1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2025 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->mac_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta) 240 { 241 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 242 kfree_skb(skb); 243 return; 244 } 245 246 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 247 } 248 249 static bool iwl_mvm_used_average_energy(struct iwl_mvm *mvm, 250 struct iwl_rx_mpdu_desc *desc, 251 struct ieee80211_hdr *hdr, 252 struct ieee80211_rx_status *rx_status) 253 { 254 struct iwl_mvm_vif *mvm_vif; 255 struct ieee80211_vif *vif; 256 u32 id; 257 258 if (unlikely(!hdr || !desc)) 259 return false; 260 261 if (likely(!ieee80211_is_beacon(hdr->frame_control))) 262 return false; 263 264 /* for the link conf lookup */ 265 guard(rcu)(); 266 267 /* MAC or link ID depending on FW, but driver has them equal */ 268 id = u8_get_bits(desc->mac_phy_band, 269 IWL_RX_MPDU_MAC_PHY_BAND_MAC_MASK); 270 271 /* >= means AUX MAC/link ID, no energy correction needed then */ 272 if (id >= ARRAY_SIZE(mvm->vif_id_to_mac)) 273 return false; 274 275 vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, true); 276 if (!vif) 277 return false; 278 279 mvm_vif = iwl_mvm_vif_from_mac80211(vif); 280 281 /* 282 * If we know the MAC by MAC or link ID then the frame was 283 * received for the link, so by filtering it means it was 284 * from the AP the link is connected to. 285 */ 286 287 /* skip also in case we don't have it (yet) */ 288 if (!mvm_vif->deflink.average_beacon_energy) 289 return false; 290 291 IWL_DEBUG_STATS(mvm, "energy override by average %d\n", 292 mvm_vif->deflink.average_beacon_energy); 293 rx_status->signal = -mvm_vif->deflink.average_beacon_energy; 294 return true; 295 } 296 297 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 298 struct iwl_rx_mpdu_desc *desc, 299 struct ieee80211_hdr *hdr, 300 struct ieee80211_rx_status *rx_status, 301 u32 rate_n_flags, int energy_a, 302 int energy_b) 303 { 304 int max_energy; 305 306 energy_a = energy_a ? -energy_a : S8_MIN; 307 energy_b = energy_b ? -energy_b : S8_MIN; 308 max_energy = max(energy_a, energy_b); 309 310 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 311 energy_a, energy_b, max_energy); 312 313 if (iwl_mvm_used_average_energy(mvm, desc, hdr, rx_status)) 314 return; 315 316 rx_status->signal = max_energy; 317 rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK); 318 rx_status->chain_signal[0] = energy_a; 319 rx_status->chain_signal[1] = energy_b; 320 } 321 322 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 323 struct ieee80211_hdr *hdr, 324 struct iwl_rx_mpdu_desc *desc, 325 u32 status, 326 struct ieee80211_rx_status *stats) 327 { 328 struct wireless_dev *wdev; 329 struct iwl_mvm_sta *mvmsta; 330 struct iwl_mvm_vif *mvmvif; 331 u8 keyid; 332 struct ieee80211_key_conf *key; 333 u32 len = le16_to_cpu(desc->mpdu_len); 334 const u8 *frame = (void *)hdr; 335 336 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 337 return 0; 338 339 /* 340 * For non-beacon, we don't really care. But beacons may 341 * be filtered out, and we thus need the firmware's replay 342 * detection, otherwise beacons the firmware previously 343 * filtered could be replayed, or something like that, and 344 * it can filter a lot - though usually only if nothing has 345 * changed. 346 */ 347 if (!ieee80211_is_beacon(hdr->frame_control)) 348 return 0; 349 350 if (!sta) 351 return -1; 352 353 mvmsta = iwl_mvm_sta_from_mac80211(sta); 354 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 355 356 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 357 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 358 goto report; 359 360 /* good cases */ 361 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 362 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 363 stats->flag |= RX_FLAG_DECRYPTED; 364 return 0; 365 } 366 367 /* 368 * both keys will have the same cipher and MIC length, use 369 * whichever one is available 370 */ 371 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 372 if (!key) { 373 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 374 if (!key) 375 goto report; 376 } 377 378 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 379 goto report; 380 381 /* get the real key ID */ 382 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 383 /* and if that's the other key, look it up */ 384 if (keyid != key->keyidx) { 385 /* 386 * shouldn't happen since firmware checked, but be safe 387 * in case the MIC length is wrong too, for example 388 */ 389 if (keyid != 6 && keyid != 7) 390 return -1; 391 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 392 if (!key) 393 goto report; 394 } 395 396 /* Report status to mac80211 */ 397 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 398 ieee80211_key_mic_failure(key); 399 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 400 ieee80211_key_replay(key); 401 report: 402 wdev = ieee80211_vif_to_wdev(mvmsta->vif); 403 if (wdev->netdev) 404 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); 405 406 return -1; 407 } 408 409 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 410 struct ieee80211_hdr *hdr, 411 struct ieee80211_rx_status *stats, u16 phy_info, 412 struct iwl_rx_mpdu_desc *desc, 413 u32 pkt_flags, int queue, u8 *crypt_len) 414 { 415 u32 status = le32_to_cpu(desc->status); 416 417 /* 418 * Drop UNKNOWN frames in aggregation, unless in monitor mode 419 * (where we don't have the keys). 420 * We limit this to aggregation because in TKIP this is a valid 421 * scenario, since we may not have the (correct) TTAK (phase 1 422 * key) in the firmware. 423 */ 424 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 425 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 426 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { 427 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); 428 return -1; 429 } 430 431 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 432 !ieee80211_has_protected(hdr->frame_control))) 433 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 434 435 if (!ieee80211_has_protected(hdr->frame_control) || 436 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 437 IWL_RX_MPDU_STATUS_SEC_NONE) 438 return 0; 439 440 /* TODO: handle packets encrypted with unknown alg */ 441 442 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 443 case IWL_RX_MPDU_STATUS_SEC_CCM: 444 case IWL_RX_MPDU_STATUS_SEC_GCM: 445 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 446 /* alg is CCM: check MIC only */ 447 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { 448 IWL_DEBUG_DROP(mvm, 449 "Dropping packet, bad MIC (CCM/GCM)\n"); 450 return -1; 451 } 452 453 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 454 *crypt_len = IEEE80211_CCMP_HDR_LEN; 455 return 0; 456 case IWL_RX_MPDU_STATUS_SEC_TKIP: 457 /* Don't drop the frame and decrypt it in SW */ 458 if (!fw_has_api(&mvm->fw->ucode_capa, 459 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 460 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 461 return 0; 462 463 if (mvm->trans->mac_cfg->gen2 && 464 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 465 stats->flag |= RX_FLAG_MMIC_ERROR; 466 467 *crypt_len = IEEE80211_TKIP_IV_LEN; 468 fallthrough; 469 case IWL_RX_MPDU_STATUS_SEC_WEP: 470 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 471 return -1; 472 473 stats->flag |= RX_FLAG_DECRYPTED; 474 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 475 IWL_RX_MPDU_STATUS_SEC_WEP) 476 *crypt_len = IEEE80211_WEP_IV_LEN; 477 478 if (pkt_flags & FH_RSCSR_RADA_EN) { 479 stats->flag |= RX_FLAG_ICV_STRIPPED; 480 if (mvm->trans->mac_cfg->gen2) 481 stats->flag |= RX_FLAG_MMIC_STRIPPED; 482 } 483 484 return 0; 485 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 486 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 487 return -1; 488 stats->flag |= RX_FLAG_DECRYPTED; 489 return 0; 490 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 491 break; 492 default: 493 /* 494 * Sometimes we can get frames that were not decrypted 495 * because the firmware didn't have the keys yet. This can 496 * happen after connection where we can get multicast frames 497 * before the GTK is installed. 498 * Silently drop those frames. 499 * Also drop un-decrypted frames in monitor mode. 500 */ 501 if (!is_multicast_ether_addr(hdr->addr1) && 502 !mvm->monitor_on && net_ratelimit()) 503 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 504 } 505 506 return 0; 507 } 508 509 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 510 struct ieee80211_sta *sta, 511 struct sk_buff *skb, 512 struct iwl_rx_packet *pkt) 513 { 514 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 515 516 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 517 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 518 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 519 520 skb->ip_summed = CHECKSUM_COMPLETE; 521 skb->csum = csum_unfold(~(__force __sum16)hwsum); 522 } 523 } else { 524 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 525 struct iwl_mvm_vif *mvmvif; 526 u16 flags = le16_to_cpu(desc->l3l4_flags); 527 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 528 IWL_RX_L3_PROTO_POS); 529 530 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 531 532 if (mvmvif->features & NETIF_F_RXCSUM && 533 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 534 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 535 l3_prot == IWL_RX_L3_TYPE_IPV6 || 536 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 537 skb->ip_summed = CHECKSUM_UNNECESSARY; 538 } 539 } 540 541 /* 542 * returns true if a packet is a duplicate or invalid tid and should be dropped. 543 * Updates AMSDU PN tracking info 544 */ 545 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 546 struct ieee80211_rx_status *rx_status, 547 struct ieee80211_hdr *hdr, 548 struct iwl_rx_mpdu_desc *desc) 549 { 550 struct iwl_mvm_sta *mvm_sta; 551 struct iwl_mvm_rxq_dup_data *dup_data; 552 u8 tid, sub_frame_idx; 553 554 if (WARN_ON(IS_ERR_OR_NULL(sta))) 555 return false; 556 557 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 558 559 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 560 return false; 561 562 dup_data = &mvm_sta->dup_data[queue]; 563 564 /* 565 * Drop duplicate 802.11 retransmissions 566 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 567 */ 568 if (ieee80211_is_ctl(hdr->frame_control) || 569 ieee80211_is_any_nullfunc(hdr->frame_control) || 570 is_multicast_ether_addr(hdr->addr1)) 571 return false; 572 573 if (ieee80211_is_data_qos(hdr->frame_control)) { 574 /* frame has qos control */ 575 tid = ieee80211_get_tid(hdr); 576 if (tid >= IWL_MAX_TID_COUNT) 577 return true; 578 } else { 579 tid = IWL_MAX_TID_COUNT; 580 } 581 582 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 583 sub_frame_idx = desc->amsdu_info & 584 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 585 586 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 587 dup_data->last_seq[tid] == hdr->seq_ctrl && 588 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 589 return true; 590 591 /* Allow same PN as the first subframe for following sub frames */ 592 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 593 sub_frame_idx > dup_data->last_sub_frame[tid] && 594 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 595 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 596 597 dup_data->last_seq[tid] = hdr->seq_ctrl; 598 dup_data->last_sub_frame[tid] = sub_frame_idx; 599 600 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 601 602 return false; 603 } 604 605 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 606 struct ieee80211_sta *sta, 607 struct napi_struct *napi, 608 struct iwl_mvm_baid_data *baid_data, 609 struct iwl_mvm_reorder_buffer *reorder_buf, 610 u16 nssn) 611 { 612 struct iwl_mvm_reorder_buf_entry *entries = 613 &baid_data->entries[reorder_buf->queue * 614 baid_data->entries_per_queue]; 615 u16 ssn = reorder_buf->head_sn; 616 617 lockdep_assert_held(&reorder_buf->lock); 618 619 while (ieee80211_sn_less(ssn, nssn)) { 620 int index = ssn % baid_data->buf_size; 621 struct sk_buff_head *skb_list = &entries[index].frames; 622 struct sk_buff *skb; 623 624 ssn = ieee80211_sn_inc(ssn); 625 626 /* 627 * Empty the list. Will have more than one frame for A-MSDU. 628 * Empty list is valid as well since nssn indicates frames were 629 * received. 630 */ 631 while ((skb = __skb_dequeue(skb_list))) { 632 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 633 reorder_buf->queue, 634 sta); 635 reorder_buf->num_stored--; 636 } 637 } 638 reorder_buf->head_sn = nssn; 639 } 640 641 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 642 struct iwl_mvm_delba_data *data) 643 { 644 struct iwl_mvm_baid_data *ba_data; 645 struct ieee80211_sta *sta; 646 struct iwl_mvm_reorder_buffer *reorder_buf; 647 u8 baid = data->baid; 648 u32 sta_id; 649 650 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 651 return; 652 653 rcu_read_lock(); 654 655 ba_data = rcu_dereference(mvm->baid_map[baid]); 656 if (WARN_ON_ONCE(!ba_data)) 657 goto out; 658 659 /* pick any STA ID to find the pointer */ 660 sta_id = ffs(ba_data->sta_mask) - 1; 661 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 662 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 663 goto out; 664 665 reorder_buf = &ba_data->reorder_buf[queue]; 666 667 /* release all frames that are in the reorder buffer to the stack */ 668 spin_lock_bh(&reorder_buf->lock); 669 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 670 ieee80211_sn_add(reorder_buf->head_sn, 671 ba_data->buf_size)); 672 spin_unlock_bh(&reorder_buf->lock); 673 674 out: 675 rcu_read_unlock(); 676 } 677 678 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 679 struct napi_struct *napi, 680 u8 baid, u16 nssn, int queue) 681 { 682 struct ieee80211_sta *sta; 683 struct iwl_mvm_reorder_buffer *reorder_buf; 684 struct iwl_mvm_baid_data *ba_data; 685 u32 sta_id; 686 687 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 688 baid, nssn); 689 690 if (IWL_FW_CHECK(mvm, 691 baid == IWL_RX_REORDER_DATA_INVALID_BAID || 692 baid >= ARRAY_SIZE(mvm->baid_map), 693 "invalid BAID from FW: %d\n", baid)) 694 return; 695 696 rcu_read_lock(); 697 698 ba_data = rcu_dereference(mvm->baid_map[baid]); 699 if (!ba_data) { 700 IWL_DEBUG_RX(mvm, 701 "Got valid BAID %d but not allocated, invalid frame release!\n", 702 baid); 703 goto out; 704 } 705 706 /* pick any STA ID to find the pointer */ 707 sta_id = ffs(ba_data->sta_mask) - 1; 708 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 709 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 710 goto out; 711 712 reorder_buf = &ba_data->reorder_buf[queue]; 713 714 spin_lock_bh(&reorder_buf->lock); 715 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 716 reorder_buf, nssn); 717 spin_unlock_bh(&reorder_buf->lock); 718 719 out: 720 rcu_read_unlock(); 721 } 722 723 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 724 struct iwl_rx_cmd_buffer *rxb, int queue) 725 { 726 struct iwl_rx_packet *pkt = rxb_addr(rxb); 727 struct iwl_rxq_sync_notification *notif; 728 struct iwl_mvm_internal_rxq_notif *internal_notif; 729 u32 len = iwl_rx_packet_payload_len(pkt); 730 731 notif = (void *)pkt->data; 732 internal_notif = (void *)notif->payload; 733 734 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 735 "invalid notification size %d (%d)", 736 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 737 return; 738 len -= sizeof(*notif) + sizeof(*internal_notif); 739 740 if (WARN_ONCE(internal_notif->sync && 741 mvm->queue_sync_cookie != internal_notif->cookie, 742 "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n", 743 internal_notif->cookie, mvm->queue_sync_cookie, queue)) 744 return; 745 746 switch (internal_notif->type) { 747 case IWL_MVM_RXQ_EMPTY: 748 WARN_ONCE(len, "invalid empty notification size %d", len); 749 break; 750 case IWL_MVM_RXQ_NOTIF_DEL_BA: 751 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 752 "invalid delba notification size %d (%d)", 753 len, (int)sizeof(struct iwl_mvm_delba_data))) 754 break; 755 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 756 break; 757 default: 758 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 759 } 760 761 if (internal_notif->sync) { 762 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 763 "queue sync: queue %d responded a second time!\n", 764 queue); 765 if (READ_ONCE(mvm->queue_sync_state) == 0) 766 wake_up(&mvm->rx_sync_waitq); 767 } 768 } 769 770 /* 771 * Returns true if the MPDU was buffered\dropped, false if it should be passed 772 * to upper layer. 773 */ 774 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 775 struct napi_struct *napi, 776 int queue, 777 struct ieee80211_sta *sta, 778 struct sk_buff *skb, 779 struct iwl_rx_mpdu_desc *desc) 780 { 781 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 782 struct iwl_mvm_baid_data *baid_data; 783 struct iwl_mvm_reorder_buffer *buffer; 784 u32 reorder = le32_to_cpu(desc->reorder_data); 785 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 786 bool last_subframe = 787 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 788 u8 tid = ieee80211_get_tid(hdr); 789 struct iwl_mvm_reorder_buf_entry *entries; 790 u32 sta_mask; 791 int index; 792 u16 nssn, sn; 793 u8 baid; 794 795 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 796 IWL_RX_MPDU_REORDER_BAID_SHIFT; 797 798 if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000) 799 return false; 800 801 /* 802 * This also covers the case of receiving a Block Ack Request 803 * outside a BA session; we'll pass it to mac80211 and that 804 * then sends a delBA action frame. 805 * This also covers pure monitor mode, in which case we won't 806 * have any BA sessions. 807 */ 808 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 809 return false; 810 811 /* no sta yet */ 812 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 813 "Got valid BAID without a valid station assigned\n")) 814 return false; 815 816 /* not a data packet or a bar */ 817 if (!ieee80211_is_back_req(hdr->frame_control) && 818 (!ieee80211_is_data_qos(hdr->frame_control) || 819 is_multicast_ether_addr(hdr->addr1))) 820 return false; 821 822 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 823 return false; 824 825 baid_data = rcu_dereference(mvm->baid_map[baid]); 826 if (!baid_data) { 827 IWL_DEBUG_RX(mvm, 828 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 829 baid, reorder); 830 return false; 831 } 832 833 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 834 835 if (IWL_FW_CHECK(mvm, 836 tid != baid_data->tid || 837 !(sta_mask & baid_data->sta_mask), 838 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 839 baid, baid_data->sta_mask, baid_data->tid, 840 sta_mask, tid)) 841 return false; 842 843 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 844 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 845 IWL_RX_MPDU_REORDER_SN_SHIFT; 846 847 buffer = &baid_data->reorder_buf[queue]; 848 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 849 850 spin_lock_bh(&buffer->lock); 851 852 if (!buffer->valid) { 853 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 854 spin_unlock_bh(&buffer->lock); 855 return false; 856 } 857 buffer->valid = true; 858 } 859 860 /* drop any duplicated packets */ 861 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) 862 goto drop; 863 864 /* drop any oudated packets */ 865 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) 866 goto drop; 867 868 /* release immediately if allowed by nssn and no stored frames */ 869 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 870 if (!amsdu || last_subframe) 871 buffer->head_sn = nssn; 872 873 spin_unlock_bh(&buffer->lock); 874 return false; 875 } 876 877 /* 878 * release immediately if there are no stored frames, and the sn is 879 * equal to the head. 880 * This can happen due to reorder timer, where NSSN is behind head_sn. 881 * When we released everything, and we got the next frame in the 882 * sequence, according to the NSSN we can't release immediately, 883 * while technically there is no hole and we can move forward. 884 */ 885 if (!buffer->num_stored && sn == buffer->head_sn) { 886 if (!amsdu || last_subframe) 887 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 888 889 spin_unlock_bh(&buffer->lock); 890 return false; 891 } 892 893 /* put in reorder buffer */ 894 index = sn % baid_data->buf_size; 895 __skb_queue_tail(&entries[index].frames, skb); 896 buffer->num_stored++; 897 898 /* 899 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 900 * The reason is that NSSN advances on the first sub-frame, and may 901 * cause the reorder buffer to advance before all the sub-frames arrive. 902 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 903 * SN 1. NSSN for first sub frame will be 3 with the result of driver 904 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 905 * already ahead and it will be dropped. 906 * If the last sub-frame is not on this queue - we will get frame 907 * release notification with up to date NSSN. 908 * If this is the first frame that is stored in the buffer, the head_sn 909 * may be outdated. Update it based on the last NSSN to make sure it 910 * will be released when the frame release notification arrives. 911 */ 912 if (!amsdu || last_subframe) 913 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 914 buffer, nssn); 915 else if (buffer->num_stored == 1) 916 buffer->head_sn = nssn; 917 918 spin_unlock_bh(&buffer->lock); 919 return true; 920 921 drop: 922 kfree_skb(skb); 923 spin_unlock_bh(&buffer->lock); 924 return true; 925 } 926 927 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 928 u32 reorder_data, u8 baid) 929 { 930 unsigned long now = jiffies; 931 unsigned long timeout; 932 struct iwl_mvm_baid_data *data; 933 934 rcu_read_lock(); 935 936 data = rcu_dereference(mvm->baid_map[baid]); 937 if (!data) { 938 IWL_DEBUG_RX(mvm, 939 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 940 baid, reorder_data); 941 goto out; 942 } 943 944 if (!data->timeout) 945 goto out; 946 947 timeout = data->timeout; 948 /* 949 * Do not update last rx all the time to avoid cache bouncing 950 * between the rx queues. 951 * Update it every timeout. Worst case is the session will 952 * expire after ~ 2 * timeout, which doesn't matter that much. 953 */ 954 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 955 /* Update is atomic */ 956 data->last_rx = now; 957 958 out: 959 rcu_read_unlock(); 960 } 961 962 static void iwl_mvm_flip_address(u8 *addr) 963 { 964 int i; 965 u8 mac_addr[ETH_ALEN]; 966 967 for (i = 0; i < ETH_ALEN; i++) 968 mac_addr[i] = addr[ETH_ALEN - i - 1]; 969 ether_addr_copy(addr, mac_addr); 970 } 971 972 struct iwl_mvm_rx_phy_data { 973 enum iwl_rx_phy_info_type info_type; 974 __le32 d0, d1, d2, d3, eht_d4, d5; 975 __le16 d4; 976 bool with_data; 977 bool first_subframe; 978 __le32 rx_vec[4]; 979 980 u32 rate_n_flags; 981 u32 gp2_on_air_rise; 982 u16 phy_info; 983 u8 energy_a, energy_b; 984 u8 channel; 985 }; 986 987 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 988 struct iwl_mvm_rx_phy_data *phy_data, 989 struct ieee80211_radiotap_he_mu *he_mu) 990 { 991 u32 phy_data2 = le32_to_cpu(phy_data->d2); 992 u32 phy_data3 = le32_to_cpu(phy_data->d3); 993 u16 phy_data4 = le16_to_cpu(phy_data->d4); 994 u32 rate_n_flags = phy_data->rate_n_flags; 995 996 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 997 he_mu->flags1 |= 998 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 999 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1000 1001 he_mu->flags1 |= 1002 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1003 phy_data4), 1004 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1005 1006 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1007 phy_data2); 1008 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1009 phy_data3); 1010 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1011 phy_data2); 1012 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1013 phy_data3); 1014 } 1015 1016 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1017 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1018 he_mu->flags1 |= 1019 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1020 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1021 1022 he_mu->flags2 |= 1023 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1024 phy_data4), 1025 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1026 1027 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1028 phy_data2); 1029 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1030 phy_data3); 1031 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1032 phy_data2); 1033 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1034 phy_data3); 1035 } 1036 } 1037 1038 static void 1039 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1040 struct ieee80211_radiotap_he *he, 1041 struct ieee80211_radiotap_he_mu *he_mu, 1042 struct ieee80211_rx_status *rx_status) 1043 { 1044 /* 1045 * Unfortunately, we have to leave the mac80211 data 1046 * incorrect for the case that we receive an HE-MU 1047 * transmission and *don't* have the HE phy data (due 1048 * to the bits being used for TSF). This shouldn't 1049 * happen though as management frames where we need 1050 * the TSF/timers are not be transmitted in HE-MU. 1051 */ 1052 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1053 u32 rate_n_flags = phy_data->rate_n_flags; 1054 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1055 u8 offs = 0; 1056 1057 rx_status->bw = RATE_INFO_BW_HE_RU; 1058 1059 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1060 1061 switch (ru) { 1062 case 0 ... 36: 1063 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1064 offs = ru; 1065 break; 1066 case 37 ... 52: 1067 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1068 offs = ru - 37; 1069 break; 1070 case 53 ... 60: 1071 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1072 offs = ru - 53; 1073 break; 1074 case 61 ... 64: 1075 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1076 offs = ru - 61; 1077 break; 1078 case 65 ... 66: 1079 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1080 offs = ru - 65; 1081 break; 1082 case 67: 1083 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1084 break; 1085 case 68: 1086 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1087 break; 1088 } 1089 he->data2 |= le16_encode_bits(offs, 1090 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1091 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1092 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1093 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1094 he->data2 |= 1095 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1096 1097 #define CHECK_BW(bw) \ 1098 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1099 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1100 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1101 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1102 CHECK_BW(20); 1103 CHECK_BW(40); 1104 CHECK_BW(80); 1105 CHECK_BW(160); 1106 1107 if (he_mu) 1108 he_mu->flags2 |= 1109 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1110 rate_n_flags), 1111 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1112 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1113 he->data6 |= 1114 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1115 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1116 rate_n_flags), 1117 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1118 } 1119 1120 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1121 struct iwl_mvm_rx_phy_data *phy_data, 1122 struct ieee80211_radiotap_he *he, 1123 struct ieee80211_radiotap_he_mu *he_mu, 1124 struct ieee80211_rx_status *rx_status, 1125 int queue) 1126 { 1127 switch (phy_data->info_type) { 1128 case IWL_RX_PHY_INFO_TYPE_NONE: 1129 case IWL_RX_PHY_INFO_TYPE_CCK: 1130 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1131 case IWL_RX_PHY_INFO_TYPE_HT: 1132 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1133 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1134 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1135 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1136 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1137 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1138 return; 1139 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1140 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1141 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1142 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1143 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1144 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1145 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1146 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1147 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1148 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1149 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1150 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1151 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1152 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1153 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1154 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1155 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1156 fallthrough; 1157 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1158 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1159 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1160 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1161 /* HE common */ 1162 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1163 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1164 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1165 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1166 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1167 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1168 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1169 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1170 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1171 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1172 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1173 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1174 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1175 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1176 IWL_RX_PHY_DATA0_HE_UPLINK), 1177 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1178 } 1179 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1180 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1181 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1182 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1183 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1184 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1185 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1186 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1187 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1188 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1189 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1190 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1191 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1192 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1193 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1194 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1195 IWL_RX_PHY_DATA0_HE_DOPPLER), 1196 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1197 break; 1198 } 1199 1200 switch (phy_data->info_type) { 1201 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1202 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1203 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1204 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1205 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1206 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1207 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1208 break; 1209 default: 1210 /* nothing here */ 1211 break; 1212 } 1213 1214 switch (phy_data->info_type) { 1215 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1216 he_mu->flags1 |= 1217 le16_encode_bits(le16_get_bits(phy_data->d4, 1218 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1219 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1220 he_mu->flags1 |= 1221 le16_encode_bits(le16_get_bits(phy_data->d4, 1222 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1223 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1224 he_mu->flags2 |= 1225 le16_encode_bits(le16_get_bits(phy_data->d4, 1226 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1227 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1228 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1229 fallthrough; 1230 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1231 he_mu->flags2 |= 1232 le16_encode_bits(le32_get_bits(phy_data->d1, 1233 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1234 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1235 he_mu->flags2 |= 1236 le16_encode_bits(le32_get_bits(phy_data->d1, 1237 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1238 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1239 fallthrough; 1240 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1241 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1242 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1243 break; 1244 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1245 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1246 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1247 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1248 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1249 break; 1250 default: 1251 /* nothing */ 1252 break; 1253 } 1254 } 1255 1256 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1257 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1258 1259 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1260 typeof(enc_bits) _enc_bits = enc_bits; \ 1261 typeof(usig) _usig = usig; \ 1262 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1263 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1264 } while (0) 1265 1266 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1267 eht->data[(rt_data)] |= \ 1268 (cpu_to_le32 \ 1269 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1270 LE32_DEC_ENC(data ## fw_data, \ 1271 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1272 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1273 1274 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1275 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1276 1277 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1278 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1279 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1280 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1281 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1282 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1283 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1284 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1285 1286 #define IWL_RX_RU_DATA_A1 2 1287 #define IWL_RX_RU_DATA_A2 2 1288 #define IWL_RX_RU_DATA_B1 2 1289 #define IWL_RX_RU_DATA_B2 4 1290 #define IWL_RX_RU_DATA_C1 3 1291 #define IWL_RX_RU_DATA_C2 3 1292 #define IWL_RX_RU_DATA_D1 4 1293 #define IWL_RX_RU_DATA_D2 4 1294 1295 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1296 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1297 rt_ru, \ 1298 IWL_RX_RU_DATA_ ## fw_ru, \ 1299 fw_ru) 1300 1301 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1302 struct iwl_mvm_rx_phy_data *phy_data, 1303 struct ieee80211_rx_status *rx_status, 1304 struct ieee80211_radiotap_eht *eht, 1305 struct ieee80211_radiotap_eht_usig *usig) 1306 { 1307 if (phy_data->with_data) { 1308 __le32 data1 = phy_data->d1; 1309 __le32 data2 = phy_data->d2; 1310 __le32 data3 = phy_data->d3; 1311 __le32 data4 = phy_data->eht_d4; 1312 __le32 data5 = phy_data->d5; 1313 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1314 1315 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1316 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1317 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1318 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1319 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1320 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1321 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1322 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1323 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1324 IWL_MVM_ENC_USIG_VALUE_MASK 1325 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1326 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1327 1328 eht->user_info[0] |= 1329 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1330 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1331 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1332 1333 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1334 eht->data[7] |= LE32_DEC_ENC 1335 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1336 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1337 1338 /* 1339 * Hardware labels the content channels/RU allocation values 1340 * as follows: 1341 * Content Channel 1 Content Channel 2 1342 * 20 MHz: A1 1343 * 40 MHz: A1 B1 1344 * 80 MHz: A1 C1 B1 D1 1345 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1346 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1347 * 1348 * However firmware can only give us A1-D2, so the higher 1349 * frequencies are missing. 1350 */ 1351 1352 switch (phy_bw) { 1353 case RATE_MCS_CHAN_WIDTH_320: 1354 /* additional values are missing in RX metadata */ 1355 case RATE_MCS_CHAN_WIDTH_160: 1356 /* content channel 1 */ 1357 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1358 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1359 /* content channel 2 */ 1360 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1361 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1362 fallthrough; 1363 case RATE_MCS_CHAN_WIDTH_80: 1364 /* content channel 1 */ 1365 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1366 /* content channel 2 */ 1367 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1368 fallthrough; 1369 case RATE_MCS_CHAN_WIDTH_40: 1370 /* content channel 2 */ 1371 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1372 fallthrough; 1373 case RATE_MCS_CHAN_WIDTH_20: 1374 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1375 break; 1376 } 1377 } else { 1378 __le32 usig_a1 = phy_data->rx_vec[0]; 1379 __le32 usig_a2 = phy_data->rx_vec[1]; 1380 1381 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1382 IWL_RX_USIG_A1_DISREGARD, 1383 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1384 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1385 IWL_RX_USIG_A1_VALIDATE, 1386 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1387 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1388 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1389 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1390 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1391 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1392 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1393 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1394 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1395 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1396 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1397 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1398 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1399 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1400 IWL_RX_USIG_A2_EHT_SIG_MCS, 1401 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1402 IWL_MVM_ENC_USIG_VALUE_MASK 1403 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1404 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1405 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1406 IWL_RX_USIG_A2_EHT_CRC_OK, 1407 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1408 } 1409 } 1410 1411 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1412 struct iwl_mvm_rx_phy_data *phy_data, 1413 struct ieee80211_rx_status *rx_status, 1414 struct ieee80211_radiotap_eht *eht, 1415 struct ieee80211_radiotap_eht_usig *usig) 1416 { 1417 if (phy_data->with_data) { 1418 __le32 data5 = phy_data->d5; 1419 1420 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1421 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1422 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1423 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1424 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1425 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1426 1427 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1428 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1429 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1430 } else { 1431 __le32 usig_a1 = phy_data->rx_vec[0]; 1432 __le32 usig_a2 = phy_data->rx_vec[1]; 1433 1434 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1435 IWL_RX_USIG_A1_DISREGARD, 1436 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1437 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1438 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1439 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1440 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1441 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1442 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1443 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1444 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1445 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1446 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1447 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1448 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1449 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1450 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1451 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1452 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1453 IWL_RX_USIG_A2_EHT_CRC_OK, 1454 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1455 } 1456 } 1457 1458 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1459 struct ieee80211_rx_status *rx_status, 1460 struct ieee80211_radiotap_eht *eht) 1461 { 1462 u32 ru = le32_get_bits(eht->data[8], 1463 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1464 enum nl80211_eht_ru_alloc nl_ru; 1465 1466 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1467 * in an EHT variant User Info field 1468 */ 1469 1470 switch (ru) { 1471 case 0 ... 36: 1472 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1473 break; 1474 case 37 ... 52: 1475 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1476 break; 1477 case 53 ... 60: 1478 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1479 break; 1480 case 61 ... 64: 1481 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1482 break; 1483 case 65 ... 66: 1484 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1485 break; 1486 case 67: 1487 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1488 break; 1489 case 68: 1490 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1491 break; 1492 case 69: 1493 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1494 break; 1495 case 70 ... 81: 1496 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1497 break; 1498 case 82 ... 89: 1499 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1500 break; 1501 case 90 ... 93: 1502 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1503 break; 1504 case 94 ... 95: 1505 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1506 break; 1507 case 96 ... 99: 1508 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1509 break; 1510 case 100 ... 103: 1511 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1512 break; 1513 case 104: 1514 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1515 break; 1516 case 105 ... 106: 1517 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1518 break; 1519 default: 1520 return; 1521 } 1522 1523 rx_status->bw = RATE_INFO_BW_EHT_RU; 1524 rx_status->eht.ru = nl_ru; 1525 } 1526 1527 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1528 struct iwl_mvm_rx_phy_data *phy_data, 1529 struct ieee80211_rx_status *rx_status, 1530 struct ieee80211_radiotap_eht *eht, 1531 struct ieee80211_radiotap_eht_usig *usig) 1532 1533 { 1534 __le32 data0 = phy_data->d0; 1535 __le32 data1 = phy_data->d1; 1536 __le32 usig_a1 = phy_data->rx_vec[0]; 1537 u8 info_type = phy_data->info_type; 1538 1539 /* Not in EHT range */ 1540 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1541 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1542 return; 1543 1544 usig->common |= cpu_to_le32 1545 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1546 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1547 if (phy_data->with_data) { 1548 usig->common |= LE32_DEC_ENC(data0, 1549 IWL_RX_PHY_DATA0_EHT_UPLINK, 1550 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1551 usig->common |= LE32_DEC_ENC(data0, 1552 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1553 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1554 } else { 1555 usig->common |= LE32_DEC_ENC(usig_a1, 1556 IWL_RX_USIG_A1_UL_FLAG, 1557 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1558 usig->common |= LE32_DEC_ENC(usig_a1, 1559 IWL_RX_USIG_A1_BSS_COLOR, 1560 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1561 } 1562 1563 if (fw_has_capa(&mvm->fw->ucode_capa, 1564 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1565 usig->common |= 1566 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1567 usig->common |= 1568 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1569 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1570 } 1571 1572 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1573 eht->data[0] |= LE32_DEC_ENC(data0, 1574 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1575 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1576 1577 /* All RU allocating size/index is in TB format */ 1578 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1579 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1580 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1581 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1582 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1583 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1584 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1585 1586 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1587 1588 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1589 * which is on only in case of monitor mode so no need to check monitor 1590 * mode 1591 */ 1592 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1593 eht->data[1] |= 1594 le32_encode_bits(mvm->monitor_p80, 1595 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1596 1597 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1598 if (phy_data->with_data) 1599 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1600 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1601 else 1602 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1603 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1604 1605 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1606 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1607 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1608 1609 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1610 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1611 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1612 1613 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1614 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1615 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1616 1617 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1618 1619 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1620 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1621 1622 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1623 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1624 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1625 1626 /* 1627 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1628 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1629 */ 1630 1631 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1632 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1633 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1634 1635 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1636 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1637 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1638 1639 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1640 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1641 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1642 } 1643 1644 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1645 struct iwl_mvm_rx_phy_data *phy_data, 1646 int queue) 1647 { 1648 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1649 1650 struct ieee80211_radiotap_eht *eht; 1651 struct ieee80211_radiotap_eht_usig *usig; 1652 size_t eht_len = sizeof(*eht); 1653 1654 u32 rate_n_flags = phy_data->rate_n_flags; 1655 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1656 /* EHT and HE have the same valus for LTF */ 1657 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1658 u16 phy_info = phy_data->phy_info; 1659 u32 bw; 1660 1661 /* u32 for 1 user_info */ 1662 if (phy_data->with_data) 1663 eht_len += sizeof(u32); 1664 1665 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1666 1667 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1668 sizeof(*usig)); 1669 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1670 usig->common |= 1671 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1672 1673 /* specific handling for 320MHz */ 1674 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1675 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1676 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1677 le32_to_cpu(phy_data->d0)); 1678 1679 usig->common |= cpu_to_le32 1680 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1681 1682 /* report the AMPDU-EOF bit on single frames */ 1683 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1684 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1685 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1686 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1687 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1688 } 1689 1690 /* update aggregation data for monitor sake on default queue */ 1691 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1692 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1693 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1694 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1695 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1696 } 1697 1698 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1699 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1700 1701 #define CHECK_TYPE(F) \ 1702 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1703 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1704 1705 CHECK_TYPE(SU); 1706 CHECK_TYPE(EXT_SU); 1707 CHECK_TYPE(MU); 1708 CHECK_TYPE(TRIG); 1709 1710 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1711 case 0: 1712 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1713 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1714 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1715 } else { 1716 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1717 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1718 } 1719 break; 1720 case 1: 1721 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1722 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1723 break; 1724 case 2: 1725 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1726 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1727 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1728 else 1729 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1730 break; 1731 case 3: 1732 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1733 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1734 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1735 } 1736 break; 1737 default: 1738 /* nothing here */ 1739 break; 1740 } 1741 1742 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1743 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1744 eht->data[0] |= cpu_to_le32 1745 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1746 ltf) | 1747 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1748 rx_status->eht.gi)); 1749 } 1750 1751 1752 if (!phy_data->with_data) { 1753 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1754 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1755 eht->data[7] |= 1756 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1757 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1758 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1759 if (rate_n_flags & RATE_MCS_BF_MSK) 1760 eht->data[7] |= 1761 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1762 } else { 1763 eht->user_info[0] |= 1764 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1765 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1766 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1767 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1768 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1769 1770 if (rate_n_flags & RATE_MCS_BF_MSK) 1771 eht->user_info[0] |= 1772 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1773 1774 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1775 eht->user_info[0] |= 1776 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1777 1778 eht->user_info[0] |= cpu_to_le32 1779 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1780 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1781 rate_n_flags)) | 1782 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1783 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1784 } 1785 } 1786 1787 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1788 struct iwl_mvm_rx_phy_data *phy_data, 1789 int queue) 1790 { 1791 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1792 struct ieee80211_radiotap_he *he = NULL; 1793 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1794 u32 rate_n_flags = phy_data->rate_n_flags; 1795 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1796 u8 ltf; 1797 static const struct ieee80211_radiotap_he known = { 1798 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1799 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1800 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1801 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1802 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1803 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1804 }; 1805 static const struct ieee80211_radiotap_he_mu mu_known = { 1806 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1807 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1808 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1809 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1810 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1811 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1812 }; 1813 u16 phy_info = phy_data->phy_info; 1814 1815 he = skb_put_data(skb, &known, sizeof(known)); 1816 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1817 1818 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1819 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1820 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1821 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1822 } 1823 1824 /* report the AMPDU-EOF bit on single frames */ 1825 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1826 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1827 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1828 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1829 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1830 } 1831 1832 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1833 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1834 queue); 1835 1836 /* update aggregation data for monitor sake on default queue */ 1837 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1838 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1839 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1840 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1841 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1842 } 1843 1844 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1845 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1846 rx_status->bw = RATE_INFO_BW_HE_RU; 1847 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1848 } 1849 1850 /* actually data is filled in mac80211 */ 1851 if (he_type == RATE_MCS_HE_TYPE_SU || 1852 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1853 he->data1 |= 1854 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1855 1856 #define CHECK_TYPE(F) \ 1857 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1858 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1859 1860 CHECK_TYPE(SU); 1861 CHECK_TYPE(EXT_SU); 1862 CHECK_TYPE(MU); 1863 CHECK_TYPE(TRIG); 1864 1865 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1866 1867 if (rate_n_flags & RATE_MCS_BF_MSK) 1868 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1869 1870 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1871 RATE_MCS_HE_GI_LTF_POS) { 1872 case 0: 1873 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1874 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1875 else 1876 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1877 if (he_type == RATE_MCS_HE_TYPE_MU) 1878 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1879 else 1880 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1881 break; 1882 case 1: 1883 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1884 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1885 else 1886 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1887 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1888 break; 1889 case 2: 1890 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1891 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1892 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1893 } else { 1894 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1895 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1896 } 1897 break; 1898 case 3: 1899 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1900 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1901 break; 1902 case 4: 1903 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1904 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1905 break; 1906 default: 1907 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1908 } 1909 1910 he->data5 |= le16_encode_bits(ltf, 1911 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1912 } 1913 1914 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1915 struct iwl_mvm_rx_phy_data *phy_data) 1916 { 1917 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1918 struct ieee80211_radiotap_lsig *lsig; 1919 1920 switch (phy_data->info_type) { 1921 case IWL_RX_PHY_INFO_TYPE_HT: 1922 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1923 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1924 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1925 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1926 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1927 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1928 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1929 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1930 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1931 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1932 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1933 lsig = skb_put(skb, sizeof(*lsig)); 1934 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1935 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1936 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1937 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1938 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1939 break; 1940 default: 1941 break; 1942 } 1943 } 1944 1945 struct iwl_rx_sta_csa { 1946 bool all_sta_unblocked; 1947 struct ieee80211_vif *vif; 1948 }; 1949 1950 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1951 { 1952 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1953 struct iwl_rx_sta_csa *rx_sta_csa = data; 1954 1955 if (mvmsta->vif != rx_sta_csa->vif) 1956 return; 1957 1958 if (mvmsta->disable_tx) 1959 rx_sta_csa->all_sta_unblocked = false; 1960 } 1961 1962 /* 1963 * Note: requires also rx_status->band to be prefilled, as well 1964 * as phy_data (apart from phy_data->info_type) 1965 * Note: desc/hdr may be NULL 1966 */ 1967 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 1968 struct iwl_rx_mpdu_desc *desc, 1969 struct ieee80211_hdr *hdr, 1970 struct sk_buff *skb, 1971 struct iwl_mvm_rx_phy_data *phy_data, 1972 int queue) 1973 { 1974 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1975 u32 rate_n_flags = phy_data->rate_n_flags; 1976 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1977 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1978 bool is_sgi; 1979 1980 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 1981 1982 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1983 phy_data->info_type = 1984 le32_get_bits(phy_data->d1, 1985 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1986 1987 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1988 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1989 case RATE_MCS_CHAN_WIDTH_20: 1990 break; 1991 case RATE_MCS_CHAN_WIDTH_40: 1992 rx_status->bw = RATE_INFO_BW_40; 1993 break; 1994 case RATE_MCS_CHAN_WIDTH_80: 1995 rx_status->bw = RATE_INFO_BW_80; 1996 break; 1997 case RATE_MCS_CHAN_WIDTH_160: 1998 rx_status->bw = RATE_INFO_BW_160; 1999 break; 2000 case RATE_MCS_CHAN_WIDTH_320: 2001 rx_status->bw = RATE_INFO_BW_320; 2002 break; 2003 } 2004 2005 /* must be before L-SIG data */ 2006 if (format == RATE_MCS_MOD_TYPE_HE) 2007 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2008 2009 iwl_mvm_decode_lsig(skb, phy_data); 2010 2011 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2012 2013 if (mvm->rx_ts_ptp && mvm->monitor_on) { 2014 u64 adj_time = 2015 iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC); 2016 2017 rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC); 2018 rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64; 2019 rx_status->flag &= ~RX_FLAG_MACTIME; 2020 } 2021 2022 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2023 rx_status->band); 2024 iwl_mvm_get_signal_strength(mvm, desc, hdr, rx_status, rate_n_flags, 2025 phy_data->energy_a, phy_data->energy_b); 2026 2027 /* using TLV format and must be after all fixed len fields */ 2028 if (format == RATE_MCS_MOD_TYPE_EHT) 2029 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2030 2031 if (unlikely(mvm->monitor_on)) 2032 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2033 2034 is_sgi = format == RATE_MCS_MOD_TYPE_HE ? 2035 iwl_he_is_sgi(rate_n_flags) : 2036 rate_n_flags & RATE_MCS_SGI_MSK; 2037 2038 if (!(format == RATE_MCS_MOD_TYPE_CCK) && is_sgi) 2039 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2040 2041 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2042 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2043 2044 switch (format) { 2045 case RATE_MCS_MOD_TYPE_VHT: 2046 rx_status->encoding = RX_ENC_VHT; 2047 break; 2048 case RATE_MCS_MOD_TYPE_HE: 2049 rx_status->encoding = RX_ENC_HE; 2050 rx_status->he_dcm = 2051 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2052 break; 2053 case RATE_MCS_MOD_TYPE_EHT: 2054 rx_status->encoding = RX_ENC_EHT; 2055 break; 2056 } 2057 2058 switch (format) { 2059 case RATE_MCS_MOD_TYPE_HT: 2060 rx_status->encoding = RX_ENC_HT; 2061 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2062 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2063 break; 2064 case RATE_MCS_MOD_TYPE_VHT: 2065 case RATE_MCS_MOD_TYPE_HE: 2066 case RATE_MCS_MOD_TYPE_EHT: 2067 rx_status->nss = 2068 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2069 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2070 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2071 break; 2072 default: { 2073 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2074 rx_status->band); 2075 2076 rx_status->rate_idx = rate; 2077 2078 if ((rate < 0 || rate > 0xFF)) { 2079 rx_status->rate_idx = 0; 2080 if (net_ratelimit()) 2081 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2082 rate_n_flags, rx_status->band); 2083 } 2084 2085 break; 2086 } 2087 } 2088 } 2089 2090 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2091 struct iwl_rx_cmd_buffer *rxb, int queue) 2092 { 2093 struct ieee80211_rx_status *rx_status; 2094 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2095 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2096 struct ieee80211_hdr *hdr; 2097 u32 len; 2098 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2099 struct ieee80211_sta *sta = NULL; 2100 struct sk_buff *skb; 2101 u8 crypt_len = 0; 2102 u8 sta_id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2103 size_t desc_size; 2104 struct iwl_mvm_rx_phy_data phy_data = {}; 2105 u32 format; 2106 2107 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2108 return; 2109 2110 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2111 desc_size = sizeof(*desc); 2112 else 2113 desc_size = IWL_RX_DESC_SIZE_V1; 2114 2115 if (unlikely(pkt_len < desc_size)) { 2116 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2117 return; 2118 } 2119 2120 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2121 phy_data.rate_n_flags = 2122 iwl_mvm_v3_rate_from_fw(desc->v3.rate_n_flags, 2123 mvm->fw_rates_ver); 2124 phy_data.channel = desc->v3.channel; 2125 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2126 phy_data.energy_a = desc->v3.energy_a; 2127 phy_data.energy_b = desc->v3.energy_b; 2128 2129 phy_data.d0 = desc->v3.phy_data0; 2130 phy_data.d1 = desc->v3.phy_data1; 2131 phy_data.d2 = desc->v3.phy_data2; 2132 phy_data.d3 = desc->v3.phy_data3; 2133 phy_data.eht_d4 = desc->phy_eht_data4; 2134 phy_data.d5 = desc->v3.phy_data5; 2135 } else { 2136 phy_data.rate_n_flags = 2137 iwl_mvm_v3_rate_from_fw(desc->v1.rate_n_flags, 2138 mvm->fw_rates_ver); 2139 phy_data.channel = desc->v1.channel; 2140 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2141 phy_data.energy_a = desc->v1.energy_a; 2142 phy_data.energy_b = desc->v1.energy_b; 2143 2144 phy_data.d0 = desc->v1.phy_data0; 2145 phy_data.d1 = desc->v1.phy_data1; 2146 phy_data.d2 = desc->v1.phy_data2; 2147 phy_data.d3 = desc->v1.phy_data3; 2148 } 2149 2150 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2151 2152 len = le16_to_cpu(desc->mpdu_len); 2153 2154 if (unlikely(len + desc_size > pkt_len)) { 2155 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2156 return; 2157 } 2158 2159 phy_data.with_data = true; 2160 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2161 phy_data.d4 = desc->phy_data4; 2162 2163 hdr = (void *)(pkt->data + desc_size); 2164 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2165 * ieee80211_hdr pulled. 2166 */ 2167 skb = alloc_skb(128, GFP_ATOMIC); 2168 if (!skb) { 2169 IWL_ERR(mvm, "alloc_skb failed\n"); 2170 return; 2171 } 2172 2173 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2174 /* 2175 * If the device inserted padding it means that (it thought) 2176 * the 802.11 header wasn't a multiple of 4 bytes long. In 2177 * this case, reserve two bytes at the start of the SKB to 2178 * align the payload properly in case we end up copying it. 2179 */ 2180 skb_reserve(skb, 2); 2181 } 2182 2183 rx_status = IEEE80211_SKB_RXCB(skb); 2184 2185 /* 2186 * Keep packets with CRC errors (and with overrun) for monitor mode 2187 * (otherwise the firmware discards them) but mark them as bad. 2188 */ 2189 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2190 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2191 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2192 le32_to_cpu(desc->status)); 2193 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2194 } 2195 2196 /* set the preamble flag if appropriate */ 2197 if (format == RATE_MCS_MOD_TYPE_CCK && 2198 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2199 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2200 2201 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2202 u64 tsf_on_air_rise; 2203 2204 if (mvm->trans->mac_cfg->device_family >= 2205 IWL_DEVICE_FAMILY_AX210) 2206 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2207 else 2208 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2209 2210 rx_status->mactime = tsf_on_air_rise; 2211 /* TSF as indicated by the firmware is at INA time */ 2212 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2213 } 2214 2215 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2216 u8 band = u8_get_bits(desc->mac_phy_band, 2217 IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK); 2218 2219 rx_status->band = iwl_mvm_nl80211_band_from_phy(band); 2220 } else { 2221 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2222 NL80211_BAND_2GHZ; 2223 } 2224 2225 /* update aggregation data for monitor sake on default queue */ 2226 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2227 bool toggle_bit; 2228 2229 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2230 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2231 /* 2232 * Toggle is switched whenever new aggregation starts. Make 2233 * sure ampdu_reference is never 0 so we can later use it to 2234 * see if the frame was really part of an A-MPDU or not. 2235 */ 2236 if (toggle_bit != mvm->ampdu_toggle) { 2237 mvm->ampdu_ref++; 2238 if (mvm->ampdu_ref == 0) 2239 mvm->ampdu_ref++; 2240 mvm->ampdu_toggle = toggle_bit; 2241 phy_data.first_subframe = true; 2242 } 2243 rx_status->ampdu_reference = mvm->ampdu_ref; 2244 } 2245 2246 rcu_read_lock(); 2247 2248 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2249 if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) { 2250 struct ieee80211_link_sta *link_sta; 2251 2252 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 2253 if (IS_ERR(sta)) 2254 sta = NULL; 2255 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]); 2256 2257 if (sta && sta->valid_links && link_sta) { 2258 rx_status->link_valid = 1; 2259 rx_status->link_id = link_sta->link_id; 2260 } 2261 } 2262 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2263 /* 2264 * This is fine since we prevent two stations with the same 2265 * address from being added. 2266 */ 2267 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2268 } 2269 2270 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2271 le32_to_cpu(pkt->len_n_flags), queue, 2272 &crypt_len)) { 2273 kfree_skb(skb); 2274 goto out; 2275 } 2276 2277 iwl_mvm_rx_fill_status(mvm, desc, hdr, skb, &phy_data, queue); 2278 2279 if (sta) { 2280 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2281 struct ieee80211_vif *tx_blocked_vif = 2282 rcu_dereference(mvm->csa_tx_blocked_vif); 2283 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2284 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2285 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2286 struct iwl_fw_dbg_trigger_tlv *trig; 2287 struct ieee80211_vif *vif = mvmsta->vif; 2288 2289 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2290 !is_multicast_ether_addr(hdr->addr1) && 2291 ieee80211_is_data(hdr->frame_control) && 2292 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2293 schedule_delayed_work(&mvm->tcm.work, 0); 2294 2295 /* 2296 * We have tx blocked stations (with CS bit). If we heard 2297 * frames from a blocked station on a new channel we can 2298 * TX to it again. 2299 */ 2300 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2301 struct iwl_mvm_vif *mvmvif = 2302 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2303 struct iwl_rx_sta_csa rx_sta_csa = { 2304 .all_sta_unblocked = true, 2305 .vif = tx_blocked_vif, 2306 }; 2307 2308 if (mvmvif->csa_target_freq == rx_status->freq) 2309 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2310 false); 2311 ieee80211_iterate_stations_atomic(mvm->hw, 2312 iwl_mvm_rx_get_sta_block_tx, 2313 &rx_sta_csa); 2314 2315 if (rx_sta_csa.all_sta_unblocked) { 2316 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2317 /* Unblock BCAST / MCAST station */ 2318 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2319 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2320 } 2321 } 2322 2323 rs_update_last_rssi(mvm, mvmsta, rx_status); 2324 2325 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2326 ieee80211_vif_to_wdev(vif), 2327 FW_DBG_TRIGGER_RSSI); 2328 2329 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2330 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2331 s32 rssi; 2332 2333 rssi_trig = (void *)trig->data; 2334 rssi = le32_to_cpu(rssi_trig->rssi); 2335 2336 if (rx_status->signal < rssi) 2337 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2338 NULL); 2339 } 2340 2341 if (ieee80211_is_data(hdr->frame_control)) 2342 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2343 2344 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2345 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", 2346 le16_to_cpu(hdr->seq_ctrl)); 2347 kfree_skb(skb); 2348 goto out; 2349 } 2350 2351 /* 2352 * Our hardware de-aggregates AMSDUs but copies the mac header 2353 * as it to the de-aggregated MPDUs. We need to turn off the 2354 * AMSDU bit in the QoS control ourselves. 2355 * In addition, HW reverses addr3 and addr4 - reverse it back. 2356 */ 2357 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2358 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2359 u8 *qc = ieee80211_get_qos_ctl(hdr); 2360 2361 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2362 2363 if (mvm->trans->mac_cfg->device_family == 2364 IWL_DEVICE_FAMILY_9000) { 2365 iwl_mvm_flip_address(hdr->addr3); 2366 2367 if (ieee80211_has_a4(hdr->frame_control)) 2368 iwl_mvm_flip_address(hdr->addr4); 2369 } 2370 } 2371 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2372 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2373 2374 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2375 } 2376 2377 if (ieee80211_is_data(hdr->frame_control)) { 2378 u8 sub_frame_idx = desc->amsdu_info & 2379 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 2380 2381 /* 0 means not an A-MSDU, and 1 means a new A-MSDU */ 2382 if (!sub_frame_idx || sub_frame_idx == 1) 2383 iwl_mvm_count_mpdu(mvmsta, sta_id, 1, false, 2384 queue); 2385 } 2386 } 2387 2388 /* management stuff on default queue */ 2389 if (!queue) { 2390 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2391 ieee80211_is_probe_resp(hdr->frame_control)) && 2392 mvm->sched_scan_pass_all == 2393 SCHED_SCAN_PASS_ALL_ENABLED)) 2394 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2395 2396 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2397 ieee80211_is_probe_resp(hdr->frame_control))) 2398 rx_status->boottime_ns = ktime_get_boottime_ns(); 2399 } 2400 2401 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2402 kfree_skb(skb); 2403 goto out; 2404 } 2405 2406 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2407 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2408 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2409 if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2410 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2411 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2412 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2413 2414 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta); 2415 } 2416 out: 2417 rcu_read_unlock(); 2418 } 2419 2420 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2421 struct iwl_rx_cmd_buffer *rxb, int queue) 2422 { 2423 struct ieee80211_rx_status *rx_status; 2424 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2425 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2426 u32 rssi; 2427 struct ieee80211_sta *sta = NULL; 2428 struct sk_buff *skb; 2429 struct iwl_mvm_rx_phy_data phy_data; 2430 u32 format; 2431 2432 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2433 return; 2434 2435 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2436 return; 2437 2438 rssi = le32_to_cpu(desc->rssi); 2439 phy_data.d0 = desc->phy_info[0]; 2440 phy_data.d1 = desc->phy_info[1]; 2441 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2442 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2443 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2444 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2445 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2446 phy_data.with_data = false; 2447 phy_data.rx_vec[0] = desc->rx_vec[0]; 2448 phy_data.rx_vec[1] = desc->rx_vec[1]; 2449 2450 phy_data.rate_n_flags = iwl_mvm_v3_rate_from_fw(desc->rate, 2451 mvm->fw_rates_ver); 2452 2453 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2454 2455 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2456 RX_NO_DATA_NOTIF, 0) >= 3) { 2457 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2458 sizeof(struct iwl_rx_no_data_ver_3))) 2459 /* invalid len for ver 3 */ 2460 return; 2461 phy_data.rx_vec[2] = desc->rx_vec[2]; 2462 phy_data.rx_vec[3] = desc->rx_vec[3]; 2463 } else { 2464 if (format == RATE_MCS_MOD_TYPE_EHT) 2465 /* no support for EHT before version 3 API */ 2466 return; 2467 } 2468 2469 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2470 * ieee80211_hdr pulled. 2471 */ 2472 skb = alloc_skb(128, GFP_ATOMIC); 2473 if (!skb) { 2474 IWL_ERR(mvm, "alloc_skb failed\n"); 2475 return; 2476 } 2477 2478 rx_status = IEEE80211_SKB_RXCB(skb); 2479 2480 /* 0-length PSDU */ 2481 rx_status->flag |= RX_FLAG_NO_PSDU; 2482 2483 /* mark as failed PLCP on any errors to skip checks in mac80211 */ 2484 if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != 2485 RX_NO_DATA_INFO_ERR_NONE) 2486 rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; 2487 2488 switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { 2489 case RX_NO_DATA_INFO_TYPE_NDP: 2490 rx_status->zero_length_psdu_type = 2491 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2492 break; 2493 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2494 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2495 rx_status->zero_length_psdu_type = 2496 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2497 break; 2498 default: 2499 rx_status->zero_length_psdu_type = 2500 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2501 break; 2502 } 2503 2504 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2505 NL80211_BAND_2GHZ; 2506 2507 iwl_mvm_rx_fill_status(mvm, NULL, NULL, skb, &phy_data, queue); 2508 2509 /* no more radio tap info should be put after this point. 2510 * 2511 * We mark it as mac header, for upper layers to know where 2512 * all radio tap header ends. 2513 * 2514 * Since data doesn't move data while putting data on skb and that is 2515 * the only way we use, data + len is the next place that hdr would be put 2516 */ 2517 skb_set_mac_header(skb, skb->len); 2518 2519 /* 2520 * Override the nss from the rx_vec since the rate_n_flags has 2521 * only 2 bits for the nss which gives a max of 4 ss but there 2522 * may be up to 8 spatial streams. 2523 */ 2524 switch (format) { 2525 case RATE_MCS_MOD_TYPE_VHT: 2526 rx_status->nss = 2527 le32_get_bits(desc->rx_vec[0], 2528 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2529 break; 2530 case RATE_MCS_MOD_TYPE_HE: 2531 rx_status->nss = 2532 le32_get_bits(desc->rx_vec[0], 2533 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2534 break; 2535 case RATE_MCS_MOD_TYPE_EHT: 2536 rx_status->nss = 2537 le32_get_bits(desc->rx_vec[2], 2538 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2539 } 2540 2541 rcu_read_lock(); 2542 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2543 rcu_read_unlock(); 2544 } 2545 2546 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2547 struct iwl_rx_cmd_buffer *rxb, int queue) 2548 { 2549 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2550 struct iwl_frame_release *release = (void *)pkt->data; 2551 2552 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2553 return; 2554 2555 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2556 le16_to_cpu(release->nssn), 2557 queue); 2558 } 2559 2560 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2561 struct iwl_rx_cmd_buffer *rxb, int queue) 2562 { 2563 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2564 struct iwl_bar_frame_release *release = (void *)pkt->data; 2565 struct iwl_mvm_baid_data *baid_data; 2566 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2567 unsigned int baid, nssn, sta_id, tid; 2568 2569 if (IWL_FW_CHECK(mvm, pkt_len < sizeof(*release), 2570 "Unexpected frame release notif size %d (expected %zu)\n", 2571 pkt_len, sizeof(*release))) 2572 return; 2573 2574 baid = le32_get_bits(release->ba_info, 2575 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2576 nssn = le32_get_bits(release->ba_info, 2577 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2578 sta_id = le32_get_bits(release->sta_tid, 2579 IWL_BAR_FRAME_RELEASE_STA_MASK); 2580 tid = le32_get_bits(release->sta_tid, 2581 IWL_BAR_FRAME_RELEASE_TID_MASK); 2582 2583 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2584 baid >= ARRAY_SIZE(mvm->baid_map))) 2585 return; 2586 2587 rcu_read_lock(); 2588 baid_data = rcu_dereference(mvm->baid_map[baid]); 2589 if (!baid_data) { 2590 IWL_DEBUG_RX(mvm, 2591 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2592 baid); 2593 goto out; 2594 } 2595 2596 if (WARN(tid != baid_data->tid || sta_id > IWL_STATION_COUNT_MAX || 2597 !(baid_data->sta_mask & BIT(sta_id)), 2598 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2599 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2600 tid)) 2601 goto out; 2602 2603 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", 2604 nssn); 2605 2606 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); 2607 out: 2608 rcu_read_unlock(); 2609 } 2610 2611 void iwl_mvm_rx_beacon_filter_notif(struct iwl_mvm *mvm, 2612 struct iwl_rx_cmd_buffer *rxb) 2613 { 2614 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2615 /* MAC or link ID in v1/v2, but driver has the IDs equal */ 2616 struct iwl_beacon_filter_notif *notif = (void *)pkt->data; 2617 u32 id = le32_to_cpu(notif->link_id); 2618 struct iwl_mvm_vif *mvm_vif; 2619 struct ieee80211_vif *vif; 2620 2621 /* >= means AUX MAC/link ID, no energy correction needed then */ 2622 if (IWL_FW_CHECK(mvm, id >= ARRAY_SIZE(mvm->vif_id_to_mac), 2623 "invalid link ID %d\n", id)) 2624 return; 2625 2626 vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, false); 2627 if (!vif) 2628 return; 2629 2630 mvm_vif = iwl_mvm_vif_from_mac80211(vif); 2631 2632 mvm_vif->deflink.average_beacon_energy = 2633 le32_to_cpu(notif->average_energy); 2634 } 2635