1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta, 240 struct ieee80211_link_sta *link_sta) 241 { 242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 243 kfree_skb(skb); 244 return; 245 } 246 247 if (sta && sta->valid_links && link_sta) { 248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 249 250 rx_status->link_valid = 1; 251 rx_status->link_id = link_sta->link_id; 252 } 253 254 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 255 } 256 257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 258 struct ieee80211_rx_status *rx_status, 259 u32 rate_n_flags, int energy_a, 260 int energy_b) 261 { 262 int max_energy; 263 u32 rate_flags = rate_n_flags; 264 265 energy_a = energy_a ? -energy_a : S8_MIN; 266 energy_b = energy_b ? -energy_b : S8_MIN; 267 max_energy = max(energy_a, energy_b); 268 269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 270 energy_a, energy_b, max_energy); 271 272 rx_status->signal = max_energy; 273 rx_status->chains = 274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 275 rx_status->chain_signal[0] = energy_a; 276 rx_status->chain_signal[1] = energy_b; 277 } 278 279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 280 struct ieee80211_hdr *hdr, 281 struct iwl_rx_mpdu_desc *desc, 282 u32 status, 283 struct ieee80211_rx_status *stats) 284 { 285 struct iwl_mvm_sta *mvmsta; 286 struct iwl_mvm_vif *mvmvif; 287 u8 keyid; 288 struct ieee80211_key_conf *key; 289 u32 len = le16_to_cpu(desc->mpdu_len); 290 const u8 *frame = (void *)hdr; 291 292 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 293 return 0; 294 295 /* 296 * For non-beacon, we don't really care. But beacons may 297 * be filtered out, and we thus need the firmware's replay 298 * detection, otherwise beacons the firmware previously 299 * filtered could be replayed, or something like that, and 300 * it can filter a lot - though usually only if nothing has 301 * changed. 302 */ 303 if (!ieee80211_is_beacon(hdr->frame_control)) 304 return 0; 305 306 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 307 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 308 return -1; 309 310 /* good cases */ 311 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 312 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 313 stats->flag |= RX_FLAG_DECRYPTED; 314 return 0; 315 } 316 317 if (!sta) 318 return -1; 319 320 mvmsta = iwl_mvm_sta_from_mac80211(sta); 321 322 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 323 324 /* 325 * both keys will have the same cipher and MIC length, use 326 * whichever one is available 327 */ 328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 329 if (!key) { 330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 331 if (!key) 332 return -1; 333 } 334 335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 336 return -1; 337 338 /* get the real key ID */ 339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 340 /* and if that's the other key, look it up */ 341 if (keyid != key->keyidx) { 342 /* 343 * shouldn't happen since firmware checked, but be safe 344 * in case the MIC length is wrong too, for example 345 */ 346 if (keyid != 6 && keyid != 7) 347 return -1; 348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 349 if (!key) 350 return -1; 351 } 352 353 /* Report status to mac80211 */ 354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 355 ieee80211_key_mic_failure(key); 356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 357 ieee80211_key_replay(key); 358 359 return -1; 360 } 361 362 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 363 struct ieee80211_hdr *hdr, 364 struct ieee80211_rx_status *stats, u16 phy_info, 365 struct iwl_rx_mpdu_desc *desc, 366 u32 pkt_flags, int queue, u8 *crypt_len) 367 { 368 u32 status = le32_to_cpu(desc->status); 369 370 /* 371 * Drop UNKNOWN frames in aggregation, unless in monitor mode 372 * (where we don't have the keys). 373 * We limit this to aggregation because in TKIP this is a valid 374 * scenario, since we may not have the (correct) TTAK (phase 1 375 * key) in the firmware. 376 */ 377 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 378 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 379 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { 380 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); 381 return -1; 382 } 383 384 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 385 !ieee80211_has_protected(hdr->frame_control))) 386 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 387 388 if (!ieee80211_has_protected(hdr->frame_control) || 389 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 390 IWL_RX_MPDU_STATUS_SEC_NONE) 391 return 0; 392 393 /* TODO: handle packets encrypted with unknown alg */ 394 395 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 396 case IWL_RX_MPDU_STATUS_SEC_CCM: 397 case IWL_RX_MPDU_STATUS_SEC_GCM: 398 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 399 /* alg is CCM: check MIC only */ 400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 401 return -1; 402 403 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 404 *crypt_len = IEEE80211_CCMP_HDR_LEN; 405 return 0; 406 case IWL_RX_MPDU_STATUS_SEC_TKIP: 407 /* Don't drop the frame and decrypt it in SW */ 408 if (!fw_has_api(&mvm->fw->ucode_capa, 409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 411 return 0; 412 413 if (mvm->trans->trans_cfg->gen2 && 414 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 415 stats->flag |= RX_FLAG_MMIC_ERROR; 416 417 *crypt_len = IEEE80211_TKIP_IV_LEN; 418 fallthrough; 419 case IWL_RX_MPDU_STATUS_SEC_WEP: 420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 421 return -1; 422 423 stats->flag |= RX_FLAG_DECRYPTED; 424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 425 IWL_RX_MPDU_STATUS_SEC_WEP) 426 *crypt_len = IEEE80211_WEP_IV_LEN; 427 428 if (pkt_flags & FH_RSCSR_RADA_EN) { 429 stats->flag |= RX_FLAG_ICV_STRIPPED; 430 if (mvm->trans->trans_cfg->gen2) 431 stats->flag |= RX_FLAG_MMIC_STRIPPED; 432 } 433 434 return 0; 435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 437 return -1; 438 stats->flag |= RX_FLAG_DECRYPTED; 439 return 0; 440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 441 break; 442 default: 443 /* 444 * Sometimes we can get frames that were not decrypted 445 * because the firmware didn't have the keys yet. This can 446 * happen after connection where we can get multicast frames 447 * before the GTK is installed. 448 * Silently drop those frames. 449 * Also drop un-decrypted frames in monitor mode. 450 */ 451 if (!is_multicast_ether_addr(hdr->addr1) && 452 !mvm->monitor_on && net_ratelimit()) 453 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 454 } 455 456 return 0; 457 } 458 459 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 460 struct ieee80211_sta *sta, 461 struct sk_buff *skb, 462 struct iwl_rx_packet *pkt) 463 { 464 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 465 466 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 467 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 468 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 469 470 skb->ip_summed = CHECKSUM_COMPLETE; 471 skb->csum = csum_unfold(~(__force __sum16)hwsum); 472 } 473 } else { 474 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 475 struct iwl_mvm_vif *mvmvif; 476 u16 flags = le16_to_cpu(desc->l3l4_flags); 477 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 478 IWL_RX_L3_PROTO_POS); 479 480 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 481 482 if (mvmvif->features & NETIF_F_RXCSUM && 483 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 484 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 485 l3_prot == IWL_RX_L3_TYPE_IPV6 || 486 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 487 skb->ip_summed = CHECKSUM_UNNECESSARY; 488 } 489 } 490 491 /* 492 * returns true if a packet is a duplicate or invalid tid and should be dropped. 493 * Updates AMSDU PN tracking info 494 */ 495 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 496 struct ieee80211_rx_status *rx_status, 497 struct ieee80211_hdr *hdr, 498 struct iwl_rx_mpdu_desc *desc) 499 { 500 struct iwl_mvm_sta *mvm_sta; 501 struct iwl_mvm_rxq_dup_data *dup_data; 502 u8 tid, sub_frame_idx; 503 504 if (WARN_ON(IS_ERR_OR_NULL(sta))) 505 return false; 506 507 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 508 dup_data = &mvm_sta->dup_data[queue]; 509 510 /* 511 * Drop duplicate 802.11 retransmissions 512 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 513 */ 514 if (ieee80211_is_ctl(hdr->frame_control) || 515 ieee80211_is_qos_nullfunc(hdr->frame_control) || 516 is_multicast_ether_addr(hdr->addr1)) { 517 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 518 return false; 519 } 520 521 if (ieee80211_is_data_qos(hdr->frame_control)) { 522 /* frame has qos control */ 523 tid = ieee80211_get_tid(hdr); 524 if (tid >= IWL_MAX_TID_COUNT) 525 return true; 526 } else { 527 tid = IWL_MAX_TID_COUNT; 528 } 529 530 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 531 sub_frame_idx = desc->amsdu_info & 532 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 533 534 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 535 dup_data->last_seq[tid] == hdr->seq_ctrl && 536 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 537 return true; 538 539 /* Allow same PN as the first subframe for following sub frames */ 540 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 541 sub_frame_idx > dup_data->last_sub_frame[tid] && 542 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 543 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 544 545 dup_data->last_seq[tid] = hdr->seq_ctrl; 546 dup_data->last_sub_frame[tid] = sub_frame_idx; 547 548 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 549 550 return false; 551 } 552 553 /* 554 * Returns true if sn2 - buffer_size < sn1 < sn2. 555 * To be used only in order to compare reorder buffer head with NSSN. 556 * We fully trust NSSN unless it is behind us due to reorder timeout. 557 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 558 */ 559 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 560 { 561 return ieee80211_sn_less(sn1, sn2) && 562 !ieee80211_sn_less(sn1, sn2 - buffer_size); 563 } 564 565 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 566 { 567 if (IWL_MVM_USE_NSSN_SYNC) { 568 struct iwl_mvm_nssn_sync_data notif = { 569 .baid = baid, 570 .nssn = nssn, 571 }; 572 573 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 574 ¬if, sizeof(notif)); 575 } 576 } 577 578 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 579 580 enum iwl_mvm_release_flags { 581 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 582 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 583 }; 584 585 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 586 struct ieee80211_sta *sta, 587 struct napi_struct *napi, 588 struct iwl_mvm_baid_data *baid_data, 589 struct iwl_mvm_reorder_buffer *reorder_buf, 590 u16 nssn, u32 flags) 591 { 592 struct iwl_mvm_reorder_buf_entry *entries = 593 &baid_data->entries[reorder_buf->queue * 594 baid_data->entries_per_queue]; 595 u16 ssn = reorder_buf->head_sn; 596 597 lockdep_assert_held(&reorder_buf->lock); 598 599 /* 600 * We keep the NSSN not too far behind, if we are sync'ing it and it 601 * is more than 2048 ahead of us, it must be behind us. Discard it. 602 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 603 * behind and this queue already processed packets. The next if 604 * would have caught cases where this queue would have processed less 605 * than 64 packets, but it may have processed more than 64 packets. 606 */ 607 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 608 ieee80211_sn_less(nssn, ssn)) 609 goto set_timer; 610 611 /* ignore nssn smaller than head sn - this can happen due to timeout */ 612 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 613 goto set_timer; 614 615 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 616 int index = ssn % reorder_buf->buf_size; 617 struct sk_buff_head *skb_list = &entries[index].e.frames; 618 struct sk_buff *skb; 619 620 ssn = ieee80211_sn_inc(ssn); 621 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 622 (ssn == 2048 || ssn == 0)) 623 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 624 625 /* 626 * Empty the list. Will have more than one frame for A-MSDU. 627 * Empty list is valid as well since nssn indicates frames were 628 * received. 629 */ 630 while ((skb = __skb_dequeue(skb_list))) { 631 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 632 reorder_buf->queue, 633 sta, NULL /* FIXME */); 634 reorder_buf->num_stored--; 635 } 636 } 637 reorder_buf->head_sn = nssn; 638 639 set_timer: 640 if (reorder_buf->num_stored && !reorder_buf->removed) { 641 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 642 643 while (skb_queue_empty(&entries[index].e.frames)) 644 index = (index + 1) % reorder_buf->buf_size; 645 /* modify timer to match next frame's expiration time */ 646 mod_timer(&reorder_buf->reorder_timer, 647 entries[index].e.reorder_time + 1 + 648 RX_REORDER_BUF_TIMEOUT_MQ); 649 } else { 650 del_timer(&reorder_buf->reorder_timer); 651 } 652 } 653 654 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 655 { 656 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 657 struct iwl_mvm_baid_data *baid_data = 658 iwl_mvm_baid_data_from_reorder_buf(buf); 659 struct iwl_mvm_reorder_buf_entry *entries = 660 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 661 int i; 662 u16 sn = 0, index = 0; 663 bool expired = false; 664 bool cont = false; 665 666 spin_lock(&buf->lock); 667 668 if (!buf->num_stored || buf->removed) { 669 spin_unlock(&buf->lock); 670 return; 671 } 672 673 for (i = 0; i < buf->buf_size ; i++) { 674 index = (buf->head_sn + i) % buf->buf_size; 675 676 if (skb_queue_empty(&entries[index].e.frames)) { 677 /* 678 * If there is a hole and the next frame didn't expire 679 * we want to break and not advance SN 680 */ 681 cont = false; 682 continue; 683 } 684 if (!cont && 685 !time_after(jiffies, entries[index].e.reorder_time + 686 RX_REORDER_BUF_TIMEOUT_MQ)) 687 break; 688 689 expired = true; 690 /* continue until next hole after this expired frames */ 691 cont = true; 692 sn = ieee80211_sn_add(buf->head_sn, i + 1); 693 } 694 695 if (expired) { 696 struct ieee80211_sta *sta; 697 struct iwl_mvm_sta *mvmsta; 698 u8 sta_id = ffs(baid_data->sta_mask) - 1; 699 700 rcu_read_lock(); 701 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 702 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { 703 rcu_read_unlock(); 704 goto out; 705 } 706 707 mvmsta = iwl_mvm_sta_from_mac80211(sta); 708 709 /* SN is set to the last expired frame + 1 */ 710 IWL_DEBUG_HT(buf->mvm, 711 "Releasing expired frames for sta %u, sn %d\n", 712 sta_id, sn); 713 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 714 sta, baid_data->tid); 715 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 716 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 717 rcu_read_unlock(); 718 } else { 719 /* 720 * If no frame expired and there are stored frames, index is now 721 * pointing to the first unexpired frame - modify timer 722 * accordingly to this frame. 723 */ 724 mod_timer(&buf->reorder_timer, 725 entries[index].e.reorder_time + 726 1 + RX_REORDER_BUF_TIMEOUT_MQ); 727 } 728 729 out: 730 spin_unlock(&buf->lock); 731 } 732 733 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 734 struct iwl_mvm_delba_data *data) 735 { 736 struct iwl_mvm_baid_data *ba_data; 737 struct ieee80211_sta *sta; 738 struct iwl_mvm_reorder_buffer *reorder_buf; 739 u8 baid = data->baid; 740 u32 sta_id; 741 742 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 743 return; 744 745 rcu_read_lock(); 746 747 ba_data = rcu_dereference(mvm->baid_map[baid]); 748 if (WARN_ON_ONCE(!ba_data)) 749 goto out; 750 751 /* pick any STA ID to find the pointer */ 752 sta_id = ffs(ba_data->sta_mask) - 1; 753 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 754 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 755 goto out; 756 757 reorder_buf = &ba_data->reorder_buf[queue]; 758 759 /* release all frames that are in the reorder buffer to the stack */ 760 spin_lock_bh(&reorder_buf->lock); 761 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 762 ieee80211_sn_add(reorder_buf->head_sn, 763 reorder_buf->buf_size), 764 0); 765 spin_unlock_bh(&reorder_buf->lock); 766 del_timer_sync(&reorder_buf->reorder_timer); 767 768 out: 769 rcu_read_unlock(); 770 } 771 772 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 773 struct napi_struct *napi, 774 u8 baid, u16 nssn, int queue, 775 u32 flags) 776 { 777 struct ieee80211_sta *sta; 778 struct iwl_mvm_reorder_buffer *reorder_buf; 779 struct iwl_mvm_baid_data *ba_data; 780 u32 sta_id; 781 782 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 783 baid, nssn); 784 785 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 786 baid >= ARRAY_SIZE(mvm->baid_map))) 787 return; 788 789 rcu_read_lock(); 790 791 ba_data = rcu_dereference(mvm->baid_map[baid]); 792 if (!ba_data) { 793 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 794 "BAID %d not found in map\n", baid); 795 goto out; 796 } 797 798 /* pick any STA ID to find the pointer */ 799 sta_id = ffs(ba_data->sta_mask) - 1; 800 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 801 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 802 goto out; 803 804 reorder_buf = &ba_data->reorder_buf[queue]; 805 806 spin_lock_bh(&reorder_buf->lock); 807 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 808 reorder_buf, nssn, flags); 809 spin_unlock_bh(&reorder_buf->lock); 810 811 out: 812 rcu_read_unlock(); 813 } 814 815 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 816 struct napi_struct *napi, int queue, 817 const struct iwl_mvm_nssn_sync_data *data) 818 { 819 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 820 data->nssn, queue, 821 IWL_MVM_RELEASE_FROM_RSS_SYNC); 822 } 823 824 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 825 struct iwl_rx_cmd_buffer *rxb, int queue) 826 { 827 struct iwl_rx_packet *pkt = rxb_addr(rxb); 828 struct iwl_rxq_sync_notification *notif; 829 struct iwl_mvm_internal_rxq_notif *internal_notif; 830 u32 len = iwl_rx_packet_payload_len(pkt); 831 832 notif = (void *)pkt->data; 833 internal_notif = (void *)notif->payload; 834 835 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 836 "invalid notification size %d (%d)", 837 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 838 return; 839 len -= sizeof(*notif) + sizeof(*internal_notif); 840 841 if (internal_notif->sync && 842 mvm->queue_sync_cookie != internal_notif->cookie) { 843 WARN_ONCE(1, "Received expired RX queue sync message\n"); 844 return; 845 } 846 847 switch (internal_notif->type) { 848 case IWL_MVM_RXQ_EMPTY: 849 WARN_ONCE(len, "invalid empty notification size %d", len); 850 break; 851 case IWL_MVM_RXQ_NOTIF_DEL_BA: 852 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 853 "invalid delba notification size %d (%d)", 854 len, (int)sizeof(struct iwl_mvm_delba_data))) 855 break; 856 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 857 break; 858 case IWL_MVM_RXQ_NSSN_SYNC: 859 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 860 "invalid nssn sync notification size %d (%d)", 861 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 862 break; 863 iwl_mvm_nssn_sync(mvm, napi, queue, 864 (void *)internal_notif->data); 865 break; 866 default: 867 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 868 } 869 870 if (internal_notif->sync) { 871 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 872 "queue sync: queue %d responded a second time!\n", 873 queue); 874 if (READ_ONCE(mvm->queue_sync_state) == 0) 875 wake_up(&mvm->rx_sync_waitq); 876 } 877 } 878 879 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 880 struct ieee80211_sta *sta, int tid, 881 struct iwl_mvm_reorder_buffer *buffer, 882 u32 reorder, u32 gp2, int queue) 883 { 884 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 885 886 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 887 /* we have a new (A-)MPDU ... */ 888 889 /* 890 * reset counter to 0 if we didn't have any oldsn in 891 * the last A-MPDU (as detected by GP2 being identical) 892 */ 893 if (!buffer->consec_oldsn_prev_drop) 894 buffer->consec_oldsn_drops = 0; 895 896 /* either way, update our tracking state */ 897 buffer->consec_oldsn_ampdu_gp2 = gp2; 898 } else if (buffer->consec_oldsn_prev_drop) { 899 /* 900 * tracking state didn't change, and we had an old SN 901 * indication before - do nothing in this case, we 902 * already noted this one down and are waiting for the 903 * next A-MPDU (by GP2) 904 */ 905 return; 906 } 907 908 /* return unless this MPDU has old SN */ 909 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 910 return; 911 912 /* update state */ 913 buffer->consec_oldsn_prev_drop = 1; 914 buffer->consec_oldsn_drops++; 915 916 /* if limit is reached, send del BA and reset state */ 917 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 918 IWL_WARN(mvm, 919 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 920 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 921 sta->addr, queue, tid); 922 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 923 buffer->consec_oldsn_prev_drop = 0; 924 buffer->consec_oldsn_drops = 0; 925 } 926 } 927 928 /* 929 * Returns true if the MPDU was buffered\dropped, false if it should be passed 930 * to upper layer. 931 */ 932 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 933 struct napi_struct *napi, 934 int queue, 935 struct ieee80211_sta *sta, 936 struct sk_buff *skb, 937 struct iwl_rx_mpdu_desc *desc) 938 { 939 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 940 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 941 struct iwl_mvm_baid_data *baid_data; 942 struct iwl_mvm_reorder_buffer *buffer; 943 struct sk_buff *tail; 944 u32 reorder = le32_to_cpu(desc->reorder_data); 945 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 946 bool last_subframe = 947 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 948 u8 tid = ieee80211_get_tid(hdr); 949 u8 sub_frame_idx = desc->amsdu_info & 950 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 951 struct iwl_mvm_reorder_buf_entry *entries; 952 u32 sta_mask; 953 int index; 954 u16 nssn, sn; 955 u8 baid; 956 957 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 958 IWL_RX_MPDU_REORDER_BAID_SHIFT; 959 960 /* 961 * This also covers the case of receiving a Block Ack Request 962 * outside a BA session; we'll pass it to mac80211 and that 963 * then sends a delBA action frame. 964 * This also covers pure monitor mode, in which case we won't 965 * have any BA sessions. 966 */ 967 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 968 return false; 969 970 /* no sta yet */ 971 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 972 "Got valid BAID without a valid station assigned\n")) 973 return false; 974 975 /* not a data packet or a bar */ 976 if (!ieee80211_is_back_req(hdr->frame_control) && 977 (!ieee80211_is_data_qos(hdr->frame_control) || 978 is_multicast_ether_addr(hdr->addr1))) 979 return false; 980 981 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 982 return false; 983 984 baid_data = rcu_dereference(mvm->baid_map[baid]); 985 if (!baid_data) { 986 IWL_DEBUG_RX(mvm, 987 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 988 baid, reorder); 989 return false; 990 } 991 992 rcu_read_lock(); 993 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 994 rcu_read_unlock(); 995 996 if (IWL_FW_CHECK(mvm, 997 tid != baid_data->tid || 998 !(sta_mask & baid_data->sta_mask), 999 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 1000 baid, baid_data->sta_mask, baid_data->tid, 1001 sta_mask, tid)) 1002 return false; 1003 1004 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 1005 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 1006 IWL_RX_MPDU_REORDER_SN_SHIFT; 1007 1008 buffer = &baid_data->reorder_buf[queue]; 1009 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1010 1011 spin_lock_bh(&buffer->lock); 1012 1013 if (!buffer->valid) { 1014 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1015 spin_unlock_bh(&buffer->lock); 1016 return false; 1017 } 1018 buffer->valid = true; 1019 } 1020 1021 if (ieee80211_is_back_req(hdr->frame_control)) { 1022 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1023 buffer, nssn, 0); 1024 goto drop; 1025 } 1026 1027 /* 1028 * If there was a significant jump in the nssn - adjust. 1029 * If the SN is smaller than the NSSN it might need to first go into 1030 * the reorder buffer, in which case we just release up to it and the 1031 * rest of the function will take care of storing it and releasing up to 1032 * the nssn. 1033 * This should not happen. This queue has been lagging and it should 1034 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1035 * and update the other queues. 1036 */ 1037 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1038 buffer->buf_size) || 1039 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1040 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1041 1042 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1043 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1044 } 1045 1046 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1047 rx_status->device_timestamp, queue); 1048 1049 /* drop any oudated packets */ 1050 if (ieee80211_sn_less(sn, buffer->head_sn)) 1051 goto drop; 1052 1053 /* release immediately if allowed by nssn and no stored frames */ 1054 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1055 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1056 buffer->buf_size) && 1057 (!amsdu || last_subframe)) { 1058 /* 1059 * If we crossed the 2048 or 0 SN, notify all the 1060 * queues. This is done in order to avoid having a 1061 * head_sn that lags behind for too long. When that 1062 * happens, we can get to a situation where the head_sn 1063 * is within the interval [nssn - buf_size : nssn] 1064 * which will make us think that the nssn is a packet 1065 * that we already freed because of the reordering 1066 * buffer and we will ignore it. So maintain the 1067 * head_sn somewhat updated across all the queues: 1068 * when it crosses 0 and 2048. 1069 */ 1070 if (sn == 2048 || sn == 0) 1071 iwl_mvm_sync_nssn(mvm, baid, sn); 1072 buffer->head_sn = nssn; 1073 } 1074 /* No need to update AMSDU last SN - we are moving the head */ 1075 spin_unlock_bh(&buffer->lock); 1076 return false; 1077 } 1078 1079 /* 1080 * release immediately if there are no stored frames, and the sn is 1081 * equal to the head. 1082 * This can happen due to reorder timer, where NSSN is behind head_sn. 1083 * When we released everything, and we got the next frame in the 1084 * sequence, according to the NSSN we can't release immediately, 1085 * while technically there is no hole and we can move forward. 1086 */ 1087 if (!buffer->num_stored && sn == buffer->head_sn) { 1088 if (!amsdu || last_subframe) { 1089 if (sn == 2048 || sn == 0) 1090 iwl_mvm_sync_nssn(mvm, baid, sn); 1091 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1092 } 1093 /* No need to update AMSDU last SN - we are moving the head */ 1094 spin_unlock_bh(&buffer->lock); 1095 return false; 1096 } 1097 1098 index = sn % buffer->buf_size; 1099 1100 /* 1101 * Check if we already stored this frame 1102 * As AMSDU is either received or not as whole, logic is simple: 1103 * If we have frames in that position in the buffer and the last frame 1104 * originated from AMSDU had a different SN then it is a retransmission. 1105 * If it is the same SN then if the subframe index is incrementing it 1106 * is the same AMSDU - otherwise it is a retransmission. 1107 */ 1108 tail = skb_peek_tail(&entries[index].e.frames); 1109 if (tail && !amsdu) 1110 goto drop; 1111 else if (tail && (sn != buffer->last_amsdu || 1112 buffer->last_sub_index >= sub_frame_idx)) 1113 goto drop; 1114 1115 /* put in reorder buffer */ 1116 __skb_queue_tail(&entries[index].e.frames, skb); 1117 buffer->num_stored++; 1118 entries[index].e.reorder_time = jiffies; 1119 1120 if (amsdu) { 1121 buffer->last_amsdu = sn; 1122 buffer->last_sub_index = sub_frame_idx; 1123 } 1124 1125 /* 1126 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1127 * The reason is that NSSN advances on the first sub-frame, and may 1128 * cause the reorder buffer to advance before all the sub-frames arrive. 1129 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1130 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1131 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1132 * already ahead and it will be dropped. 1133 * If the last sub-frame is not on this queue - we will get frame 1134 * release notification with up to date NSSN. 1135 */ 1136 if (!amsdu || last_subframe) 1137 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1138 buffer, nssn, 1139 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1140 1141 spin_unlock_bh(&buffer->lock); 1142 return true; 1143 1144 drop: 1145 kfree_skb(skb); 1146 spin_unlock_bh(&buffer->lock); 1147 return true; 1148 } 1149 1150 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1151 u32 reorder_data, u8 baid) 1152 { 1153 unsigned long now = jiffies; 1154 unsigned long timeout; 1155 struct iwl_mvm_baid_data *data; 1156 1157 rcu_read_lock(); 1158 1159 data = rcu_dereference(mvm->baid_map[baid]); 1160 if (!data) { 1161 IWL_DEBUG_RX(mvm, 1162 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1163 baid, reorder_data); 1164 goto out; 1165 } 1166 1167 if (!data->timeout) 1168 goto out; 1169 1170 timeout = data->timeout; 1171 /* 1172 * Do not update last rx all the time to avoid cache bouncing 1173 * between the rx queues. 1174 * Update it every timeout. Worst case is the session will 1175 * expire after ~ 2 * timeout, which doesn't matter that much. 1176 */ 1177 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1178 /* Update is atomic */ 1179 data->last_rx = now; 1180 1181 out: 1182 rcu_read_unlock(); 1183 } 1184 1185 static void iwl_mvm_flip_address(u8 *addr) 1186 { 1187 int i; 1188 u8 mac_addr[ETH_ALEN]; 1189 1190 for (i = 0; i < ETH_ALEN; i++) 1191 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1192 ether_addr_copy(addr, mac_addr); 1193 } 1194 1195 struct iwl_mvm_rx_phy_data { 1196 enum iwl_rx_phy_info_type info_type; 1197 __le32 d0, d1, d2, d3, eht_d4, d5; 1198 __le16 d4; 1199 bool with_data; 1200 bool first_subframe; 1201 __le32 rx_vec[4]; 1202 1203 u32 rate_n_flags; 1204 u32 gp2_on_air_rise; 1205 u16 phy_info; 1206 u8 energy_a, energy_b; 1207 u8 channel; 1208 }; 1209 1210 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1211 struct iwl_mvm_rx_phy_data *phy_data, 1212 struct ieee80211_radiotap_he_mu *he_mu) 1213 { 1214 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1215 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1216 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1217 u32 rate_n_flags = phy_data->rate_n_flags; 1218 1219 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1220 he_mu->flags1 |= 1221 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1222 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1223 1224 he_mu->flags1 |= 1225 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1226 phy_data4), 1227 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1228 1229 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1230 phy_data2); 1231 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1232 phy_data3); 1233 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1234 phy_data2); 1235 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1236 phy_data3); 1237 } 1238 1239 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1240 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1241 he_mu->flags1 |= 1242 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1243 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1244 1245 he_mu->flags2 |= 1246 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1247 phy_data4), 1248 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1249 1250 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1251 phy_data2); 1252 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1253 phy_data3); 1254 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1255 phy_data2); 1256 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1257 phy_data3); 1258 } 1259 } 1260 1261 static void 1262 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1263 struct ieee80211_radiotap_he *he, 1264 struct ieee80211_radiotap_he_mu *he_mu, 1265 struct ieee80211_rx_status *rx_status) 1266 { 1267 /* 1268 * Unfortunately, we have to leave the mac80211 data 1269 * incorrect for the case that we receive an HE-MU 1270 * transmission and *don't* have the HE phy data (due 1271 * to the bits being used for TSF). This shouldn't 1272 * happen though as management frames where we need 1273 * the TSF/timers are not be transmitted in HE-MU. 1274 */ 1275 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1276 u32 rate_n_flags = phy_data->rate_n_flags; 1277 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1278 u8 offs = 0; 1279 1280 rx_status->bw = RATE_INFO_BW_HE_RU; 1281 1282 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1283 1284 switch (ru) { 1285 case 0 ... 36: 1286 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1287 offs = ru; 1288 break; 1289 case 37 ... 52: 1290 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1291 offs = ru - 37; 1292 break; 1293 case 53 ... 60: 1294 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1295 offs = ru - 53; 1296 break; 1297 case 61 ... 64: 1298 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1299 offs = ru - 61; 1300 break; 1301 case 65 ... 66: 1302 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1303 offs = ru - 65; 1304 break; 1305 case 67: 1306 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1307 break; 1308 case 68: 1309 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1310 break; 1311 } 1312 he->data2 |= le16_encode_bits(offs, 1313 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1314 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1315 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1316 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1317 he->data2 |= 1318 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1319 1320 #define CHECK_BW(bw) \ 1321 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1322 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1323 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1324 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1325 CHECK_BW(20); 1326 CHECK_BW(40); 1327 CHECK_BW(80); 1328 CHECK_BW(160); 1329 1330 if (he_mu) 1331 he_mu->flags2 |= 1332 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1333 rate_n_flags), 1334 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1335 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1336 he->data6 |= 1337 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1338 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1339 rate_n_flags), 1340 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1341 } 1342 1343 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1344 struct iwl_mvm_rx_phy_data *phy_data, 1345 struct ieee80211_radiotap_he *he, 1346 struct ieee80211_radiotap_he_mu *he_mu, 1347 struct ieee80211_rx_status *rx_status, 1348 int queue) 1349 { 1350 switch (phy_data->info_type) { 1351 case IWL_RX_PHY_INFO_TYPE_NONE: 1352 case IWL_RX_PHY_INFO_TYPE_CCK: 1353 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1354 case IWL_RX_PHY_INFO_TYPE_HT: 1355 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1356 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1357 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1358 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1359 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1360 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1361 return; 1362 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1363 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1364 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1365 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1366 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1367 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1368 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1369 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1370 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1371 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1372 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1373 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1374 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1375 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1376 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1377 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1378 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1379 fallthrough; 1380 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1381 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1382 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1383 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1384 /* HE common */ 1385 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1386 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1387 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1388 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1389 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1390 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1391 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1392 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1393 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1394 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1395 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1396 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1397 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1398 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1399 IWL_RX_PHY_DATA0_HE_UPLINK), 1400 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1401 } 1402 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1403 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1404 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1405 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1406 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1407 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1408 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1409 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1410 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1411 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1412 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1413 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1414 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1415 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1416 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1417 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1418 IWL_RX_PHY_DATA0_HE_DOPPLER), 1419 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1420 break; 1421 } 1422 1423 switch (phy_data->info_type) { 1424 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1425 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1426 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1427 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1428 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1429 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1430 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1431 break; 1432 default: 1433 /* nothing here */ 1434 break; 1435 } 1436 1437 switch (phy_data->info_type) { 1438 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1439 he_mu->flags1 |= 1440 le16_encode_bits(le16_get_bits(phy_data->d4, 1441 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1442 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1443 he_mu->flags1 |= 1444 le16_encode_bits(le16_get_bits(phy_data->d4, 1445 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1446 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1447 he_mu->flags2 |= 1448 le16_encode_bits(le16_get_bits(phy_data->d4, 1449 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1450 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1451 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1452 fallthrough; 1453 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1454 he_mu->flags2 |= 1455 le16_encode_bits(le32_get_bits(phy_data->d1, 1456 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1457 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1458 he_mu->flags2 |= 1459 le16_encode_bits(le32_get_bits(phy_data->d1, 1460 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1461 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1462 fallthrough; 1463 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1464 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1465 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1466 break; 1467 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1468 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1469 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1470 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1471 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1472 break; 1473 default: 1474 /* nothing */ 1475 break; 1476 } 1477 } 1478 1479 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1480 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1481 1482 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1483 typeof(enc_bits) _enc_bits = enc_bits; \ 1484 typeof(usig) _usig = usig; \ 1485 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1486 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1487 } while (0) 1488 1489 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1490 eht->data[(rt_data)] |= \ 1491 (cpu_to_le32 \ 1492 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1493 LE32_DEC_ENC(data ## fw_data, \ 1494 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1495 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1496 1497 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1498 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1499 1500 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1501 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1502 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1503 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1504 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1505 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1506 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1507 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1508 1509 #define IWL_RX_RU_DATA_A1 2 1510 #define IWL_RX_RU_DATA_A2 2 1511 #define IWL_RX_RU_DATA_B1 2 1512 #define IWL_RX_RU_DATA_B2 4 1513 #define IWL_RX_RU_DATA_C1 3 1514 #define IWL_RX_RU_DATA_C2 3 1515 #define IWL_RX_RU_DATA_D1 4 1516 #define IWL_RX_RU_DATA_D2 4 1517 1518 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1519 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1520 rt_ru, \ 1521 IWL_RX_RU_DATA_ ## fw_ru, \ 1522 fw_ru) 1523 1524 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1525 struct iwl_mvm_rx_phy_data *phy_data, 1526 struct ieee80211_rx_status *rx_status, 1527 struct ieee80211_radiotap_eht *eht, 1528 struct ieee80211_radiotap_eht_usig *usig) 1529 { 1530 if (phy_data->with_data) { 1531 __le32 data1 = phy_data->d1; 1532 __le32 data2 = phy_data->d2; 1533 __le32 data3 = phy_data->d3; 1534 __le32 data4 = phy_data->eht_d4; 1535 __le32 data5 = phy_data->d5; 1536 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1537 1538 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1539 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1540 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1541 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1542 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1543 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1544 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1545 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1546 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1547 IWL_MVM_ENC_USIG_VALUE_MASK 1548 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1549 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1550 1551 eht->user_info[0] |= 1552 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1553 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1554 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1555 1556 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1557 eht->data[7] |= LE32_DEC_ENC 1558 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1559 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1560 1561 /* 1562 * Hardware labels the content channels/RU allocation values 1563 * as follows: 1564 * Content Channel 1 Content Channel 2 1565 * 20 MHz: A1 1566 * 40 MHz: A1 B1 1567 * 80 MHz: A1 C1 B1 D1 1568 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1569 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1570 * 1571 * However firmware can only give us A1-D2, so the higher 1572 * frequencies are missing. 1573 */ 1574 1575 switch (phy_bw) { 1576 case RATE_MCS_CHAN_WIDTH_320: 1577 /* additional values are missing in RX metadata */ 1578 case RATE_MCS_CHAN_WIDTH_160: 1579 /* content channel 1 */ 1580 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1581 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1582 /* content channel 2 */ 1583 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1584 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1585 fallthrough; 1586 case RATE_MCS_CHAN_WIDTH_80: 1587 /* content channel 1 */ 1588 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1589 /* content channel 2 */ 1590 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1591 fallthrough; 1592 case RATE_MCS_CHAN_WIDTH_40: 1593 /* content channel 2 */ 1594 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1595 fallthrough; 1596 case RATE_MCS_CHAN_WIDTH_20: 1597 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1598 break; 1599 } 1600 } else { 1601 __le32 usig_a1 = phy_data->rx_vec[0]; 1602 __le32 usig_a2 = phy_data->rx_vec[1]; 1603 1604 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1605 IWL_RX_USIG_A1_DISREGARD, 1606 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1607 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1608 IWL_RX_USIG_A1_VALIDATE, 1609 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1610 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1611 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1612 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1613 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1614 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1615 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1616 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1617 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1618 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1619 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1620 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1621 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1622 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1623 IWL_RX_USIG_A2_EHT_SIG_MCS, 1624 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1625 IWL_MVM_ENC_USIG_VALUE_MASK 1626 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1627 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1628 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1629 IWL_RX_USIG_A2_EHT_CRC_OK, 1630 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1631 } 1632 } 1633 1634 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1635 struct iwl_mvm_rx_phy_data *phy_data, 1636 struct ieee80211_rx_status *rx_status, 1637 struct ieee80211_radiotap_eht *eht, 1638 struct ieee80211_radiotap_eht_usig *usig) 1639 { 1640 if (phy_data->with_data) { 1641 __le32 data5 = phy_data->d5; 1642 1643 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1644 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1645 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1646 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1647 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1648 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1649 1650 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1651 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1652 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1653 } else { 1654 __le32 usig_a1 = phy_data->rx_vec[0]; 1655 __le32 usig_a2 = phy_data->rx_vec[1]; 1656 1657 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1658 IWL_RX_USIG_A1_DISREGARD, 1659 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1660 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1661 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1662 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1663 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1664 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1665 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1666 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1667 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1668 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1669 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1670 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1671 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1672 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1673 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1674 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1675 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1676 IWL_RX_USIG_A2_EHT_CRC_OK, 1677 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1678 } 1679 } 1680 1681 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1682 struct ieee80211_rx_status *rx_status, 1683 struct ieee80211_radiotap_eht *eht) 1684 { 1685 u32 ru = le32_get_bits(eht->data[8], 1686 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1687 enum nl80211_eht_ru_alloc nl_ru; 1688 1689 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1690 * in an EHT variant User Info field 1691 */ 1692 1693 switch (ru) { 1694 case 0 ... 36: 1695 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1696 break; 1697 case 37 ... 52: 1698 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1699 break; 1700 case 53 ... 60: 1701 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1702 break; 1703 case 61 ... 64: 1704 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1705 break; 1706 case 65 ... 66: 1707 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1708 break; 1709 case 67: 1710 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1711 break; 1712 case 68: 1713 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1714 break; 1715 case 69: 1716 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1717 break; 1718 case 70 ... 81: 1719 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1720 break; 1721 case 82 ... 89: 1722 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1723 break; 1724 case 90 ... 93: 1725 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1726 break; 1727 case 94 ... 95: 1728 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1729 break; 1730 case 96 ... 99: 1731 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1732 break; 1733 case 100 ... 103: 1734 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1735 break; 1736 case 104: 1737 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1738 break; 1739 case 105 ... 106: 1740 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1741 break; 1742 default: 1743 return; 1744 } 1745 1746 rx_status->bw = RATE_INFO_BW_EHT_RU; 1747 rx_status->eht.ru = nl_ru; 1748 } 1749 1750 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1751 struct iwl_mvm_rx_phy_data *phy_data, 1752 struct ieee80211_rx_status *rx_status, 1753 struct ieee80211_radiotap_eht *eht, 1754 struct ieee80211_radiotap_eht_usig *usig) 1755 1756 { 1757 __le32 data0 = phy_data->d0; 1758 __le32 data1 = phy_data->d1; 1759 __le32 usig_a1 = phy_data->rx_vec[0]; 1760 u8 info_type = phy_data->info_type; 1761 1762 /* Not in EHT range */ 1763 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1764 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1765 return; 1766 1767 usig->common |= cpu_to_le32 1768 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1769 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1770 if (phy_data->with_data) { 1771 usig->common |= LE32_DEC_ENC(data0, 1772 IWL_RX_PHY_DATA0_EHT_UPLINK, 1773 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1774 usig->common |= LE32_DEC_ENC(data0, 1775 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1776 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1777 } else { 1778 usig->common |= LE32_DEC_ENC(usig_a1, 1779 IWL_RX_USIG_A1_UL_FLAG, 1780 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1781 usig->common |= LE32_DEC_ENC(usig_a1, 1782 IWL_RX_USIG_A1_BSS_COLOR, 1783 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1784 } 1785 1786 if (fw_has_capa(&mvm->fw->ucode_capa, 1787 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1788 usig->common |= 1789 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1790 usig->common |= 1791 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1792 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1793 } 1794 1795 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1796 eht->data[0] |= LE32_DEC_ENC(data0, 1797 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1798 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1799 1800 /* All RU allocating size/index is in TB format */ 1801 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1802 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1803 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1804 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1805 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1806 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1807 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1808 1809 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1810 1811 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1812 * which is on only in case of monitor mode so no need to check monitor 1813 * mode 1814 */ 1815 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1816 eht->data[1] |= 1817 le32_encode_bits(mvm->monitor_p80, 1818 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1819 1820 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1821 if (phy_data->with_data) 1822 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1823 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1824 else 1825 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1826 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1827 1828 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1829 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1830 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1831 1832 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1833 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1834 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1835 1836 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1837 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1838 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1839 1840 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1841 1842 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1843 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1844 1845 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1846 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1847 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1848 1849 /* 1850 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1851 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1852 */ 1853 1854 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1855 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1856 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1857 1858 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1859 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1860 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1861 1862 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1863 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1864 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1865 } 1866 1867 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1868 struct iwl_mvm_rx_phy_data *phy_data, 1869 int queue) 1870 { 1871 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1872 1873 struct ieee80211_radiotap_eht *eht; 1874 struct ieee80211_radiotap_eht_usig *usig; 1875 size_t eht_len = sizeof(*eht); 1876 1877 u32 rate_n_flags = phy_data->rate_n_flags; 1878 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1879 /* EHT and HE have the same valus for LTF */ 1880 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1881 u16 phy_info = phy_data->phy_info; 1882 u32 bw; 1883 1884 /* u32 for 1 user_info */ 1885 if (phy_data->with_data) 1886 eht_len += sizeof(u32); 1887 1888 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1889 1890 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1891 sizeof(*usig)); 1892 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1893 usig->common |= 1894 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1895 1896 /* specific handling for 320MHz */ 1897 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1898 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1899 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1900 le32_to_cpu(phy_data->d0)); 1901 1902 usig->common |= cpu_to_le32 1903 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1904 1905 /* report the AMPDU-EOF bit on single frames */ 1906 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1907 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1908 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1909 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1910 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1911 } 1912 1913 /* update aggregation data for monitor sake on default queue */ 1914 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1915 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1916 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1917 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1918 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1919 } 1920 1921 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1922 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1923 1924 #define CHECK_TYPE(F) \ 1925 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1926 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1927 1928 CHECK_TYPE(SU); 1929 CHECK_TYPE(EXT_SU); 1930 CHECK_TYPE(MU); 1931 CHECK_TYPE(TRIG); 1932 1933 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1934 case 0: 1935 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1936 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1937 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1938 } else { 1939 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1940 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1941 } 1942 break; 1943 case 1: 1944 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1945 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1946 break; 1947 case 2: 1948 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1949 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1950 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1951 else 1952 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1953 break; 1954 case 3: 1955 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1956 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1957 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1958 } 1959 break; 1960 default: 1961 /* nothing here */ 1962 break; 1963 } 1964 1965 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1966 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1967 eht->data[0] |= cpu_to_le32 1968 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1969 ltf) | 1970 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1971 rx_status->eht.gi)); 1972 } 1973 1974 1975 if (!phy_data->with_data) { 1976 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1977 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1978 eht->data[7] |= 1979 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1980 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1981 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1982 if (rate_n_flags & RATE_MCS_BF_MSK) 1983 eht->data[7] |= 1984 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1985 } else { 1986 eht->user_info[0] |= 1987 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1988 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1989 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1990 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1991 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1992 1993 if (rate_n_flags & RATE_MCS_BF_MSK) 1994 eht->user_info[0] |= 1995 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1996 1997 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1998 eht->user_info[0] |= 1999 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 2000 2001 eht->user_info[0] |= cpu_to_le32 2002 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 2003 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 2004 rate_n_flags)) | 2005 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 2006 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 2007 } 2008 } 2009 2010 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 2011 struct iwl_mvm_rx_phy_data *phy_data, 2012 int queue) 2013 { 2014 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2015 struct ieee80211_radiotap_he *he = NULL; 2016 struct ieee80211_radiotap_he_mu *he_mu = NULL; 2017 u32 rate_n_flags = phy_data->rate_n_flags; 2018 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 2019 u8 ltf; 2020 static const struct ieee80211_radiotap_he known = { 2021 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2022 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 2023 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 2024 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 2025 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 2026 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 2027 }; 2028 static const struct ieee80211_radiotap_he_mu mu_known = { 2029 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 2030 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 2031 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 2032 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 2033 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 2034 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 2035 }; 2036 u16 phy_info = phy_data->phy_info; 2037 2038 he = skb_put_data(skb, &known, sizeof(known)); 2039 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 2040 2041 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 2042 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 2043 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 2044 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 2045 } 2046 2047 /* report the AMPDU-EOF bit on single frames */ 2048 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2049 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2050 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2051 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 2052 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2053 } 2054 2055 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2056 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 2057 queue); 2058 2059 /* update aggregation data for monitor sake on default queue */ 2060 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 2061 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 2062 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2063 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 2064 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2065 } 2066 2067 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 2068 rate_n_flags & RATE_MCS_HE_106T_MSK) { 2069 rx_status->bw = RATE_INFO_BW_HE_RU; 2070 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 2071 } 2072 2073 /* actually data is filled in mac80211 */ 2074 if (he_type == RATE_MCS_HE_TYPE_SU || 2075 he_type == RATE_MCS_HE_TYPE_EXT_SU) 2076 he->data1 |= 2077 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 2078 2079 #define CHECK_TYPE(F) \ 2080 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 2081 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 2082 2083 CHECK_TYPE(SU); 2084 CHECK_TYPE(EXT_SU); 2085 CHECK_TYPE(MU); 2086 CHECK_TYPE(TRIG); 2087 2088 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 2089 2090 if (rate_n_flags & RATE_MCS_BF_MSK) 2091 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 2092 2093 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 2094 RATE_MCS_HE_GI_LTF_POS) { 2095 case 0: 2096 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2097 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2098 else 2099 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2100 if (he_type == RATE_MCS_HE_TYPE_MU) 2101 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2102 else 2103 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 2104 break; 2105 case 1: 2106 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2107 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2108 else 2109 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2110 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2111 break; 2112 case 2: 2113 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 2114 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2115 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2116 } else { 2117 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2118 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2119 } 2120 break; 2121 case 3: 2122 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2123 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2124 break; 2125 case 4: 2126 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2127 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2128 break; 2129 default: 2130 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 2131 } 2132 2133 he->data5 |= le16_encode_bits(ltf, 2134 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 2135 } 2136 2137 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 2138 struct iwl_mvm_rx_phy_data *phy_data) 2139 { 2140 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2141 struct ieee80211_radiotap_lsig *lsig; 2142 2143 switch (phy_data->info_type) { 2144 case IWL_RX_PHY_INFO_TYPE_HT: 2145 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 2146 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 2147 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 2148 case IWL_RX_PHY_INFO_TYPE_HE_SU: 2149 case IWL_RX_PHY_INFO_TYPE_HE_MU: 2150 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 2151 case IWL_RX_PHY_INFO_TYPE_HE_TB: 2152 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 2153 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 2154 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 2155 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 2156 lsig = skb_put(skb, sizeof(*lsig)); 2157 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 2158 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 2159 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 2160 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 2161 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 2162 break; 2163 default: 2164 break; 2165 } 2166 } 2167 2168 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 2169 { 2170 switch (phy_band) { 2171 case PHY_BAND_24: 2172 return NL80211_BAND_2GHZ; 2173 case PHY_BAND_5: 2174 return NL80211_BAND_5GHZ; 2175 case PHY_BAND_6: 2176 return NL80211_BAND_6GHZ; 2177 default: 2178 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 2179 return NL80211_BAND_5GHZ; 2180 } 2181 } 2182 2183 struct iwl_rx_sta_csa { 2184 bool all_sta_unblocked; 2185 struct ieee80211_vif *vif; 2186 }; 2187 2188 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 2189 { 2190 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2191 struct iwl_rx_sta_csa *rx_sta_csa = data; 2192 2193 if (mvmsta->vif != rx_sta_csa->vif) 2194 return; 2195 2196 if (mvmsta->disable_tx) 2197 rx_sta_csa->all_sta_unblocked = false; 2198 } 2199 2200 /* 2201 * Note: requires also rx_status->band to be prefilled, as well 2202 * as phy_data (apart from phy_data->info_type) 2203 */ 2204 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 2205 struct sk_buff *skb, 2206 struct iwl_mvm_rx_phy_data *phy_data, 2207 int queue) 2208 { 2209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2210 u32 rate_n_flags = phy_data->rate_n_flags; 2211 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 2212 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2213 bool is_sgi; 2214 2215 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2216 2217 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2218 phy_data->info_type = 2219 le32_get_bits(phy_data->d1, 2220 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2221 2222 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2223 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2224 case RATE_MCS_CHAN_WIDTH_20: 2225 break; 2226 case RATE_MCS_CHAN_WIDTH_40: 2227 rx_status->bw = RATE_INFO_BW_40; 2228 break; 2229 case RATE_MCS_CHAN_WIDTH_80: 2230 rx_status->bw = RATE_INFO_BW_80; 2231 break; 2232 case RATE_MCS_CHAN_WIDTH_160: 2233 rx_status->bw = RATE_INFO_BW_160; 2234 break; 2235 case RATE_MCS_CHAN_WIDTH_320: 2236 rx_status->bw = RATE_INFO_BW_320; 2237 break; 2238 } 2239 2240 /* must be before L-SIG data */ 2241 if (format == RATE_MCS_HE_MSK) 2242 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2243 2244 iwl_mvm_decode_lsig(skb, phy_data); 2245 2246 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2247 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2248 rx_status->band); 2249 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 2250 phy_data->energy_a, phy_data->energy_b); 2251 2252 /* using TLV format and must be after all fixed len fields */ 2253 if (format == RATE_MCS_EHT_MSK) 2254 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2255 2256 if (unlikely(mvm->monitor_on)) 2257 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2258 2259 is_sgi = format == RATE_MCS_HE_MSK ? 2260 iwl_he_is_sgi(rate_n_flags) : 2261 rate_n_flags & RATE_MCS_SGI_MSK; 2262 2263 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2264 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2265 2266 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2267 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2268 2269 switch (format) { 2270 case RATE_MCS_VHT_MSK: 2271 rx_status->encoding = RX_ENC_VHT; 2272 break; 2273 case RATE_MCS_HE_MSK: 2274 rx_status->encoding = RX_ENC_HE; 2275 rx_status->he_dcm = 2276 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2277 break; 2278 case RATE_MCS_EHT_MSK: 2279 rx_status->encoding = RX_ENC_EHT; 2280 break; 2281 } 2282 2283 switch (format) { 2284 case RATE_MCS_HT_MSK: 2285 rx_status->encoding = RX_ENC_HT; 2286 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2287 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2288 break; 2289 case RATE_MCS_VHT_MSK: 2290 case RATE_MCS_HE_MSK: 2291 case RATE_MCS_EHT_MSK: 2292 rx_status->nss = 2293 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2294 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2295 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2296 break; 2297 default: { 2298 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2299 rx_status->band); 2300 2301 rx_status->rate_idx = rate; 2302 2303 if ((rate < 0 || rate > 0xFF)) { 2304 rx_status->rate_idx = 0; 2305 if (net_ratelimit()) 2306 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2307 rate_n_flags, rx_status->band); 2308 } 2309 2310 break; 2311 } 2312 } 2313 } 2314 2315 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2316 struct iwl_rx_cmd_buffer *rxb, int queue) 2317 { 2318 struct ieee80211_rx_status *rx_status; 2319 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2320 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2321 struct ieee80211_hdr *hdr; 2322 u32 len; 2323 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2324 struct ieee80211_sta *sta = NULL; 2325 struct ieee80211_link_sta *link_sta = NULL; 2326 struct sk_buff *skb; 2327 u8 crypt_len = 0; 2328 size_t desc_size; 2329 struct iwl_mvm_rx_phy_data phy_data = {}; 2330 u32 format; 2331 2332 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2333 return; 2334 2335 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2336 desc_size = sizeof(*desc); 2337 else 2338 desc_size = IWL_RX_DESC_SIZE_V1; 2339 2340 if (unlikely(pkt_len < desc_size)) { 2341 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2342 return; 2343 } 2344 2345 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2346 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2347 phy_data.channel = desc->v3.channel; 2348 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2349 phy_data.energy_a = desc->v3.energy_a; 2350 phy_data.energy_b = desc->v3.energy_b; 2351 2352 phy_data.d0 = desc->v3.phy_data0; 2353 phy_data.d1 = desc->v3.phy_data1; 2354 phy_data.d2 = desc->v3.phy_data2; 2355 phy_data.d3 = desc->v3.phy_data3; 2356 phy_data.eht_d4 = desc->phy_eht_data4; 2357 phy_data.d5 = desc->v3.phy_data5; 2358 } else { 2359 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2360 phy_data.channel = desc->v1.channel; 2361 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2362 phy_data.energy_a = desc->v1.energy_a; 2363 phy_data.energy_b = desc->v1.energy_b; 2364 2365 phy_data.d0 = desc->v1.phy_data0; 2366 phy_data.d1 = desc->v1.phy_data1; 2367 phy_data.d2 = desc->v1.phy_data2; 2368 phy_data.d3 = desc->v1.phy_data3; 2369 } 2370 2371 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2372 REPLY_RX_MPDU_CMD, 0) < 4) { 2373 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2374 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2375 phy_data.rate_n_flags); 2376 } 2377 2378 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2379 2380 len = le16_to_cpu(desc->mpdu_len); 2381 2382 if (unlikely(len + desc_size > pkt_len)) { 2383 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2384 return; 2385 } 2386 2387 phy_data.with_data = true; 2388 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2389 phy_data.d4 = desc->phy_data4; 2390 2391 hdr = (void *)(pkt->data + desc_size); 2392 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2393 * ieee80211_hdr pulled. 2394 */ 2395 skb = alloc_skb(128, GFP_ATOMIC); 2396 if (!skb) { 2397 IWL_ERR(mvm, "alloc_skb failed\n"); 2398 return; 2399 } 2400 2401 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2402 /* 2403 * If the device inserted padding it means that (it thought) 2404 * the 802.11 header wasn't a multiple of 4 bytes long. In 2405 * this case, reserve two bytes at the start of the SKB to 2406 * align the payload properly in case we end up copying it. 2407 */ 2408 skb_reserve(skb, 2); 2409 } 2410 2411 rx_status = IEEE80211_SKB_RXCB(skb); 2412 2413 /* 2414 * Keep packets with CRC errors (and with overrun) for monitor mode 2415 * (otherwise the firmware discards them) but mark them as bad. 2416 */ 2417 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2418 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2419 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2420 le32_to_cpu(desc->status)); 2421 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2422 } 2423 2424 /* set the preamble flag if appropriate */ 2425 if (format == RATE_MCS_CCK_MSK && 2426 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2427 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2428 2429 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2430 u64 tsf_on_air_rise; 2431 2432 if (mvm->trans->trans_cfg->device_family >= 2433 IWL_DEVICE_FAMILY_AX210) 2434 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2435 else 2436 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2437 2438 rx_status->mactime = tsf_on_air_rise; 2439 /* TSF as indicated by the firmware is at INA time */ 2440 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2441 } 2442 2443 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2444 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2445 2446 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2447 } else { 2448 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2449 NL80211_BAND_2GHZ; 2450 } 2451 2452 /* update aggregation data for monitor sake on default queue */ 2453 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2454 bool toggle_bit; 2455 2456 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2457 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2458 /* 2459 * Toggle is switched whenever new aggregation starts. Make 2460 * sure ampdu_reference is never 0 so we can later use it to 2461 * see if the frame was really part of an A-MPDU or not. 2462 */ 2463 if (toggle_bit != mvm->ampdu_toggle) { 2464 mvm->ampdu_ref++; 2465 if (mvm->ampdu_ref == 0) 2466 mvm->ampdu_ref++; 2467 mvm->ampdu_toggle = toggle_bit; 2468 phy_data.first_subframe = true; 2469 } 2470 rx_status->ampdu_reference = mvm->ampdu_ref; 2471 } 2472 2473 rcu_read_lock(); 2474 2475 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2476 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2477 2478 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2479 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2480 if (IS_ERR(sta)) 2481 sta = NULL; 2482 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2483 } 2484 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2485 /* 2486 * This is fine since we prevent two stations with the same 2487 * address from being added. 2488 */ 2489 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2490 } 2491 2492 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2493 le32_to_cpu(pkt->len_n_flags), queue, 2494 &crypt_len)) { 2495 kfree_skb(skb); 2496 goto out; 2497 } 2498 2499 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2500 2501 if (sta) { 2502 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2503 struct ieee80211_vif *tx_blocked_vif = 2504 rcu_dereference(mvm->csa_tx_blocked_vif); 2505 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2506 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2507 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2508 struct iwl_fw_dbg_trigger_tlv *trig; 2509 struct ieee80211_vif *vif = mvmsta->vif; 2510 2511 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2512 !is_multicast_ether_addr(hdr->addr1) && 2513 ieee80211_is_data(hdr->frame_control) && 2514 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2515 schedule_delayed_work(&mvm->tcm.work, 0); 2516 2517 /* 2518 * We have tx blocked stations (with CS bit). If we heard 2519 * frames from a blocked station on a new channel we can 2520 * TX to it again. 2521 */ 2522 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2523 struct iwl_mvm_vif *mvmvif = 2524 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2525 struct iwl_rx_sta_csa rx_sta_csa = { 2526 .all_sta_unblocked = true, 2527 .vif = tx_blocked_vif, 2528 }; 2529 2530 if (mvmvif->csa_target_freq == rx_status->freq) 2531 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2532 false); 2533 ieee80211_iterate_stations_atomic(mvm->hw, 2534 iwl_mvm_rx_get_sta_block_tx, 2535 &rx_sta_csa); 2536 2537 if (rx_sta_csa.all_sta_unblocked) { 2538 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2539 /* Unblock BCAST / MCAST station */ 2540 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2541 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2542 } 2543 } 2544 2545 rs_update_last_rssi(mvm, mvmsta, rx_status); 2546 2547 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2548 ieee80211_vif_to_wdev(vif), 2549 FW_DBG_TRIGGER_RSSI); 2550 2551 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2552 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2553 s32 rssi; 2554 2555 rssi_trig = (void *)trig->data; 2556 rssi = le32_to_cpu(rssi_trig->rssi); 2557 2558 if (rx_status->signal < rssi) 2559 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2560 NULL); 2561 } 2562 2563 if (ieee80211_is_data(hdr->frame_control)) 2564 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2565 2566 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2567 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", 2568 le16_to_cpu(hdr->seq_ctrl)); 2569 kfree_skb(skb); 2570 goto out; 2571 } 2572 2573 /* 2574 * Our hardware de-aggregates AMSDUs but copies the mac header 2575 * as it to the de-aggregated MPDUs. We need to turn off the 2576 * AMSDU bit in the QoS control ourselves. 2577 * In addition, HW reverses addr3 and addr4 - reverse it back. 2578 */ 2579 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2580 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2581 u8 *qc = ieee80211_get_qos_ctl(hdr); 2582 2583 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2584 2585 if (mvm->trans->trans_cfg->device_family == 2586 IWL_DEVICE_FAMILY_9000) { 2587 iwl_mvm_flip_address(hdr->addr3); 2588 2589 if (ieee80211_has_a4(hdr->frame_control)) 2590 iwl_mvm_flip_address(hdr->addr4); 2591 } 2592 } 2593 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2594 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2595 2596 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2597 } 2598 } 2599 2600 /* management stuff on default queue */ 2601 if (!queue) { 2602 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2603 ieee80211_is_probe_resp(hdr->frame_control)) && 2604 mvm->sched_scan_pass_all == 2605 SCHED_SCAN_PASS_ALL_ENABLED)) 2606 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2607 2608 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2609 ieee80211_is_probe_resp(hdr->frame_control))) 2610 rx_status->boottime_ns = ktime_get_boottime_ns(); 2611 } 2612 2613 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2614 kfree_skb(skb); 2615 goto out; 2616 } 2617 2618 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2619 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2620 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) 2621 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, 2622 link_sta); 2623 out: 2624 rcu_read_unlock(); 2625 } 2626 2627 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2628 struct iwl_rx_cmd_buffer *rxb, int queue) 2629 { 2630 struct ieee80211_rx_status *rx_status; 2631 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2632 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2633 u32 rssi; 2634 u32 info_type; 2635 struct ieee80211_sta *sta = NULL; 2636 struct sk_buff *skb; 2637 struct iwl_mvm_rx_phy_data phy_data; 2638 u32 format; 2639 2640 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2641 return; 2642 2643 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2644 return; 2645 2646 rssi = le32_to_cpu(desc->rssi); 2647 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2648 phy_data.d0 = desc->phy_info[0]; 2649 phy_data.d1 = desc->phy_info[1]; 2650 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2651 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2652 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2653 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2654 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2655 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2656 phy_data.with_data = false; 2657 phy_data.rx_vec[0] = desc->rx_vec[0]; 2658 phy_data.rx_vec[1] = desc->rx_vec[1]; 2659 2660 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2661 RX_NO_DATA_NOTIF, 0) < 2) { 2662 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2663 phy_data.rate_n_flags); 2664 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2665 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2666 phy_data.rate_n_flags); 2667 } 2668 2669 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2670 2671 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2672 RX_NO_DATA_NOTIF, 0) >= 3) { 2673 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2674 sizeof(struct iwl_rx_no_data_ver_3))) 2675 /* invalid len for ver 3 */ 2676 return; 2677 phy_data.rx_vec[2] = desc->rx_vec[2]; 2678 phy_data.rx_vec[3] = desc->rx_vec[3]; 2679 } else { 2680 if (format == RATE_MCS_EHT_MSK) 2681 /* no support for EHT before version 3 API */ 2682 return; 2683 } 2684 2685 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2686 * ieee80211_hdr pulled. 2687 */ 2688 skb = alloc_skb(128, GFP_ATOMIC); 2689 if (!skb) { 2690 IWL_ERR(mvm, "alloc_skb failed\n"); 2691 return; 2692 } 2693 2694 rx_status = IEEE80211_SKB_RXCB(skb); 2695 2696 /* 0-length PSDU */ 2697 rx_status->flag |= RX_FLAG_NO_PSDU; 2698 2699 switch (info_type) { 2700 case RX_NO_DATA_INFO_TYPE_NDP: 2701 rx_status->zero_length_psdu_type = 2702 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2703 break; 2704 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2705 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2706 rx_status->zero_length_psdu_type = 2707 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2708 break; 2709 default: 2710 rx_status->zero_length_psdu_type = 2711 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2712 break; 2713 } 2714 2715 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2716 NL80211_BAND_2GHZ; 2717 2718 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2719 2720 /* no more radio tap info should be put after this point. 2721 * 2722 * We mark it as mac header, for upper layers to know where 2723 * all radio tap header ends. 2724 */ 2725 skb_reset_mac_header(skb); 2726 2727 /* 2728 * Override the nss from the rx_vec since the rate_n_flags has 2729 * only 2 bits for the nss which gives a max of 4 ss but there 2730 * may be up to 8 spatial streams. 2731 */ 2732 switch (format) { 2733 case RATE_MCS_VHT_MSK: 2734 rx_status->nss = 2735 le32_get_bits(desc->rx_vec[0], 2736 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2737 break; 2738 case RATE_MCS_HE_MSK: 2739 rx_status->nss = 2740 le32_get_bits(desc->rx_vec[0], 2741 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2742 break; 2743 case RATE_MCS_EHT_MSK: 2744 rx_status->nss = 2745 le32_get_bits(desc->rx_vec[2], 2746 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2747 } 2748 2749 rcu_read_lock(); 2750 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2751 rcu_read_unlock(); 2752 } 2753 2754 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2755 struct iwl_rx_cmd_buffer *rxb, int queue) 2756 { 2757 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2758 struct iwl_frame_release *release = (void *)pkt->data; 2759 2760 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2761 return; 2762 2763 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2764 le16_to_cpu(release->nssn), 2765 queue, 0); 2766 } 2767 2768 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2769 struct iwl_rx_cmd_buffer *rxb, int queue) 2770 { 2771 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2772 struct iwl_bar_frame_release *release = (void *)pkt->data; 2773 unsigned int baid = le32_get_bits(release->ba_info, 2774 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2775 unsigned int nssn = le32_get_bits(release->ba_info, 2776 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2777 unsigned int sta_id = le32_get_bits(release->sta_tid, 2778 IWL_BAR_FRAME_RELEASE_STA_MASK); 2779 unsigned int tid = le32_get_bits(release->sta_tid, 2780 IWL_BAR_FRAME_RELEASE_TID_MASK); 2781 struct iwl_mvm_baid_data *baid_data; 2782 2783 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2784 return; 2785 2786 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2787 baid >= ARRAY_SIZE(mvm->baid_map))) 2788 return; 2789 2790 rcu_read_lock(); 2791 baid_data = rcu_dereference(mvm->baid_map[baid]); 2792 if (!baid_data) { 2793 IWL_DEBUG_RX(mvm, 2794 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2795 baid); 2796 goto out; 2797 } 2798 2799 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2800 !(baid_data->sta_mask & BIT(sta_id)), 2801 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2802 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2803 tid)) 2804 goto out; 2805 2806 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", 2807 nssn); 2808 2809 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2810 out: 2811 rcu_read_unlock(); 2812 } 2813