xref: /linux/drivers/net/wireless/intel/iwlwifi/mvm/nvm.c (revision b6b4a62d8525c3093c3273dc6b2e6831adbfc4b2)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2019, 2021-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/firmware.h>
8 #include <linux/rtnetlink.h>
9 #include "iwl-trans.h"
10 #include "iwl-csr.h"
11 #include "mvm.h"
12 #include "iwl-eeprom-parse.h"
13 #include "iwl-eeprom-read.h"
14 #include "iwl-nvm-parse.h"
15 #include "iwl-prph.h"
16 #include "fw/acpi.h"
17 
18 /* Default NVM size to read */
19 #define IWL_NVM_DEFAULT_CHUNK_SIZE (2 * 1024)
20 
21 #define NVM_WRITE_OPCODE 1
22 #define NVM_READ_OPCODE 0
23 
24 /* load nvm chunk response */
25 enum {
26 	READ_NVM_CHUNK_SUCCEED = 0,
27 	READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1
28 };
29 
30 /*
31  * prepare the NVM host command w/ the pointers to the nvm buffer
32  * and send it to fw
33  */
34 static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section,
35 			       u16 offset, u16 length, const u8 *data)
36 {
37 	struct iwl_nvm_access_cmd nvm_access_cmd = {
38 		.offset = cpu_to_le16(offset),
39 		.length = cpu_to_le16(length),
40 		.type = cpu_to_le16(section),
41 		.op_code = NVM_WRITE_OPCODE,
42 	};
43 	struct iwl_host_cmd cmd = {
44 		.id = NVM_ACCESS_CMD,
45 		.len = { sizeof(struct iwl_nvm_access_cmd), length },
46 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
47 		.data = { &nvm_access_cmd, data },
48 		/* data may come from vmalloc, so use _DUP */
49 		.dataflags = { 0, IWL_HCMD_DFL_DUP },
50 	};
51 	struct iwl_rx_packet *pkt;
52 	struct iwl_nvm_access_resp *nvm_resp;
53 	int ret;
54 
55 	ret = iwl_mvm_send_cmd(mvm, &cmd);
56 	if (ret)
57 		return ret;
58 
59 	pkt = cmd.resp_pkt;
60 	/* Extract & check NVM write response */
61 	nvm_resp = (void *)pkt->data;
62 	if (le16_to_cpu(nvm_resp->status) != READ_NVM_CHUNK_SUCCEED) {
63 		IWL_ERR(mvm,
64 			"NVM access write command failed for section %u (status = 0x%x)\n",
65 			section, le16_to_cpu(nvm_resp->status));
66 		ret = -EIO;
67 	}
68 
69 	iwl_free_resp(&cmd);
70 	return ret;
71 }
72 
73 static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section,
74 			      u16 offset, u16 length, u8 *data)
75 {
76 	struct iwl_nvm_access_cmd nvm_access_cmd = {
77 		.offset = cpu_to_le16(offset),
78 		.length = cpu_to_le16(length),
79 		.type = cpu_to_le16(section),
80 		.op_code = NVM_READ_OPCODE,
81 	};
82 	struct iwl_nvm_access_resp *nvm_resp;
83 	struct iwl_rx_packet *pkt;
84 	struct iwl_host_cmd cmd = {
85 		.id = NVM_ACCESS_CMD,
86 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
87 		.data = { &nvm_access_cmd, },
88 	};
89 	int ret, bytes_read, offset_read;
90 	u8 *resp_data;
91 
92 	cmd.len[0] = sizeof(struct iwl_nvm_access_cmd);
93 
94 	ret = iwl_mvm_send_cmd(mvm, &cmd);
95 	if (ret)
96 		return ret;
97 
98 	pkt = cmd.resp_pkt;
99 
100 	/* Extract NVM response */
101 	nvm_resp = (void *)pkt->data;
102 	ret = le16_to_cpu(nvm_resp->status);
103 	bytes_read = le16_to_cpu(nvm_resp->length);
104 	offset_read = le16_to_cpu(nvm_resp->offset);
105 	resp_data = nvm_resp->data;
106 	if (ret) {
107 		if ((offset != 0) &&
108 		    (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) {
109 			/*
110 			 * meaning of NOT_VALID_ADDRESS:
111 			 * driver try to read chunk from address that is
112 			 * multiple of 2K and got an error since addr is empty.
113 			 * meaning of (offset != 0): driver already
114 			 * read valid data from another chunk so this case
115 			 * is not an error.
116 			 */
117 			IWL_DEBUG_EEPROM(mvm->trans->dev,
118 					 "NVM access command failed on offset 0x%x since that section size is multiple 2K\n",
119 					 offset);
120 			ret = 0;
121 		} else {
122 			IWL_DEBUG_EEPROM(mvm->trans->dev,
123 					 "NVM access command failed with status %d (device: %s)\n",
124 					 ret, mvm->trans->name);
125 			ret = -ENODATA;
126 		}
127 		goto exit;
128 	}
129 
130 	if (offset_read != offset) {
131 		IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n",
132 			offset_read);
133 		ret = -EINVAL;
134 		goto exit;
135 	}
136 
137 	/* Write data to NVM */
138 	memcpy(data + offset, resp_data, bytes_read);
139 	ret = bytes_read;
140 
141 exit:
142 	iwl_free_resp(&cmd);
143 	return ret;
144 }
145 
146 static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section,
147 				 const u8 *data, u16 length)
148 {
149 	int offset = 0;
150 
151 	/* copy data in chunks of 2k (and remainder if any) */
152 
153 	while (offset < length) {
154 		int chunk_size, ret;
155 
156 		chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE,
157 				 length - offset);
158 
159 		ret = iwl_nvm_write_chunk(mvm, section, offset,
160 					  chunk_size, data + offset);
161 		if (ret < 0)
162 			return ret;
163 
164 		offset += chunk_size;
165 	}
166 
167 	return 0;
168 }
169 
170 /*
171  * Reads an NVM section completely.
172  * NICs prior to 7000 family doesn't have a real NVM, but just read
173  * section 0 which is the EEPROM. Because the EEPROM reading is unlimited
174  * by uCode, we need to manually check in this case that we don't
175  * overflow and try to read more than the EEPROM size.
176  * For 7000 family NICs, we supply the maximal size we can read, and
177  * the uCode fills the response with as much data as we can,
178  * without overflowing, so no check is needed.
179  */
180 static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section,
181 				u8 *data, u32 size_read)
182 {
183 	u16 length, offset = 0;
184 	int ret;
185 
186 	/* Set nvm section read length */
187 	length = IWL_NVM_DEFAULT_CHUNK_SIZE;
188 
189 	ret = length;
190 
191 	/* Read the NVM until exhausted (reading less than requested) */
192 	while (ret == length) {
193 		/* Check no memory assumptions fail and cause an overflow */
194 		if ((size_read + offset + length) >
195 		    mvm->trans->trans_cfg->base_params->eeprom_size) {
196 			IWL_ERR(mvm, "EEPROM size is too small for NVM\n");
197 			return -ENOBUFS;
198 		}
199 
200 		ret = iwl_nvm_read_chunk(mvm, section, offset, length, data);
201 		if (ret < 0) {
202 			IWL_DEBUG_EEPROM(mvm->trans->dev,
203 					 "Cannot read NVM from section %d offset %d, length %d\n",
204 					 section, offset, length);
205 			return ret;
206 		}
207 		offset += ret;
208 	}
209 
210 	iwl_nvm_fixups(mvm->trans->hw_id, section, data, offset);
211 
212 	IWL_DEBUG_EEPROM(mvm->trans->dev,
213 			 "NVM section %d read completed\n", section);
214 	return offset;
215 }
216 
217 static struct iwl_nvm_data *
218 iwl_parse_nvm_sections(struct iwl_mvm *mvm)
219 {
220 	struct iwl_nvm_section *sections = mvm->nvm_sections;
221 	const __be16 *hw;
222 	const __le16 *sw, *calib, *regulatory, *mac_override, *phy_sku;
223 	u8 tx_ant = mvm->fw->valid_tx_ant;
224 	u8 rx_ant = mvm->fw->valid_rx_ant;
225 	int regulatory_type;
226 
227 	/* Checking for required sections */
228 	if (mvm->trans->cfg->nvm_type == IWL_NVM) {
229 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
230 		    !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) {
231 			IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n");
232 			return NULL;
233 		}
234 	} else {
235 		if (mvm->trans->cfg->nvm_type == IWL_NVM_SDP)
236 			regulatory_type = NVM_SECTION_TYPE_REGULATORY_SDP;
237 		else
238 			regulatory_type = NVM_SECTION_TYPE_REGULATORY;
239 
240 		/* SW and REGULATORY sections are mandatory */
241 		if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data ||
242 		    !mvm->nvm_sections[regulatory_type].data) {
243 			IWL_ERR(mvm,
244 				"Can't parse empty family 8000 OTP/NVM sections\n");
245 			return NULL;
246 		}
247 		/* MAC_OVERRIDE or at least HW section must exist */
248 		if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data &&
249 		    !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
250 			IWL_ERR(mvm,
251 				"Can't parse mac_address, empty sections\n");
252 			return NULL;
253 		}
254 
255 		/* PHY_SKU section is mandatory in B0 */
256 		if (mvm->trans->cfg->nvm_type == IWL_NVM_EXT &&
257 		    !mvm->nvm_sections[NVM_SECTION_TYPE_PHY_SKU].data) {
258 			IWL_ERR(mvm,
259 				"Can't parse phy_sku in B0, empty sections\n");
260 			return NULL;
261 		}
262 	}
263 
264 	hw = (const __be16 *)sections[mvm->cfg->nvm_hw_section_num].data;
265 	sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data;
266 	calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data;
267 	mac_override =
268 		(const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data;
269 	phy_sku = (const __le16 *)sections[NVM_SECTION_TYPE_PHY_SKU].data;
270 
271 	regulatory = mvm->trans->cfg->nvm_type == IWL_NVM_SDP ?
272 		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY_SDP].data :
273 		(const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data;
274 
275 	if (mvm->set_tx_ant)
276 		tx_ant &= mvm->set_tx_ant;
277 
278 	if (mvm->set_rx_ant)
279 		rx_ant &= mvm->set_rx_ant;
280 
281 	return iwl_parse_nvm_data(mvm->trans, mvm->cfg, mvm->fw, hw, sw, calib,
282 				  regulatory, mac_override, phy_sku,
283 				  tx_ant, rx_ant);
284 }
285 
286 /* Loads the NVM data stored in mvm->nvm_sections into the NIC */
287 int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm)
288 {
289 	int i, ret = 0;
290 	struct iwl_nvm_section *sections = mvm->nvm_sections;
291 
292 	IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n");
293 
294 	for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) {
295 		if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length)
296 			continue;
297 		ret = iwl_nvm_write_section(mvm, i, sections[i].data,
298 					    sections[i].length);
299 		if (ret < 0) {
300 			IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret);
301 			break;
302 		}
303 	}
304 	return ret;
305 }
306 
307 int iwl_nvm_init(struct iwl_mvm *mvm)
308 {
309 	int ret, section;
310 	u32 size_read = 0;
311 	u8 *nvm_buffer, *temp;
312 	const char *nvm_file_C = mvm->cfg->default_nvm_file_C_step;
313 
314 	if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS))
315 		return -EINVAL;
316 
317 	/* load NVM values from nic */
318 	/* Read From FW NVM */
319 	IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n");
320 
321 	nvm_buffer = kmalloc(mvm->trans->trans_cfg->base_params->eeprom_size,
322 			     GFP_KERNEL);
323 	if (!nvm_buffer)
324 		return -ENOMEM;
325 	for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) {
326 		/* we override the constness for initial read */
327 		ret = iwl_nvm_read_section(mvm, section, nvm_buffer,
328 					   size_read);
329 		if (ret == -ENODATA) {
330 			ret = 0;
331 			continue;
332 		}
333 		if (ret < 0)
334 			break;
335 		size_read += ret;
336 		temp = kmemdup(nvm_buffer, ret, GFP_KERNEL);
337 		if (!temp) {
338 			ret = -ENOMEM;
339 			break;
340 		}
341 
342 		iwl_nvm_fixups(mvm->trans->hw_id, section, temp, ret);
343 
344 		mvm->nvm_sections[section].data = temp;
345 		mvm->nvm_sections[section].length = ret;
346 
347 #ifdef CONFIG_IWLWIFI_DEBUGFS
348 		switch (section) {
349 		case NVM_SECTION_TYPE_SW:
350 			mvm->nvm_sw_blob.data = temp;
351 			mvm->nvm_sw_blob.size  = ret;
352 			break;
353 		case NVM_SECTION_TYPE_CALIBRATION:
354 			mvm->nvm_calib_blob.data = temp;
355 			mvm->nvm_calib_blob.size  = ret;
356 			break;
357 		case NVM_SECTION_TYPE_PRODUCTION:
358 			mvm->nvm_prod_blob.data = temp;
359 			mvm->nvm_prod_blob.size  = ret;
360 			break;
361 		case NVM_SECTION_TYPE_PHY_SKU:
362 			mvm->nvm_phy_sku_blob.data = temp;
363 			mvm->nvm_phy_sku_blob.size  = ret;
364 			break;
365 		case NVM_SECTION_TYPE_REGULATORY_SDP:
366 		case NVM_SECTION_TYPE_REGULATORY:
367 			mvm->nvm_reg_blob.data = temp;
368 			mvm->nvm_reg_blob.size  = ret;
369 			break;
370 		default:
371 			if (section == mvm->cfg->nvm_hw_section_num) {
372 				mvm->nvm_hw_blob.data = temp;
373 				mvm->nvm_hw_blob.size = ret;
374 				break;
375 			}
376 		}
377 #endif
378 	}
379 	if (!size_read)
380 		IWL_ERR(mvm, "OTP is blank\n");
381 	kfree(nvm_buffer);
382 
383 	/* Only if PNVM selected in the mod param - load external NVM  */
384 	if (mvm->nvm_file_name) {
385 		/* read External NVM file from the mod param */
386 		ret = iwl_read_external_nvm(mvm->trans, mvm->nvm_file_name,
387 					    mvm->nvm_sections);
388 		if (ret) {
389 			mvm->nvm_file_name = nvm_file_C;
390 
391 			if ((ret == -EFAULT || ret == -ENOENT) &&
392 			    mvm->nvm_file_name) {
393 				/* in case nvm file was failed try again */
394 				ret = iwl_read_external_nvm(mvm->trans,
395 							    mvm->nvm_file_name,
396 							    mvm->nvm_sections);
397 				if (ret)
398 					return ret;
399 			} else {
400 				return ret;
401 			}
402 		}
403 	}
404 
405 	/* parse the relevant nvm sections */
406 	mvm->nvm_data = iwl_parse_nvm_sections(mvm);
407 	if (!mvm->nvm_data)
408 		return -ENODATA;
409 	IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n",
410 			 mvm->nvm_data->nvm_version);
411 
412 	return ret < 0 ? ret : 0;
413 }
414 
415 struct iwl_mcc_update_resp_v8 *
416 iwl_mvm_update_mcc(struct iwl_mvm *mvm, const char *alpha2,
417 		   enum iwl_mcc_source src_id)
418 {
419 	struct iwl_mcc_update_cmd mcc_update_cmd = {
420 		.mcc = cpu_to_le16(alpha2[0] << 8 | alpha2[1]),
421 		.source_id = (u8)src_id,
422 	};
423 	struct iwl_mcc_update_resp_v8 *resp_cp;
424 	struct iwl_rx_packet *pkt;
425 	struct iwl_host_cmd cmd = {
426 		.id = MCC_UPDATE_CMD,
427 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
428 		.data = { &mcc_update_cmd },
429 	};
430 
431 	int ret, resp_ver;
432 	u32 status;
433 	int resp_len, n_channels;
434 	u16 mcc;
435 
436 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
437 		return ERR_PTR(-EOPNOTSUPP);
438 
439 	cmd.len[0] = sizeof(struct iwl_mcc_update_cmd);
440 
441 	IWL_DEBUG_LAR(mvm, "send MCC update to FW with '%c%c' src = %d\n",
442 		      alpha2[0], alpha2[1], src_id);
443 
444 	ret = iwl_mvm_send_cmd(mvm, &cmd);
445 	if (ret)
446 		return ERR_PTR(ret);
447 
448 	pkt = cmd.resp_pkt;
449 
450 	resp_ver = iwl_fw_lookup_notif_ver(mvm->fw, IWL_ALWAYS_LONG_GROUP,
451 					   MCC_UPDATE_CMD, 0);
452 
453 	/* Extract MCC response */
454 	if (resp_ver >= 8) {
455 		struct iwl_mcc_update_resp_v8 *mcc_resp_v8 = (void *)pkt->data;
456 
457 		n_channels =  __le32_to_cpu(mcc_resp_v8->n_channels);
458 		if (iwl_rx_packet_payload_len(pkt) !=
459 		    struct_size(mcc_resp_v8, channels, n_channels)) {
460 			resp_cp = ERR_PTR(-EINVAL);
461 			goto exit;
462 		}
463 		resp_len = struct_size(resp_cp, channels, n_channels);
464 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
465 		if (!resp_cp) {
466 			resp_cp = ERR_PTR(-ENOMEM);
467 			goto exit;
468 		}
469 		resp_cp->status = mcc_resp_v8->status;
470 		resp_cp->mcc = mcc_resp_v8->mcc;
471 		resp_cp->cap = mcc_resp_v8->cap;
472 		resp_cp->source_id = mcc_resp_v8->source_id;
473 		resp_cp->time = mcc_resp_v8->time;
474 		resp_cp->geo_info = mcc_resp_v8->geo_info;
475 		resp_cp->n_channels = mcc_resp_v8->n_channels;
476 		memcpy(resp_cp->channels, mcc_resp_v8->channels,
477 		       n_channels * sizeof(__le32));
478 	} else if (fw_has_capa(&mvm->fw->ucode_capa,
479 			       IWL_UCODE_TLV_CAPA_MCC_UPDATE_11AX_SUPPORT)) {
480 		struct iwl_mcc_update_resp_v4 *mcc_resp_v4 = (void *)pkt->data;
481 
482 		n_channels =  __le32_to_cpu(mcc_resp_v4->n_channels);
483 		if (iwl_rx_packet_payload_len(pkt) !=
484 		    struct_size(mcc_resp_v4, channels, n_channels)) {
485 			resp_cp = ERR_PTR(-EINVAL);
486 			goto exit;
487 		}
488 		resp_len = struct_size(resp_cp, channels, n_channels);
489 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
490 		if (!resp_cp) {
491 			resp_cp = ERR_PTR(-ENOMEM);
492 			goto exit;
493 		}
494 
495 		resp_cp->status = mcc_resp_v4->status;
496 		resp_cp->mcc = mcc_resp_v4->mcc;
497 		resp_cp->cap = cpu_to_le32(le16_to_cpu(mcc_resp_v4->cap));
498 		resp_cp->source_id = mcc_resp_v4->source_id;
499 		resp_cp->time = mcc_resp_v4->time;
500 		resp_cp->geo_info = mcc_resp_v4->geo_info;
501 		resp_cp->n_channels = mcc_resp_v4->n_channels;
502 		memcpy(resp_cp->channels, mcc_resp_v4->channels,
503 		       n_channels * sizeof(__le32));
504 	} else {
505 		struct iwl_mcc_update_resp_v3 *mcc_resp_v3 = (void *)pkt->data;
506 
507 		n_channels =  __le32_to_cpu(mcc_resp_v3->n_channels);
508 		if (iwl_rx_packet_payload_len(pkt) !=
509 		    struct_size(mcc_resp_v3, channels, n_channels)) {
510 			resp_cp = ERR_PTR(-EINVAL);
511 			goto exit;
512 		}
513 		resp_len = struct_size(resp_cp, channels, n_channels);
514 		resp_cp = kzalloc(resp_len, GFP_KERNEL);
515 		if (!resp_cp) {
516 			resp_cp = ERR_PTR(-ENOMEM);
517 			goto exit;
518 		}
519 
520 		resp_cp->status = mcc_resp_v3->status;
521 		resp_cp->mcc = mcc_resp_v3->mcc;
522 		resp_cp->cap = cpu_to_le32(mcc_resp_v3->cap);
523 		resp_cp->source_id = mcc_resp_v3->source_id;
524 		resp_cp->time = mcc_resp_v3->time;
525 		resp_cp->geo_info = mcc_resp_v3->geo_info;
526 		resp_cp->n_channels = mcc_resp_v3->n_channels;
527 		memcpy(resp_cp->channels, mcc_resp_v3->channels,
528 		       n_channels * sizeof(__le32));
529 	}
530 
531 	status = le32_to_cpu(resp_cp->status);
532 
533 	mcc = le16_to_cpu(resp_cp->mcc);
534 
535 	/* W/A for a FW/NVM issue - returns 0x00 for the world domain */
536 	if (mcc == 0) {
537 		mcc = 0x3030;  /* "00" - world */
538 		resp_cp->mcc = cpu_to_le16(mcc);
539 	}
540 
541 	IWL_DEBUG_LAR(mvm,
542 		      "MCC response status: 0x%x. new MCC: 0x%x ('%c%c') n_chans: %d\n",
543 		      status, mcc, mcc >> 8, mcc & 0xff, n_channels);
544 
545 exit:
546 	iwl_free_resp(&cmd);
547 	return resp_cp;
548 }
549 
550 int iwl_mvm_init_mcc(struct iwl_mvm *mvm)
551 {
552 	bool tlv_lar;
553 	bool nvm_lar;
554 	int retval;
555 	struct ieee80211_regdomain *regd;
556 	char mcc[3];
557 
558 	if (mvm->cfg->nvm_type == IWL_NVM_EXT) {
559 		tlv_lar = fw_has_capa(&mvm->fw->ucode_capa,
560 				      IWL_UCODE_TLV_CAPA_LAR_SUPPORT);
561 		nvm_lar = mvm->nvm_data->lar_enabled;
562 		if (tlv_lar != nvm_lar)
563 			IWL_INFO(mvm,
564 				 "Conflict between TLV & NVM regarding enabling LAR (TLV = %s NVM =%s)\n",
565 				 tlv_lar ? "enabled" : "disabled",
566 				 nvm_lar ? "enabled" : "disabled");
567 	}
568 
569 	if (!iwl_mvm_is_lar_supported(mvm))
570 		return 0;
571 
572 	/*
573 	 * try to replay the last set MCC to FW. If it doesn't exist,
574 	 * queue an update to cfg80211 to retrieve the default alpha2 from FW.
575 	 */
576 	retval = iwl_mvm_init_fw_regd(mvm, true);
577 	if (retval != -ENOENT)
578 		return retval;
579 
580 	/*
581 	 * Driver regulatory hint for initial update, this also informs the
582 	 * firmware we support wifi location updates.
583 	 * Disallow scans that might crash the FW while the LAR regdomain
584 	 * is not set.
585 	 */
586 	mvm->lar_regdom_set = false;
587 
588 	regd = iwl_mvm_get_current_regdomain(mvm, NULL);
589 	if (IS_ERR_OR_NULL(regd))
590 		return -EIO;
591 
592 	if (iwl_mvm_is_wifi_mcc_supported(mvm) &&
593 	    !iwl_bios_get_mcc(&mvm->fwrt, mcc)) {
594 		kfree(regd);
595 		regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc,
596 					     MCC_SOURCE_BIOS, NULL);
597 		if (IS_ERR_OR_NULL(regd))
598 			return -EIO;
599 	}
600 
601 	retval = regulatory_set_wiphy_regd_sync(mvm->hw->wiphy, regd);
602 	kfree(regd);
603 	return retval;
604 }
605 
606 void iwl_mvm_rx_chub_update_mcc(struct iwl_mvm *mvm,
607 				struct iwl_rx_cmd_buffer *rxb)
608 {
609 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
610 	struct iwl_mcc_chub_notif *notif = (void *)pkt->data;
611 	enum iwl_mcc_source src;
612 	char mcc[3];
613 	struct ieee80211_regdomain *regd;
614 	int wgds_tbl_idx;
615 
616 	lockdep_assert_held(&mvm->mutex);
617 
618 	if (iwl_mvm_is_vif_assoc(mvm) && notif->source_id == MCC_SOURCE_WIFI) {
619 		IWL_DEBUG_LAR(mvm, "Ignore mcc update while associated\n");
620 		return;
621 	}
622 
623 	if (WARN_ON_ONCE(!iwl_mvm_is_lar_supported(mvm)))
624 		return;
625 
626 	mcc[0] = le16_to_cpu(notif->mcc) >> 8;
627 	mcc[1] = le16_to_cpu(notif->mcc) & 0xff;
628 	mcc[2] = '\0';
629 	src = notif->source_id;
630 
631 	IWL_DEBUG_LAR(mvm,
632 		      "RX: received chub update mcc cmd (mcc '%s' src %d)\n",
633 		      mcc, src);
634 	regd = iwl_mvm_get_regdomain(mvm->hw->wiphy, mcc, src, NULL);
635 	if (IS_ERR_OR_NULL(regd))
636 		return;
637 
638 	wgds_tbl_idx = iwl_mvm_get_sar_geo_profile(mvm);
639 	if (wgds_tbl_idx < 1)
640 		IWL_DEBUG_INFO(mvm,
641 			       "SAR WGDS is disabled or error received (%d)\n",
642 			       wgds_tbl_idx);
643 	else
644 		IWL_DEBUG_INFO(mvm, "SAR WGDS: geo profile %d is configured\n",
645 			       wgds_tbl_idx);
646 
647 	regulatory_set_wiphy_regd(mvm->hw->wiphy, regd);
648 	kfree(regd);
649 }
650