1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2025 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->mac_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta) 240 { 241 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 242 kfree_skb(skb); 243 return; 244 } 245 246 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 247 } 248 249 static bool iwl_mvm_used_average_energy(struct iwl_mvm *mvm, 250 struct iwl_rx_mpdu_desc *desc, 251 struct ieee80211_hdr *hdr, 252 struct ieee80211_rx_status *rx_status) 253 { 254 struct iwl_mvm_vif *mvm_vif; 255 struct ieee80211_vif *vif; 256 u32 id; 257 258 if (unlikely(!hdr || !desc)) 259 return false; 260 261 if (likely(!ieee80211_is_beacon(hdr->frame_control))) 262 return false; 263 264 /* for the link conf lookup */ 265 guard(rcu)(); 266 267 /* MAC or link ID depending on FW, but driver has them equal */ 268 id = u8_get_bits(desc->mac_phy_band, 269 IWL_RX_MPDU_MAC_PHY_BAND_MAC_MASK); 270 271 /* >= means AUX MAC/link ID, no energy correction needed then */ 272 if (id >= ARRAY_SIZE(mvm->vif_id_to_mac)) 273 return false; 274 275 vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, true); 276 if (!vif) 277 return false; 278 279 mvm_vif = iwl_mvm_vif_from_mac80211(vif); 280 281 /* 282 * If we know the MAC by MAC or link ID then the frame was 283 * received for the link, so by filtering it means it was 284 * from the AP the link is connected to. 285 */ 286 287 /* skip also in case we don't have it (yet) */ 288 if (!mvm_vif->deflink.average_beacon_energy) 289 return false; 290 291 IWL_DEBUG_STATS(mvm, "energy override by average %d\n", 292 mvm_vif->deflink.average_beacon_energy); 293 rx_status->signal = -mvm_vif->deflink.average_beacon_energy; 294 return true; 295 } 296 297 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 298 struct iwl_rx_mpdu_desc *desc, 299 struct ieee80211_hdr *hdr, 300 struct ieee80211_rx_status *rx_status, 301 u32 rate_n_flags, int energy_a, 302 int energy_b) 303 { 304 int max_energy; 305 306 energy_a = energy_a ? -energy_a : S8_MIN; 307 energy_b = energy_b ? -energy_b : S8_MIN; 308 max_energy = max(energy_a, energy_b); 309 310 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 311 energy_a, energy_b, max_energy); 312 313 if (iwl_mvm_used_average_energy(mvm, desc, hdr, rx_status)) 314 return; 315 316 rx_status->signal = max_energy; 317 rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK); 318 rx_status->chain_signal[0] = energy_a; 319 rx_status->chain_signal[1] = energy_b; 320 } 321 322 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 323 struct ieee80211_hdr *hdr, 324 struct iwl_rx_mpdu_desc *desc, 325 u32 status, 326 struct ieee80211_rx_status *stats) 327 { 328 struct wireless_dev *wdev; 329 struct iwl_mvm_sta *mvmsta; 330 struct iwl_mvm_vif *mvmvif; 331 u8 keyid; 332 struct ieee80211_key_conf *key; 333 u32 len = le16_to_cpu(desc->mpdu_len); 334 const u8 *frame = (void *)hdr; 335 const u8 *mmie; 336 337 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 338 return 0; 339 340 /* 341 * For non-beacon, we don't really care. But beacons may 342 * be filtered out, and we thus need the firmware's replay 343 * detection, otherwise beacons the firmware previously 344 * filtered could be replayed, or something like that, and 345 * it can filter a lot - though usually only if nothing has 346 * changed. 347 */ 348 if (!ieee80211_is_beacon(hdr->frame_control)) 349 return 0; 350 351 if (!sta) 352 return -1; 353 354 mvmsta = iwl_mvm_sta_from_mac80211(sta); 355 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 356 357 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 358 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 359 goto report; 360 361 /* good cases */ 362 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 363 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 364 stats->flag |= RX_FLAG_DECRYPTED; 365 return 0; 366 } 367 368 /* 369 * both keys will have the same cipher and MIC length, use 370 * whichever one is available 371 */ 372 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 373 if (!key) { 374 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 375 if (!key) 376 goto report; 377 } 378 379 if (len < key->icv_len) 380 goto report; 381 382 /* get the real key ID */ 383 mmie = frame + (len - key->icv_len); 384 385 /* the position of the key_id in ieee80211_mmie_16 is the same */ 386 keyid = le16_to_cpu(((const struct ieee80211_mmie *) mmie)->key_id); 387 388 /* and if that's the other key, look it up */ 389 if (keyid != key->keyidx) { 390 /* 391 * shouldn't happen since firmware checked, but be safe 392 * in case the MIC length is wrong too, for example 393 */ 394 if (keyid != 6 && keyid != 7) 395 return -1; 396 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 397 if (!key) 398 goto report; 399 } 400 401 /* Report status to mac80211 */ 402 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 403 ieee80211_key_mic_failure(key); 404 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 405 ieee80211_key_replay(key); 406 report: 407 wdev = ieee80211_vif_to_wdev(mvmsta->vif); 408 if (wdev->netdev) 409 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); 410 411 return -1; 412 } 413 414 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 415 struct ieee80211_hdr *hdr, 416 struct ieee80211_rx_status *stats, u16 phy_info, 417 struct iwl_rx_mpdu_desc *desc, 418 u32 pkt_flags, int queue, u8 *crypt_len) 419 { 420 u32 status = le32_to_cpu(desc->status); 421 422 /* 423 * Drop UNKNOWN frames in aggregation, unless in monitor mode 424 * (where we don't have the keys). 425 * We limit this to aggregation because in TKIP this is a valid 426 * scenario, since we may not have the (correct) TTAK (phase 1 427 * key) in the firmware. 428 */ 429 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 430 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 431 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { 432 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); 433 return -1; 434 } 435 436 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 437 !ieee80211_has_protected(hdr->frame_control))) 438 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 439 440 if (!ieee80211_has_protected(hdr->frame_control) || 441 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 442 IWL_RX_MPDU_STATUS_SEC_NONE) 443 return 0; 444 445 /* TODO: handle packets encrypted with unknown alg */ 446 447 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 448 case IWL_RX_MPDU_STATUS_SEC_CCM: 449 case IWL_RX_MPDU_STATUS_SEC_GCM: 450 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 451 /* alg is CCM: check MIC only */ 452 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { 453 IWL_DEBUG_DROP(mvm, 454 "Dropping packet, bad MIC (CCM/GCM)\n"); 455 return -1; 456 } 457 458 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 459 *crypt_len = IEEE80211_CCMP_HDR_LEN; 460 return 0; 461 case IWL_RX_MPDU_STATUS_SEC_TKIP: 462 /* Don't drop the frame and decrypt it in SW */ 463 if (!fw_has_api(&mvm->fw->ucode_capa, 464 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 465 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 466 return 0; 467 468 if (mvm->trans->mac_cfg->gen2 && 469 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 470 stats->flag |= RX_FLAG_MMIC_ERROR; 471 472 *crypt_len = IEEE80211_TKIP_IV_LEN; 473 fallthrough; 474 case IWL_RX_MPDU_STATUS_SEC_WEP: 475 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 476 return -1; 477 478 stats->flag |= RX_FLAG_DECRYPTED; 479 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 480 IWL_RX_MPDU_STATUS_SEC_WEP) 481 *crypt_len = IEEE80211_WEP_IV_LEN; 482 483 if (pkt_flags & FH_RSCSR_RADA_EN) { 484 stats->flag |= RX_FLAG_ICV_STRIPPED; 485 if (mvm->trans->mac_cfg->gen2) 486 stats->flag |= RX_FLAG_MMIC_STRIPPED; 487 } 488 489 return 0; 490 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 491 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 492 return -1; 493 stats->flag |= RX_FLAG_DECRYPTED; 494 return 0; 495 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 496 break; 497 default: 498 /* 499 * Sometimes we can get frames that were not decrypted 500 * because the firmware didn't have the keys yet. This can 501 * happen after connection where we can get multicast frames 502 * before the GTK is installed. 503 * Silently drop those frames. 504 * Also drop un-decrypted frames in monitor mode. 505 */ 506 if (!is_multicast_ether_addr(hdr->addr1) && 507 !mvm->monitor_on && net_ratelimit()) 508 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 509 } 510 511 return 0; 512 } 513 514 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 515 struct ieee80211_sta *sta, 516 struct sk_buff *skb, 517 struct iwl_rx_packet *pkt) 518 { 519 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 520 521 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 522 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 523 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 524 525 skb->ip_summed = CHECKSUM_COMPLETE; 526 skb->csum = csum_unfold(~(__force __sum16)hwsum); 527 } 528 } else { 529 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 530 struct iwl_mvm_vif *mvmvif; 531 u16 flags = le16_to_cpu(desc->l3l4_flags); 532 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 533 IWL_RX_L3_PROTO_POS); 534 535 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 536 537 if (mvmvif->features & NETIF_F_RXCSUM && 538 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 539 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 540 l3_prot == IWL_RX_L3_TYPE_IPV6 || 541 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 542 skb->ip_summed = CHECKSUM_UNNECESSARY; 543 } 544 } 545 546 /* 547 * returns true if a packet is a duplicate or invalid tid and should be dropped. 548 * Updates AMSDU PN tracking info 549 */ 550 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 551 struct ieee80211_rx_status *rx_status, 552 struct ieee80211_hdr *hdr, 553 struct iwl_rx_mpdu_desc *desc) 554 { 555 struct iwl_mvm_sta *mvm_sta; 556 struct iwl_mvm_rxq_dup_data *dup_data; 557 u8 tid, sub_frame_idx; 558 559 if (WARN_ON(IS_ERR_OR_NULL(sta))) 560 return false; 561 562 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 563 564 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 565 return false; 566 567 dup_data = &mvm_sta->dup_data[queue]; 568 569 /* 570 * Drop duplicate 802.11 retransmissions 571 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 572 */ 573 if (ieee80211_is_ctl(hdr->frame_control) || 574 ieee80211_is_any_nullfunc(hdr->frame_control) || 575 is_multicast_ether_addr(hdr->addr1)) 576 return false; 577 578 if (ieee80211_is_data_qos(hdr->frame_control)) { 579 /* frame has qos control */ 580 tid = ieee80211_get_tid(hdr); 581 if (tid >= IWL_MAX_TID_COUNT) 582 return true; 583 } else { 584 tid = IWL_MAX_TID_COUNT; 585 } 586 587 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 588 sub_frame_idx = desc->amsdu_info & 589 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 590 591 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 592 dup_data->last_seq[tid] == hdr->seq_ctrl && 593 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 594 return true; 595 596 /* Allow same PN as the first subframe for following sub frames */ 597 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 598 sub_frame_idx > dup_data->last_sub_frame[tid] && 599 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 600 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 601 602 dup_data->last_seq[tid] = hdr->seq_ctrl; 603 dup_data->last_sub_frame[tid] = sub_frame_idx; 604 605 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 606 607 return false; 608 } 609 610 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 611 struct ieee80211_sta *sta, 612 struct napi_struct *napi, 613 struct iwl_mvm_baid_data *baid_data, 614 struct iwl_mvm_reorder_buffer *reorder_buf, 615 u16 nssn) 616 { 617 struct iwl_mvm_reorder_buf_entry *entries = 618 &baid_data->entries[reorder_buf->queue * 619 baid_data->entries_per_queue]; 620 u16 ssn = reorder_buf->head_sn; 621 622 lockdep_assert_held(&reorder_buf->lock); 623 624 while (ieee80211_sn_less(ssn, nssn)) { 625 int index = ssn % baid_data->buf_size; 626 struct sk_buff_head *skb_list = &entries[index].frames; 627 struct sk_buff *skb; 628 629 ssn = ieee80211_sn_inc(ssn); 630 631 /* 632 * Empty the list. Will have more than one frame for A-MSDU. 633 * Empty list is valid as well since nssn indicates frames were 634 * received. 635 */ 636 while ((skb = __skb_dequeue(skb_list))) { 637 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 638 reorder_buf->queue, 639 sta); 640 reorder_buf->num_stored--; 641 } 642 } 643 reorder_buf->head_sn = nssn; 644 } 645 646 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 647 struct iwl_mvm_delba_data *data) 648 { 649 struct iwl_mvm_baid_data *ba_data; 650 struct ieee80211_sta *sta; 651 struct iwl_mvm_reorder_buffer *reorder_buf; 652 u8 baid = data->baid; 653 u32 sta_id; 654 655 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 656 return; 657 658 rcu_read_lock(); 659 660 ba_data = rcu_dereference(mvm->baid_map[baid]); 661 if (WARN_ON_ONCE(!ba_data)) 662 goto out; 663 664 /* pick any STA ID to find the pointer */ 665 sta_id = ffs(ba_data->sta_mask) - 1; 666 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 667 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 668 goto out; 669 670 reorder_buf = &ba_data->reorder_buf[queue]; 671 672 /* release all frames that are in the reorder buffer to the stack */ 673 spin_lock_bh(&reorder_buf->lock); 674 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 675 ieee80211_sn_add(reorder_buf->head_sn, 676 ba_data->buf_size)); 677 spin_unlock_bh(&reorder_buf->lock); 678 679 out: 680 rcu_read_unlock(); 681 } 682 683 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 684 struct napi_struct *napi, 685 u8 baid, u16 nssn, int queue) 686 { 687 struct ieee80211_sta *sta; 688 struct iwl_mvm_reorder_buffer *reorder_buf; 689 struct iwl_mvm_baid_data *ba_data; 690 u32 sta_id; 691 692 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 693 baid, nssn); 694 695 if (IWL_FW_CHECK(mvm, 696 baid == IWL_RX_REORDER_DATA_INVALID_BAID || 697 baid >= ARRAY_SIZE(mvm->baid_map), 698 "invalid BAID from FW: %d\n", baid)) 699 return; 700 701 rcu_read_lock(); 702 703 ba_data = rcu_dereference(mvm->baid_map[baid]); 704 if (!ba_data) { 705 IWL_DEBUG_RX(mvm, 706 "Got valid BAID %d but not allocated, invalid frame release!\n", 707 baid); 708 goto out; 709 } 710 711 /* pick any STA ID to find the pointer */ 712 sta_id = ffs(ba_data->sta_mask) - 1; 713 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 714 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 715 goto out; 716 717 reorder_buf = &ba_data->reorder_buf[queue]; 718 719 spin_lock_bh(&reorder_buf->lock); 720 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 721 reorder_buf, nssn); 722 spin_unlock_bh(&reorder_buf->lock); 723 724 out: 725 rcu_read_unlock(); 726 } 727 728 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 729 struct iwl_rx_cmd_buffer *rxb, int queue) 730 { 731 struct iwl_rx_packet *pkt = rxb_addr(rxb); 732 struct iwl_rxq_sync_notification *notif; 733 struct iwl_mvm_internal_rxq_notif *internal_notif; 734 u32 len = iwl_rx_packet_payload_len(pkt); 735 736 notif = (void *)pkt->data; 737 internal_notif = (void *)notif->payload; 738 739 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 740 "invalid notification size %d (%d)", 741 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 742 return; 743 len -= sizeof(*notif) + sizeof(*internal_notif); 744 745 if (WARN_ONCE(internal_notif->sync && 746 mvm->queue_sync_cookie != internal_notif->cookie, 747 "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n", 748 internal_notif->cookie, mvm->queue_sync_cookie, queue)) 749 return; 750 751 switch (internal_notif->type) { 752 case IWL_MVM_RXQ_EMPTY: 753 WARN_ONCE(len, "invalid empty notification size %d", len); 754 break; 755 case IWL_MVM_RXQ_NOTIF_DEL_BA: 756 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 757 "invalid delba notification size %d (%d)", 758 len, (int)sizeof(struct iwl_mvm_delba_data))) 759 break; 760 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 761 break; 762 default: 763 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 764 } 765 766 if (internal_notif->sync) { 767 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 768 "queue sync: queue %d responded a second time!\n", 769 queue); 770 if (READ_ONCE(mvm->queue_sync_state) == 0) 771 wake_up(&mvm->rx_sync_waitq); 772 } 773 } 774 775 /* 776 * Returns true if the MPDU was buffered\dropped, false if it should be passed 777 * to upper layer. 778 */ 779 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 780 struct napi_struct *napi, 781 int queue, 782 struct ieee80211_sta *sta, 783 struct sk_buff *skb, 784 struct iwl_rx_mpdu_desc *desc) 785 { 786 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 787 struct iwl_mvm_baid_data *baid_data; 788 struct iwl_mvm_reorder_buffer *buffer; 789 u32 reorder = le32_to_cpu(desc->reorder_data); 790 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 791 bool last_subframe = 792 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 793 u8 tid = ieee80211_get_tid(hdr); 794 struct iwl_mvm_reorder_buf_entry *entries; 795 u32 sta_mask; 796 int index; 797 u16 nssn, sn; 798 u8 baid; 799 800 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 801 IWL_RX_MPDU_REORDER_BAID_SHIFT; 802 803 if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000) 804 return false; 805 806 /* 807 * This also covers the case of receiving a Block Ack Request 808 * outside a BA session; we'll pass it to mac80211 and that 809 * then sends a delBA action frame. 810 * This also covers pure monitor mode, in which case we won't 811 * have any BA sessions. 812 */ 813 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 814 return false; 815 816 /* no sta yet */ 817 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 818 "Got valid BAID without a valid station assigned\n")) 819 return false; 820 821 /* not a data packet or a bar */ 822 if (!ieee80211_is_back_req(hdr->frame_control) && 823 (!ieee80211_is_data_qos(hdr->frame_control) || 824 is_multicast_ether_addr(hdr->addr1))) 825 return false; 826 827 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 828 return false; 829 830 baid_data = rcu_dereference(mvm->baid_map[baid]); 831 if (!baid_data) { 832 IWL_DEBUG_RX(mvm, 833 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 834 baid, reorder); 835 return false; 836 } 837 838 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 839 840 if (IWL_FW_CHECK(mvm, 841 tid != baid_data->tid || 842 !(sta_mask & baid_data->sta_mask), 843 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 844 baid, baid_data->sta_mask, baid_data->tid, 845 sta_mask, tid)) 846 return false; 847 848 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 849 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 850 IWL_RX_MPDU_REORDER_SN_SHIFT; 851 852 buffer = &baid_data->reorder_buf[queue]; 853 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 854 855 spin_lock_bh(&buffer->lock); 856 857 if (!buffer->valid) { 858 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 859 spin_unlock_bh(&buffer->lock); 860 return false; 861 } 862 buffer->valid = true; 863 } 864 865 /* drop any duplicated packets */ 866 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) 867 goto drop; 868 869 /* drop any oudated packets */ 870 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) 871 goto drop; 872 873 /* release immediately if allowed by nssn and no stored frames */ 874 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 875 if (!amsdu || last_subframe) 876 buffer->head_sn = nssn; 877 878 spin_unlock_bh(&buffer->lock); 879 return false; 880 } 881 882 /* 883 * release immediately if there are no stored frames, and the sn is 884 * equal to the head. 885 * This can happen due to reorder timer, where NSSN is behind head_sn. 886 * When we released everything, and we got the next frame in the 887 * sequence, according to the NSSN we can't release immediately, 888 * while technically there is no hole and we can move forward. 889 */ 890 if (!buffer->num_stored && sn == buffer->head_sn) { 891 if (!amsdu || last_subframe) 892 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 893 894 spin_unlock_bh(&buffer->lock); 895 return false; 896 } 897 898 /* put in reorder buffer */ 899 index = sn % baid_data->buf_size; 900 __skb_queue_tail(&entries[index].frames, skb); 901 buffer->num_stored++; 902 903 /* 904 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 905 * The reason is that NSSN advances on the first sub-frame, and may 906 * cause the reorder buffer to advance before all the sub-frames arrive. 907 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 908 * SN 1. NSSN for first sub frame will be 3 with the result of driver 909 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 910 * already ahead and it will be dropped. 911 * If the last sub-frame is not on this queue - we will get frame 912 * release notification with up to date NSSN. 913 * If this is the first frame that is stored in the buffer, the head_sn 914 * may be outdated. Update it based on the last NSSN to make sure it 915 * will be released when the frame release notification arrives. 916 */ 917 if (!amsdu || last_subframe) 918 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 919 buffer, nssn); 920 else if (buffer->num_stored == 1) 921 buffer->head_sn = nssn; 922 923 spin_unlock_bh(&buffer->lock); 924 return true; 925 926 drop: 927 kfree_skb(skb); 928 spin_unlock_bh(&buffer->lock); 929 return true; 930 } 931 932 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 933 u32 reorder_data, u8 baid) 934 { 935 unsigned long now = jiffies; 936 unsigned long timeout; 937 struct iwl_mvm_baid_data *data; 938 939 rcu_read_lock(); 940 941 data = rcu_dereference(mvm->baid_map[baid]); 942 if (!data) { 943 IWL_DEBUG_RX(mvm, 944 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 945 baid, reorder_data); 946 goto out; 947 } 948 949 if (!data->timeout) 950 goto out; 951 952 timeout = data->timeout; 953 /* 954 * Do not update last rx all the time to avoid cache bouncing 955 * between the rx queues. 956 * Update it every timeout. Worst case is the session will 957 * expire after ~ 2 * timeout, which doesn't matter that much. 958 */ 959 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 960 /* Update is atomic */ 961 data->last_rx = now; 962 963 out: 964 rcu_read_unlock(); 965 } 966 967 static void iwl_mvm_flip_address(u8 *addr) 968 { 969 int i; 970 u8 mac_addr[ETH_ALEN]; 971 972 for (i = 0; i < ETH_ALEN; i++) 973 mac_addr[i] = addr[ETH_ALEN - i - 1]; 974 ether_addr_copy(addr, mac_addr); 975 } 976 977 struct iwl_mvm_rx_phy_data { 978 enum iwl_rx_phy_info_type info_type; 979 __le32 d0, d1, d2, d3, eht_d4, d5; 980 __le16 d4; 981 bool with_data; 982 bool first_subframe; 983 __le32 rx_vec[4]; 984 985 u32 rate_n_flags; 986 u32 gp2_on_air_rise; 987 u16 phy_info; 988 u8 energy_a, energy_b; 989 u8 channel; 990 }; 991 992 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 993 struct iwl_mvm_rx_phy_data *phy_data, 994 struct ieee80211_radiotap_he_mu *he_mu) 995 { 996 u32 phy_data2 = le32_to_cpu(phy_data->d2); 997 u32 phy_data3 = le32_to_cpu(phy_data->d3); 998 u16 phy_data4 = le16_to_cpu(phy_data->d4); 999 u32 rate_n_flags = phy_data->rate_n_flags; 1000 1001 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1002 he_mu->flags1 |= 1003 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1004 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1005 1006 he_mu->flags1 |= 1007 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1008 phy_data4), 1009 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1010 1011 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1012 phy_data2); 1013 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1014 phy_data3); 1015 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1016 phy_data2); 1017 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1018 phy_data3); 1019 } 1020 1021 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1022 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1023 he_mu->flags1 |= 1024 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1025 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1026 1027 he_mu->flags2 |= 1028 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1029 phy_data4), 1030 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1031 1032 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1033 phy_data2); 1034 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1035 phy_data3); 1036 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1037 phy_data2); 1038 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1039 phy_data3); 1040 } 1041 } 1042 1043 static void 1044 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1045 struct ieee80211_radiotap_he *he, 1046 struct ieee80211_radiotap_he_mu *he_mu, 1047 struct ieee80211_rx_status *rx_status) 1048 { 1049 /* 1050 * Unfortunately, we have to leave the mac80211 data 1051 * incorrect for the case that we receive an HE-MU 1052 * transmission and *don't* have the HE phy data (due 1053 * to the bits being used for TSF). This shouldn't 1054 * happen though as management frames where we need 1055 * the TSF/timers are not be transmitted in HE-MU. 1056 */ 1057 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1058 u32 rate_n_flags = phy_data->rate_n_flags; 1059 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1060 u8 offs = 0; 1061 1062 rx_status->bw = RATE_INFO_BW_HE_RU; 1063 1064 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1065 1066 switch (ru) { 1067 case 0 ... 36: 1068 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1069 offs = ru; 1070 break; 1071 case 37 ... 52: 1072 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1073 offs = ru - 37; 1074 break; 1075 case 53 ... 60: 1076 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1077 offs = ru - 53; 1078 break; 1079 case 61 ... 64: 1080 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1081 offs = ru - 61; 1082 break; 1083 case 65 ... 66: 1084 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1085 offs = ru - 65; 1086 break; 1087 case 67: 1088 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1089 break; 1090 case 68: 1091 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1092 break; 1093 } 1094 he->data2 |= le16_encode_bits(offs, 1095 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1096 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1097 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1098 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1099 he->data2 |= 1100 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1101 1102 #define CHECK_BW(bw) \ 1103 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1104 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1105 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1106 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1107 CHECK_BW(20); 1108 CHECK_BW(40); 1109 CHECK_BW(80); 1110 CHECK_BW(160); 1111 1112 if (he_mu) 1113 he_mu->flags2 |= 1114 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1115 rate_n_flags), 1116 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1117 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1118 he->data6 |= 1119 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1120 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1121 rate_n_flags), 1122 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1123 } 1124 1125 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1126 struct iwl_mvm_rx_phy_data *phy_data, 1127 struct ieee80211_radiotap_he *he, 1128 struct ieee80211_radiotap_he_mu *he_mu, 1129 struct ieee80211_rx_status *rx_status, 1130 int queue) 1131 { 1132 switch (phy_data->info_type) { 1133 case IWL_RX_PHY_INFO_TYPE_NONE: 1134 case IWL_RX_PHY_INFO_TYPE_CCK: 1135 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1136 case IWL_RX_PHY_INFO_TYPE_HT: 1137 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1138 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1139 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1140 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1141 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1142 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1143 return; 1144 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1145 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1146 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1147 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1148 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1149 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1150 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1151 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1152 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1153 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1154 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1155 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1156 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1157 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1158 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1159 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1160 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1161 fallthrough; 1162 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1163 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1164 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1165 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1166 /* HE common */ 1167 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1168 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1169 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1170 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1171 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1172 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1173 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1174 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1175 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1176 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1177 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1178 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1179 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1180 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1181 IWL_RX_PHY_DATA0_HE_UPLINK), 1182 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1183 } 1184 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1185 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1186 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1187 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1188 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1189 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1190 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1191 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1192 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1193 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1194 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1195 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1196 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1197 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1198 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1199 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1200 IWL_RX_PHY_DATA0_HE_DOPPLER), 1201 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1202 break; 1203 } 1204 1205 switch (phy_data->info_type) { 1206 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1207 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1208 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1209 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1210 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1211 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1212 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1213 break; 1214 default: 1215 /* nothing here */ 1216 break; 1217 } 1218 1219 switch (phy_data->info_type) { 1220 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1221 he_mu->flags1 |= 1222 le16_encode_bits(le16_get_bits(phy_data->d4, 1223 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1224 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1225 he_mu->flags1 |= 1226 le16_encode_bits(le16_get_bits(phy_data->d4, 1227 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1228 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1229 he_mu->flags2 |= 1230 le16_encode_bits(le16_get_bits(phy_data->d4, 1231 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1232 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1233 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1234 fallthrough; 1235 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1236 he_mu->flags2 |= 1237 le16_encode_bits(le32_get_bits(phy_data->d1, 1238 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1239 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1240 he_mu->flags2 |= 1241 le16_encode_bits(le32_get_bits(phy_data->d1, 1242 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1243 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1244 fallthrough; 1245 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1246 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1247 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1248 break; 1249 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1250 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1251 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1252 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1253 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1254 break; 1255 default: 1256 /* nothing */ 1257 break; 1258 } 1259 } 1260 1261 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1262 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1263 1264 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1265 typeof(enc_bits) _enc_bits = enc_bits; \ 1266 typeof(usig) _usig = usig; \ 1267 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1268 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1269 } while (0) 1270 1271 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1272 eht->data[(rt_data)] |= \ 1273 (cpu_to_le32 \ 1274 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1275 LE32_DEC_ENC(data ## fw_data, \ 1276 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1277 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1278 1279 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1280 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1281 1282 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1283 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1284 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1285 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1286 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1287 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1288 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1289 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1290 1291 #define IWL_RX_RU_DATA_A1 2 1292 #define IWL_RX_RU_DATA_A2 2 1293 #define IWL_RX_RU_DATA_B1 2 1294 #define IWL_RX_RU_DATA_B2 4 1295 #define IWL_RX_RU_DATA_C1 3 1296 #define IWL_RX_RU_DATA_C2 3 1297 #define IWL_RX_RU_DATA_D1 4 1298 #define IWL_RX_RU_DATA_D2 4 1299 1300 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1301 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1302 rt_ru, \ 1303 IWL_RX_RU_DATA_ ## fw_ru, \ 1304 fw_ru) 1305 1306 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1307 struct iwl_mvm_rx_phy_data *phy_data, 1308 struct ieee80211_rx_status *rx_status, 1309 struct ieee80211_radiotap_eht *eht, 1310 struct ieee80211_radiotap_eht_usig *usig) 1311 { 1312 if (phy_data->with_data) { 1313 __le32 data1 = phy_data->d1; 1314 __le32 data2 = phy_data->d2; 1315 __le32 data3 = phy_data->d3; 1316 __le32 data4 = phy_data->eht_d4; 1317 __le32 data5 = phy_data->d5; 1318 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1319 1320 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1321 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1322 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1323 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1324 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1325 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1326 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1327 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1328 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1329 IWL_MVM_ENC_USIG_VALUE_MASK 1330 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1331 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1332 1333 eht->user_info[0] |= 1334 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1335 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1336 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1337 1338 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1339 eht->data[7] |= LE32_DEC_ENC 1340 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1341 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1342 1343 /* 1344 * Hardware labels the content channels/RU allocation values 1345 * as follows: 1346 * Content Channel 1 Content Channel 2 1347 * 20 MHz: A1 1348 * 40 MHz: A1 B1 1349 * 80 MHz: A1 C1 B1 D1 1350 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1351 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1352 * 1353 * However firmware can only give us A1-D2, so the higher 1354 * frequencies are missing. 1355 */ 1356 1357 switch (phy_bw) { 1358 case RATE_MCS_CHAN_WIDTH_320: 1359 /* additional values are missing in RX metadata */ 1360 case RATE_MCS_CHAN_WIDTH_160: 1361 /* content channel 1 */ 1362 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1363 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1364 /* content channel 2 */ 1365 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1366 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1367 fallthrough; 1368 case RATE_MCS_CHAN_WIDTH_80: 1369 /* content channel 1 */ 1370 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1371 /* content channel 2 */ 1372 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1373 fallthrough; 1374 case RATE_MCS_CHAN_WIDTH_40: 1375 /* content channel 2 */ 1376 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1377 fallthrough; 1378 case RATE_MCS_CHAN_WIDTH_20: 1379 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1380 break; 1381 } 1382 } else { 1383 __le32 usig_a1 = phy_data->rx_vec[0]; 1384 __le32 usig_a2 = phy_data->rx_vec[1]; 1385 1386 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1387 IWL_RX_USIG_A1_DISREGARD, 1388 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1389 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1390 IWL_RX_USIG_A1_VALIDATE, 1391 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1392 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1393 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1394 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1395 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1396 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1397 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1398 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1399 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1400 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1401 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1402 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1403 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1404 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1405 IWL_RX_USIG_A2_EHT_SIG_MCS, 1406 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1407 IWL_MVM_ENC_USIG_VALUE_MASK 1408 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1409 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1410 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1411 IWL_RX_USIG_A2_EHT_CRC_OK, 1412 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1413 } 1414 } 1415 1416 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1417 struct iwl_mvm_rx_phy_data *phy_data, 1418 struct ieee80211_rx_status *rx_status, 1419 struct ieee80211_radiotap_eht *eht, 1420 struct ieee80211_radiotap_eht_usig *usig) 1421 { 1422 if (phy_data->with_data) { 1423 __le32 data5 = phy_data->d5; 1424 1425 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1426 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1427 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1428 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1429 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1430 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1431 1432 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1433 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1434 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1435 } else { 1436 __le32 usig_a1 = phy_data->rx_vec[0]; 1437 __le32 usig_a2 = phy_data->rx_vec[1]; 1438 1439 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1440 IWL_RX_USIG_A1_DISREGARD, 1441 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1442 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1443 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1444 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1445 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1446 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1447 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1448 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1449 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1450 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1451 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1452 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1453 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1454 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1455 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1456 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1457 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1458 IWL_RX_USIG_A2_EHT_CRC_OK, 1459 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1460 } 1461 } 1462 1463 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1464 struct ieee80211_rx_status *rx_status, 1465 struct ieee80211_radiotap_eht *eht) 1466 { 1467 u32 ru = le32_get_bits(eht->data[8], 1468 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1469 enum nl80211_eht_ru_alloc nl_ru; 1470 1471 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1472 * in an EHT variant User Info field 1473 */ 1474 1475 switch (ru) { 1476 case 0 ... 36: 1477 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1478 break; 1479 case 37 ... 52: 1480 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1481 break; 1482 case 53 ... 60: 1483 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1484 break; 1485 case 61 ... 64: 1486 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1487 break; 1488 case 65 ... 66: 1489 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1490 break; 1491 case 67: 1492 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1493 break; 1494 case 68: 1495 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1496 break; 1497 case 69: 1498 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1499 break; 1500 case 70 ... 81: 1501 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1502 break; 1503 case 82 ... 89: 1504 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1505 break; 1506 case 90 ... 93: 1507 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1508 break; 1509 case 94 ... 95: 1510 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1511 break; 1512 case 96 ... 99: 1513 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1514 break; 1515 case 100 ... 103: 1516 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1517 break; 1518 case 104: 1519 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1520 break; 1521 case 105 ... 106: 1522 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1523 break; 1524 default: 1525 return; 1526 } 1527 1528 rx_status->bw = RATE_INFO_BW_EHT_RU; 1529 rx_status->eht.ru = nl_ru; 1530 } 1531 1532 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1533 struct iwl_mvm_rx_phy_data *phy_data, 1534 struct ieee80211_rx_status *rx_status, 1535 struct ieee80211_radiotap_eht *eht, 1536 struct ieee80211_radiotap_eht_usig *usig) 1537 1538 { 1539 __le32 data0 = phy_data->d0; 1540 __le32 data1 = phy_data->d1; 1541 __le32 usig_a1 = phy_data->rx_vec[0]; 1542 u8 info_type = phy_data->info_type; 1543 1544 /* Not in EHT range */ 1545 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1546 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1547 return; 1548 1549 usig->common |= cpu_to_le32 1550 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1551 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1552 if (phy_data->with_data) { 1553 usig->common |= LE32_DEC_ENC(data0, 1554 IWL_RX_PHY_DATA0_EHT_UPLINK, 1555 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1556 usig->common |= LE32_DEC_ENC(data0, 1557 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1558 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1559 } else { 1560 usig->common |= LE32_DEC_ENC(usig_a1, 1561 IWL_RX_USIG_A1_UL_FLAG, 1562 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1563 usig->common |= LE32_DEC_ENC(usig_a1, 1564 IWL_RX_USIG_A1_BSS_COLOR, 1565 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1566 } 1567 1568 if (fw_has_capa(&mvm->fw->ucode_capa, 1569 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1570 usig->common |= 1571 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1572 usig->common |= 1573 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1574 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1575 } 1576 1577 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1578 eht->data[0] |= LE32_DEC_ENC(data0, 1579 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1580 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1581 1582 /* All RU allocating size/index is in TB format */ 1583 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1584 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1585 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1586 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1587 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1588 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1589 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1590 1591 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1592 1593 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1594 * which is on only in case of monitor mode so no need to check monitor 1595 * mode 1596 */ 1597 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1598 eht->data[1] |= 1599 le32_encode_bits(mvm->monitor_p80, 1600 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1601 1602 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1603 if (phy_data->with_data) 1604 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1605 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1606 else 1607 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1608 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1609 1610 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1611 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1612 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1613 1614 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1615 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1616 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1617 1618 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1619 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1620 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1621 1622 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1623 1624 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1625 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1626 1627 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1628 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1629 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1630 1631 /* 1632 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1633 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1634 */ 1635 1636 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1637 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1638 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1639 1640 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1641 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1642 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1643 1644 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1645 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1646 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1647 } 1648 1649 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1650 struct iwl_mvm_rx_phy_data *phy_data, 1651 int queue) 1652 { 1653 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1654 1655 struct ieee80211_radiotap_eht *eht; 1656 struct ieee80211_radiotap_eht_usig *usig; 1657 size_t eht_len = sizeof(*eht); 1658 1659 u32 rate_n_flags = phy_data->rate_n_flags; 1660 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1661 /* EHT and HE have the same valus for LTF */ 1662 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1663 u16 phy_info = phy_data->phy_info; 1664 u32 bw; 1665 1666 /* u32 for 1 user_info */ 1667 if (phy_data->with_data) 1668 eht_len += sizeof(u32); 1669 1670 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1671 1672 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1673 sizeof(*usig)); 1674 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1675 usig->common |= 1676 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1677 1678 /* specific handling for 320MHz */ 1679 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1680 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1681 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1682 le32_to_cpu(phy_data->d0)); 1683 1684 usig->common |= cpu_to_le32 1685 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1686 1687 /* report the AMPDU-EOF bit on single frames */ 1688 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1689 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1690 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1691 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1692 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1693 } 1694 1695 /* update aggregation data for monitor sake on default queue */ 1696 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1697 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1698 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1699 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1700 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1701 } 1702 1703 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1704 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1705 1706 #define CHECK_TYPE(F) \ 1707 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1708 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1709 1710 CHECK_TYPE(SU); 1711 CHECK_TYPE(EXT_SU); 1712 CHECK_TYPE(MU); 1713 CHECK_TYPE(TRIG); 1714 1715 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1716 case 0: 1717 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1718 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1719 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1720 } else { 1721 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1722 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1723 } 1724 break; 1725 case 1: 1726 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1727 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1728 break; 1729 case 2: 1730 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1731 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1732 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1733 else 1734 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1735 break; 1736 case 3: 1737 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1738 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1739 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1740 } 1741 break; 1742 default: 1743 /* nothing here */ 1744 break; 1745 } 1746 1747 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1748 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1749 eht->data[0] |= cpu_to_le32 1750 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1751 ltf) | 1752 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1753 rx_status->eht.gi)); 1754 } 1755 1756 1757 if (!phy_data->with_data) { 1758 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1759 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1760 eht->data[7] |= 1761 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1762 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1763 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1764 if (rate_n_flags & RATE_MCS_BF_MSK) 1765 eht->data[7] |= 1766 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1767 } else { 1768 eht->user_info[0] |= 1769 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1770 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1771 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1772 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1773 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1774 1775 if (rate_n_flags & RATE_MCS_BF_MSK) 1776 eht->user_info[0] |= 1777 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1778 1779 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1780 eht->user_info[0] |= 1781 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1782 1783 eht->user_info[0] |= cpu_to_le32 1784 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1785 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1786 rate_n_flags)) | 1787 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1788 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1789 } 1790 } 1791 1792 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1793 struct iwl_mvm_rx_phy_data *phy_data, 1794 int queue) 1795 { 1796 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1797 struct ieee80211_radiotap_he *he = NULL; 1798 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1799 u32 rate_n_flags = phy_data->rate_n_flags; 1800 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1801 u8 ltf; 1802 static const struct ieee80211_radiotap_he known = { 1803 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1804 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1805 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1806 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1807 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1808 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1809 }; 1810 static const struct ieee80211_radiotap_he_mu mu_known = { 1811 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1812 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1813 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1814 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1815 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1816 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1817 }; 1818 u16 phy_info = phy_data->phy_info; 1819 1820 he = skb_put_data(skb, &known, sizeof(known)); 1821 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1822 1823 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1824 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1825 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1826 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1827 } 1828 1829 /* report the AMPDU-EOF bit on single frames */ 1830 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1831 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1832 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1833 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1834 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1835 } 1836 1837 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1838 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1839 queue); 1840 1841 /* update aggregation data for monitor sake on default queue */ 1842 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1843 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1844 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1845 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1846 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1847 } 1848 1849 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1850 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1851 rx_status->bw = RATE_INFO_BW_HE_RU; 1852 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1853 } 1854 1855 /* actually data is filled in mac80211 */ 1856 if (he_type == RATE_MCS_HE_TYPE_SU || 1857 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1858 he->data1 |= 1859 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1860 1861 #define CHECK_TYPE(F) \ 1862 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1863 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1864 1865 CHECK_TYPE(SU); 1866 CHECK_TYPE(EXT_SU); 1867 CHECK_TYPE(MU); 1868 CHECK_TYPE(TRIG); 1869 1870 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1871 1872 if (rate_n_flags & RATE_MCS_BF_MSK) 1873 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1874 1875 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1876 RATE_MCS_HE_GI_LTF_POS) { 1877 case 0: 1878 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1879 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1880 else 1881 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1882 if (he_type == RATE_MCS_HE_TYPE_MU) 1883 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1884 else 1885 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1886 break; 1887 case 1: 1888 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1889 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1890 else 1891 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1892 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1893 break; 1894 case 2: 1895 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1896 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1897 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1898 } else { 1899 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1900 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1901 } 1902 break; 1903 case 3: 1904 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1905 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1906 break; 1907 case 4: 1908 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1909 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1910 break; 1911 default: 1912 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1913 } 1914 1915 he->data5 |= le16_encode_bits(ltf, 1916 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1917 } 1918 1919 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1920 struct iwl_mvm_rx_phy_data *phy_data) 1921 { 1922 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1923 struct ieee80211_radiotap_lsig *lsig; 1924 1925 switch (phy_data->info_type) { 1926 case IWL_RX_PHY_INFO_TYPE_HT: 1927 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1928 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1929 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1930 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1931 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1932 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1933 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1934 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1935 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1936 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1937 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1938 lsig = skb_put(skb, sizeof(*lsig)); 1939 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1940 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1941 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1942 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1943 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1944 break; 1945 default: 1946 break; 1947 } 1948 } 1949 1950 struct iwl_rx_sta_csa { 1951 bool all_sta_unblocked; 1952 struct ieee80211_vif *vif; 1953 }; 1954 1955 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1956 { 1957 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1958 struct iwl_rx_sta_csa *rx_sta_csa = data; 1959 1960 if (mvmsta->vif != rx_sta_csa->vif) 1961 return; 1962 1963 if (mvmsta->disable_tx) 1964 rx_sta_csa->all_sta_unblocked = false; 1965 } 1966 1967 /* 1968 * Note: requires also rx_status->band to be prefilled, as well 1969 * as phy_data (apart from phy_data->info_type) 1970 * Note: desc/hdr may be NULL 1971 */ 1972 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 1973 struct iwl_rx_mpdu_desc *desc, 1974 struct ieee80211_hdr *hdr, 1975 struct sk_buff *skb, 1976 struct iwl_mvm_rx_phy_data *phy_data, 1977 int queue) 1978 { 1979 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1980 u32 rate_n_flags = phy_data->rate_n_flags; 1981 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1982 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1983 bool is_sgi; 1984 1985 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 1986 1987 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1988 phy_data->info_type = 1989 le32_get_bits(phy_data->d1, 1990 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1991 1992 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1993 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1994 case RATE_MCS_CHAN_WIDTH_20: 1995 break; 1996 case RATE_MCS_CHAN_WIDTH_40: 1997 rx_status->bw = RATE_INFO_BW_40; 1998 break; 1999 case RATE_MCS_CHAN_WIDTH_80: 2000 rx_status->bw = RATE_INFO_BW_80; 2001 break; 2002 case RATE_MCS_CHAN_WIDTH_160: 2003 rx_status->bw = RATE_INFO_BW_160; 2004 break; 2005 case RATE_MCS_CHAN_WIDTH_320: 2006 rx_status->bw = RATE_INFO_BW_320; 2007 break; 2008 } 2009 2010 /* must be before L-SIG data */ 2011 if (format == RATE_MCS_MOD_TYPE_HE) 2012 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2013 2014 iwl_mvm_decode_lsig(skb, phy_data); 2015 2016 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2017 2018 if (mvm->rx_ts_ptp && mvm->monitor_on) { 2019 u64 adj_time = 2020 iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC); 2021 2022 rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC); 2023 rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64; 2024 rx_status->flag &= ~RX_FLAG_MACTIME; 2025 } 2026 2027 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2028 rx_status->band); 2029 iwl_mvm_get_signal_strength(mvm, desc, hdr, rx_status, rate_n_flags, 2030 phy_data->energy_a, phy_data->energy_b); 2031 2032 /* using TLV format and must be after all fixed len fields */ 2033 if (format == RATE_MCS_MOD_TYPE_EHT) 2034 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2035 2036 if (unlikely(mvm->monitor_on)) 2037 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2038 2039 is_sgi = format == RATE_MCS_MOD_TYPE_HE ? 2040 iwl_he_is_sgi(rate_n_flags) : 2041 rate_n_flags & RATE_MCS_SGI_MSK; 2042 2043 if (!(format == RATE_MCS_MOD_TYPE_CCK) && is_sgi) 2044 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2045 2046 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2047 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2048 2049 switch (format) { 2050 case RATE_MCS_MOD_TYPE_VHT: 2051 rx_status->encoding = RX_ENC_VHT; 2052 break; 2053 case RATE_MCS_MOD_TYPE_HE: 2054 rx_status->encoding = RX_ENC_HE; 2055 rx_status->he_dcm = 2056 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2057 break; 2058 case RATE_MCS_MOD_TYPE_EHT: 2059 rx_status->encoding = RX_ENC_EHT; 2060 break; 2061 } 2062 2063 switch (format) { 2064 case RATE_MCS_MOD_TYPE_HT: 2065 rx_status->encoding = RX_ENC_HT; 2066 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2067 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2068 break; 2069 case RATE_MCS_MOD_TYPE_VHT: 2070 case RATE_MCS_MOD_TYPE_HE: 2071 case RATE_MCS_MOD_TYPE_EHT: 2072 rx_status->nss = 2073 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2074 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2075 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2076 break; 2077 default: { 2078 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2079 rx_status->band); 2080 2081 rx_status->rate_idx = rate; 2082 2083 if ((rate < 0 || rate > 0xFF)) { 2084 rx_status->rate_idx = 0; 2085 if (net_ratelimit()) 2086 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2087 rate_n_flags, rx_status->band); 2088 } 2089 2090 break; 2091 } 2092 } 2093 } 2094 2095 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2096 struct iwl_rx_cmd_buffer *rxb, int queue) 2097 { 2098 struct ieee80211_rx_status *rx_status; 2099 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2100 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2101 struct ieee80211_hdr *hdr; 2102 u32 len; 2103 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2104 struct ieee80211_sta *sta = NULL; 2105 struct sk_buff *skb; 2106 u8 crypt_len = 0; 2107 size_t desc_size; 2108 struct iwl_mvm_rx_phy_data phy_data = {}; 2109 u32 format; 2110 2111 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2112 return; 2113 2114 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2115 desc_size = sizeof(*desc); 2116 else 2117 desc_size = IWL_RX_DESC_SIZE_V1; 2118 2119 if (unlikely(pkt_len < desc_size)) { 2120 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2121 return; 2122 } 2123 2124 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2125 phy_data.rate_n_flags = 2126 iwl_mvm_v3_rate_from_fw(desc->v3.rate_n_flags, 2127 mvm->fw_rates_ver); 2128 phy_data.channel = desc->v3.channel; 2129 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2130 phy_data.energy_a = desc->v3.energy_a; 2131 phy_data.energy_b = desc->v3.energy_b; 2132 2133 phy_data.d0 = desc->v3.phy_data0; 2134 phy_data.d1 = desc->v3.phy_data1; 2135 phy_data.d2 = desc->v3.phy_data2; 2136 phy_data.d3 = desc->v3.phy_data3; 2137 phy_data.eht_d4 = desc->phy_eht_data4; 2138 phy_data.d5 = desc->v3.phy_data5; 2139 } else { 2140 phy_data.rate_n_flags = 2141 iwl_mvm_v3_rate_from_fw(desc->v1.rate_n_flags, 2142 mvm->fw_rates_ver); 2143 phy_data.channel = desc->v1.channel; 2144 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2145 phy_data.energy_a = desc->v1.energy_a; 2146 phy_data.energy_b = desc->v1.energy_b; 2147 2148 phy_data.d0 = desc->v1.phy_data0; 2149 phy_data.d1 = desc->v1.phy_data1; 2150 phy_data.d2 = desc->v1.phy_data2; 2151 phy_data.d3 = desc->v1.phy_data3; 2152 } 2153 2154 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2155 2156 len = le16_to_cpu(desc->mpdu_len); 2157 2158 if (unlikely(len + desc_size > pkt_len)) { 2159 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2160 return; 2161 } 2162 2163 phy_data.with_data = true; 2164 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2165 phy_data.d4 = desc->phy_data4; 2166 2167 hdr = (void *)(pkt->data + desc_size); 2168 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2169 * ieee80211_hdr pulled. 2170 */ 2171 skb = alloc_skb(128, GFP_ATOMIC); 2172 if (!skb) { 2173 IWL_ERR(mvm, "alloc_skb failed\n"); 2174 return; 2175 } 2176 2177 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2178 /* 2179 * If the device inserted padding it means that (it thought) 2180 * the 802.11 header wasn't a multiple of 4 bytes long. In 2181 * this case, reserve two bytes at the start of the SKB to 2182 * align the payload properly in case we end up copying it. 2183 */ 2184 skb_reserve(skb, 2); 2185 } 2186 2187 rx_status = IEEE80211_SKB_RXCB(skb); 2188 2189 /* 2190 * Keep packets with CRC errors (and with overrun) for monitor mode 2191 * (otherwise the firmware discards them) but mark them as bad. 2192 */ 2193 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2194 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2195 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2196 le32_to_cpu(desc->status)); 2197 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2198 } 2199 2200 /* set the preamble flag if appropriate */ 2201 if (format == RATE_MCS_MOD_TYPE_CCK && 2202 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2203 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2204 2205 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2206 u64 tsf_on_air_rise; 2207 2208 if (mvm->trans->mac_cfg->device_family >= 2209 IWL_DEVICE_FAMILY_AX210) 2210 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2211 else 2212 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2213 2214 rx_status->mactime = tsf_on_air_rise; 2215 /* TSF as indicated by the firmware is at INA time */ 2216 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2217 } 2218 2219 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2220 u8 band = u8_get_bits(desc->mac_phy_band, 2221 IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK); 2222 2223 rx_status->band = iwl_mvm_nl80211_band_from_phy(band); 2224 } else { 2225 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2226 NL80211_BAND_2GHZ; 2227 } 2228 2229 /* update aggregation data for monitor sake on default queue */ 2230 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2231 bool toggle_bit; 2232 2233 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2234 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2235 /* 2236 * Toggle is switched whenever new aggregation starts. Make 2237 * sure ampdu_reference is never 0 so we can later use it to 2238 * see if the frame was really part of an A-MPDU or not. 2239 */ 2240 if (toggle_bit != mvm->ampdu_toggle) { 2241 mvm->ampdu_ref++; 2242 if (mvm->ampdu_ref == 0) 2243 mvm->ampdu_ref++; 2244 mvm->ampdu_toggle = toggle_bit; 2245 phy_data.first_subframe = true; 2246 } 2247 rx_status->ampdu_reference = mvm->ampdu_ref; 2248 } 2249 2250 rcu_read_lock(); 2251 2252 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2253 u8 sta_id = le32_get_bits(desc->status, 2254 IWL_RX_MPDU_STATUS_STA_ID); 2255 2256 if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) { 2257 struct ieee80211_link_sta *link_sta; 2258 2259 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 2260 if (IS_ERR(sta)) 2261 sta = NULL; 2262 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]); 2263 2264 if (sta && sta->valid_links && link_sta) { 2265 rx_status->link_valid = 1; 2266 rx_status->link_id = link_sta->link_id; 2267 } 2268 } 2269 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2270 /* 2271 * This is fine since we prevent two stations with the same 2272 * address from being added. 2273 */ 2274 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2275 } 2276 2277 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2278 le32_to_cpu(pkt->len_n_flags), queue, 2279 &crypt_len)) { 2280 kfree_skb(skb); 2281 goto out; 2282 } 2283 2284 iwl_mvm_rx_fill_status(mvm, desc, hdr, skb, &phy_data, queue); 2285 2286 if (sta) { 2287 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2288 struct ieee80211_vif *tx_blocked_vif = 2289 rcu_dereference(mvm->csa_tx_blocked_vif); 2290 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2291 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2292 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2293 struct iwl_fw_dbg_trigger_tlv *trig; 2294 struct ieee80211_vif *vif = mvmsta->vif; 2295 2296 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2297 !is_multicast_ether_addr(hdr->addr1) && 2298 ieee80211_is_data(hdr->frame_control) && 2299 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2300 schedule_delayed_work(&mvm->tcm.work, 0); 2301 2302 /* 2303 * We have tx blocked stations (with CS bit). If we heard 2304 * frames from a blocked station on a new channel we can 2305 * TX to it again. 2306 */ 2307 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2308 struct iwl_mvm_vif *mvmvif = 2309 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2310 struct iwl_rx_sta_csa rx_sta_csa = { 2311 .all_sta_unblocked = true, 2312 .vif = tx_blocked_vif, 2313 }; 2314 2315 if (mvmvif->csa_target_freq == rx_status->freq) 2316 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2317 false); 2318 ieee80211_iterate_stations_atomic(mvm->hw, 2319 iwl_mvm_rx_get_sta_block_tx, 2320 &rx_sta_csa); 2321 2322 if (rx_sta_csa.all_sta_unblocked) { 2323 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2324 /* Unblock BCAST / MCAST station */ 2325 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2326 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2327 } 2328 } 2329 2330 rs_update_last_rssi(mvm, mvmsta, rx_status); 2331 2332 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2333 ieee80211_vif_to_wdev(vif), 2334 FW_DBG_TRIGGER_RSSI); 2335 2336 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2337 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2338 s32 rssi; 2339 2340 rssi_trig = (void *)trig->data; 2341 rssi = le32_to_cpu(rssi_trig->rssi); 2342 2343 if (rx_status->signal < rssi) 2344 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2345 NULL); 2346 } 2347 2348 if (ieee80211_is_data(hdr->frame_control)) 2349 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2350 2351 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2352 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", 2353 le16_to_cpu(hdr->seq_ctrl)); 2354 kfree_skb(skb); 2355 goto out; 2356 } 2357 2358 /* 2359 * Our hardware de-aggregates AMSDUs but copies the mac header 2360 * as it to the de-aggregated MPDUs. We need to turn off the 2361 * AMSDU bit in the QoS control ourselves. 2362 * In addition, HW reverses addr3 and addr4 - reverse it back. 2363 */ 2364 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2365 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2366 u8 *qc = ieee80211_get_qos_ctl(hdr); 2367 2368 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2369 2370 if (mvm->trans->mac_cfg->device_family == 2371 IWL_DEVICE_FAMILY_9000) { 2372 iwl_mvm_flip_address(hdr->addr3); 2373 2374 if (ieee80211_has_a4(hdr->frame_control)) 2375 iwl_mvm_flip_address(hdr->addr4); 2376 } 2377 } 2378 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2379 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2380 2381 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2382 } 2383 } 2384 2385 /* management stuff on default queue */ 2386 if (!queue) { 2387 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2388 ieee80211_is_probe_resp(hdr->frame_control)) && 2389 mvm->sched_scan_pass_all == 2390 SCHED_SCAN_PASS_ALL_ENABLED)) 2391 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2392 2393 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2394 ieee80211_is_probe_resp(hdr->frame_control))) 2395 rx_status->boottime_ns = ktime_get_boottime_ns(); 2396 } 2397 2398 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2399 kfree_skb(skb); 2400 goto out; 2401 } 2402 2403 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2404 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2405 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2406 if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2407 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2408 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2409 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2410 2411 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta); 2412 } 2413 out: 2414 rcu_read_unlock(); 2415 } 2416 2417 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2418 struct iwl_rx_cmd_buffer *rxb, int queue) 2419 { 2420 struct ieee80211_rx_status *rx_status; 2421 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2422 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2423 u32 rssi; 2424 struct ieee80211_sta *sta = NULL; 2425 struct sk_buff *skb; 2426 struct iwl_mvm_rx_phy_data phy_data; 2427 u32 format; 2428 2429 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2430 return; 2431 2432 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2433 return; 2434 2435 rssi = le32_to_cpu(desc->rssi); 2436 phy_data.d0 = desc->phy_info[0]; 2437 phy_data.d1 = desc->phy_info[1]; 2438 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2439 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2440 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2441 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2442 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2443 phy_data.with_data = false; 2444 phy_data.rx_vec[0] = desc->rx_vec[0]; 2445 phy_data.rx_vec[1] = desc->rx_vec[1]; 2446 2447 phy_data.rate_n_flags = iwl_mvm_v3_rate_from_fw(desc->rate, 2448 mvm->fw_rates_ver); 2449 2450 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2451 2452 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2453 RX_NO_DATA_NOTIF, 0) >= 3) { 2454 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2455 sizeof(struct iwl_rx_no_data_ver_3))) 2456 /* invalid len for ver 3 */ 2457 return; 2458 phy_data.rx_vec[2] = desc->rx_vec[2]; 2459 phy_data.rx_vec[3] = desc->rx_vec[3]; 2460 } else { 2461 if (format == RATE_MCS_MOD_TYPE_EHT) 2462 /* no support for EHT before version 3 API */ 2463 return; 2464 } 2465 2466 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2467 * ieee80211_hdr pulled. 2468 */ 2469 skb = alloc_skb(128, GFP_ATOMIC); 2470 if (!skb) { 2471 IWL_ERR(mvm, "alloc_skb failed\n"); 2472 return; 2473 } 2474 2475 rx_status = IEEE80211_SKB_RXCB(skb); 2476 2477 /* 0-length PSDU */ 2478 rx_status->flag |= RX_FLAG_NO_PSDU; 2479 2480 /* mark as failed PLCP on any errors to skip checks in mac80211 */ 2481 if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != 2482 RX_NO_DATA_INFO_ERR_NONE) 2483 rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; 2484 2485 switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { 2486 case RX_NO_DATA_INFO_TYPE_NDP: 2487 rx_status->zero_length_psdu_type = 2488 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2489 break; 2490 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2491 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2492 rx_status->zero_length_psdu_type = 2493 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2494 break; 2495 default: 2496 rx_status->zero_length_psdu_type = 2497 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2498 break; 2499 } 2500 2501 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2502 NL80211_BAND_2GHZ; 2503 2504 iwl_mvm_rx_fill_status(mvm, NULL, NULL, skb, &phy_data, queue); 2505 2506 /* no more radio tap info should be put after this point. 2507 * 2508 * We mark it as mac header, for upper layers to know where 2509 * all radio tap header ends. 2510 * 2511 * Since data doesn't move data while putting data on skb and that is 2512 * the only way we use, data + len is the next place that hdr would be put 2513 */ 2514 skb_set_mac_header(skb, skb->len); 2515 2516 /* 2517 * Override the nss from the rx_vec since the rate_n_flags has 2518 * only 2 bits for the nss which gives a max of 4 ss but there 2519 * may be up to 8 spatial streams. 2520 */ 2521 switch (format) { 2522 case RATE_MCS_MOD_TYPE_VHT: 2523 rx_status->nss = 2524 le32_get_bits(desc->rx_vec[0], 2525 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2526 break; 2527 case RATE_MCS_MOD_TYPE_HE: 2528 rx_status->nss = 2529 le32_get_bits(desc->rx_vec[0], 2530 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2531 break; 2532 case RATE_MCS_MOD_TYPE_EHT: 2533 rx_status->nss = 2534 le32_get_bits(desc->rx_vec[2], 2535 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2536 } 2537 2538 rcu_read_lock(); 2539 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2540 rcu_read_unlock(); 2541 } 2542 2543 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2544 struct iwl_rx_cmd_buffer *rxb, int queue) 2545 { 2546 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2547 struct iwl_frame_release *release = (void *)pkt->data; 2548 2549 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2550 return; 2551 2552 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2553 le16_to_cpu(release->nssn), 2554 queue); 2555 } 2556 2557 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2558 struct iwl_rx_cmd_buffer *rxb, int queue) 2559 { 2560 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2561 struct iwl_bar_frame_release *release = (void *)pkt->data; 2562 struct iwl_mvm_baid_data *baid_data; 2563 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2564 unsigned int baid, nssn, sta_id, tid; 2565 2566 if (IWL_FW_CHECK(mvm, pkt_len < sizeof(*release), 2567 "Unexpected frame release notif size %d (expected %zu)\n", 2568 pkt_len, sizeof(*release))) 2569 return; 2570 2571 baid = le32_get_bits(release->ba_info, 2572 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2573 nssn = le32_get_bits(release->ba_info, 2574 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2575 sta_id = le32_get_bits(release->sta_tid, 2576 IWL_BAR_FRAME_RELEASE_STA_MASK); 2577 tid = le32_get_bits(release->sta_tid, 2578 IWL_BAR_FRAME_RELEASE_TID_MASK); 2579 2580 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2581 baid >= ARRAY_SIZE(mvm->baid_map))) 2582 return; 2583 2584 rcu_read_lock(); 2585 baid_data = rcu_dereference(mvm->baid_map[baid]); 2586 if (!baid_data) { 2587 IWL_DEBUG_RX(mvm, 2588 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2589 baid); 2590 goto out; 2591 } 2592 2593 if (WARN(tid != baid_data->tid || sta_id > IWL_STATION_COUNT_MAX || 2594 !(baid_data->sta_mask & BIT(sta_id)), 2595 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2596 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2597 tid)) 2598 goto out; 2599 2600 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", 2601 nssn); 2602 2603 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); 2604 out: 2605 rcu_read_unlock(); 2606 } 2607 2608 void iwl_mvm_rx_beacon_filter_notif(struct iwl_mvm *mvm, 2609 struct iwl_rx_cmd_buffer *rxb) 2610 { 2611 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2612 /* MAC or link ID in v1/v2, but driver has the IDs equal */ 2613 struct iwl_beacon_filter_notif *notif = (void *)pkt->data; 2614 u32 id = le32_to_cpu(notif->link_id); 2615 struct iwl_mvm_vif *mvm_vif; 2616 struct ieee80211_vif *vif; 2617 2618 /* >= means AUX MAC/link ID, no energy correction needed then */ 2619 if (IWL_FW_CHECK(mvm, id >= ARRAY_SIZE(mvm->vif_id_to_mac), 2620 "invalid link ID %d\n", id)) 2621 return; 2622 2623 vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, false); 2624 if (!vif) 2625 return; 2626 2627 mvm_vif = iwl_mvm_vif_from_mac80211(vif); 2628 2629 mvm_vif->deflink.average_beacon_energy = 2630 le32_to_cpu(notif->average_energy); 2631 } 2632