1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2024 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta) 240 { 241 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 242 kfree_skb(skb); 243 return; 244 } 245 246 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 247 } 248 249 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 250 struct ieee80211_rx_status *rx_status, 251 u32 rate_n_flags, int energy_a, 252 int energy_b) 253 { 254 int max_energy; 255 u32 rate_flags = rate_n_flags; 256 257 energy_a = energy_a ? -energy_a : S8_MIN; 258 energy_b = energy_b ? -energy_b : S8_MIN; 259 max_energy = max(energy_a, energy_b); 260 261 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 262 energy_a, energy_b, max_energy); 263 264 rx_status->signal = max_energy; 265 rx_status->chains = 266 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 267 rx_status->chain_signal[0] = energy_a; 268 rx_status->chain_signal[1] = energy_b; 269 } 270 271 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 272 struct ieee80211_hdr *hdr, 273 struct iwl_rx_mpdu_desc *desc, 274 u32 status, 275 struct ieee80211_rx_status *stats) 276 { 277 struct wireless_dev *wdev; 278 struct iwl_mvm_sta *mvmsta; 279 struct iwl_mvm_vif *mvmvif; 280 u8 keyid; 281 struct ieee80211_key_conf *key; 282 u32 len = le16_to_cpu(desc->mpdu_len); 283 const u8 *frame = (void *)hdr; 284 285 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 286 return 0; 287 288 /* 289 * For non-beacon, we don't really care. But beacons may 290 * be filtered out, and we thus need the firmware's replay 291 * detection, otherwise beacons the firmware previously 292 * filtered could be replayed, or something like that, and 293 * it can filter a lot - though usually only if nothing has 294 * changed. 295 */ 296 if (!ieee80211_is_beacon(hdr->frame_control)) 297 return 0; 298 299 if (!sta) 300 return -1; 301 302 mvmsta = iwl_mvm_sta_from_mac80211(sta); 303 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 304 305 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 306 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 307 goto report; 308 309 /* good cases */ 310 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 311 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 312 stats->flag |= RX_FLAG_DECRYPTED; 313 return 0; 314 } 315 316 /* 317 * both keys will have the same cipher and MIC length, use 318 * whichever one is available 319 */ 320 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 321 if (!key) { 322 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 323 if (!key) 324 goto report; 325 } 326 327 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 328 goto report; 329 330 /* get the real key ID */ 331 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 332 /* and if that's the other key, look it up */ 333 if (keyid != key->keyidx) { 334 /* 335 * shouldn't happen since firmware checked, but be safe 336 * in case the MIC length is wrong too, for example 337 */ 338 if (keyid != 6 && keyid != 7) 339 return -1; 340 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 341 if (!key) 342 goto report; 343 } 344 345 /* Report status to mac80211 */ 346 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 347 ieee80211_key_mic_failure(key); 348 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 349 ieee80211_key_replay(key); 350 report: 351 wdev = ieee80211_vif_to_wdev(mvmsta->vif); 352 if (wdev->netdev) 353 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); 354 355 return -1; 356 } 357 358 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 359 struct ieee80211_hdr *hdr, 360 struct ieee80211_rx_status *stats, u16 phy_info, 361 struct iwl_rx_mpdu_desc *desc, 362 u32 pkt_flags, int queue, u8 *crypt_len) 363 { 364 u32 status = le32_to_cpu(desc->status); 365 366 /* 367 * Drop UNKNOWN frames in aggregation, unless in monitor mode 368 * (where we don't have the keys). 369 * We limit this to aggregation because in TKIP this is a valid 370 * scenario, since we may not have the (correct) TTAK (phase 1 371 * key) in the firmware. 372 */ 373 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 374 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 375 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { 376 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); 377 return -1; 378 } 379 380 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 381 !ieee80211_has_protected(hdr->frame_control))) 382 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 383 384 if (!ieee80211_has_protected(hdr->frame_control) || 385 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 386 IWL_RX_MPDU_STATUS_SEC_NONE) 387 return 0; 388 389 /* TODO: handle packets encrypted with unknown alg */ 390 391 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 392 case IWL_RX_MPDU_STATUS_SEC_CCM: 393 case IWL_RX_MPDU_STATUS_SEC_GCM: 394 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 395 /* alg is CCM: check MIC only */ 396 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { 397 IWL_DEBUG_DROP(mvm, 398 "Dropping packet, bad MIC (CCM/GCM)\n"); 399 return -1; 400 } 401 402 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 403 *crypt_len = IEEE80211_CCMP_HDR_LEN; 404 return 0; 405 case IWL_RX_MPDU_STATUS_SEC_TKIP: 406 /* Don't drop the frame and decrypt it in SW */ 407 if (!fw_has_api(&mvm->fw->ucode_capa, 408 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 409 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 410 return 0; 411 412 if (mvm->trans->trans_cfg->gen2 && 413 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 414 stats->flag |= RX_FLAG_MMIC_ERROR; 415 416 *crypt_len = IEEE80211_TKIP_IV_LEN; 417 fallthrough; 418 case IWL_RX_MPDU_STATUS_SEC_WEP: 419 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 420 return -1; 421 422 stats->flag |= RX_FLAG_DECRYPTED; 423 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 424 IWL_RX_MPDU_STATUS_SEC_WEP) 425 *crypt_len = IEEE80211_WEP_IV_LEN; 426 427 if (pkt_flags & FH_RSCSR_RADA_EN) { 428 stats->flag |= RX_FLAG_ICV_STRIPPED; 429 if (mvm->trans->trans_cfg->gen2) 430 stats->flag |= RX_FLAG_MMIC_STRIPPED; 431 } 432 433 return 0; 434 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 435 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 436 return -1; 437 stats->flag |= RX_FLAG_DECRYPTED; 438 return 0; 439 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 440 break; 441 default: 442 /* 443 * Sometimes we can get frames that were not decrypted 444 * because the firmware didn't have the keys yet. This can 445 * happen after connection where we can get multicast frames 446 * before the GTK is installed. 447 * Silently drop those frames. 448 * Also drop un-decrypted frames in monitor mode. 449 */ 450 if (!is_multicast_ether_addr(hdr->addr1) && 451 !mvm->monitor_on && net_ratelimit()) 452 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 453 } 454 455 return 0; 456 } 457 458 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 459 struct ieee80211_sta *sta, 460 struct sk_buff *skb, 461 struct iwl_rx_packet *pkt) 462 { 463 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 464 465 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 466 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 467 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 468 469 skb->ip_summed = CHECKSUM_COMPLETE; 470 skb->csum = csum_unfold(~(__force __sum16)hwsum); 471 } 472 } else { 473 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 474 struct iwl_mvm_vif *mvmvif; 475 u16 flags = le16_to_cpu(desc->l3l4_flags); 476 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 477 IWL_RX_L3_PROTO_POS); 478 479 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 480 481 if (mvmvif->features & NETIF_F_RXCSUM && 482 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 483 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 484 l3_prot == IWL_RX_L3_TYPE_IPV6 || 485 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 486 skb->ip_summed = CHECKSUM_UNNECESSARY; 487 } 488 } 489 490 /* 491 * returns true if a packet is a duplicate or invalid tid and should be dropped. 492 * Updates AMSDU PN tracking info 493 */ 494 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 495 struct ieee80211_rx_status *rx_status, 496 struct ieee80211_hdr *hdr, 497 struct iwl_rx_mpdu_desc *desc) 498 { 499 struct iwl_mvm_sta *mvm_sta; 500 struct iwl_mvm_rxq_dup_data *dup_data; 501 u8 tid, sub_frame_idx; 502 503 if (WARN_ON(IS_ERR_OR_NULL(sta))) 504 return false; 505 506 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 507 508 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 509 return false; 510 511 dup_data = &mvm_sta->dup_data[queue]; 512 513 /* 514 * Drop duplicate 802.11 retransmissions 515 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 516 */ 517 if (ieee80211_is_ctl(hdr->frame_control) || 518 ieee80211_is_any_nullfunc(hdr->frame_control) || 519 is_multicast_ether_addr(hdr->addr1)) 520 return false; 521 522 if (ieee80211_is_data_qos(hdr->frame_control)) { 523 /* frame has qos control */ 524 tid = ieee80211_get_tid(hdr); 525 if (tid >= IWL_MAX_TID_COUNT) 526 return true; 527 } else { 528 tid = IWL_MAX_TID_COUNT; 529 } 530 531 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 532 sub_frame_idx = desc->amsdu_info & 533 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 534 535 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 536 dup_data->last_seq[tid] == hdr->seq_ctrl && 537 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 538 return true; 539 540 /* Allow same PN as the first subframe for following sub frames */ 541 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 542 sub_frame_idx > dup_data->last_sub_frame[tid] && 543 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 544 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 545 546 dup_data->last_seq[tid] = hdr->seq_ctrl; 547 dup_data->last_sub_frame[tid] = sub_frame_idx; 548 549 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 550 551 return false; 552 } 553 554 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 555 struct ieee80211_sta *sta, 556 struct napi_struct *napi, 557 struct iwl_mvm_baid_data *baid_data, 558 struct iwl_mvm_reorder_buffer *reorder_buf, 559 u16 nssn) 560 { 561 struct iwl_mvm_reorder_buf_entry *entries = 562 &baid_data->entries[reorder_buf->queue * 563 baid_data->entries_per_queue]; 564 u16 ssn = reorder_buf->head_sn; 565 566 lockdep_assert_held(&reorder_buf->lock); 567 568 while (ieee80211_sn_less(ssn, nssn)) { 569 int index = ssn % reorder_buf->buf_size; 570 struct sk_buff_head *skb_list = &entries[index].frames; 571 struct sk_buff *skb; 572 573 ssn = ieee80211_sn_inc(ssn); 574 575 /* 576 * Empty the list. Will have more than one frame for A-MSDU. 577 * Empty list is valid as well since nssn indicates frames were 578 * received. 579 */ 580 while ((skb = __skb_dequeue(skb_list))) { 581 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 582 reorder_buf->queue, 583 sta); 584 reorder_buf->num_stored--; 585 } 586 } 587 reorder_buf->head_sn = nssn; 588 } 589 590 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 591 struct iwl_mvm_delba_data *data) 592 { 593 struct iwl_mvm_baid_data *ba_data; 594 struct ieee80211_sta *sta; 595 struct iwl_mvm_reorder_buffer *reorder_buf; 596 u8 baid = data->baid; 597 u32 sta_id; 598 599 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 600 return; 601 602 rcu_read_lock(); 603 604 ba_data = rcu_dereference(mvm->baid_map[baid]); 605 if (WARN_ON_ONCE(!ba_data)) 606 goto out; 607 608 /* pick any STA ID to find the pointer */ 609 sta_id = ffs(ba_data->sta_mask) - 1; 610 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 611 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 612 goto out; 613 614 reorder_buf = &ba_data->reorder_buf[queue]; 615 616 /* release all frames that are in the reorder buffer to the stack */ 617 spin_lock_bh(&reorder_buf->lock); 618 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 619 ieee80211_sn_add(reorder_buf->head_sn, 620 reorder_buf->buf_size)); 621 spin_unlock_bh(&reorder_buf->lock); 622 623 out: 624 rcu_read_unlock(); 625 } 626 627 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 628 struct napi_struct *napi, 629 u8 baid, u16 nssn, int queue) 630 { 631 struct ieee80211_sta *sta; 632 struct iwl_mvm_reorder_buffer *reorder_buf; 633 struct iwl_mvm_baid_data *ba_data; 634 u32 sta_id; 635 636 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 637 baid, nssn); 638 639 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 640 baid >= ARRAY_SIZE(mvm->baid_map))) 641 return; 642 643 rcu_read_lock(); 644 645 ba_data = rcu_dereference(mvm->baid_map[baid]); 646 if (WARN(!ba_data, "BAID %d not found in map\n", baid)) 647 goto out; 648 649 /* pick any STA ID to find the pointer */ 650 sta_id = ffs(ba_data->sta_mask) - 1; 651 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 652 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 653 goto out; 654 655 reorder_buf = &ba_data->reorder_buf[queue]; 656 657 spin_lock_bh(&reorder_buf->lock); 658 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 659 reorder_buf, nssn); 660 spin_unlock_bh(&reorder_buf->lock); 661 662 out: 663 rcu_read_unlock(); 664 } 665 666 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 667 struct iwl_rx_cmd_buffer *rxb, int queue) 668 { 669 struct iwl_rx_packet *pkt = rxb_addr(rxb); 670 struct iwl_rxq_sync_notification *notif; 671 struct iwl_mvm_internal_rxq_notif *internal_notif; 672 u32 len = iwl_rx_packet_payload_len(pkt); 673 674 notif = (void *)pkt->data; 675 internal_notif = (void *)notif->payload; 676 677 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 678 "invalid notification size %d (%d)", 679 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 680 return; 681 len -= sizeof(*notif) + sizeof(*internal_notif); 682 683 if (WARN_ONCE(internal_notif->sync && 684 mvm->queue_sync_cookie != internal_notif->cookie, 685 "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n", 686 internal_notif->cookie, mvm->queue_sync_cookie, queue)) 687 return; 688 689 switch (internal_notif->type) { 690 case IWL_MVM_RXQ_EMPTY: 691 WARN_ONCE(len, "invalid empty notification size %d", len); 692 break; 693 case IWL_MVM_RXQ_NOTIF_DEL_BA: 694 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 695 "invalid delba notification size %d (%d)", 696 len, (int)sizeof(struct iwl_mvm_delba_data))) 697 break; 698 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 699 break; 700 default: 701 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 702 } 703 704 if (internal_notif->sync) { 705 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 706 "queue sync: queue %d responded a second time!\n", 707 queue); 708 if (READ_ONCE(mvm->queue_sync_state) == 0) 709 wake_up(&mvm->rx_sync_waitq); 710 } 711 } 712 713 /* 714 * Returns true if the MPDU was buffered\dropped, false if it should be passed 715 * to upper layer. 716 */ 717 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 718 struct napi_struct *napi, 719 int queue, 720 struct ieee80211_sta *sta, 721 struct sk_buff *skb, 722 struct iwl_rx_mpdu_desc *desc) 723 { 724 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 725 struct iwl_mvm_baid_data *baid_data; 726 struct iwl_mvm_reorder_buffer *buffer; 727 u32 reorder = le32_to_cpu(desc->reorder_data); 728 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 729 bool last_subframe = 730 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 731 u8 tid = ieee80211_get_tid(hdr); 732 u8 sub_frame_idx = desc->amsdu_info & 733 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 734 struct iwl_mvm_reorder_buf_entry *entries; 735 u32 sta_mask; 736 int index; 737 u16 nssn, sn; 738 u8 baid; 739 740 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 741 IWL_RX_MPDU_REORDER_BAID_SHIFT; 742 743 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) 744 return false; 745 746 /* 747 * This also covers the case of receiving a Block Ack Request 748 * outside a BA session; we'll pass it to mac80211 and that 749 * then sends a delBA action frame. 750 * This also covers pure monitor mode, in which case we won't 751 * have any BA sessions. 752 */ 753 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 754 return false; 755 756 /* no sta yet */ 757 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 758 "Got valid BAID without a valid station assigned\n")) 759 return false; 760 761 /* not a data packet or a bar */ 762 if (!ieee80211_is_back_req(hdr->frame_control) && 763 (!ieee80211_is_data_qos(hdr->frame_control) || 764 is_multicast_ether_addr(hdr->addr1))) 765 return false; 766 767 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 768 return false; 769 770 baid_data = rcu_dereference(mvm->baid_map[baid]); 771 if (!baid_data) { 772 IWL_DEBUG_RX(mvm, 773 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 774 baid, reorder); 775 return false; 776 } 777 778 rcu_read_lock(); 779 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 780 rcu_read_unlock(); 781 782 if (IWL_FW_CHECK(mvm, 783 tid != baid_data->tid || 784 !(sta_mask & baid_data->sta_mask), 785 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 786 baid, baid_data->sta_mask, baid_data->tid, 787 sta_mask, tid)) 788 return false; 789 790 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 791 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 792 IWL_RX_MPDU_REORDER_SN_SHIFT; 793 794 buffer = &baid_data->reorder_buf[queue]; 795 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 796 797 spin_lock_bh(&buffer->lock); 798 799 if (!buffer->valid) { 800 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 801 spin_unlock_bh(&buffer->lock); 802 return false; 803 } 804 buffer->valid = true; 805 } 806 807 /* drop any duplicated packets */ 808 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) 809 goto drop; 810 811 /* drop any oudated packets */ 812 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) 813 goto drop; 814 815 /* release immediately if allowed by nssn and no stored frames */ 816 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 817 if (!amsdu || last_subframe) 818 buffer->head_sn = nssn; 819 /* No need to update AMSDU last SN - we are moving the head */ 820 spin_unlock_bh(&buffer->lock); 821 return false; 822 } 823 824 /* 825 * release immediately if there are no stored frames, and the sn is 826 * equal to the head. 827 * This can happen due to reorder timer, where NSSN is behind head_sn. 828 * When we released everything, and we got the next frame in the 829 * sequence, according to the NSSN we can't release immediately, 830 * while technically there is no hole and we can move forward. 831 */ 832 if (!buffer->num_stored && sn == buffer->head_sn) { 833 if (!amsdu || last_subframe) 834 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 835 836 /* No need to update AMSDU last SN - we are moving the head */ 837 spin_unlock_bh(&buffer->lock); 838 return false; 839 } 840 841 /* put in reorder buffer */ 842 index = sn % buffer->buf_size; 843 __skb_queue_tail(&entries[index].frames, skb); 844 buffer->num_stored++; 845 846 if (amsdu) { 847 buffer->last_amsdu = sn; 848 buffer->last_sub_index = sub_frame_idx; 849 } 850 851 /* 852 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 853 * The reason is that NSSN advances on the first sub-frame, and may 854 * cause the reorder buffer to advance before all the sub-frames arrive. 855 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 856 * SN 1. NSSN for first sub frame will be 3 with the result of driver 857 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 858 * already ahead and it will be dropped. 859 * If the last sub-frame is not on this queue - we will get frame 860 * release notification with up to date NSSN. 861 */ 862 if (!amsdu || last_subframe) 863 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 864 buffer, nssn); 865 866 spin_unlock_bh(&buffer->lock); 867 return true; 868 869 drop: 870 kfree_skb(skb); 871 spin_unlock_bh(&buffer->lock); 872 return true; 873 } 874 875 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 876 u32 reorder_data, u8 baid) 877 { 878 unsigned long now = jiffies; 879 unsigned long timeout; 880 struct iwl_mvm_baid_data *data; 881 882 rcu_read_lock(); 883 884 data = rcu_dereference(mvm->baid_map[baid]); 885 if (!data) { 886 IWL_DEBUG_RX(mvm, 887 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 888 baid, reorder_data); 889 goto out; 890 } 891 892 if (!data->timeout) 893 goto out; 894 895 timeout = data->timeout; 896 /* 897 * Do not update last rx all the time to avoid cache bouncing 898 * between the rx queues. 899 * Update it every timeout. Worst case is the session will 900 * expire after ~ 2 * timeout, which doesn't matter that much. 901 */ 902 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 903 /* Update is atomic */ 904 data->last_rx = now; 905 906 out: 907 rcu_read_unlock(); 908 } 909 910 static void iwl_mvm_flip_address(u8 *addr) 911 { 912 int i; 913 u8 mac_addr[ETH_ALEN]; 914 915 for (i = 0; i < ETH_ALEN; i++) 916 mac_addr[i] = addr[ETH_ALEN - i - 1]; 917 ether_addr_copy(addr, mac_addr); 918 } 919 920 struct iwl_mvm_rx_phy_data { 921 enum iwl_rx_phy_info_type info_type; 922 __le32 d0, d1, d2, d3, eht_d4, d5; 923 __le16 d4; 924 bool with_data; 925 bool first_subframe; 926 __le32 rx_vec[4]; 927 928 u32 rate_n_flags; 929 u32 gp2_on_air_rise; 930 u16 phy_info; 931 u8 energy_a, energy_b; 932 u8 channel; 933 }; 934 935 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 936 struct iwl_mvm_rx_phy_data *phy_data, 937 struct ieee80211_radiotap_he_mu *he_mu) 938 { 939 u32 phy_data2 = le32_to_cpu(phy_data->d2); 940 u32 phy_data3 = le32_to_cpu(phy_data->d3); 941 u16 phy_data4 = le16_to_cpu(phy_data->d4); 942 u32 rate_n_flags = phy_data->rate_n_flags; 943 944 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 945 he_mu->flags1 |= 946 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 947 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 948 949 he_mu->flags1 |= 950 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 951 phy_data4), 952 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 953 954 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 955 phy_data2); 956 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 957 phy_data3); 958 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 959 phy_data2); 960 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 961 phy_data3); 962 } 963 964 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 965 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 966 he_mu->flags1 |= 967 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 968 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 969 970 he_mu->flags2 |= 971 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 972 phy_data4), 973 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 974 975 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 976 phy_data2); 977 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 978 phy_data3); 979 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 980 phy_data2); 981 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 982 phy_data3); 983 } 984 } 985 986 static void 987 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 988 struct ieee80211_radiotap_he *he, 989 struct ieee80211_radiotap_he_mu *he_mu, 990 struct ieee80211_rx_status *rx_status) 991 { 992 /* 993 * Unfortunately, we have to leave the mac80211 data 994 * incorrect for the case that we receive an HE-MU 995 * transmission and *don't* have the HE phy data (due 996 * to the bits being used for TSF). This shouldn't 997 * happen though as management frames where we need 998 * the TSF/timers are not be transmitted in HE-MU. 999 */ 1000 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1001 u32 rate_n_flags = phy_data->rate_n_flags; 1002 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1003 u8 offs = 0; 1004 1005 rx_status->bw = RATE_INFO_BW_HE_RU; 1006 1007 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1008 1009 switch (ru) { 1010 case 0 ... 36: 1011 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1012 offs = ru; 1013 break; 1014 case 37 ... 52: 1015 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1016 offs = ru - 37; 1017 break; 1018 case 53 ... 60: 1019 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1020 offs = ru - 53; 1021 break; 1022 case 61 ... 64: 1023 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1024 offs = ru - 61; 1025 break; 1026 case 65 ... 66: 1027 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1028 offs = ru - 65; 1029 break; 1030 case 67: 1031 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1032 break; 1033 case 68: 1034 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1035 break; 1036 } 1037 he->data2 |= le16_encode_bits(offs, 1038 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1039 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1040 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1041 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1042 he->data2 |= 1043 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1044 1045 #define CHECK_BW(bw) \ 1046 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1047 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1048 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1049 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1050 CHECK_BW(20); 1051 CHECK_BW(40); 1052 CHECK_BW(80); 1053 CHECK_BW(160); 1054 1055 if (he_mu) 1056 he_mu->flags2 |= 1057 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1058 rate_n_flags), 1059 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1060 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1061 he->data6 |= 1062 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1063 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1064 rate_n_flags), 1065 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1066 } 1067 1068 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1069 struct iwl_mvm_rx_phy_data *phy_data, 1070 struct ieee80211_radiotap_he *he, 1071 struct ieee80211_radiotap_he_mu *he_mu, 1072 struct ieee80211_rx_status *rx_status, 1073 int queue) 1074 { 1075 switch (phy_data->info_type) { 1076 case IWL_RX_PHY_INFO_TYPE_NONE: 1077 case IWL_RX_PHY_INFO_TYPE_CCK: 1078 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1079 case IWL_RX_PHY_INFO_TYPE_HT: 1080 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1081 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1082 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1083 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1084 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1085 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1086 return; 1087 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1088 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1089 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1090 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1091 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1092 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1093 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1094 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1095 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1096 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1097 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1098 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1099 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1100 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1101 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1102 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1103 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1104 fallthrough; 1105 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1106 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1107 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1108 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1109 /* HE common */ 1110 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1111 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1112 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1113 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1114 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1115 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1116 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1117 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1118 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1119 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1120 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1121 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1122 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1123 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1124 IWL_RX_PHY_DATA0_HE_UPLINK), 1125 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1126 } 1127 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1128 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1129 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1130 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1131 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1132 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1133 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1134 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1135 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1136 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1137 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1138 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1139 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1140 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1141 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1142 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1143 IWL_RX_PHY_DATA0_HE_DOPPLER), 1144 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1145 break; 1146 } 1147 1148 switch (phy_data->info_type) { 1149 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1150 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1151 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1152 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1153 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1154 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1155 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1156 break; 1157 default: 1158 /* nothing here */ 1159 break; 1160 } 1161 1162 switch (phy_data->info_type) { 1163 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1164 he_mu->flags1 |= 1165 le16_encode_bits(le16_get_bits(phy_data->d4, 1166 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1167 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1168 he_mu->flags1 |= 1169 le16_encode_bits(le16_get_bits(phy_data->d4, 1170 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1171 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1172 he_mu->flags2 |= 1173 le16_encode_bits(le16_get_bits(phy_data->d4, 1174 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1175 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1176 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1177 fallthrough; 1178 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1179 he_mu->flags2 |= 1180 le16_encode_bits(le32_get_bits(phy_data->d1, 1181 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1182 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1183 he_mu->flags2 |= 1184 le16_encode_bits(le32_get_bits(phy_data->d1, 1185 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1186 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1187 fallthrough; 1188 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1189 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1190 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1191 break; 1192 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1193 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1194 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1195 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1196 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1197 break; 1198 default: 1199 /* nothing */ 1200 break; 1201 } 1202 } 1203 1204 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1205 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1206 1207 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1208 typeof(enc_bits) _enc_bits = enc_bits; \ 1209 typeof(usig) _usig = usig; \ 1210 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1211 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1212 } while (0) 1213 1214 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1215 eht->data[(rt_data)] |= \ 1216 (cpu_to_le32 \ 1217 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1218 LE32_DEC_ENC(data ## fw_data, \ 1219 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1220 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1221 1222 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1223 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1224 1225 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1226 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1227 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1228 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1229 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1230 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1231 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1232 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1233 1234 #define IWL_RX_RU_DATA_A1 2 1235 #define IWL_RX_RU_DATA_A2 2 1236 #define IWL_RX_RU_DATA_B1 2 1237 #define IWL_RX_RU_DATA_B2 4 1238 #define IWL_RX_RU_DATA_C1 3 1239 #define IWL_RX_RU_DATA_C2 3 1240 #define IWL_RX_RU_DATA_D1 4 1241 #define IWL_RX_RU_DATA_D2 4 1242 1243 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1244 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1245 rt_ru, \ 1246 IWL_RX_RU_DATA_ ## fw_ru, \ 1247 fw_ru) 1248 1249 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1250 struct iwl_mvm_rx_phy_data *phy_data, 1251 struct ieee80211_rx_status *rx_status, 1252 struct ieee80211_radiotap_eht *eht, 1253 struct ieee80211_radiotap_eht_usig *usig) 1254 { 1255 if (phy_data->with_data) { 1256 __le32 data1 = phy_data->d1; 1257 __le32 data2 = phy_data->d2; 1258 __le32 data3 = phy_data->d3; 1259 __le32 data4 = phy_data->eht_d4; 1260 __le32 data5 = phy_data->d5; 1261 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1262 1263 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1264 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1265 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1266 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1267 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1268 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1269 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1270 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1271 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1272 IWL_MVM_ENC_USIG_VALUE_MASK 1273 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1274 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1275 1276 eht->user_info[0] |= 1277 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1278 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1279 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1280 1281 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1282 eht->data[7] |= LE32_DEC_ENC 1283 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1284 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1285 1286 /* 1287 * Hardware labels the content channels/RU allocation values 1288 * as follows: 1289 * Content Channel 1 Content Channel 2 1290 * 20 MHz: A1 1291 * 40 MHz: A1 B1 1292 * 80 MHz: A1 C1 B1 D1 1293 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1294 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1295 * 1296 * However firmware can only give us A1-D2, so the higher 1297 * frequencies are missing. 1298 */ 1299 1300 switch (phy_bw) { 1301 case RATE_MCS_CHAN_WIDTH_320: 1302 /* additional values are missing in RX metadata */ 1303 case RATE_MCS_CHAN_WIDTH_160: 1304 /* content channel 1 */ 1305 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1306 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1307 /* content channel 2 */ 1308 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1309 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1310 fallthrough; 1311 case RATE_MCS_CHAN_WIDTH_80: 1312 /* content channel 1 */ 1313 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1314 /* content channel 2 */ 1315 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1316 fallthrough; 1317 case RATE_MCS_CHAN_WIDTH_40: 1318 /* content channel 2 */ 1319 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1320 fallthrough; 1321 case RATE_MCS_CHAN_WIDTH_20: 1322 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1323 break; 1324 } 1325 } else { 1326 __le32 usig_a1 = phy_data->rx_vec[0]; 1327 __le32 usig_a2 = phy_data->rx_vec[1]; 1328 1329 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1330 IWL_RX_USIG_A1_DISREGARD, 1331 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1332 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1333 IWL_RX_USIG_A1_VALIDATE, 1334 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1335 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1336 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1337 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1338 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1339 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1340 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1341 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1342 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1343 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1344 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1345 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1346 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1347 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1348 IWL_RX_USIG_A2_EHT_SIG_MCS, 1349 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1350 IWL_MVM_ENC_USIG_VALUE_MASK 1351 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1352 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1353 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1354 IWL_RX_USIG_A2_EHT_CRC_OK, 1355 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1356 } 1357 } 1358 1359 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1360 struct iwl_mvm_rx_phy_data *phy_data, 1361 struct ieee80211_rx_status *rx_status, 1362 struct ieee80211_radiotap_eht *eht, 1363 struct ieee80211_radiotap_eht_usig *usig) 1364 { 1365 if (phy_data->with_data) { 1366 __le32 data5 = phy_data->d5; 1367 1368 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1369 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1370 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1371 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1372 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1373 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1374 1375 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1376 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1377 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1378 } else { 1379 __le32 usig_a1 = phy_data->rx_vec[0]; 1380 __le32 usig_a2 = phy_data->rx_vec[1]; 1381 1382 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1383 IWL_RX_USIG_A1_DISREGARD, 1384 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1385 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1386 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1387 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1388 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1389 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1390 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1391 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1392 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1393 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1394 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1395 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1396 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1397 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1398 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1399 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1400 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1401 IWL_RX_USIG_A2_EHT_CRC_OK, 1402 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1403 } 1404 } 1405 1406 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1407 struct ieee80211_rx_status *rx_status, 1408 struct ieee80211_radiotap_eht *eht) 1409 { 1410 u32 ru = le32_get_bits(eht->data[8], 1411 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1412 enum nl80211_eht_ru_alloc nl_ru; 1413 1414 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1415 * in an EHT variant User Info field 1416 */ 1417 1418 switch (ru) { 1419 case 0 ... 36: 1420 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1421 break; 1422 case 37 ... 52: 1423 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1424 break; 1425 case 53 ... 60: 1426 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1427 break; 1428 case 61 ... 64: 1429 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1430 break; 1431 case 65 ... 66: 1432 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1433 break; 1434 case 67: 1435 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1436 break; 1437 case 68: 1438 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1439 break; 1440 case 69: 1441 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1442 break; 1443 case 70 ... 81: 1444 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1445 break; 1446 case 82 ... 89: 1447 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1448 break; 1449 case 90 ... 93: 1450 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1451 break; 1452 case 94 ... 95: 1453 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1454 break; 1455 case 96 ... 99: 1456 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1457 break; 1458 case 100 ... 103: 1459 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1460 break; 1461 case 104: 1462 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1463 break; 1464 case 105 ... 106: 1465 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1466 break; 1467 default: 1468 return; 1469 } 1470 1471 rx_status->bw = RATE_INFO_BW_EHT_RU; 1472 rx_status->eht.ru = nl_ru; 1473 } 1474 1475 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1476 struct iwl_mvm_rx_phy_data *phy_data, 1477 struct ieee80211_rx_status *rx_status, 1478 struct ieee80211_radiotap_eht *eht, 1479 struct ieee80211_radiotap_eht_usig *usig) 1480 1481 { 1482 __le32 data0 = phy_data->d0; 1483 __le32 data1 = phy_data->d1; 1484 __le32 usig_a1 = phy_data->rx_vec[0]; 1485 u8 info_type = phy_data->info_type; 1486 1487 /* Not in EHT range */ 1488 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1489 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1490 return; 1491 1492 usig->common |= cpu_to_le32 1493 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1494 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1495 if (phy_data->with_data) { 1496 usig->common |= LE32_DEC_ENC(data0, 1497 IWL_RX_PHY_DATA0_EHT_UPLINK, 1498 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1499 usig->common |= LE32_DEC_ENC(data0, 1500 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1501 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1502 } else { 1503 usig->common |= LE32_DEC_ENC(usig_a1, 1504 IWL_RX_USIG_A1_UL_FLAG, 1505 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1506 usig->common |= LE32_DEC_ENC(usig_a1, 1507 IWL_RX_USIG_A1_BSS_COLOR, 1508 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1509 } 1510 1511 if (fw_has_capa(&mvm->fw->ucode_capa, 1512 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1513 usig->common |= 1514 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1515 usig->common |= 1516 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1517 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1518 } 1519 1520 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1521 eht->data[0] |= LE32_DEC_ENC(data0, 1522 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1523 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1524 1525 /* All RU allocating size/index is in TB format */ 1526 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1527 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1528 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1529 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1530 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1531 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1532 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1533 1534 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1535 1536 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1537 * which is on only in case of monitor mode so no need to check monitor 1538 * mode 1539 */ 1540 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1541 eht->data[1] |= 1542 le32_encode_bits(mvm->monitor_p80, 1543 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1544 1545 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1546 if (phy_data->with_data) 1547 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1548 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1549 else 1550 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1551 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1552 1553 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1554 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1555 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1556 1557 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1558 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1559 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1560 1561 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1562 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1563 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1564 1565 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1566 1567 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1568 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1569 1570 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1571 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1572 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1573 1574 /* 1575 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1576 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1577 */ 1578 1579 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1580 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1581 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1582 1583 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1584 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1585 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1586 1587 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1588 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1589 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1590 } 1591 1592 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1593 struct iwl_mvm_rx_phy_data *phy_data, 1594 int queue) 1595 { 1596 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1597 1598 struct ieee80211_radiotap_eht *eht; 1599 struct ieee80211_radiotap_eht_usig *usig; 1600 size_t eht_len = sizeof(*eht); 1601 1602 u32 rate_n_flags = phy_data->rate_n_flags; 1603 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1604 /* EHT and HE have the same valus for LTF */ 1605 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1606 u16 phy_info = phy_data->phy_info; 1607 u32 bw; 1608 1609 /* u32 for 1 user_info */ 1610 if (phy_data->with_data) 1611 eht_len += sizeof(u32); 1612 1613 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1614 1615 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1616 sizeof(*usig)); 1617 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1618 usig->common |= 1619 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1620 1621 /* specific handling for 320MHz */ 1622 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1623 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1624 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1625 le32_to_cpu(phy_data->d0)); 1626 1627 usig->common |= cpu_to_le32 1628 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1629 1630 /* report the AMPDU-EOF bit on single frames */ 1631 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1632 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1633 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1634 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1635 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1636 } 1637 1638 /* update aggregation data for monitor sake on default queue */ 1639 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1640 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1641 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1642 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1643 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1644 } 1645 1646 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1647 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1648 1649 #define CHECK_TYPE(F) \ 1650 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1651 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1652 1653 CHECK_TYPE(SU); 1654 CHECK_TYPE(EXT_SU); 1655 CHECK_TYPE(MU); 1656 CHECK_TYPE(TRIG); 1657 1658 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1659 case 0: 1660 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1661 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1662 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1663 } else { 1664 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1665 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1666 } 1667 break; 1668 case 1: 1669 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1670 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1671 break; 1672 case 2: 1673 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1674 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1675 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1676 else 1677 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1678 break; 1679 case 3: 1680 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1681 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1682 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1683 } 1684 break; 1685 default: 1686 /* nothing here */ 1687 break; 1688 } 1689 1690 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1691 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1692 eht->data[0] |= cpu_to_le32 1693 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1694 ltf) | 1695 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1696 rx_status->eht.gi)); 1697 } 1698 1699 1700 if (!phy_data->with_data) { 1701 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1702 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1703 eht->data[7] |= 1704 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1705 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1706 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1707 if (rate_n_flags & RATE_MCS_BF_MSK) 1708 eht->data[7] |= 1709 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1710 } else { 1711 eht->user_info[0] |= 1712 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1713 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1714 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1715 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1716 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1717 1718 if (rate_n_flags & RATE_MCS_BF_MSK) 1719 eht->user_info[0] |= 1720 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1721 1722 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1723 eht->user_info[0] |= 1724 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1725 1726 eht->user_info[0] |= cpu_to_le32 1727 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1728 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1729 rate_n_flags)) | 1730 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1731 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1732 } 1733 } 1734 1735 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1736 struct iwl_mvm_rx_phy_data *phy_data, 1737 int queue) 1738 { 1739 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1740 struct ieee80211_radiotap_he *he = NULL; 1741 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1742 u32 rate_n_flags = phy_data->rate_n_flags; 1743 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1744 u8 ltf; 1745 static const struct ieee80211_radiotap_he known = { 1746 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1747 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1748 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1749 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1750 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1751 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1752 }; 1753 static const struct ieee80211_radiotap_he_mu mu_known = { 1754 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1755 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1756 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1757 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1758 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1759 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1760 }; 1761 u16 phy_info = phy_data->phy_info; 1762 1763 he = skb_put_data(skb, &known, sizeof(known)); 1764 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1765 1766 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1767 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1768 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1769 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1770 } 1771 1772 /* report the AMPDU-EOF bit on single frames */ 1773 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1774 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1775 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1776 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1777 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1778 } 1779 1780 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1781 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1782 queue); 1783 1784 /* update aggregation data for monitor sake on default queue */ 1785 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1786 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1787 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1788 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1789 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1790 } 1791 1792 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1793 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1794 rx_status->bw = RATE_INFO_BW_HE_RU; 1795 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1796 } 1797 1798 /* actually data is filled in mac80211 */ 1799 if (he_type == RATE_MCS_HE_TYPE_SU || 1800 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1801 he->data1 |= 1802 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1803 1804 #define CHECK_TYPE(F) \ 1805 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1806 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1807 1808 CHECK_TYPE(SU); 1809 CHECK_TYPE(EXT_SU); 1810 CHECK_TYPE(MU); 1811 CHECK_TYPE(TRIG); 1812 1813 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1814 1815 if (rate_n_flags & RATE_MCS_BF_MSK) 1816 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1817 1818 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1819 RATE_MCS_HE_GI_LTF_POS) { 1820 case 0: 1821 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1822 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1823 else 1824 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1825 if (he_type == RATE_MCS_HE_TYPE_MU) 1826 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1827 else 1828 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1829 break; 1830 case 1: 1831 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1832 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1833 else 1834 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1835 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1836 break; 1837 case 2: 1838 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1839 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1840 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1841 } else { 1842 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1843 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1844 } 1845 break; 1846 case 3: 1847 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1848 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1849 break; 1850 case 4: 1851 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1852 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1853 break; 1854 default: 1855 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1856 } 1857 1858 he->data5 |= le16_encode_bits(ltf, 1859 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1860 } 1861 1862 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1863 struct iwl_mvm_rx_phy_data *phy_data) 1864 { 1865 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1866 struct ieee80211_radiotap_lsig *lsig; 1867 1868 switch (phy_data->info_type) { 1869 case IWL_RX_PHY_INFO_TYPE_HT: 1870 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1871 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1872 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1873 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1874 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1875 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1876 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1877 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1878 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1879 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1880 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1881 lsig = skb_put(skb, sizeof(*lsig)); 1882 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1883 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1884 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1885 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1886 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1887 break; 1888 default: 1889 break; 1890 } 1891 } 1892 1893 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1894 { 1895 switch (phy_band) { 1896 case PHY_BAND_24: 1897 return NL80211_BAND_2GHZ; 1898 case PHY_BAND_5: 1899 return NL80211_BAND_5GHZ; 1900 case PHY_BAND_6: 1901 return NL80211_BAND_6GHZ; 1902 default: 1903 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1904 return NL80211_BAND_5GHZ; 1905 } 1906 } 1907 1908 struct iwl_rx_sta_csa { 1909 bool all_sta_unblocked; 1910 struct ieee80211_vif *vif; 1911 }; 1912 1913 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1914 { 1915 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1916 struct iwl_rx_sta_csa *rx_sta_csa = data; 1917 1918 if (mvmsta->vif != rx_sta_csa->vif) 1919 return; 1920 1921 if (mvmsta->disable_tx) 1922 rx_sta_csa->all_sta_unblocked = false; 1923 } 1924 1925 /* 1926 * Note: requires also rx_status->band to be prefilled, as well 1927 * as phy_data (apart from phy_data->info_type) 1928 */ 1929 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 1930 struct sk_buff *skb, 1931 struct iwl_mvm_rx_phy_data *phy_data, 1932 int queue) 1933 { 1934 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1935 u32 rate_n_flags = phy_data->rate_n_flags; 1936 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1937 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1938 bool is_sgi; 1939 1940 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 1941 1942 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1943 phy_data->info_type = 1944 le32_get_bits(phy_data->d1, 1945 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1946 1947 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1948 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1949 case RATE_MCS_CHAN_WIDTH_20: 1950 break; 1951 case RATE_MCS_CHAN_WIDTH_40: 1952 rx_status->bw = RATE_INFO_BW_40; 1953 break; 1954 case RATE_MCS_CHAN_WIDTH_80: 1955 rx_status->bw = RATE_INFO_BW_80; 1956 break; 1957 case RATE_MCS_CHAN_WIDTH_160: 1958 rx_status->bw = RATE_INFO_BW_160; 1959 break; 1960 case RATE_MCS_CHAN_WIDTH_320: 1961 rx_status->bw = RATE_INFO_BW_320; 1962 break; 1963 } 1964 1965 /* must be before L-SIG data */ 1966 if (format == RATE_MCS_HE_MSK) 1967 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 1968 1969 iwl_mvm_decode_lsig(skb, phy_data); 1970 1971 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 1972 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 1973 rx_status->band); 1974 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 1975 phy_data->energy_a, phy_data->energy_b); 1976 1977 /* using TLV format and must be after all fixed len fields */ 1978 if (format == RATE_MCS_EHT_MSK) 1979 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 1980 1981 if (unlikely(mvm->monitor_on)) 1982 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1983 1984 is_sgi = format == RATE_MCS_HE_MSK ? 1985 iwl_he_is_sgi(rate_n_flags) : 1986 rate_n_flags & RATE_MCS_SGI_MSK; 1987 1988 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1989 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1990 1991 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1992 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1993 1994 switch (format) { 1995 case RATE_MCS_VHT_MSK: 1996 rx_status->encoding = RX_ENC_VHT; 1997 break; 1998 case RATE_MCS_HE_MSK: 1999 rx_status->encoding = RX_ENC_HE; 2000 rx_status->he_dcm = 2001 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2002 break; 2003 case RATE_MCS_EHT_MSK: 2004 rx_status->encoding = RX_ENC_EHT; 2005 break; 2006 } 2007 2008 switch (format) { 2009 case RATE_MCS_HT_MSK: 2010 rx_status->encoding = RX_ENC_HT; 2011 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2012 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2013 break; 2014 case RATE_MCS_VHT_MSK: 2015 case RATE_MCS_HE_MSK: 2016 case RATE_MCS_EHT_MSK: 2017 rx_status->nss = 2018 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2019 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2020 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2021 break; 2022 default: { 2023 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2024 rx_status->band); 2025 2026 rx_status->rate_idx = rate; 2027 2028 if ((rate < 0 || rate > 0xFF)) { 2029 rx_status->rate_idx = 0; 2030 if (net_ratelimit()) 2031 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2032 rate_n_flags, rx_status->band); 2033 } 2034 2035 break; 2036 } 2037 } 2038 } 2039 2040 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2041 struct iwl_rx_cmd_buffer *rxb, int queue) 2042 { 2043 struct ieee80211_rx_status *rx_status; 2044 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2045 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2046 struct ieee80211_hdr *hdr; 2047 u32 len; 2048 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2049 struct ieee80211_sta *sta = NULL; 2050 struct ieee80211_link_sta *link_sta = NULL; 2051 struct sk_buff *skb; 2052 u8 crypt_len = 0; 2053 size_t desc_size; 2054 struct iwl_mvm_rx_phy_data phy_data = {}; 2055 u32 format; 2056 2057 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2058 return; 2059 2060 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2061 desc_size = sizeof(*desc); 2062 else 2063 desc_size = IWL_RX_DESC_SIZE_V1; 2064 2065 if (unlikely(pkt_len < desc_size)) { 2066 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2067 return; 2068 } 2069 2070 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2071 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2072 phy_data.channel = desc->v3.channel; 2073 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2074 phy_data.energy_a = desc->v3.energy_a; 2075 phy_data.energy_b = desc->v3.energy_b; 2076 2077 phy_data.d0 = desc->v3.phy_data0; 2078 phy_data.d1 = desc->v3.phy_data1; 2079 phy_data.d2 = desc->v3.phy_data2; 2080 phy_data.d3 = desc->v3.phy_data3; 2081 phy_data.eht_d4 = desc->phy_eht_data4; 2082 phy_data.d5 = desc->v3.phy_data5; 2083 } else { 2084 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2085 phy_data.channel = desc->v1.channel; 2086 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2087 phy_data.energy_a = desc->v1.energy_a; 2088 phy_data.energy_b = desc->v1.energy_b; 2089 2090 phy_data.d0 = desc->v1.phy_data0; 2091 phy_data.d1 = desc->v1.phy_data1; 2092 phy_data.d2 = desc->v1.phy_data2; 2093 phy_data.d3 = desc->v1.phy_data3; 2094 } 2095 2096 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2097 REPLY_RX_MPDU_CMD, 0) < 4) { 2098 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2099 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2100 phy_data.rate_n_flags); 2101 } 2102 2103 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2104 2105 len = le16_to_cpu(desc->mpdu_len); 2106 2107 if (unlikely(len + desc_size > pkt_len)) { 2108 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2109 return; 2110 } 2111 2112 phy_data.with_data = true; 2113 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2114 phy_data.d4 = desc->phy_data4; 2115 2116 hdr = (void *)(pkt->data + desc_size); 2117 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2118 * ieee80211_hdr pulled. 2119 */ 2120 skb = alloc_skb(128, GFP_ATOMIC); 2121 if (!skb) { 2122 IWL_ERR(mvm, "alloc_skb failed\n"); 2123 return; 2124 } 2125 2126 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2127 /* 2128 * If the device inserted padding it means that (it thought) 2129 * the 802.11 header wasn't a multiple of 4 bytes long. In 2130 * this case, reserve two bytes at the start of the SKB to 2131 * align the payload properly in case we end up copying it. 2132 */ 2133 skb_reserve(skb, 2); 2134 } 2135 2136 rx_status = IEEE80211_SKB_RXCB(skb); 2137 2138 /* 2139 * Keep packets with CRC errors (and with overrun) for monitor mode 2140 * (otherwise the firmware discards them) but mark them as bad. 2141 */ 2142 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2143 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2144 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2145 le32_to_cpu(desc->status)); 2146 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2147 } 2148 2149 /* set the preamble flag if appropriate */ 2150 if (format == RATE_MCS_CCK_MSK && 2151 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2152 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2153 2154 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2155 u64 tsf_on_air_rise; 2156 2157 if (mvm->trans->trans_cfg->device_family >= 2158 IWL_DEVICE_FAMILY_AX210) 2159 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2160 else 2161 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2162 2163 rx_status->mactime = tsf_on_air_rise; 2164 /* TSF as indicated by the firmware is at INA time */ 2165 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2166 } 2167 2168 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2169 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2170 2171 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2172 } else { 2173 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2174 NL80211_BAND_2GHZ; 2175 } 2176 2177 /* update aggregation data for monitor sake on default queue */ 2178 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2179 bool toggle_bit; 2180 2181 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2182 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2183 /* 2184 * Toggle is switched whenever new aggregation starts. Make 2185 * sure ampdu_reference is never 0 so we can later use it to 2186 * see if the frame was really part of an A-MPDU or not. 2187 */ 2188 if (toggle_bit != mvm->ampdu_toggle) { 2189 mvm->ampdu_ref++; 2190 if (mvm->ampdu_ref == 0) 2191 mvm->ampdu_ref++; 2192 mvm->ampdu_toggle = toggle_bit; 2193 phy_data.first_subframe = true; 2194 } 2195 rx_status->ampdu_reference = mvm->ampdu_ref; 2196 } 2197 2198 rcu_read_lock(); 2199 2200 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2201 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2202 2203 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2204 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2205 if (IS_ERR(sta)) 2206 sta = NULL; 2207 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2208 2209 if (sta && sta->valid_links && link_sta) { 2210 rx_status->link_valid = 1; 2211 rx_status->link_id = link_sta->link_id; 2212 } 2213 } 2214 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2215 /* 2216 * This is fine since we prevent two stations with the same 2217 * address from being added. 2218 */ 2219 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2220 } 2221 2222 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2223 le32_to_cpu(pkt->len_n_flags), queue, 2224 &crypt_len)) { 2225 kfree_skb(skb); 2226 goto out; 2227 } 2228 2229 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2230 2231 if (sta) { 2232 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2233 struct ieee80211_vif *tx_blocked_vif = 2234 rcu_dereference(mvm->csa_tx_blocked_vif); 2235 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2236 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2237 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2238 struct iwl_fw_dbg_trigger_tlv *trig; 2239 struct ieee80211_vif *vif = mvmsta->vif; 2240 2241 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2242 !is_multicast_ether_addr(hdr->addr1) && 2243 ieee80211_is_data(hdr->frame_control) && 2244 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2245 schedule_delayed_work(&mvm->tcm.work, 0); 2246 2247 /* 2248 * We have tx blocked stations (with CS bit). If we heard 2249 * frames from a blocked station on a new channel we can 2250 * TX to it again. 2251 */ 2252 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2253 struct iwl_mvm_vif *mvmvif = 2254 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2255 struct iwl_rx_sta_csa rx_sta_csa = { 2256 .all_sta_unblocked = true, 2257 .vif = tx_blocked_vif, 2258 }; 2259 2260 if (mvmvif->csa_target_freq == rx_status->freq) 2261 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2262 false); 2263 ieee80211_iterate_stations_atomic(mvm->hw, 2264 iwl_mvm_rx_get_sta_block_tx, 2265 &rx_sta_csa); 2266 2267 if (rx_sta_csa.all_sta_unblocked) { 2268 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2269 /* Unblock BCAST / MCAST station */ 2270 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2271 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2272 } 2273 } 2274 2275 rs_update_last_rssi(mvm, mvmsta, rx_status); 2276 2277 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2278 ieee80211_vif_to_wdev(vif), 2279 FW_DBG_TRIGGER_RSSI); 2280 2281 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2282 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2283 s32 rssi; 2284 2285 rssi_trig = (void *)trig->data; 2286 rssi = le32_to_cpu(rssi_trig->rssi); 2287 2288 if (rx_status->signal < rssi) 2289 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2290 NULL); 2291 } 2292 2293 if (ieee80211_is_data(hdr->frame_control)) 2294 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2295 2296 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2297 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", 2298 le16_to_cpu(hdr->seq_ctrl)); 2299 kfree_skb(skb); 2300 goto out; 2301 } 2302 2303 /* 2304 * Our hardware de-aggregates AMSDUs but copies the mac header 2305 * as it to the de-aggregated MPDUs. We need to turn off the 2306 * AMSDU bit in the QoS control ourselves. 2307 * In addition, HW reverses addr3 and addr4 - reverse it back. 2308 */ 2309 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2310 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2311 u8 *qc = ieee80211_get_qos_ctl(hdr); 2312 2313 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2314 2315 if (mvm->trans->trans_cfg->device_family == 2316 IWL_DEVICE_FAMILY_9000) { 2317 iwl_mvm_flip_address(hdr->addr3); 2318 2319 if (ieee80211_has_a4(hdr->frame_control)) 2320 iwl_mvm_flip_address(hdr->addr4); 2321 } 2322 } 2323 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2324 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2325 2326 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2327 } 2328 } 2329 2330 /* management stuff on default queue */ 2331 if (!queue) { 2332 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2333 ieee80211_is_probe_resp(hdr->frame_control)) && 2334 mvm->sched_scan_pass_all == 2335 SCHED_SCAN_PASS_ALL_ENABLED)) 2336 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2337 2338 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2339 ieee80211_is_probe_resp(hdr->frame_control))) 2340 rx_status->boottime_ns = ktime_get_boottime_ns(); 2341 } 2342 2343 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2344 kfree_skb(skb); 2345 goto out; 2346 } 2347 2348 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2349 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2350 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2351 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2352 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2353 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2354 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2355 2356 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta); 2357 } 2358 out: 2359 rcu_read_unlock(); 2360 } 2361 2362 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2363 struct iwl_rx_cmd_buffer *rxb, int queue) 2364 { 2365 struct ieee80211_rx_status *rx_status; 2366 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2367 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2368 u32 rssi; 2369 u32 info_type; 2370 struct ieee80211_sta *sta = NULL; 2371 struct sk_buff *skb; 2372 struct iwl_mvm_rx_phy_data phy_data; 2373 u32 format; 2374 2375 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2376 return; 2377 2378 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2379 return; 2380 2381 rssi = le32_to_cpu(desc->rssi); 2382 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2383 phy_data.d0 = desc->phy_info[0]; 2384 phy_data.d1 = desc->phy_info[1]; 2385 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2386 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2387 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2388 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2389 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2390 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2391 phy_data.with_data = false; 2392 phy_data.rx_vec[0] = desc->rx_vec[0]; 2393 phy_data.rx_vec[1] = desc->rx_vec[1]; 2394 2395 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2396 RX_NO_DATA_NOTIF, 0) < 2) { 2397 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2398 phy_data.rate_n_flags); 2399 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2400 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2401 phy_data.rate_n_flags); 2402 } 2403 2404 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2405 2406 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2407 RX_NO_DATA_NOTIF, 0) >= 3) { 2408 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2409 sizeof(struct iwl_rx_no_data_ver_3))) 2410 /* invalid len for ver 3 */ 2411 return; 2412 phy_data.rx_vec[2] = desc->rx_vec[2]; 2413 phy_data.rx_vec[3] = desc->rx_vec[3]; 2414 } else { 2415 if (format == RATE_MCS_EHT_MSK) 2416 /* no support for EHT before version 3 API */ 2417 return; 2418 } 2419 2420 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2421 * ieee80211_hdr pulled. 2422 */ 2423 skb = alloc_skb(128, GFP_ATOMIC); 2424 if (!skb) { 2425 IWL_ERR(mvm, "alloc_skb failed\n"); 2426 return; 2427 } 2428 2429 rx_status = IEEE80211_SKB_RXCB(skb); 2430 2431 /* 0-length PSDU */ 2432 rx_status->flag |= RX_FLAG_NO_PSDU; 2433 2434 switch (info_type) { 2435 case RX_NO_DATA_INFO_TYPE_NDP: 2436 rx_status->zero_length_psdu_type = 2437 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2438 break; 2439 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2440 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2441 rx_status->zero_length_psdu_type = 2442 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2443 break; 2444 default: 2445 rx_status->zero_length_psdu_type = 2446 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2447 break; 2448 } 2449 2450 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2451 NL80211_BAND_2GHZ; 2452 2453 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2454 2455 /* no more radio tap info should be put after this point. 2456 * 2457 * We mark it as mac header, for upper layers to know where 2458 * all radio tap header ends. 2459 */ 2460 skb_reset_mac_header(skb); 2461 2462 /* 2463 * Override the nss from the rx_vec since the rate_n_flags has 2464 * only 2 bits for the nss which gives a max of 4 ss but there 2465 * may be up to 8 spatial streams. 2466 */ 2467 switch (format) { 2468 case RATE_MCS_VHT_MSK: 2469 rx_status->nss = 2470 le32_get_bits(desc->rx_vec[0], 2471 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2472 break; 2473 case RATE_MCS_HE_MSK: 2474 rx_status->nss = 2475 le32_get_bits(desc->rx_vec[0], 2476 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2477 break; 2478 case RATE_MCS_EHT_MSK: 2479 rx_status->nss = 2480 le32_get_bits(desc->rx_vec[2], 2481 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2482 } 2483 2484 rcu_read_lock(); 2485 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2486 rcu_read_unlock(); 2487 } 2488 2489 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2490 struct iwl_rx_cmd_buffer *rxb, int queue) 2491 { 2492 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2493 struct iwl_frame_release *release = (void *)pkt->data; 2494 2495 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2496 return; 2497 2498 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2499 le16_to_cpu(release->nssn), 2500 queue); 2501 } 2502 2503 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2504 struct iwl_rx_cmd_buffer *rxb, int queue) 2505 { 2506 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2507 struct iwl_bar_frame_release *release = (void *)pkt->data; 2508 unsigned int baid = le32_get_bits(release->ba_info, 2509 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2510 unsigned int nssn = le32_get_bits(release->ba_info, 2511 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2512 unsigned int sta_id = le32_get_bits(release->sta_tid, 2513 IWL_BAR_FRAME_RELEASE_STA_MASK); 2514 unsigned int tid = le32_get_bits(release->sta_tid, 2515 IWL_BAR_FRAME_RELEASE_TID_MASK); 2516 struct iwl_mvm_baid_data *baid_data; 2517 2518 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2519 return; 2520 2521 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2522 baid >= ARRAY_SIZE(mvm->baid_map))) 2523 return; 2524 2525 rcu_read_lock(); 2526 baid_data = rcu_dereference(mvm->baid_map[baid]); 2527 if (!baid_data) { 2528 IWL_DEBUG_RX(mvm, 2529 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2530 baid); 2531 goto out; 2532 } 2533 2534 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2535 !(baid_data->sta_mask & BIT(sta_id)), 2536 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2537 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2538 tid)) 2539 goto out; 2540 2541 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", 2542 nssn); 2543 2544 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); 2545 out: 2546 rcu_read_unlock(); 2547 } 2548