4, d5;
919 	__le16 d4;
920 	bool with_data;
921 	bool first_subframe;
922 	__le32 rx_vec[4];
923 
924 	u32 rate_n_flags;
925 	u32 gp2_on_air_rise;
926 	u16 phy_info;
927 	u8 energy_a, energy_b;
928 	u8 channel;
929 };
930 
931 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
932 				     struct iwl_mvm_rx_phy_data *phy_data,
933 				     struct ieee80211_radiotap_he_mu *he_mu)
934 {
935 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
936 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
937 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
938 	u32 rate_n_flags = phy_data->rate_n_flags;
939 
940 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
941 		he_mu->flags1 |=
942 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
943 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
944 
945 		he_mu->flags1 |=
946 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
947 						   phy_data4),
948 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
949 
950 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
951 					     phy_data2);
952 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
953 					     phy_data3);
954 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
955 					     phy_data2);
956 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
957 					     phy_data3);
958 	}
959 
960 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
961 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
962 		he_mu->flags1 |=
963 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
964 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
965 
966 		he_mu->flags2 |=
967 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
968 						   phy_data4),
969 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
970 
971 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
972 					     phy_data2);
973 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
974 					     phy_data3);
975 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
976 					     phy_data2);
977 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
978 					     phy_data3);
979 	}
980 }
981 
982 static void
983 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
984 			       struct ieee80211_radiotap_he *he,
985 			       struct ieee80211_radiotap_he_mu *he_mu,
986 			       struct ieee80211_rx_status *rx_status)
987 {
988 	/*
989 	 * Unfortunately, we have to leave the mac80211 data
990 	 * incorrect for the case that we receive an HE-MU
991 	 * transmission and *don't* have the HE phy data (due
992 	 * to the bits being used for TSF). This shouldn't
993 	 * happen though as management frames where we need
994 	 * the TSF/timers are not be transmitted in HE-MU.
995 	 */
996 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
997 	u32 rate_n_flags = phy_data->rate_n_flags;
998 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
999 	u8 offs = 0;
1000 
1001 	rx_status->bw = RATE_INFO_BW_HE_RU;
1002 
1003 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1004 
1005 	switch (ru) {
1006 	case 0 ... 36:
1007 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1008 		offs = ru;
1009 		break;
1010 	case 37 ... 52:
1011 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1012 		offs = ru - 37;
1013 		break;
1014 	case 53 ... 60:
1015 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1016 		offs = ru - 53;
1017 		break;
1018 	case 61 ... 64:
1019 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1020 		offs = ru - 61;
1021 		break;
1022 	case 65 ... 66:
1023 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1024 		offs = ru - 65;
1025 		break;
1026 	case 67:
1027 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1028 		break;
1029 	case 68:
1030 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1031 		break;
1032 	}
1033 	he->data2 |= le16_encode_bits(offs,
1034 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1035 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1036 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1037 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1038 		he->data2 |=
1039 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1040 
1041 #define CHECK_BW(bw) \
1042 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1043 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1044 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1045 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1046 	CHECK_BW(20);
1047 	CHECK_BW(40);
1048 	CHECK_BW(80);
1049 	CHECK_BW(160);
1050 
1051 	if (he_mu)
1052 		he_mu->flags2 |=
1053 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1054 						   rate_n_flags),
1055 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1056 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1057 		he->data6 |=
1058 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1059 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1060 						   rate_n_flags),
1061 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1062 }
1063 
1064 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1065 				       struct iwl_mvm_rx_phy_data *phy_data,
1066 				       struct ieee80211_radiotap_he *he,
1067 				       struct ieee80211_radiotap_he_mu *he_mu,
1068 				       struct ieee80211_rx_status *rx_status,
1069 				       int queue)
1070 {
1071 	switch (phy_data->info_type) {
1072 	case IWL_RX_PHY_INFO_TYPE_NONE:
1073 	case IWL_RX_PHY_INFO_TYPE_CCK:
1074 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1075 	case IWL_RX_PHY_INFO_TYPE_HT:
1076 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1077 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1078 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1079 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1080 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1081 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1082 		return;
1083 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1084 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1085 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1086 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1087 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1088 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1089 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1090 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1091 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1092 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1093 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1094 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1095 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1096 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1097 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1098 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1099 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1100 		fallthrough;
1101 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1102 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1103 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1104 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1105 		/* HE common */
1106 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1107 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1108 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1109 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1110 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1111 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1112 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1113 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1114 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1115 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1116 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1117 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1118 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1119 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1120 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1121 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1122 		}
1123 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1124 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1125 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1126 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1127 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1128 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1129 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1130 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1131 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1132 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1133 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1134 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1135 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1136 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1137 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1138 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1139 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1140 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1141 		break;
1142 	}
1143 
1144 	switch (phy_data->info_type) {
1145 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1146 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1147 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1148 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1149 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1150 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1151 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1152 		break;
1153 	default:
1154 		/* nothing here */
1155 		break;
1156 	}
1157 
1158 	switch (phy_data->info_type) {
1159 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1160 		he_mu->flags1 |=
1161 			le16_encode_bits(le16_get_bits(phy_data->d4,
1162 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1163 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1164 		he_mu->flags1 |=
1165 			le16_encode_bits(le16_get_bits(phy_data->d4,
1166 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1167 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1168 		he_mu->flags2 |=
1169 			le16_encode_bits(le16_get_bits(phy_data->d4,
1170 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1171 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1172 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1173 		fallthrough;
1174 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1175 		he_mu->flags2 |=
1176 			le16_encode_bits(le32_get_bits(phy_data->d1,
1177 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1178 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1179 		he_mu->flags2 |=
1180 			le16_encode_bits(le32_get_bits(phy_data->d1,
1181 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1182 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1183 		fallthrough;
1184 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1185 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1186 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1187 		break;
1188 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1189 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1190 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1191 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1192 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1193 		break;
1194 	default:
1195 		/* nothing */
1196 		break;
1197 	}
1198 }
1199 
1200 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1201 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1202 
1203 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1204 	typeof(enc_bits) _enc_bits = enc_bits; \
1205 	typeof(usig) _usig = usig; \
1206 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1207 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1208 } while (0)
1209 
1210 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1211 	eht->data[(rt_data)] |= \
1212 		(cpu_to_le32 \
1213 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1214 		 LE32_DEC_ENC(data ## fw_data, \
1215 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1216 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1217 
1218 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1219 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1220 
1221 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1222 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1223 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1224 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1225 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1226 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1227 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1228 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1229 
1230 #define IWL_RX_RU_DATA_A1			2
1231 #define IWL_RX_RU_DATA_A2			2
1232 #define IWL_RX_RU_DATA_B1			2
1233 #define IWL_RX_RU_DATA_B2			4
1234 #define IWL_RX_RU_DATA_C1			3
1235 #define IWL_RX_RU_DATA_C2			3
1236 #define IWL_RX_RU_DATA_D1			4
1237 #define IWL_RX_RU_DATA_D2			4
1238 
1239 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1240 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1241 			    rt_ru,					\
1242 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1243 			    fw_ru)
1244 
1245 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1246 				      struct iwl_mvm_rx_phy_data *phy_data,
1247 				      struct ieee80211_rx_status *rx_status,
1248 				      struct ieee80211_radiotap_eht *eht,
1249 				      struct ieee80211_radiotap_eht_usig *usig)
1250 {
1251 	if (phy_data->with_data) {
1252 		__le32 data1 = phy_data->d1;
1253 		__le32 data2 = phy_data->d2;
1254 		__le32 data3 = phy_data->d3;
1255 		__le32 data4 = phy_data->eht_d4;
1256 		__le32 data5 = phy_data->d5;
1257 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1258 
1259 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1260 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1261 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1262 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1263 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1264 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1265 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1266 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1267 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1268 		IWL_MVM_ENC_USIG_VALUE_MASK
1269 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1270 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1271 
1272 		eht->user_info[0] |=
1273 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1274 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1275 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1276 
1277 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1278 		eht->data[7] |= LE32_DEC_ENC
1279 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1280 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1281 
1282 		/*
1283 		 * Hardware labels the content channels/RU allocation values
1284 		 * as follows:
1285 		 *           Content Channel 1		Content Channel 2
1286 		 *   20 MHz: A1
1287 		 *   40 MHz: A1				B1
1288 		 *   80 MHz: A1 C1			B1 D1
1289 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1290 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1291 		 *
1292 		 * However firmware can only give us A1-D2, so the higher
1293 		 * frequencies are missing.
1294 		 */
1295 
1296 		switch (phy_bw) {
1297 		case RATE_MCS_CHAN_WIDTH_320:
1298 			/* additional values are missing in RX metadata */
1299 		case RATE_MCS_CHAN_WIDTH_160:
1300 			/* content channel 1 */
1301 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1302 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1303 			/* content channel 2 */
1304 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1305 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1306 			fallthrough;
1307 		case RATE_MCS_CHAN_WIDTH_80:
1308 			/* content channel 1 */
1309 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1310 			/* content channel 2 */
1311 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1312 			fallthrough;
1313 		case RATE_MCS_CHAN_WIDTH_40:
1314 			/* content channel 2 */
1315 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1316 			fallthrough;
1317 		case RATE_MCS_CHAN_WIDTH_20:
1318 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1319 			break;
1320 		}
1321 	} else {
1322 		__le32 usig_a1 = phy_data->rx_vec[0];
1323 		__le32 usig_a2 = phy_data->rx_vec[1];
1324 
1325 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1326 					    IWL_RX_USIG_A1_DISREGARD,
1327 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1328 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1329 					    IWL_RX_USIG_A1_VALIDATE,
1330 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1331 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1332 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1333 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1334 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1335 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1336 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1337 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1338 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1339 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1340 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1341 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1342 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1343 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1344 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1345 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1346 		IWL_MVM_ENC_USIG_VALUE_MASK
1347 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1348 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1349 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1350 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1351 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1352 	}
1353 }
1354 
1355 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1356 				      struct iwl_mvm_rx_phy_data *phy_data,
1357 				      struct ieee80211_rx_status *rx_status,
1358 				      struct ieee80211_radiotap_eht *eht,
1359 				      struct ieee80211_radiotap_eht_usig *usig)
1360 {
1361 	if (phy_data->with_data) {
1362 		__le32 data5 = phy_data->d5;
1363 
1364 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1365 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1366 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1367 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1368 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1369 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1370 
1371 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1372 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1373 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1374 	} else {
1375 		__le32 usig_a1 = phy_data->rx_vec[0];
1376 		__le32 usig_a2 = phy_data->rx_vec[1];
1377 
1378 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1379 					    IWL_RX_USIG_A1_DISREGARD,
1380 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1381 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1382 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1383 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1384 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1385 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1386 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1387 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1388 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1389 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1390 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1391 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1392 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1393 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1394 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1395 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1396 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1397 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1398 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1399 	}
1400 }
1401 
1402 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1403 				  struct ieee80211_rx_status *rx_status,
1404 				  struct ieee80211_radiotap_eht *eht)
1405 {
1406 	u32 ru = le32_get_bits(eht->data[8],
1407 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1408 	enum nl80211_eht_ru_alloc nl_ru;
1409 
1410 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1411 	 * in an EHT variant User Info field
1412 	 */
1413 
1414 	switch (ru) {
1415 	case 0 ... 36:
1416 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1417 		break;
1418 	case 37 ... 52:
1419 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1420 		break;
1421 	case 53 ... 60:
1422 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1423 		break;
1424 	case 61 ... 64:
1425 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1426 		break;
1427 	case 65 ... 66:
1428 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1429 		break;
1430 	case 67:
1431 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1432 		break;
1433 	case 68:
1434 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1435 		break;
1436 	case 69:
1437 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1438 		break;
1439 	case 70 ... 81:
1440 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1441 		break;
1442 	case 82 ... 89:
1443 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1444 		break;
1445 	case 90 ... 93:
1446 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1447 		break;
1448 	case 94 ... 95:
1449 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1450 		break;
1451 	case 96 ... 99:
1452 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1453 		break;
1454 	case 100 ... 103:
1455 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1456 		break;
1457 	case 104:
1458 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1459 		break;
1460 	case 105 ... 106:
1461 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1462 		break;
1463 	default:
1464 		return;
1465 	}
1466 
1467 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1468 	rx_status->eht.ru = nl_ru;
1469 }
1470 
1471 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1472 					struct iwl_mvm_rx_phy_data *phy_data,
1473 					struct ieee80211_rx_status *rx_status,
1474 					struct ieee80211_radiotap_eht *eht,
1475 					struct ieee80211_radiotap_eht_usig *usig)
1476 
1477 {
1478 	__le32 data0 = phy_data->d0;
1479 	__le32 data1 = phy_data->d1;
1480 	__le32 usig_a1 = phy_data->rx_vec[0];
1481 	u8 info_type = phy_data->info_type;
1482 
1483 	/* Not in EHT range */
1484 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1485 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1486 		return;
1487 
1488 	usig->common |= cpu_to_le32
1489 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1490 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1491 	if (phy_data->with_data) {
1492 		usig->common |= LE32_DEC_ENC(data0,
1493 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1494 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1495 		usig->common |= LE32_DEC_ENC(data0,
1496 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1497 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1498 	} else {
1499 		usig->common |= LE32_DEC_ENC(usig_a1,
1500 					     IWL_RX_USIG_A1_UL_FLAG,
1501 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1502 		usig->common |= LE32_DEC_ENC(usig_a1,
1503 					     IWL_RX_USIG_A1_BSS_COLOR,
1504 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1505 	}
1506 
1507 	if (fw_has_capa(&mvm->fw->ucode_capa,
1508 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1509 		usig->common |=
1510 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1511 		usig->common |=
1512 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1513 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1514 	}
1515 
1516 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1517 	eht->data[0] |= LE32_DEC_ENC(data0,
1518 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1519 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1520 
1521 	/* All RU allocating size/index is in TB format */
1522 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1523 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1524 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1525 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1526 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1527 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1528 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1529 
1530 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1531 
1532 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1533 	 * which is on only in case of monitor mode so no need to check monitor
1534 	 * mode
1535 	 */
1536 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1537 	eht->data[1] |=
1538 		le32_encode_bits(mvm->monitor_p80,
1539 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1540 
1541 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1542 	if (phy_data->with_data)
1543 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1544 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1545 	else
1546 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1547 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1548 
1549 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1550 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1551 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1552 
1553 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1554 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1555 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1556 
1557 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1558 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1559 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1560 
1561 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1562 
1563 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1564 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1565 
1566 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1567 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1568 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1569 
1570 	/*
1571 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1572 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1573 	 */
1574 
1575 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1576 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1577 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1578 
1579 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1580 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1581 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1582 
1583 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1584 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1585 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1586 }
1587 
1588 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1589 			   struct iwl_mvm_rx_phy_data *phy_data,
1590 			   int queue)
1591 {
1592 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1593 
1594 	struct ieee80211_radiotap_eht *eht;
1595 	struct ieee80211_radiotap_eht_usig *usig;
1596 	size_t eht_len = sizeof(*eht);
1597 
1598 	u32 rate_n_flags = phy_data->rate_n_flags;
1599 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1600 	/* EHT and HE have the same valus for LTF */
1601 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1602 	u16 phy_info = phy_data->phy_info;
1603 	u32 bw;
1604 
1605 	/* u32 for 1 user_info */
1606 	if (phy_data->with_data)
1607 		eht_len += sizeof(u32);
1608 
1609 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1610 
1611 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1612 					sizeof(*usig));
1613 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1614 	usig->common |=
1615 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1616 
1617 	/* specific handling for 320MHz */
1618 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1619 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1620 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1621 				le32_to_cpu(phy_data->d0));
1622 
1623 	usig->common |= cpu_to_le32
1624 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1625 
1626 	/* report the AMPDU-EOF bit on single frames */
1627 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1628 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1629 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1630 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1631 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1632 	}
1633 
1634 	/* update aggregation data for monitor sake on default queue */
1635 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1636 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1637 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1638 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1639 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1640 	}
1641 
1642 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1643 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1644 
1645 #define CHECK_TYPE(F)							\
1646 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1647 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1648 
1649 	CHECK_TYPE(SU);
1650 	CHECK_TYPE(EXT_SU);
1651 	CHECK_TYPE(MU);
1652 	CHECK_TYPE(TRIG);
1653 
1654 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1655 	case 0:
1656 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1657 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1658 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1659 		} else {
1660 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1661 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1662 		}
1663 		break;
1664 	case 1:
1665 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1666 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1667 		break;
1668 	case 2:
1669 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1670 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1671 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1672 		else
1673 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1674 		break;
1675 	case 3:
1676 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1677 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1678 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1679 		}
1680 		break;
1681 	default:
1682 		/* nothing here */
1683 		break;
1684 	}
1685 
1686 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1687 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1688 		eht->data[0] |= cpu_to_le32
1689 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1690 				    ltf) |
1691 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1692 				    rx_status->eht.gi));
1693 	}
1694 
1695 
1696 	if (!phy_data->with_data) {
1697 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1698 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1699 		eht->data[7] |=
1700 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1701 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1702 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1703 		if (rate_n_flags & RATE_MCS_BF_MSK)
1704 			eht->data[7] |=
1705 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1706 	} else {
1707 		eht->user_info[0] |=
1708 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1709 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1710 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1711 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1712 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1713 
1714 		if (rate_n_flags & RATE_MCS_BF_MSK)
1715 			eht->user_info[0] |=
1716 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1717 
1718 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1719 			eht->user_info[0] |=
1720 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1721 
1722 		eht->user_info[0] |= cpu_to_le32
1723 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1724 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1725 					      rate_n_flags)) |
1726 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1727 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1728 	}
1729 }
1730 
1731 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1732 			  struct iwl_mvm_rx_phy_data *phy_data,
1733 			  int queue)
1734 {
1735 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1736 	struct ieee80211_radiotap_he *he = NULL;
1737 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1738 	u32 rate_n_flags = phy_data->rate_n_flags;
1739 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1740 	u8 ltf;
1741 	static const struct ieee80211_radiotap_he known = {
1742 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1743 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1744 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1745 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1746 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1747 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1748 	};
1749 	static const struct ieee80211_radiotap_he_mu mu_known = {
1750 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1751 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1752 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1753 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1754 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1755 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1756 	};
1757 	u16 phy_info = phy_data->phy_info;
1758 
1759 	he = skb_put_data(skb, &known, sizeof(known));
1760 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1761 
1762 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1763 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1764 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1765 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1766 	}
1767 
1768 	/* report the AMPDU-EOF bit on single frames */
1769 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1770 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1771 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1772 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1773 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1774 	}
1775 
1776 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1777 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1778 					   queue);
1779 
1780 	/* update aggregation data for monitor sake on default queue */
1781 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1782 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1783 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1784 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1785 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1786 	}
1787 
1788 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1789 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1790 		rx_status->bw = RATE_INFO_BW_HE_RU;
1791 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1792 	}
1793 
1794 	/* actually data is filled in mac80211 */
1795 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1796 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1797 		he->data1 |=
1798 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1799 
1800 #define CHECK_TYPE(F)							\
1801 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1802 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1803 
1804 	CHECK_TYPE(SU);
1805 	CHECK_TYPE(EXT_SU);
1806 	CHECK_TYPE(MU);
1807 	CHECK_TYPE(TRIG);
1808 
1809 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1810 
1811 	if (rate_n_flags & RATE_MCS_BF_MSK)
1812 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1813 
1814 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1815 		RATE_MCS_HE_GI_LTF_POS) {
1816 	case 0:
1817 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1818 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1819 		else
1820 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1821 		if (he_type == RATE_MCS_HE_TYPE_MU)
1822 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1823 		else
1824 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1825 		break;
1826 	case 1:
1827 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1828 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1829 		else
1830 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1831 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1832 		break;
1833 	case 2:
1834 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1835 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1836 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1837 		} else {
1838 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1839 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1840 		}
1841 		break;
1842 	case 3:
1843 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1844 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1845 		break;
1846 	case 4:
1847 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1848 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1849 		break;
1850 	default:
1851 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1852 	}
1853 
1854 	he->data5 |= le16_encode_bits(ltf,
1855 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1856 }
1857 
1858 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1859 				struct iwl_mvm_rx_phy_data *phy_data)
1860 {
1861 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1862 	struct ieee80211_radiotap_lsig *lsig;
1863 
1864 	switch (phy_data->info_type) {
1865 	case IWL_RX_PHY_INFO_TYPE_HT:
1866 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1867 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1868 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1869 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1870 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1871 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1872 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1873 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1874 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1875 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1876 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1877 		lsig = skb_put(skb, sizeof(*lsig));
1878 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1879 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1880 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1881 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1882 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1883 		break;
1884 	default:
1885 		break;
1886 	}
1887 }
1888 
1889 struct iwl_rx_sta_csa {
1890 	bool all_sta_unblocked;
1891 	struct ieee80211_vif *vif;
1892 };
1893 
1894 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1895 {
1896 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1897 	struct iwl_rx_sta_csa *rx_sta_csa = data;
1898 
1899 	if (mvmsta->vif != rx_sta_csa->vif)
1900 		return;
1901 
1902 	if (mvmsta->disable_tx)
1903 		rx_sta_csa->all_sta_unblocked = false;
1904 }
1905 
1906 /*
1907  * Note: requires also rx_status->band to be prefilled, as well
1908  * as phy_data (apart from phy_data->info_type)
1909  */
1910 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1911 				   struct sk_buff *skb,
1912 				   struct iwl_mvm_rx_phy_data *phy_data,
1913 				   int queue)
1914 {
1915 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1916 	u32 rate_n_flags = phy_data->rate_n_flags;
1917 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1918 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1919 	bool is_sgi;
1920 
1921 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1922 
1923 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1924 		phy_data->info_type =
1925 			le32_get_bits(phy_data->d1,
1926 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1927 
1928 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1929 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1930 	case RATE_MCS_CHAN_WIDTH_20:
1931 		break;
1932 	case RATE_MCS_CHAN_WIDTH_40:
1933 		rx_status->bw = RATE_INFO_BW_40;
1934 		break;
1935 	case RATE_MCS_CHAN_WIDTH_80:
1936 		rx_status->bw = RATE_INFO_BW_80;
1937 		break;
1938 	case RATE_MCS_CHAN_WIDTH_160:
1939 		rx_status->bw = RATE_INFO_BW_160;
1940 		break;
1941 	case RATE_MCS_CHAN_WIDTH_320:
1942 		rx_status->bw = RATE_INFO_BW_320;
1943 		break;
1944 	}
1945 
1946 	/* must be before L-SIG data */
1947 	if (format == RATE_MCS_HE_MSK)
1948 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1949 
1950 	iwl_mvm_decode_lsig(skb, phy_data);
1951 
1952 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1953 
1954 	if (mvm->rx_ts_ptp && mvm->monitor_on) {
1955 		u64 adj_time =
1956 			iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC);
1957 
1958 		rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC);
1959 		rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64;
1960 		rx_status->flag &= ~RX_FLAG_MACTIME;
1961 	}
1962 
1963 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1964 							 rx_status->band);
1965 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1966 				    phy_data->energy_a, phy_data->energy_b);
1967 
1968 	/* using TLV format and must be after all fixed len fields */
1969 	if (format == RATE_MCS_EHT_MSK)
1970 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1971 
1972 	if (unlikely(mvm->monitor_on))
1973 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1974 
1975 	is_sgi = format == RATE_MCS_HE_MSK ?
1976 		iwl_he_is_sgi(rate_n_flags) :
1977 		rate_n_flags & RATE_MCS_SGI_MSK;
1978 
1979 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1980 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1981 
1982 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1983 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1984 
1985 	switch (format) {
1986 	case RATE_MCS_VHT_MSK:
1987 		rx_status->encoding = RX_ENC_VHT;
1988 		break;
1989 	case RATE_MCS_HE_MSK:
1990 		rx_status->encoding = RX_ENC_HE;
1991 		rx_status->he_dcm =
1992 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1993 		break;
1994 	case RATE_MCS_EHT_MSK:
1995 		rx_status->encoding = RX_ENC_EHT;
1996 		break;
1997 	}
1998 
1999 	switch (format) {
2000 	case RATE_MCS_HT_MSK:
2001 		rx_status->encoding = RX_ENC_HT;
2002 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2003 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2004 		break;
2005 	case RATE_MCS_VHT_MSK:
2006 	case RATE_MCS_HE_MSK:
2007 	case RATE_MCS_EHT_MSK:
2008 		rx_status->nss =
2009 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2010 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2011 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2012 		break;
2013 	default: {
2014 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2015 								 rx_status->band);
2016 
2017 		rx_status->rate_idx = rate;
2018 
2019 		if ((rate < 0 || rate > 0xFF)) {
2020 			rx_status->rate_idx = 0;
2021 			if (net_ratelimit())
2022 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2023 					rate_n_flags, rx_status->band);
2024 		}
2025 
2026 		break;
2027 		}
2028 	}
2029 }
2030 
2031 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2032 			struct iwl_rx_cmd_buffer *rxb, int queue)
2033 {
2034 	struct ieee80211_rx_status *rx_status;
2035 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2036 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2037 	struct ieee80211_hdr *hdr;
2038 	u32 len;
2039 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2040 	struct ieee80211_sta *sta = NULL;
2041 	struct sk_buff *skb;
2042 	u8 crypt_len = 0;
2043 	u8 sta_id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2044 	size_t desc_size;
2045 	struct iwl_mvm_rx_phy_data phy_data = {};
2046 	u32 format;
2047 
2048 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2049 		return;
2050 
2051 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2052 		desc_size = sizeof(*desc);
2053 	else
2054 		desc_size = IWL_RX_DESC_SIZE_V1;
2055 
2056 	if (unlikely(pkt_len < desc_size)) {
2057 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2058 		return;
2059 	}
2060 
2061 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2062 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2063 		phy_data.channel = desc->v3.channel;
2064 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2065 		phy_data.energy_a = desc->v3.energy_a;
2066 		phy_data.energy_b = desc->v3.energy_b;
2067 
2068 		phy_data.d0 = desc->v3.phy_data0;
2069 		phy_data.d1 = desc->v3.phy_data1;
2070 		phy_data.d2 = desc->v3.phy_data2;
2071 		phy_data.d3 = desc->v3.phy_data3;
2072 		phy_data.eht_d4 = desc->phy_eht_data4;
2073 		phy_data.d5 = desc->v3.phy_data5;
2074 	} else {
2075 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2076 		phy_data.channel = desc->v1.channel;
2077 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2078 		phy_data.energy_a = desc->v1.energy_a;
2079 		phy_data.energy_b = desc->v1.energy_b;
2080 
2081 		phy_data.d0 = desc->v1.phy_data0;
2082 		phy_data.d1 = desc->v1.phy_data1;
2083 		phy_data.d2 = desc->v1.phy_data2;
2084 		phy_data.d3 = desc->v1.phy_data3;
2085 	}
2086 
2087 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2088 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2089 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2090 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2091 			       phy_data.rate_n_flags);
2092 	}
2093 
2094 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2095 
2096 	len = le16_to_cpu(desc->mpdu_len);
2097 
2098 	if (unlikely(len + desc_size > pkt_len)) {
2099 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2100 		return;
2101 	}
2102 
2103 	phy_data.with_data = true;
2104 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2105 	phy_data.d4 = desc->phy_data4;
2106 
2107 	hdr = (void *)(pkt->data + desc_size);
2108 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2109 	 * ieee80211_hdr pulled.
2110 	 */
2111 	skb = alloc_skb(128, GFP_ATOMIC);
2112 	if (!skb) {
2113 		IWL_ERR(mvm, "alloc_skb failed\n");
2114 		return;
2115 	}
2116 
2117 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2118 		/*
2119 		 * If the device inserted padding it means that (it thought)
2120 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2121 		 * this case, reserve two bytes at the start of the SKB to
2122 		 * align the payload properly in case we end up copying it.
2123 		 */
2124 		skb_reserve(skb, 2);
2125 	}
2126 
2127 	rx_status = IEEE80211_SKB_RXCB(skb);
2128 
2129 	/*
2130 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2131 	 * (otherwise the firmware discards them) but mark them as bad.
2132 	 */
2133 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2134 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2135 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2136 			     le32_to_cpu(desc->status));
2137 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2138 	}
2139 
2140 	/* set the preamble flag if appropriate */
2141 	if (format == RATE_MCS_CCK_MSK &&
2142 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2143 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2144 
2145 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2146 		u64 tsf_on_air_rise;
2147 
2148 		if (mvm->trans->trans_cfg->device_family >=
2149 		    IWL_DEVICE_FAMILY_AX210)
2150 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2151 		else
2152 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2153 
2154 		rx_status->mactime = tsf_on_air_rise;
2155 		/* TSF as indicated by the firmware is at INA time */
2156 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2157 	}
2158 
2159 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2160 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2161 
2162 		rx_status->band = iwl_mvm_nl80211_band_from_phy(band);
2163 	} else {
2164 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2165 			NL80211_BAND_2GHZ;
2166 	}
2167 
2168 	/* update aggregation data for monitor sake on default queue */
2169 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2170 		bool toggle_bit;
2171 
2172 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2173 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2174 		/*
2175 		 * Toggle is switched whenever new aggregation starts. Make
2176 		 * sure ampdu_reference is never 0 so we can later use it to
2177 		 * see if the frame was really part of an A-MPDU or not.
2178 		 */
2179 		if (toggle_bit != mvm->ampdu_toggle) {
2180 			mvm->ampdu_ref++;
2181 			if (mvm->ampdu_ref == 0)
2182 				mvm->ampdu_ref++;
2183 			mvm->ampdu_toggle = toggle_bit;
2184 			phy_data.first_subframe = true;
2185 		}
2186 		rx_status->ampdu_reference = mvm->ampdu_ref;
2187 	}
2188 
2189 	rcu_read_lock();
2190 
2191 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2192 		if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) {
2193 			struct ieee80211_link_sta *link_sta;
2194 
2195 			sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
2196 			if (IS_ERR(sta))
2197 				sta = NULL;
2198 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]);
2199 
2200 			if (sta && sta->valid_links && link_sta) {
2201 				rx_status->link_valid = 1;
2202 				rx_status->link_id = link_sta->link_id;
2203 			}
2204 		}
2205 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2206 		/*
2207 		 * This is fine since we prevent two stations with the same
2208 		 * address from being added.
2209 		 */
2210 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2211 	}
2212 
2213 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2214 			      le32_to_cpu(pkt->len_n_flags), queue,
2215 			      &crypt_len)) {
2216 		kfree_skb(skb);
2217 		goto out;
2218 	}
2219 
2220 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2221 
2222 	if (sta) {
2223 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2224 		struct ieee80211_vif *tx_blocked_vif =
2225 			rcu_dereference(mvm->csa_tx_blocked_vif);
2226 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2227 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2228 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2229 		struct iwl_fw_dbg_trigger_tlv *trig;
2230 		struct ieee80211_vif *vif = mvmsta->vif;
2231 
2232 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2233 		    !is_multicast_ether_addr(hdr->addr1) &&
2234 		    ieee80211_is_data(hdr->frame_control) &&
2235 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2236 			schedule_delayed_work(&mvm->tcm.work, 0);
2237 
2238 		/*
2239 		 * We have tx blocked stations (with CS bit). If we heard
2240 		 * frames from a blocked station on a new channel we can
2241 		 * TX to it again.
2242 		 */
2243 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2244 			struct iwl_mvm_vif *mvmvif =
2245 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2246 			struct iwl_rx_sta_csa rx_sta_csa = {
2247 				.all_sta_unblocked = true,
2248 				.vif = tx_blocked_vif,
2249 			};
2250 
2251 			if (mvmvif->csa_target_freq == rx_status->freq)
2252 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2253 								 false);
2254 			ieee80211_iterate_stations_atomic(mvm->hw,
2255 							  iwl_mvm_rx_get_sta_block_tx,
2256 							  &rx_sta_csa);
2257 
2258 			if (rx_sta_csa.all_sta_unblocked) {
2259 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2260 				/* Unblock BCAST / MCAST station */
2261 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2262 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2263 			}
2264 		}
2265 
2266 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2267 
2268 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2269 					     ieee80211_vif_to_wdev(vif),
2270 					     FW_DBG_TRIGGER_RSSI);
2271 
2272 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2273 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2274 			s32 rssi;
2275 
2276 			rssi_trig = (void *)trig->data;
2277 			rssi = le32_to_cpu(rssi_trig->rssi);
2278 
2279 			if (rx_status->signal < rssi)
2280 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2281 							NULL);
2282 		}
2283 
2284 		if (ieee80211_is_data(hdr->frame_control))
2285 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2286 
2287 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2288 			IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2289 				       le16_to_cpu(hdr->seq_ctrl));
2290 			kfree_skb(skb);
2291 			goto out;
2292 		}
2293 
2294 		/*
2295 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2296 		 * as it to the de-aggregated MPDUs. We need to turn off the
2297 		 * AMSDU bit in the QoS control ourselves.
2298 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2299 		 */
2300 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2301 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2302 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2303 
2304 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2305 
2306 			if (mvm->trans->trans_cfg->device_family ==
2307 			    IWL_DEVICE_FAMILY_9000) {
2308 				iwl_mvm_flip_address(hdr->addr3);
2309 
2310 				if (ieee80211_has_a4(hdr->frame_control))
2311 					iwl_mvm_flip_address(hdr->addr4);
2312 			}
2313 		}
2314 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2315 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2316 
2317 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2318 		}
2319 
2320 		if (ieee80211_is_data(hdr->frame_control)) {
2321 			u8 sub_frame_idx = desc->amsdu_info &
2322 				IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
2323 
2324 			/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
2325 			if (!sub_frame_idx || sub_frame_idx == 1)
2326 				iwl_mvm_count_mpdu(mvmsta, sta_id, 1, false,
2327 						   queue);
2328 		}
2329 	}
2330 
2331 	/* management stuff on default queue */
2332 	if (!queue) {
2333 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2334 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2335 			     mvm->sched_scan_pass_all ==
2336 			     SCHED_SCAN_PASS_ALL_ENABLED))
2337 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2338 
2339 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2340 			     ieee80211_is_probe_resp(hdr->frame_control)))
2341 			rx_status->boottime_ns = ktime_get_boottime_ns();
2342 	}
2343 
2344 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2345 		kfree_skb(skb);
2346 		goto out;
2347 	}
2348 
2349 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2350 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2351 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2352 		if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2353 		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2354 		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2355 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2356 
2357 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta);
2358 	}
2359 out:
2360 	rcu_read_unlock();
2361 }
2362 
2363 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2364 				struct iwl_rx_cmd_buffer *rxb, int queue)
2365 {
2366 	struct ieee80211_rx_status *rx_status;
2367 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2368 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2369 	u32 rssi;
2370 	struct ieee80211_sta *sta = NULL;
2371 	struct sk_buff *skb;
2372 	struct iwl_mvm_rx_phy_data phy_data;
2373 	u32 format;
2374 
2375 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2376 		return;
2377 
2378 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2379 		return;
2380 
2381 	rssi = le32_to_cpu(desc->rssi);
2382 	phy_data.d0 = desc->phy_info[0];
2383 	phy_data.d1 = desc->phy_info[1];
2384 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2385 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2386 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2387 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2388 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2389 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2390 	phy_data.with_data = false;
2391 	phy_data.rx_vec[0] = desc->rx_vec[0];
2392 	phy_data.rx_vec[1] = desc->rx_vec[1];
2393 
2394 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2395 				    RX_NO_DATA_NOTIF, 0) < 2) {
2396 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2397 			       phy_data.rate_n_flags);
2398 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2399 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2400 			       phy_data.rate_n_flags);
2401 	}
2402 
2403 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2404 
2405 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2406 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2407 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2408 		    sizeof(struct iwl_rx_no_data_ver_3)))
2409 		/* invalid len for ver 3 */
2410 			return;
2411 		phy_data.rx_vec[2] = desc->rx_vec[2];
2412 		phy_data.rx_vec[3] = desc->rx_vec[3];
2413 	} else {
2414 		if (format == RATE_MCS_EHT_MSK)
2415 			/* no support for EHT before version 3 API */
2416 			return;
2417 	}
2418 
2419 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2420 	 * ieee80211_hdr pulled.
2421 	 */
2422 	skb = alloc_skb(128, GFP_ATOMIC);
2423 	if (!skb) {
2424 		IWL_ERR(mvm, "alloc_skb failed\n");
2425 		return;
2426 	}
2427 
2428 	rx_status = IEEE80211_SKB_RXCB(skb);
2429 
2430 	/* 0-length PSDU */
2431 	rx_status->flag |= RX_FLAG_NO_PSDU;
2432 
2433 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
2434 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
2435 	    RX_NO_DATA_INFO_ERR_NONE)
2436 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
2437 
2438 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2439 	case RX_NO_DATA_INFO_TYPE_NDP:
2440 		rx_status->zero_length_psdu_type =
2441 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2442 		break;
2443 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2444 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2445 		rx_status->zero_length_psdu_type =
2446 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2447 		break;
2448 	default:
2449 		rx_status->zero_length_psdu_type =
2450 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2451 		break;
2452 	}
2453 
2454 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2455 		NL80211_BAND_2GHZ;
2456 
2457 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2458 
2459 	/* no more radio tap info should be put after this point.
2460 	 *
2461 	 * We mark it as mac header, for upper layers to know where
2462 	 * all radio tap header ends.
2463 	 *
2464 	 * Since data doesn't move data while putting data on skb and that is
2465 	 * the only way we use, data + len is the next place that hdr would be put
2466 	 */
2467 	skb_set_mac_header(skb, skb->len);
2468 
2469 	/*
2470 	 * Override the nss from the rx_vec since the rate_n_flags has
2471 	 * only 2 bits for the nss which gives a max of 4 ss but there
2472 	 * may be up to 8 spatial streams.
2473 	 */
2474 	switch (format) {
2475 	case RATE_MCS_VHT_MSK:
2476 		rx_status->nss =
2477 			le32_get_bits(desc->rx_vec[0],
2478 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2479 		break;
2480 	case RATE_MCS_HE_MSK:
2481 		rx_status->nss =
2482 			le32_get_bits(desc->rx_vec[0],
2483 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2484 		break;
2485 	case RATE_MCS_EHT_MSK:
2486 		rx_status->nss =
2487 			le32_get_bits(desc->rx_vec[2],
2488 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2489 	}
2490 
2491 	rcu_read_lock();
2492 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2493 	rcu_read_unlock();
2494 }
2495 
2496 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2497 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2498 {
2499 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2500 	struct iwl_frame_release *release = (void *)pkt->data;
2501 
2502 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2503 		return;
2504 
2505 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2506 					  le16_to_cpu(release->nssn),
2507 					  queue);
2508 }
2509 
2510 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2511 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2512 {
2513 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2514 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2515 	unsigned int baid = le32_get_bits(release->ba_info,
2516 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2517 	unsigned int nssn = le32_get_bits(release->ba_info,
2518 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2519 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2520 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2521 	unsigned int tid = le32_get_bits(release->sta_tid,
2522 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2523 	struct iwl_mvm_baid_data *baid_data;
2524 
2525 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2526 		return;
2527 
2528 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2529 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2530 		return;
2531 
2532 	rcu_read_lock();
2533 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2534 	if (!baid_data) {
2535 		IWL_DEBUG_RX(mvm,
2536 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2537 			      baid);
2538 		goto out;
2539 	}
2540 
2541 	if (WARN(tid != baid_data->tid || sta_id > IWL_STATION_COUNT_MAX ||
2542 		 !(baid_data->sta_mask & BIT(sta_id)),
2543 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2544 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2545 		 tid))
2546 		goto out;
2547 
2548 	IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2549 		       nssn);
2550 
2551 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2552 out:
2553 	rcu_read_unlock();
2554 }
2555