xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision 460e462d22542adfafd8a5bc979437df73f1cbf3)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta,
240 					    struct ieee80211_link_sta *link_sta)
241 {
242 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 		kfree_skb(skb);
244 		return;
245 	}
246 
247 	if (sta && sta->valid_links && link_sta) {
248 		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249 
250 		rx_status->link_valid = 1;
251 		rx_status->link_id = link_sta->link_id;
252 	}
253 
254 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256 
257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 					struct ieee80211_rx_status *rx_status,
259 					u32 rate_n_flags, int energy_a,
260 					int energy_b)
261 {
262 	int max_energy;
263 	u32 rate_flags = rate_n_flags;
264 
265 	energy_a = energy_a ? -energy_a : S8_MIN;
266 	energy_b = energy_b ? -energy_b : S8_MIN;
267 	max_energy = max(energy_a, energy_b);
268 
269 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 			energy_a, energy_b, max_energy);
271 
272 	rx_status->signal = max_energy;
273 	rx_status->chains =
274 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 	rx_status->chain_signal[0] = energy_a;
276 	rx_status->chain_signal[1] = energy_b;
277 }
278 
279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 				struct ieee80211_hdr *hdr,
281 				struct iwl_rx_mpdu_desc *desc,
282 				u32 status,
283 				struct ieee80211_rx_status *stats)
284 {
285 	struct iwl_mvm_sta *mvmsta;
286 	struct iwl_mvm_vif *mvmvif;
287 	u8 keyid;
288 	struct ieee80211_key_conf *key;
289 	u32 len = le16_to_cpu(desc->mpdu_len);
290 	const u8 *frame = (void *)hdr;
291 
292 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
293 		return 0;
294 
295 	/*
296 	 * For non-beacon, we don't really care. But beacons may
297 	 * be filtered out, and we thus need the firmware's replay
298 	 * detection, otherwise beacons the firmware previously
299 	 * filtered could be replayed, or something like that, and
300 	 * it can filter a lot - though usually only if nothing has
301 	 * changed.
302 	 */
303 	if (!ieee80211_is_beacon(hdr->frame_control))
304 		return 0;
305 
306 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
307 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
308 		return -1;
309 
310 	/* good cases */
311 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
312 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
313 		stats->flag |= RX_FLAG_DECRYPTED;
314 		return 0;
315 	}
316 
317 	if (!sta)
318 		return -1;
319 
320 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
321 
322 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
323 
324 	/*
325 	 * both keys will have the same cipher and MIC length, use
326 	 * whichever one is available
327 	 */
328 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 	if (!key) {
330 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 		if (!key)
332 			return -1;
333 	}
334 
335 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 		return -1;
337 
338 	/* get the real key ID */
339 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 	/* and if that's the other key, look it up */
341 	if (keyid != key->keyidx) {
342 		/*
343 		 * shouldn't happen since firmware checked, but be safe
344 		 * in case the MIC length is wrong too, for example
345 		 */
346 		if (keyid != 6 && keyid != 7)
347 			return -1;
348 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 		if (!key)
350 			return -1;
351 	}
352 
353 	/* Report status to mac80211 */
354 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 		ieee80211_key_mic_failure(key);
356 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 		ieee80211_key_replay(key);
358 
359 	return -1;
360 }
361 
362 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
363 			     struct ieee80211_hdr *hdr,
364 			     struct ieee80211_rx_status *stats, u16 phy_info,
365 			     struct iwl_rx_mpdu_desc *desc,
366 			     u32 pkt_flags, int queue, u8 *crypt_len)
367 {
368 	u32 status = le32_to_cpu(desc->status);
369 
370 	/*
371 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
372 	 * (where we don't have the keys).
373 	 * We limit this to aggregation because in TKIP this is a valid
374 	 * scenario, since we may not have the (correct) TTAK (phase 1
375 	 * key) in the firmware.
376 	 */
377 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
378 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
379 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) {
380 		IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n");
381 		return -1;
382 	}
383 
384 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
385 		     !ieee80211_has_protected(hdr->frame_control)))
386 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
387 
388 	if (!ieee80211_has_protected(hdr->frame_control) ||
389 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
390 	    IWL_RX_MPDU_STATUS_SEC_NONE)
391 		return 0;
392 
393 	/* TODO: handle packets encrypted with unknown alg */
394 
395 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
396 	case IWL_RX_MPDU_STATUS_SEC_CCM:
397 	case IWL_RX_MPDU_STATUS_SEC_GCM:
398 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
399 		/* alg is CCM: check MIC only */
400 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
401 			return -1;
402 
403 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
404 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
405 		return 0;
406 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
407 		/* Don't drop the frame and decrypt it in SW */
408 		if (!fw_has_api(&mvm->fw->ucode_capa,
409 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
410 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
411 			return 0;
412 
413 		if (mvm->trans->trans_cfg->gen2 &&
414 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
415 			stats->flag |= RX_FLAG_MMIC_ERROR;
416 
417 		*crypt_len = IEEE80211_TKIP_IV_LEN;
418 		fallthrough;
419 	case IWL_RX_MPDU_STATUS_SEC_WEP:
420 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
421 			return -1;
422 
423 		stats->flag |= RX_FLAG_DECRYPTED;
424 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
425 				IWL_RX_MPDU_STATUS_SEC_WEP)
426 			*crypt_len = IEEE80211_WEP_IV_LEN;
427 
428 		if (pkt_flags & FH_RSCSR_RADA_EN) {
429 			stats->flag |= RX_FLAG_ICV_STRIPPED;
430 			if (mvm->trans->trans_cfg->gen2)
431 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
432 		}
433 
434 		return 0;
435 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
436 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
437 			return -1;
438 		stats->flag |= RX_FLAG_DECRYPTED;
439 		return 0;
440 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
441 		break;
442 	default:
443 		/*
444 		 * Sometimes we can get frames that were not decrypted
445 		 * because the firmware didn't have the keys yet. This can
446 		 * happen after connection where we can get multicast frames
447 		 * before the GTK is installed.
448 		 * Silently drop those frames.
449 		 * Also drop un-decrypted frames in monitor mode.
450 		 */
451 		if (!is_multicast_ether_addr(hdr->addr1) &&
452 		    !mvm->monitor_on && net_ratelimit())
453 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
454 	}
455 
456 	return 0;
457 }
458 
459 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
460 			    struct ieee80211_sta *sta,
461 			    struct sk_buff *skb,
462 			    struct iwl_rx_packet *pkt)
463 {
464 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
465 
466 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
467 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
468 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
469 
470 			skb->ip_summed = CHECKSUM_COMPLETE;
471 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
472 		}
473 	} else {
474 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
475 		struct iwl_mvm_vif *mvmvif;
476 		u16 flags = le16_to_cpu(desc->l3l4_flags);
477 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
478 				  IWL_RX_L3_PROTO_POS);
479 
480 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
481 
482 		if (mvmvif->features & NETIF_F_RXCSUM &&
483 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
484 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
485 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
486 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
487 			skb->ip_summed = CHECKSUM_UNNECESSARY;
488 	}
489 }
490 
491 /*
492  * returns true if a packet is a duplicate or invalid tid and should be dropped.
493  * Updates AMSDU PN tracking info
494  */
495 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
496 			   struct ieee80211_rx_status *rx_status,
497 			   struct ieee80211_hdr *hdr,
498 			   struct iwl_rx_mpdu_desc *desc)
499 {
500 	struct iwl_mvm_sta *mvm_sta;
501 	struct iwl_mvm_rxq_dup_data *dup_data;
502 	u8 tid, sub_frame_idx;
503 
504 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
505 		return false;
506 
507 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
508 	dup_data = &mvm_sta->dup_data[queue];
509 
510 	/*
511 	 * Drop duplicate 802.11 retransmissions
512 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
513 	 */
514 	if (ieee80211_is_ctl(hdr->frame_control) ||
515 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
516 	    is_multicast_ether_addr(hdr->addr1)) {
517 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
518 		return false;
519 	}
520 
521 	if (ieee80211_is_data_qos(hdr->frame_control)) {
522 		/* frame has qos control */
523 		tid = ieee80211_get_tid(hdr);
524 		if (tid >= IWL_MAX_TID_COUNT)
525 			return true;
526 	} else {
527 		tid = IWL_MAX_TID_COUNT;
528 	}
529 
530 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
531 	sub_frame_idx = desc->amsdu_info &
532 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
533 
534 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
535 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
536 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
537 		return true;
538 
539 	/* Allow same PN as the first subframe for following sub frames */
540 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
541 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
542 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
543 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
544 
545 	dup_data->last_seq[tid] = hdr->seq_ctrl;
546 	dup_data->last_sub_frame[tid] = sub_frame_idx;
547 
548 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
549 
550 	return false;
551 }
552 
553 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
554 				   struct ieee80211_sta *sta,
555 				   struct napi_struct *napi,
556 				   struct iwl_mvm_baid_data *baid_data,
557 				   struct iwl_mvm_reorder_buffer *reorder_buf,
558 				   u16 nssn)
559 {
560 	struct iwl_mvm_reorder_buf_entry *entries =
561 		&baid_data->entries[reorder_buf->queue *
562 				    baid_data->entries_per_queue];
563 	u16 ssn = reorder_buf->head_sn;
564 
565 	lockdep_assert_held(&reorder_buf->lock);
566 
567 	while (ieee80211_sn_less(ssn, nssn)) {
568 		int index = ssn % reorder_buf->buf_size;
569 		struct sk_buff_head *skb_list = &entries[index].frames;
570 		struct sk_buff *skb;
571 
572 		ssn = ieee80211_sn_inc(ssn);
573 
574 		/*
575 		 * Empty the list. Will have more than one frame for A-MSDU.
576 		 * Empty list is valid as well since nssn indicates frames were
577 		 * received.
578 		 */
579 		while ((skb = __skb_dequeue(skb_list))) {
580 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
581 							reorder_buf->queue,
582 							sta, NULL /* FIXME */);
583 			reorder_buf->num_stored--;
584 		}
585 	}
586 	reorder_buf->head_sn = nssn;
587 }
588 
589 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
590 			   struct iwl_mvm_delba_data *data)
591 {
592 	struct iwl_mvm_baid_data *ba_data;
593 	struct ieee80211_sta *sta;
594 	struct iwl_mvm_reorder_buffer *reorder_buf;
595 	u8 baid = data->baid;
596 	u32 sta_id;
597 
598 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
599 		return;
600 
601 	rcu_read_lock();
602 
603 	ba_data = rcu_dereference(mvm->baid_map[baid]);
604 	if (WARN_ON_ONCE(!ba_data))
605 		goto out;
606 
607 	/* pick any STA ID to find the pointer */
608 	sta_id = ffs(ba_data->sta_mask) - 1;
609 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
610 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
611 		goto out;
612 
613 	reorder_buf = &ba_data->reorder_buf[queue];
614 
615 	/* release all frames that are in the reorder buffer to the stack */
616 	spin_lock_bh(&reorder_buf->lock);
617 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
618 			       ieee80211_sn_add(reorder_buf->head_sn,
619 						reorder_buf->buf_size));
620 	spin_unlock_bh(&reorder_buf->lock);
621 
622 out:
623 	rcu_read_unlock();
624 }
625 
626 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
627 					      struct napi_struct *napi,
628 					      u8 baid, u16 nssn, int queue)
629 {
630 	struct ieee80211_sta *sta;
631 	struct iwl_mvm_reorder_buffer *reorder_buf;
632 	struct iwl_mvm_baid_data *ba_data;
633 	u32 sta_id;
634 
635 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
636 		     baid, nssn);
637 
638 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
639 			 baid >= ARRAY_SIZE(mvm->baid_map)))
640 		return;
641 
642 	rcu_read_lock();
643 
644 	ba_data = rcu_dereference(mvm->baid_map[baid]);
645 	if (!ba_data) {
646 		WARN(true, "BAID %d not found in map\n", baid);
647 		goto out;
648 	}
649 
650 	/* pick any STA ID to find the pointer */
651 	sta_id = ffs(ba_data->sta_mask) - 1;
652 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
653 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
654 		goto out;
655 
656 	reorder_buf = &ba_data->reorder_buf[queue];
657 
658 	spin_lock_bh(&reorder_buf->lock);
659 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
660 			       reorder_buf, nssn);
661 	spin_unlock_bh(&reorder_buf->lock);
662 
663 out:
664 	rcu_read_unlock();
665 }
666 
667 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
668 			    struct iwl_rx_cmd_buffer *rxb, int queue)
669 {
670 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
671 	struct iwl_rxq_sync_notification *notif;
672 	struct iwl_mvm_internal_rxq_notif *internal_notif;
673 	u32 len = iwl_rx_packet_payload_len(pkt);
674 
675 	notif = (void *)pkt->data;
676 	internal_notif = (void *)notif->payload;
677 
678 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
679 		      "invalid notification size %d (%d)",
680 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
681 		return;
682 	len -= sizeof(*notif) + sizeof(*internal_notif);
683 
684 	if (internal_notif->sync &&
685 	    mvm->queue_sync_cookie != internal_notif->cookie) {
686 		WARN_ONCE(1, "Received expired RX queue sync message\n");
687 		return;
688 	}
689 
690 	switch (internal_notif->type) {
691 	case IWL_MVM_RXQ_EMPTY:
692 		WARN_ONCE(len, "invalid empty notification size %d", len);
693 		break;
694 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
695 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
696 			      "invalid delba notification size %d (%d)",
697 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
698 			break;
699 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
700 		break;
701 	default:
702 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
703 	}
704 
705 	if (internal_notif->sync) {
706 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
707 			  "queue sync: queue %d responded a second time!\n",
708 			  queue);
709 		if (READ_ONCE(mvm->queue_sync_state) == 0)
710 			wake_up(&mvm->rx_sync_waitq);
711 	}
712 }
713 
714 /*
715  * Returns true if the MPDU was buffered\dropped, false if it should be passed
716  * to upper layer.
717  */
718 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
719 			    struct napi_struct *napi,
720 			    int queue,
721 			    struct ieee80211_sta *sta,
722 			    struct sk_buff *skb,
723 			    struct iwl_rx_mpdu_desc *desc)
724 {
725 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
726 	struct iwl_mvm_baid_data *baid_data;
727 	struct iwl_mvm_reorder_buffer *buffer;
728 	u32 reorder = le32_to_cpu(desc->reorder_data);
729 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
730 	bool last_subframe =
731 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
732 	u8 tid = ieee80211_get_tid(hdr);
733 	u8 sub_frame_idx = desc->amsdu_info &
734 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
735 	struct iwl_mvm_reorder_buf_entry *entries;
736 	u32 sta_mask;
737 	int index;
738 	u16 nssn, sn;
739 	u8 baid;
740 
741 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
742 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
743 
744 	if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
745 		return false;
746 
747 	/*
748 	 * This also covers the case of receiving a Block Ack Request
749 	 * outside a BA session; we'll pass it to mac80211 and that
750 	 * then sends a delBA action frame.
751 	 * This also covers pure monitor mode, in which case we won't
752 	 * have any BA sessions.
753 	 */
754 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
755 		return false;
756 
757 	/* no sta yet */
758 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
759 		      "Got valid BAID without a valid station assigned\n"))
760 		return false;
761 
762 	/* not a data packet or a bar */
763 	if (!ieee80211_is_back_req(hdr->frame_control) &&
764 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
765 	     is_multicast_ether_addr(hdr->addr1)))
766 		return false;
767 
768 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
769 		return false;
770 
771 	baid_data = rcu_dereference(mvm->baid_map[baid]);
772 	if (!baid_data) {
773 		IWL_DEBUG_RX(mvm,
774 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
775 			      baid, reorder);
776 		return false;
777 	}
778 
779 	rcu_read_lock();
780 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
781 	rcu_read_unlock();
782 
783 	if (IWL_FW_CHECK(mvm,
784 			 tid != baid_data->tid ||
785 			 !(sta_mask & baid_data->sta_mask),
786 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
787 			 baid, baid_data->sta_mask, baid_data->tid,
788 			 sta_mask, tid))
789 		return false;
790 
791 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
792 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
793 		IWL_RX_MPDU_REORDER_SN_SHIFT;
794 
795 	buffer = &baid_data->reorder_buf[queue];
796 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
797 
798 	spin_lock_bh(&buffer->lock);
799 
800 	if (!buffer->valid) {
801 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
802 			spin_unlock_bh(&buffer->lock);
803 			return false;
804 		}
805 		buffer->valid = true;
806 	}
807 
808 	/* drop any duplicated packets */
809 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE))
810 		goto drop;
811 
812 	/* drop any oudated packets */
813 	if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)
814 		goto drop;
815 
816 	/* release immediately if allowed by nssn and no stored frames */
817 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
818 		if (!amsdu || last_subframe)
819 			buffer->head_sn = nssn;
820 		/* No need to update AMSDU last SN - we are moving the head */
821 		spin_unlock_bh(&buffer->lock);
822 		return false;
823 	}
824 
825 	/*
826 	 * release immediately if there are no stored frames, and the sn is
827 	 * equal to the head.
828 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
829 	 * When we released everything, and we got the next frame in the
830 	 * sequence, according to the NSSN we can't release immediately,
831 	 * while technically there is no hole and we can move forward.
832 	 */
833 	if (!buffer->num_stored && sn == buffer->head_sn) {
834 		if (!amsdu || last_subframe)
835 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
836 
837 		/* No need to update AMSDU last SN - we are moving the head */
838 		spin_unlock_bh(&buffer->lock);
839 		return false;
840 	}
841 
842 	/* put in reorder buffer */
843 	index = sn % buffer->buf_size;
844 	__skb_queue_tail(&entries[index].frames, skb);
845 	buffer->num_stored++;
846 
847 	if (amsdu) {
848 		buffer->last_amsdu = sn;
849 		buffer->last_sub_index = sub_frame_idx;
850 	}
851 
852 	/*
853 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
854 	 * The reason is that NSSN advances on the first sub-frame, and may
855 	 * cause the reorder buffer to advance before all the sub-frames arrive.
856 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
857 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
858 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
859 	 * already ahead and it will be dropped.
860 	 * If the last sub-frame is not on this queue - we will get frame
861 	 * release notification with up to date NSSN.
862 	 */
863 	if (!amsdu || last_subframe)
864 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
865 				       buffer, nssn);
866 
867 	spin_unlock_bh(&buffer->lock);
868 	return true;
869 
870 drop:
871 	kfree_skb(skb);
872 	spin_unlock_bh(&buffer->lock);
873 	return true;
874 }
875 
876 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
877 				    u32 reorder_data, u8 baid)
878 {
879 	unsigned long now = jiffies;
880 	unsigned long timeout;
881 	struct iwl_mvm_baid_data *data;
882 
883 	rcu_read_lock();
884 
885 	data = rcu_dereference(mvm->baid_map[baid]);
886 	if (!data) {
887 		IWL_DEBUG_RX(mvm,
888 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
889 			      baid, reorder_data);
890 		goto out;
891 	}
892 
893 	if (!data->timeout)
894 		goto out;
895 
896 	timeout = data->timeout;
897 	/*
898 	 * Do not update last rx all the time to avoid cache bouncing
899 	 * between the rx queues.
900 	 * Update it every timeout. Worst case is the session will
901 	 * expire after ~ 2 * timeout, which doesn't matter that much.
902 	 */
903 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
904 		/* Update is atomic */
905 		data->last_rx = now;
906 
907 out:
908 	rcu_read_unlock();
909 }
910 
911 static void iwl_mvm_flip_address(u8 *addr)
912 {
913 	int i;
914 	u8 mac_addr[ETH_ALEN];
915 
916 	for (i = 0; i < ETH_ALEN; i++)
917 		mac_addr[i] = addr[ETH_ALEN - i - 1];
918 	ether_addr_copy(addr, mac_addr);
919 }
920 
921 struct iwl_mvm_rx_phy_data {
922 	enum iwl_rx_phy_info_type info_type;
923 	__le32 d0, d1, d2, d3, eht_d4, d5;
924 	__le16 d4;
925 	bool with_data;
926 	bool first_subframe;
927 	__le32 rx_vec[4];
928 
929 	u32 rate_n_flags;
930 	u32 gp2_on_air_rise;
931 	u16 phy_info;
932 	u8 energy_a, energy_b;
933 	u8 channel;
934 };
935 
936 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
937 				     struct iwl_mvm_rx_phy_data *phy_data,
938 				     struct ieee80211_radiotap_he_mu *he_mu)
939 {
940 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
941 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
942 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
943 	u32 rate_n_flags = phy_data->rate_n_flags;
944 
945 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
946 		he_mu->flags1 |=
947 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
948 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
949 
950 		he_mu->flags1 |=
951 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
952 						   phy_data4),
953 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
954 
955 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
956 					     phy_data2);
957 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
958 					     phy_data3);
959 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
960 					     phy_data2);
961 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
962 					     phy_data3);
963 	}
964 
965 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
966 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
967 		he_mu->flags1 |=
968 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
969 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
970 
971 		he_mu->flags2 |=
972 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
973 						   phy_data4),
974 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
975 
976 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
977 					     phy_data2);
978 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
979 					     phy_data3);
980 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
981 					     phy_data2);
982 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
983 					     phy_data3);
984 	}
985 }
986 
987 static void
988 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
989 			       struct ieee80211_radiotap_he *he,
990 			       struct ieee80211_radiotap_he_mu *he_mu,
991 			       struct ieee80211_rx_status *rx_status)
992 {
993 	/*
994 	 * Unfortunately, we have to leave the mac80211 data
995 	 * incorrect for the case that we receive an HE-MU
996 	 * transmission and *don't* have the HE phy data (due
997 	 * to the bits being used for TSF). This shouldn't
998 	 * happen though as management frames where we need
999 	 * the TSF/timers are not be transmitted in HE-MU.
1000 	 */
1001 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1002 	u32 rate_n_flags = phy_data->rate_n_flags;
1003 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1004 	u8 offs = 0;
1005 
1006 	rx_status->bw = RATE_INFO_BW_HE_RU;
1007 
1008 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1009 
1010 	switch (ru) {
1011 	case 0 ... 36:
1012 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1013 		offs = ru;
1014 		break;
1015 	case 37 ... 52:
1016 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1017 		offs = ru - 37;
1018 		break;
1019 	case 53 ... 60:
1020 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1021 		offs = ru - 53;
1022 		break;
1023 	case 61 ... 64:
1024 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1025 		offs = ru - 61;
1026 		break;
1027 	case 65 ... 66:
1028 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1029 		offs = ru - 65;
1030 		break;
1031 	case 67:
1032 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1033 		break;
1034 	case 68:
1035 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1036 		break;
1037 	}
1038 	he->data2 |= le16_encode_bits(offs,
1039 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1040 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1041 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1042 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1043 		he->data2 |=
1044 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1045 
1046 #define CHECK_BW(bw) \
1047 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1048 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1049 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1050 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1051 	CHECK_BW(20);
1052 	CHECK_BW(40);
1053 	CHECK_BW(80);
1054 	CHECK_BW(160);
1055 
1056 	if (he_mu)
1057 		he_mu->flags2 |=
1058 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1059 						   rate_n_flags),
1060 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1061 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1062 		he->data6 |=
1063 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1064 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1065 						   rate_n_flags),
1066 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1067 }
1068 
1069 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1070 				       struct iwl_mvm_rx_phy_data *phy_data,
1071 				       struct ieee80211_radiotap_he *he,
1072 				       struct ieee80211_radiotap_he_mu *he_mu,
1073 				       struct ieee80211_rx_status *rx_status,
1074 				       int queue)
1075 {
1076 	switch (phy_data->info_type) {
1077 	case IWL_RX_PHY_INFO_TYPE_NONE:
1078 	case IWL_RX_PHY_INFO_TYPE_CCK:
1079 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1080 	case IWL_RX_PHY_INFO_TYPE_HT:
1081 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1082 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1083 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1084 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1085 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1086 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1087 		return;
1088 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1089 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1090 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1091 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1092 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1093 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1094 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1095 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1096 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1097 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1098 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1099 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1100 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1101 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1102 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1103 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1104 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1105 		fallthrough;
1106 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1107 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1108 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1109 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1110 		/* HE common */
1111 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1112 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1113 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1114 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1115 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1116 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1117 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1118 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1119 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1120 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1121 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1122 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1123 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1124 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1125 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1126 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1127 		}
1128 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1129 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1130 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1131 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1132 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1133 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1134 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1135 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1136 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1137 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1138 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1139 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1140 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1141 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1142 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1143 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1144 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1145 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1146 		break;
1147 	}
1148 
1149 	switch (phy_data->info_type) {
1150 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1151 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1152 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1153 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1154 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1155 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1156 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1157 		break;
1158 	default:
1159 		/* nothing here */
1160 		break;
1161 	}
1162 
1163 	switch (phy_data->info_type) {
1164 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1165 		he_mu->flags1 |=
1166 			le16_encode_bits(le16_get_bits(phy_data->d4,
1167 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1168 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1169 		he_mu->flags1 |=
1170 			le16_encode_bits(le16_get_bits(phy_data->d4,
1171 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1172 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1173 		he_mu->flags2 |=
1174 			le16_encode_bits(le16_get_bits(phy_data->d4,
1175 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1176 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1177 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1178 		fallthrough;
1179 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1180 		he_mu->flags2 |=
1181 			le16_encode_bits(le32_get_bits(phy_data->d1,
1182 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1183 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1184 		he_mu->flags2 |=
1185 			le16_encode_bits(le32_get_bits(phy_data->d1,
1186 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1187 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1188 		fallthrough;
1189 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1190 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1191 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1192 		break;
1193 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1194 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1195 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1196 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1197 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1198 		break;
1199 	default:
1200 		/* nothing */
1201 		break;
1202 	}
1203 }
1204 
1205 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1206 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1207 
1208 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1209 	typeof(enc_bits) _enc_bits = enc_bits; \
1210 	typeof(usig) _usig = usig; \
1211 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1212 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1213 } while (0)
1214 
1215 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1216 	eht->data[(rt_data)] |= \
1217 		(cpu_to_le32 \
1218 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1219 		 LE32_DEC_ENC(data ## fw_data, \
1220 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1221 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1222 
1223 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1224 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1225 
1226 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1227 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1228 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1229 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1230 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1231 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1232 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1233 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1234 
1235 #define IWL_RX_RU_DATA_A1			2
1236 #define IWL_RX_RU_DATA_A2			2
1237 #define IWL_RX_RU_DATA_B1			2
1238 #define IWL_RX_RU_DATA_B2			4
1239 #define IWL_RX_RU_DATA_C1			3
1240 #define IWL_RX_RU_DATA_C2			3
1241 #define IWL_RX_RU_DATA_D1			4
1242 #define IWL_RX_RU_DATA_D2			4
1243 
1244 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1245 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1246 			    rt_ru,					\
1247 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1248 			    fw_ru)
1249 
1250 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1251 				      struct iwl_mvm_rx_phy_data *phy_data,
1252 				      struct ieee80211_rx_status *rx_status,
1253 				      struct ieee80211_radiotap_eht *eht,
1254 				      struct ieee80211_radiotap_eht_usig *usig)
1255 {
1256 	if (phy_data->with_data) {
1257 		__le32 data1 = phy_data->d1;
1258 		__le32 data2 = phy_data->d2;
1259 		__le32 data3 = phy_data->d3;
1260 		__le32 data4 = phy_data->eht_d4;
1261 		__le32 data5 = phy_data->d5;
1262 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1263 
1264 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1265 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1266 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1267 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1268 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1269 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1270 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1271 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1272 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1273 		IWL_MVM_ENC_USIG_VALUE_MASK
1274 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1275 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1276 
1277 		eht->user_info[0] |=
1278 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1279 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1280 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1281 
1282 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1283 		eht->data[7] |= LE32_DEC_ENC
1284 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1285 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1286 
1287 		/*
1288 		 * Hardware labels the content channels/RU allocation values
1289 		 * as follows:
1290 		 *           Content Channel 1		Content Channel 2
1291 		 *   20 MHz: A1
1292 		 *   40 MHz: A1				B1
1293 		 *   80 MHz: A1 C1			B1 D1
1294 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1295 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1296 		 *
1297 		 * However firmware can only give us A1-D2, so the higher
1298 		 * frequencies are missing.
1299 		 */
1300 
1301 		switch (phy_bw) {
1302 		case RATE_MCS_CHAN_WIDTH_320:
1303 			/* additional values are missing in RX metadata */
1304 		case RATE_MCS_CHAN_WIDTH_160:
1305 			/* content channel 1 */
1306 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1307 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1308 			/* content channel 2 */
1309 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1310 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1311 			fallthrough;
1312 		case RATE_MCS_CHAN_WIDTH_80:
1313 			/* content channel 1 */
1314 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1315 			/* content channel 2 */
1316 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1317 			fallthrough;
1318 		case RATE_MCS_CHAN_WIDTH_40:
1319 			/* content channel 2 */
1320 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1321 			fallthrough;
1322 		case RATE_MCS_CHAN_WIDTH_20:
1323 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1324 			break;
1325 		}
1326 	} else {
1327 		__le32 usig_a1 = phy_data->rx_vec[0];
1328 		__le32 usig_a2 = phy_data->rx_vec[1];
1329 
1330 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1331 					    IWL_RX_USIG_A1_DISREGARD,
1332 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1333 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1334 					    IWL_RX_USIG_A1_VALIDATE,
1335 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1336 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1337 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1338 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1339 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1340 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1341 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1342 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1343 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1344 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1345 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1346 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1347 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1348 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1349 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1350 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1351 		IWL_MVM_ENC_USIG_VALUE_MASK
1352 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1353 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1354 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1355 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1356 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1357 	}
1358 }
1359 
1360 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1361 				      struct iwl_mvm_rx_phy_data *phy_data,
1362 				      struct ieee80211_rx_status *rx_status,
1363 				      struct ieee80211_radiotap_eht *eht,
1364 				      struct ieee80211_radiotap_eht_usig *usig)
1365 {
1366 	if (phy_data->with_data) {
1367 		__le32 data5 = phy_data->d5;
1368 
1369 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1370 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1371 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1372 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1373 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1374 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1375 
1376 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1377 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1378 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1379 	} else {
1380 		__le32 usig_a1 = phy_data->rx_vec[0];
1381 		__le32 usig_a2 = phy_data->rx_vec[1];
1382 
1383 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1384 					    IWL_RX_USIG_A1_DISREGARD,
1385 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1386 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1387 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1388 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1389 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1390 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1391 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1392 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1393 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1394 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1395 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1396 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1397 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1398 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1399 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1400 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1401 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1402 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1403 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1404 	}
1405 }
1406 
1407 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1408 				  struct ieee80211_rx_status *rx_status,
1409 				  struct ieee80211_radiotap_eht *eht)
1410 {
1411 	u32 ru = le32_get_bits(eht->data[8],
1412 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1413 	enum nl80211_eht_ru_alloc nl_ru;
1414 
1415 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1416 	 * in an EHT variant User Info field
1417 	 */
1418 
1419 	switch (ru) {
1420 	case 0 ... 36:
1421 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1422 		break;
1423 	case 37 ... 52:
1424 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1425 		break;
1426 	case 53 ... 60:
1427 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1428 		break;
1429 	case 61 ... 64:
1430 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1431 		break;
1432 	case 65 ... 66:
1433 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1434 		break;
1435 	case 67:
1436 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1437 		break;
1438 	case 68:
1439 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1440 		break;
1441 	case 69:
1442 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1443 		break;
1444 	case 70 ... 81:
1445 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1446 		break;
1447 	case 82 ... 89:
1448 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1449 		break;
1450 	case 90 ... 93:
1451 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1452 		break;
1453 	case 94 ... 95:
1454 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1455 		break;
1456 	case 96 ... 99:
1457 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1458 		break;
1459 	case 100 ... 103:
1460 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1461 		break;
1462 	case 104:
1463 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1464 		break;
1465 	case 105 ... 106:
1466 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1467 		break;
1468 	default:
1469 		return;
1470 	}
1471 
1472 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1473 	rx_status->eht.ru = nl_ru;
1474 }
1475 
1476 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1477 					struct iwl_mvm_rx_phy_data *phy_data,
1478 					struct ieee80211_rx_status *rx_status,
1479 					struct ieee80211_radiotap_eht *eht,
1480 					struct ieee80211_radiotap_eht_usig *usig)
1481 
1482 {
1483 	__le32 data0 = phy_data->d0;
1484 	__le32 data1 = phy_data->d1;
1485 	__le32 usig_a1 = phy_data->rx_vec[0];
1486 	u8 info_type = phy_data->info_type;
1487 
1488 	/* Not in EHT range */
1489 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1490 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1491 		return;
1492 
1493 	usig->common |= cpu_to_le32
1494 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1495 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1496 	if (phy_data->with_data) {
1497 		usig->common |= LE32_DEC_ENC(data0,
1498 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1499 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1500 		usig->common |= LE32_DEC_ENC(data0,
1501 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1502 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1503 	} else {
1504 		usig->common |= LE32_DEC_ENC(usig_a1,
1505 					     IWL_RX_USIG_A1_UL_FLAG,
1506 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1507 		usig->common |= LE32_DEC_ENC(usig_a1,
1508 					     IWL_RX_USIG_A1_BSS_COLOR,
1509 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1510 	}
1511 
1512 	if (fw_has_capa(&mvm->fw->ucode_capa,
1513 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1514 		usig->common |=
1515 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1516 		usig->common |=
1517 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1518 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1519 	}
1520 
1521 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1522 	eht->data[0] |= LE32_DEC_ENC(data0,
1523 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1524 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1525 
1526 	/* All RU allocating size/index is in TB format */
1527 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1528 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1529 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1530 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1531 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1532 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1533 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1534 
1535 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1536 
1537 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1538 	 * which is on only in case of monitor mode so no need to check monitor
1539 	 * mode
1540 	 */
1541 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1542 	eht->data[1] |=
1543 		le32_encode_bits(mvm->monitor_p80,
1544 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1545 
1546 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1547 	if (phy_data->with_data)
1548 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1549 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1550 	else
1551 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1552 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1553 
1554 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1555 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1556 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1557 
1558 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1559 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1560 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1561 
1562 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1563 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1564 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1565 
1566 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1567 
1568 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1569 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1570 
1571 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1572 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1573 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1574 
1575 	/*
1576 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1577 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1578 	 */
1579 
1580 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1581 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1582 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1583 
1584 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1585 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1586 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1587 
1588 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1589 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1590 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1591 }
1592 
1593 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1594 			   struct iwl_mvm_rx_phy_data *phy_data,
1595 			   int queue)
1596 {
1597 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1598 
1599 	struct ieee80211_radiotap_eht *eht;
1600 	struct ieee80211_radiotap_eht_usig *usig;
1601 	size_t eht_len = sizeof(*eht);
1602 
1603 	u32 rate_n_flags = phy_data->rate_n_flags;
1604 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1605 	/* EHT and HE have the same valus for LTF */
1606 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1607 	u16 phy_info = phy_data->phy_info;
1608 	u32 bw;
1609 
1610 	/* u32 for 1 user_info */
1611 	if (phy_data->with_data)
1612 		eht_len += sizeof(u32);
1613 
1614 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1615 
1616 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1617 					sizeof(*usig));
1618 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1619 	usig->common |=
1620 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1621 
1622 	/* specific handling for 320MHz */
1623 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1624 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1625 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1626 				le32_to_cpu(phy_data->d0));
1627 
1628 	usig->common |= cpu_to_le32
1629 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1630 
1631 	/* report the AMPDU-EOF bit on single frames */
1632 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1633 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1634 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1635 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1636 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1637 	}
1638 
1639 	/* update aggregation data for monitor sake on default queue */
1640 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1641 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1642 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1643 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1644 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1645 	}
1646 
1647 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1648 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1649 
1650 #define CHECK_TYPE(F)							\
1651 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1652 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1653 
1654 	CHECK_TYPE(SU);
1655 	CHECK_TYPE(EXT_SU);
1656 	CHECK_TYPE(MU);
1657 	CHECK_TYPE(TRIG);
1658 
1659 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1660 	case 0:
1661 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1662 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1663 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1664 		} else {
1665 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1666 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1667 		}
1668 		break;
1669 	case 1:
1670 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1671 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1672 		break;
1673 	case 2:
1674 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1675 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1676 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1677 		else
1678 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1679 		break;
1680 	case 3:
1681 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1682 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1683 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1684 		}
1685 		break;
1686 	default:
1687 		/* nothing here */
1688 		break;
1689 	}
1690 
1691 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1692 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1693 		eht->data[0] |= cpu_to_le32
1694 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1695 				    ltf) |
1696 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1697 				    rx_status->eht.gi));
1698 	}
1699 
1700 
1701 	if (!phy_data->with_data) {
1702 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1703 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1704 		eht->data[7] |=
1705 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1706 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1707 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1708 		if (rate_n_flags & RATE_MCS_BF_MSK)
1709 			eht->data[7] |=
1710 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1711 	} else {
1712 		eht->user_info[0] |=
1713 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1714 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1715 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1716 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1717 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1718 
1719 		if (rate_n_flags & RATE_MCS_BF_MSK)
1720 			eht->user_info[0] |=
1721 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1722 
1723 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1724 			eht->user_info[0] |=
1725 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1726 
1727 		eht->user_info[0] |= cpu_to_le32
1728 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1729 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
1730 					      rate_n_flags)) |
1731 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1732 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
1733 	}
1734 }
1735 
1736 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1737 			  struct iwl_mvm_rx_phy_data *phy_data,
1738 			  int queue)
1739 {
1740 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1741 	struct ieee80211_radiotap_he *he = NULL;
1742 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
1743 	u32 rate_n_flags = phy_data->rate_n_flags;
1744 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1745 	u8 ltf;
1746 	static const struct ieee80211_radiotap_he known = {
1747 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1748 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1749 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1750 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1751 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1752 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1753 	};
1754 	static const struct ieee80211_radiotap_he_mu mu_known = {
1755 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1756 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1757 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1758 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1759 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1760 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1761 	};
1762 	u16 phy_info = phy_data->phy_info;
1763 
1764 	he = skb_put_data(skb, &known, sizeof(known));
1765 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1766 
1767 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1768 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1769 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1770 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1771 	}
1772 
1773 	/* report the AMPDU-EOF bit on single frames */
1774 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1775 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1776 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1777 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1778 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1779 	}
1780 
1781 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1782 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1783 					   queue);
1784 
1785 	/* update aggregation data for monitor sake on default queue */
1786 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1787 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1788 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1789 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1790 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1791 	}
1792 
1793 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1794 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
1795 		rx_status->bw = RATE_INFO_BW_HE_RU;
1796 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1797 	}
1798 
1799 	/* actually data is filled in mac80211 */
1800 	if (he_type == RATE_MCS_HE_TYPE_SU ||
1801 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
1802 		he->data1 |=
1803 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1804 
1805 #define CHECK_TYPE(F)							\
1806 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1807 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1808 
1809 	CHECK_TYPE(SU);
1810 	CHECK_TYPE(EXT_SU);
1811 	CHECK_TYPE(MU);
1812 	CHECK_TYPE(TRIG);
1813 
1814 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1815 
1816 	if (rate_n_flags & RATE_MCS_BF_MSK)
1817 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1818 
1819 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1820 		RATE_MCS_HE_GI_LTF_POS) {
1821 	case 0:
1822 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1823 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1824 		else
1825 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1826 		if (he_type == RATE_MCS_HE_TYPE_MU)
1827 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1828 		else
1829 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1830 		break;
1831 	case 1:
1832 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1833 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1834 		else
1835 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1836 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1837 		break;
1838 	case 2:
1839 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1840 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1841 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1842 		} else {
1843 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1844 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1845 		}
1846 		break;
1847 	case 3:
1848 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1849 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1850 		break;
1851 	case 4:
1852 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1853 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1854 		break;
1855 	default:
1856 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1857 	}
1858 
1859 	he->data5 |= le16_encode_bits(ltf,
1860 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1861 }
1862 
1863 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1864 				struct iwl_mvm_rx_phy_data *phy_data)
1865 {
1866 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1867 	struct ieee80211_radiotap_lsig *lsig;
1868 
1869 	switch (phy_data->info_type) {
1870 	case IWL_RX_PHY_INFO_TYPE_HT:
1871 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1872 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1873 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1874 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1875 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1876 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1877 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1878 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1879 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1880 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1881 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1882 		lsig = skb_put(skb, sizeof(*lsig));
1883 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1884 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1885 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1886 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1887 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1888 		break;
1889 	default:
1890 		break;
1891 	}
1892 }
1893 
1894 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1895 {
1896 	switch (phy_band) {
1897 	case PHY_BAND_24:
1898 		return NL80211_BAND_2GHZ;
1899 	case PHY_BAND_5:
1900 		return NL80211_BAND_5GHZ;
1901 	case PHY_BAND_6:
1902 		return NL80211_BAND_6GHZ;
1903 	default:
1904 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1905 		return NL80211_BAND_5GHZ;
1906 	}
1907 }
1908 
1909 struct iwl_rx_sta_csa {
1910 	bool all_sta_unblocked;
1911 	struct ieee80211_vif *vif;
1912 };
1913 
1914 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1915 {
1916 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1917 	struct iwl_rx_sta_csa *rx_sta_csa = data;
1918 
1919 	if (mvmsta->vif != rx_sta_csa->vif)
1920 		return;
1921 
1922 	if (mvmsta->disable_tx)
1923 		rx_sta_csa->all_sta_unblocked = false;
1924 }
1925 
1926 /*
1927  * Note: requires also rx_status->band to be prefilled, as well
1928  * as phy_data (apart from phy_data->info_type)
1929  */
1930 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
1931 				   struct sk_buff *skb,
1932 				   struct iwl_mvm_rx_phy_data *phy_data,
1933 				   int queue)
1934 {
1935 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1936 	u32 rate_n_flags = phy_data->rate_n_flags;
1937 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1938 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1939 	bool is_sgi;
1940 
1941 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1942 
1943 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1944 		phy_data->info_type =
1945 			le32_get_bits(phy_data->d1,
1946 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1947 
1948 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1949 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1950 	case RATE_MCS_CHAN_WIDTH_20:
1951 		break;
1952 	case RATE_MCS_CHAN_WIDTH_40:
1953 		rx_status->bw = RATE_INFO_BW_40;
1954 		break;
1955 	case RATE_MCS_CHAN_WIDTH_80:
1956 		rx_status->bw = RATE_INFO_BW_80;
1957 		break;
1958 	case RATE_MCS_CHAN_WIDTH_160:
1959 		rx_status->bw = RATE_INFO_BW_160;
1960 		break;
1961 	case RATE_MCS_CHAN_WIDTH_320:
1962 		rx_status->bw = RATE_INFO_BW_320;
1963 		break;
1964 	}
1965 
1966 	/* must be before L-SIG data */
1967 	if (format == RATE_MCS_HE_MSK)
1968 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
1969 
1970 	iwl_mvm_decode_lsig(skb, phy_data);
1971 
1972 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1973 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1974 							 rx_status->band);
1975 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
1976 				    phy_data->energy_a, phy_data->energy_b);
1977 
1978 	/* using TLV format and must be after all fixed len fields */
1979 	if (format == RATE_MCS_EHT_MSK)
1980 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
1981 
1982 	if (unlikely(mvm->monitor_on))
1983 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1984 
1985 	is_sgi = format == RATE_MCS_HE_MSK ?
1986 		iwl_he_is_sgi(rate_n_flags) :
1987 		rate_n_flags & RATE_MCS_SGI_MSK;
1988 
1989 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
1990 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1991 
1992 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1993 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1994 
1995 	switch (format) {
1996 	case RATE_MCS_VHT_MSK:
1997 		rx_status->encoding = RX_ENC_VHT;
1998 		break;
1999 	case RATE_MCS_HE_MSK:
2000 		rx_status->encoding = RX_ENC_HE;
2001 		rx_status->he_dcm =
2002 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2003 		break;
2004 	case RATE_MCS_EHT_MSK:
2005 		rx_status->encoding = RX_ENC_EHT;
2006 		break;
2007 	}
2008 
2009 	switch (format) {
2010 	case RATE_MCS_HT_MSK:
2011 		rx_status->encoding = RX_ENC_HT;
2012 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2013 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2014 		break;
2015 	case RATE_MCS_VHT_MSK:
2016 	case RATE_MCS_HE_MSK:
2017 	case RATE_MCS_EHT_MSK:
2018 		rx_status->nss =
2019 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2020 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2021 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2022 		break;
2023 	default: {
2024 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2025 								 rx_status->band);
2026 
2027 		rx_status->rate_idx = rate;
2028 
2029 		if ((rate < 0 || rate > 0xFF)) {
2030 			rx_status->rate_idx = 0;
2031 			if (net_ratelimit())
2032 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2033 					rate_n_flags, rx_status->band);
2034 		}
2035 
2036 		break;
2037 		}
2038 	}
2039 }
2040 
2041 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2042 			struct iwl_rx_cmd_buffer *rxb, int queue)
2043 {
2044 	struct ieee80211_rx_status *rx_status;
2045 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2046 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2047 	struct ieee80211_hdr *hdr;
2048 	u32 len;
2049 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2050 	struct ieee80211_sta *sta = NULL;
2051 	struct ieee80211_link_sta *link_sta = NULL;
2052 	struct sk_buff *skb;
2053 	u8 crypt_len = 0;
2054 	size_t desc_size;
2055 	struct iwl_mvm_rx_phy_data phy_data = {};
2056 	u32 format;
2057 
2058 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2059 		return;
2060 
2061 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2062 		desc_size = sizeof(*desc);
2063 	else
2064 		desc_size = IWL_RX_DESC_SIZE_V1;
2065 
2066 	if (unlikely(pkt_len < desc_size)) {
2067 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2068 		return;
2069 	}
2070 
2071 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2072 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2073 		phy_data.channel = desc->v3.channel;
2074 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2075 		phy_data.energy_a = desc->v3.energy_a;
2076 		phy_data.energy_b = desc->v3.energy_b;
2077 
2078 		phy_data.d0 = desc->v3.phy_data0;
2079 		phy_data.d1 = desc->v3.phy_data1;
2080 		phy_data.d2 = desc->v3.phy_data2;
2081 		phy_data.d3 = desc->v3.phy_data3;
2082 		phy_data.eht_d4 = desc->phy_eht_data4;
2083 		phy_data.d5 = desc->v3.phy_data5;
2084 	} else {
2085 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2086 		phy_data.channel = desc->v1.channel;
2087 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2088 		phy_data.energy_a = desc->v1.energy_a;
2089 		phy_data.energy_b = desc->v1.energy_b;
2090 
2091 		phy_data.d0 = desc->v1.phy_data0;
2092 		phy_data.d1 = desc->v1.phy_data1;
2093 		phy_data.d2 = desc->v1.phy_data2;
2094 		phy_data.d3 = desc->v1.phy_data3;
2095 	}
2096 
2097 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2098 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2099 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2100 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2101 			       phy_data.rate_n_flags);
2102 	}
2103 
2104 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2105 
2106 	len = le16_to_cpu(desc->mpdu_len);
2107 
2108 	if (unlikely(len + desc_size > pkt_len)) {
2109 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2110 		return;
2111 	}
2112 
2113 	phy_data.with_data = true;
2114 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2115 	phy_data.d4 = desc->phy_data4;
2116 
2117 	hdr = (void *)(pkt->data + desc_size);
2118 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2119 	 * ieee80211_hdr pulled.
2120 	 */
2121 	skb = alloc_skb(128, GFP_ATOMIC);
2122 	if (!skb) {
2123 		IWL_ERR(mvm, "alloc_skb failed\n");
2124 		return;
2125 	}
2126 
2127 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2128 		/*
2129 		 * If the device inserted padding it means that (it thought)
2130 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2131 		 * this case, reserve two bytes at the start of the SKB to
2132 		 * align the payload properly in case we end up copying it.
2133 		 */
2134 		skb_reserve(skb, 2);
2135 	}
2136 
2137 	rx_status = IEEE80211_SKB_RXCB(skb);
2138 
2139 	/*
2140 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2141 	 * (otherwise the firmware discards them) but mark them as bad.
2142 	 */
2143 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2144 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2145 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2146 			     le32_to_cpu(desc->status));
2147 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2148 	}
2149 
2150 	/* set the preamble flag if appropriate */
2151 	if (format == RATE_MCS_CCK_MSK &&
2152 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2153 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2154 
2155 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2156 		u64 tsf_on_air_rise;
2157 
2158 		if (mvm->trans->trans_cfg->device_family >=
2159 		    IWL_DEVICE_FAMILY_AX210)
2160 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2161 		else
2162 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2163 
2164 		rx_status->mactime = tsf_on_air_rise;
2165 		/* TSF as indicated by the firmware is at INA time */
2166 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2167 	}
2168 
2169 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2170 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2171 
2172 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2173 	} else {
2174 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2175 			NL80211_BAND_2GHZ;
2176 	}
2177 
2178 	/* update aggregation data for monitor sake on default queue */
2179 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2180 		bool toggle_bit;
2181 
2182 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2183 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2184 		/*
2185 		 * Toggle is switched whenever new aggregation starts. Make
2186 		 * sure ampdu_reference is never 0 so we can later use it to
2187 		 * see if the frame was really part of an A-MPDU or not.
2188 		 */
2189 		if (toggle_bit != mvm->ampdu_toggle) {
2190 			mvm->ampdu_ref++;
2191 			if (mvm->ampdu_ref == 0)
2192 				mvm->ampdu_ref++;
2193 			mvm->ampdu_toggle = toggle_bit;
2194 			phy_data.first_subframe = true;
2195 		}
2196 		rx_status->ampdu_reference = mvm->ampdu_ref;
2197 	}
2198 
2199 	rcu_read_lock();
2200 
2201 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2202 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2203 
2204 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2205 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2206 			if (IS_ERR(sta))
2207 				sta = NULL;
2208 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2209 		}
2210 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2211 		/*
2212 		 * This is fine since we prevent two stations with the same
2213 		 * address from being added.
2214 		 */
2215 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2216 	}
2217 
2218 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2219 			      le32_to_cpu(pkt->len_n_flags), queue,
2220 			      &crypt_len)) {
2221 		kfree_skb(skb);
2222 		goto out;
2223 	}
2224 
2225 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2226 
2227 	if (sta) {
2228 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2229 		struct ieee80211_vif *tx_blocked_vif =
2230 			rcu_dereference(mvm->csa_tx_blocked_vif);
2231 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2232 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2233 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2234 		struct iwl_fw_dbg_trigger_tlv *trig;
2235 		struct ieee80211_vif *vif = mvmsta->vif;
2236 
2237 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2238 		    !is_multicast_ether_addr(hdr->addr1) &&
2239 		    ieee80211_is_data(hdr->frame_control) &&
2240 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2241 			schedule_delayed_work(&mvm->tcm.work, 0);
2242 
2243 		/*
2244 		 * We have tx blocked stations (with CS bit). If we heard
2245 		 * frames from a blocked station on a new channel we can
2246 		 * TX to it again.
2247 		 */
2248 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2249 			struct iwl_mvm_vif *mvmvif =
2250 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2251 			struct iwl_rx_sta_csa rx_sta_csa = {
2252 				.all_sta_unblocked = true,
2253 				.vif = tx_blocked_vif,
2254 			};
2255 
2256 			if (mvmvif->csa_target_freq == rx_status->freq)
2257 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2258 								 false);
2259 			ieee80211_iterate_stations_atomic(mvm->hw,
2260 							  iwl_mvm_rx_get_sta_block_tx,
2261 							  &rx_sta_csa);
2262 
2263 			if (rx_sta_csa.all_sta_unblocked) {
2264 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2265 				/* Unblock BCAST / MCAST station */
2266 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2267 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2268 			}
2269 		}
2270 
2271 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2272 
2273 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2274 					     ieee80211_vif_to_wdev(vif),
2275 					     FW_DBG_TRIGGER_RSSI);
2276 
2277 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2278 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2279 			s32 rssi;
2280 
2281 			rssi_trig = (void *)trig->data;
2282 			rssi = le32_to_cpu(rssi_trig->rssi);
2283 
2284 			if (rx_status->signal < rssi)
2285 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2286 							NULL);
2287 		}
2288 
2289 		if (ieee80211_is_data(hdr->frame_control))
2290 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2291 
2292 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2293 			IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n",
2294 				       le16_to_cpu(hdr->seq_ctrl));
2295 			kfree_skb(skb);
2296 			goto out;
2297 		}
2298 
2299 		/*
2300 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2301 		 * as it to the de-aggregated MPDUs. We need to turn off the
2302 		 * AMSDU bit in the QoS control ourselves.
2303 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2304 		 */
2305 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2306 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2307 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2308 
2309 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2310 
2311 			if (mvm->trans->trans_cfg->device_family ==
2312 			    IWL_DEVICE_FAMILY_9000) {
2313 				iwl_mvm_flip_address(hdr->addr3);
2314 
2315 				if (ieee80211_has_a4(hdr->frame_control))
2316 					iwl_mvm_flip_address(hdr->addr4);
2317 			}
2318 		}
2319 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2320 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2321 
2322 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2323 		}
2324 	}
2325 
2326 	/* management stuff on default queue */
2327 	if (!queue) {
2328 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2329 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2330 			     mvm->sched_scan_pass_all ==
2331 			     SCHED_SCAN_PASS_ALL_ENABLED))
2332 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2333 
2334 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2335 			     ieee80211_is_probe_resp(hdr->frame_control)))
2336 			rx_status->boottime_ns = ktime_get_boottime_ns();
2337 	}
2338 
2339 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2340 		kfree_skb(skb);
2341 		goto out;
2342 	}
2343 
2344 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2345 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2346 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2347 		if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2348 		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2349 		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2350 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2351 
2352 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2353 						link_sta);
2354 	}
2355 out:
2356 	rcu_read_unlock();
2357 }
2358 
2359 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2360 				struct iwl_rx_cmd_buffer *rxb, int queue)
2361 {
2362 	struct ieee80211_rx_status *rx_status;
2363 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2364 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2365 	u32 rssi;
2366 	u32 info_type;
2367 	struct ieee80211_sta *sta = NULL;
2368 	struct sk_buff *skb;
2369 	struct iwl_mvm_rx_phy_data phy_data;
2370 	u32 format;
2371 
2372 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2373 		return;
2374 
2375 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2376 		return;
2377 
2378 	rssi = le32_to_cpu(desc->rssi);
2379 	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2380 	phy_data.d0 = desc->phy_info[0];
2381 	phy_data.d1 = desc->phy_info[1];
2382 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2383 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2384 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2385 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2386 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2387 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2388 	phy_data.with_data = false;
2389 	phy_data.rx_vec[0] = desc->rx_vec[0];
2390 	phy_data.rx_vec[1] = desc->rx_vec[1];
2391 
2392 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2393 				    RX_NO_DATA_NOTIF, 0) < 2) {
2394 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2395 			       phy_data.rate_n_flags);
2396 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2397 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2398 			       phy_data.rate_n_flags);
2399 	}
2400 
2401 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2402 
2403 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2404 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2405 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2406 		    sizeof(struct iwl_rx_no_data_ver_3)))
2407 		/* invalid len for ver 3 */
2408 			return;
2409 		phy_data.rx_vec[2] = desc->rx_vec[2];
2410 		phy_data.rx_vec[3] = desc->rx_vec[3];
2411 	} else {
2412 		if (format == RATE_MCS_EHT_MSK)
2413 			/* no support for EHT before version 3 API */
2414 			return;
2415 	}
2416 
2417 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2418 	 * ieee80211_hdr pulled.
2419 	 */
2420 	skb = alloc_skb(128, GFP_ATOMIC);
2421 	if (!skb) {
2422 		IWL_ERR(mvm, "alloc_skb failed\n");
2423 		return;
2424 	}
2425 
2426 	rx_status = IEEE80211_SKB_RXCB(skb);
2427 
2428 	/* 0-length PSDU */
2429 	rx_status->flag |= RX_FLAG_NO_PSDU;
2430 
2431 	switch (info_type) {
2432 	case RX_NO_DATA_INFO_TYPE_NDP:
2433 		rx_status->zero_length_psdu_type =
2434 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2435 		break;
2436 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2437 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2438 		rx_status->zero_length_psdu_type =
2439 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2440 		break;
2441 	default:
2442 		rx_status->zero_length_psdu_type =
2443 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2444 		break;
2445 	}
2446 
2447 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2448 		NL80211_BAND_2GHZ;
2449 
2450 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2451 
2452 	/* no more radio tap info should be put after this point.
2453 	 *
2454 	 * We mark it as mac header, for upper layers to know where
2455 	 * all radio tap header ends.
2456 	 */
2457 	skb_reset_mac_header(skb);
2458 
2459 	/*
2460 	 * Override the nss from the rx_vec since the rate_n_flags has
2461 	 * only 2 bits for the nss which gives a max of 4 ss but there
2462 	 * may be up to 8 spatial streams.
2463 	 */
2464 	switch (format) {
2465 	case RATE_MCS_VHT_MSK:
2466 		rx_status->nss =
2467 			le32_get_bits(desc->rx_vec[0],
2468 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2469 		break;
2470 	case RATE_MCS_HE_MSK:
2471 		rx_status->nss =
2472 			le32_get_bits(desc->rx_vec[0],
2473 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2474 		break;
2475 	case RATE_MCS_EHT_MSK:
2476 		rx_status->nss =
2477 			le32_get_bits(desc->rx_vec[2],
2478 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2479 	}
2480 
2481 	rcu_read_lock();
2482 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2483 	rcu_read_unlock();
2484 }
2485 
2486 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2487 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2488 {
2489 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2490 	struct iwl_frame_release *release = (void *)pkt->data;
2491 
2492 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2493 		return;
2494 
2495 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2496 					  le16_to_cpu(release->nssn),
2497 					  queue);
2498 }
2499 
2500 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2501 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2502 {
2503 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2504 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2505 	unsigned int baid = le32_get_bits(release->ba_info,
2506 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2507 	unsigned int nssn = le32_get_bits(release->ba_info,
2508 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2509 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2510 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2511 	unsigned int tid = le32_get_bits(release->sta_tid,
2512 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2513 	struct iwl_mvm_baid_data *baid_data;
2514 
2515 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2516 		return;
2517 
2518 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2519 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2520 		return;
2521 
2522 	rcu_read_lock();
2523 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2524 	if (!baid_data) {
2525 		IWL_DEBUG_RX(mvm,
2526 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2527 			      baid);
2528 		goto out;
2529 	}
2530 
2531 	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2532 		 !(baid_data->sta_mask & BIT(sta_id)),
2533 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2534 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2535 		 tid))
2536 		goto out;
2537 
2538 	IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n",
2539 		       nssn);
2540 
2541 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue);
2542 out:
2543 	rcu_read_unlock();
2544 }
2545